
Wear Leveling in SSDs Considered Harmful
Ziyang Jiao

Syracuse University
zjiao04@syr.edu

Janki Bhimani
Florida International University

jbhimani@fiu.edu

Bryan S. Kim
Syracuse University
bkim01@syr.edu

ABSTRACT
We argue that wear leveling in SSDs does more harm than
good under modern settings where the endurance limit is
in the hundreds. To support this claim, we evaluate existing
wear leveling techniques and show that they exhibit anoma-
lous behaviors and produce a high write amplification. These
findings are consistent with a recent large-scale field study
on the operational characteristics of SSDs. We discuss the
option of forgoing wear leveling and instead adopting capac-
ity variance in SSDs, and show that the capacity variance
extends the lifetime of the SSD by up to 2.94×.

CCS CONCEPTS
• Information systems→ Flash memory; Information
lifecycle management.

KEYWORDS
SSD, wear leveling, endurance, lifetime, write amplification,
capacity variance
ACM Reference Format:
Ziyang Jiao, Janki Bhimani, and Bryan S. Kim. 2022. Wear Leveling
in SSDs Considered Harmful. In 14th ACM Workshop on Hot Topics
in Storage and File Systems (HotStorage ’22), June 27–28, 2022, Virtual
Event, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3538643.3539750

1 INTRODUCTION
Wear leveling (WL) in solid-state drives (SSDs) seeks to equal-
ize the amount of wear so that no cells prematurely fail
prior to the end of the SSD’s lifetime [3, 6–8, 10]. While
there are different approaches to implementing WL (from
static [3, 6, 10] to dynamic [7, 8]), the underlying goal is to
use younger blocks with fewer erases more than the older

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage ’22, June 27–28, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539750

Figure 1: The estimated endurance limit of various SSDs in
the past years. We estimate the endurance limit by dividing
the SSD’s TBW (terabytes written: the total amount of writes
the SSD manufacturer guarantees) by the logical capacity.
This estimation is consistent with recent works [21, 22].

blocks. Static wear leveling techniques [3, 6, 10], in particular,
proactively relocate data within an SSD, thereby incurring
additional write amplification for the sake of equalizing the
number of erases. Dynamic wear leveling [7, 8], on the other
hand, combines WL with other SSD-internal tasks such as
garbage collection, reducing the efficiency of victim block
selection. In other words, WL techniques incur additional
wear-out to increase the overall lifetime of the SSD.

Ideally, the wear leveling algorithm would minimize its
overhead while maximizing its effectiveness. However, a
recent large-scale field study on millions of SSDs reveals
that the WL techniques in modern SSDs present limited
effectiveness and are far from perfect [23]. This study shows
that someWL algorithms are unable to achieve their intended
goal as some of the blockswear out 6× faster than the average.
Furthermore, some SSDs exhibit amedianwrite amplification
factor (WAF) of around 100, although the cause of this cannot
be definitive. With the endurance limit of flash memory
steadily decreasing, as shown in Figure 1, it will become
increasingly challenging to design an effective (equal wear)
yet efficient (low write amplification) wear leveler.

To understand the underlying reasons for the ineffective-
ness of WL in SSDs, we evaluate three representative WL
techniques [3, 6, 7] that have been compared against a wide
variety of other WLs [5, 10, 15, 24, 28, 30, 33]. Our experi-
ments find thatWL algorithms produce a counter-productive

72

https://doi.org/10.1145/3538643.3539750
https://doi.org/10.1145/3538643.3539750
https://doi.org/10.1145/3538643.3539750

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Ziyang Jiao, Janki Bhimani, and Bryan S. Kim

Table 1: Representative wear leveling algorithms.

Name Type Parameters Principle Comparisons

DP [3] Static Fixed, a predefined threshold (𝑇𝐻) Hot-cold swapping HC [15], 2L [33], EP [30], OBP [10]
PWL [6] Static Adaptive, a initial threshold (𝑇𝐻𝑅𝑖𝑛𝑖𝑡) Cold-data migration BET [5] and Rejuvenator [24]
DAGC [7] Dynamic Adaptive, no external parameters Adjust GC victim DTGC [28]

result where the erase counts diverge, increasing the spread
rather than reducing it. This happens when the WL attempts
to move data that it incorrectly perceives to be cold into old
blocks. In addition, we observe that WL-induced WAF can
reach as high as 11.49 where WL’s attempt to achieve a tight
distribution of erase count comes at the cost of a high WAF.
Instead of designing a new wear leveling algorithm that

patches these issues, we fundamentally ask if wear leveling is
worth the trouble. Wear leveling exists to maintain the fixed
capacity abstraction, when in reality, the underlying media
for SSDs fail partially [26]. Instead, we explore and quantify
the benefits of capacity variance in an SSD that gracefully
reduces its capacity as flash memories become bad [18]. Our
experimental results show that capacity variance allows up
to 84% more writes to the SSD with wear leveling, and up to
2.94× more writes without WL.

2 WEAR LEVELING: BOON OR BANE?
Motivated to reproduce the results from a recent large-scale
study [23], we examine the behavior of WL algorithms under
a synthetic microbenchmark. We evaluate three represen-
tative wear leveling (WL) algorithms, Dual-Pool (DP) [3],
Progressive Wear Leveling (PWL) [6], Dynamic Adjust-
ment Garbage Collection (DAGC) [7], and Table 1 sum-
marizes their characteristics.

2.1 Experimental Setup
We extend FTLSim [9]1 for our experiments. This prior work
validates the analytical model for SSD performance and thus
focuses on accuratelymodeling SSD-internal statistics, rather
than SSD-external performance such as latency and through-
put. This allows us to simulate the entire lifetime of an SSD
(a few hundreds of TiB written) within a few months and
also observe its internal activities. Table 2 summarizes the
SSD configuration and policies for our experiments.
To understand the behavior of WL techniques, we syn-

thetically generate workload to control the I/O pattern bet-
ter. All I/Os are small random writes, but the distribution
is controlled by two parameters 𝑟 and ℎ (0 < 𝑟 < 1 and
0 < ℎ < 1): 𝑟 fraction of writes go to the ℎ fraction of the
footprint (hot addresses) [29]. We use 𝑟/ℎ to indicate that

1Our extension is available at https://github.com/ZiyangJiao/FTLSim-WL.

the 𝑟 fraction of writes occur on the ℎ fraction of the work-
load footprint. Unless otherwise noted, we generate the I/O
workload for the entire logical address space. Prior to each
experiment, we pre-condition the SSD with one sequential
full-drive write, followed by three random full-drive writes
(256 GiB sequential + 768 GiB random write) to put the drive
into a steady-state [31].

2.2 Performance of Wear Leveling
We investigate the performance of wear leveling in the fol-
lowing three aspects: (1) write amplification, (2) effectiveness
in equalizing the erase count, and (3) behaviors under differ-
ent access footprints.
Write amplification. We measure the WL-induced write
amplification (WA) by using a synthetic workload of 𝑟/ℎ =

0.9/0.1 for up to 100 full-drive writes (25 TiB). The WL pa-
rameter values we experiment with are similar to those used
in the prior work [3, 6, 7]. Figure 2 shows the write amplifi-
cation, and we make the following four observations. First,
the overall write amplification can be as high as 11.49, in
which 5.4 is caused by WL. This overhead is as much as the
WA caused by garbage collection. This means that for each
256 GiB user data written, wear leveling alone will create an
additional 1.35 TiB of data writes internally. Second, the WA
is sensitive to the WL threshold parameter, 𝑇𝐻 . Changing
the 𝑇𝐻 from 10 to 5 for the DP algorithm will amplify the
amount of data written to 1.6×. Third, PWL produces a sig-
nificantly high WA of 11.49 once the SSD ages beyond 80
full-drive writes. PWL is an adaptive WL algorithm, and it
becomes overly aggressive at a later stage while being dor-
mant during the early stage. Lastly, WA steadily increases
over time as the SSD ages, indicating that SSD aging will
accelerate as more data are written.

Table 2: SSD configuration and policies. Only the pa-
rameters relevant to understanding the wear leveling
behavior are shown.

Parameter Value Parameter Value

Page size 4 KiB Physical capacity 284 GiB
Pages per block 256 Logical capacity 256 GiB
Block size 1 MiB Over-provisioning 11%
Block allocation FIFO Garbage collection Greedy

73

https://github.com/ZiyangJiao/FTLSim-WL

Wear Leveling in SSDs Considered Harmful HotStorage ’22, June 27–28, 2022, Virtual Event, USA

Figure 2: The write amplification caused by wear lev-
eling under a 𝑟/ℎ = 0.9/0.1 synthetic workload. The
parenthetical values in the legends are the WL thresh-
old parameters. 𝑃𝑊𝐿(50) that aggressively performs
wear leveling at the late stage causes its WAF to be as
high as 11.49.

(a) 𝑟/ℎ = 0.9/0.1
with large footprint.

(b) 𝑟/ℎ = 0.5/0.5
with large footprint.

Figure 3: The distribution of erase count when full logical
address space is used after writing 25TiB. WL shows the per-
formance anomaly under 𝑟/ℎ = 0.9/0.1 workload (Figure 3a).
On the other hand, the benefit from wear leveling is neg-
ligible compared to not running at all under 𝑟/ℎ = 0.5/0.5
(Figure 3b).

Wear leveling effectiveness. We measure the distribution
of erase count under a synthetic workload as shown in Fig-
ure 3. We perform 100 full-drive writes (25 TiB) using a work-
load with 𝑟/ℎ = 0.9/0.1 (Figure 3a), and with 𝑟/ℎ = 0.5/0.5
(Figure 3b).

With 𝑟/ℎ = 0.9/0.1, as shown in Figure 3a, all configu-
rations of DP and PWL show a worse distribution of erase
counts than not running WL (𝑁𝑜𝑊𝐿). DP and PWL show a
concave dip in the CDF curve, indicating a bimodal distri-
bution of erase counts. NoWL, on the other hand, shows a
nearly vertical line, meaning that the erase counts are more
tightly distributed. We consider this to be a performance
anomaly of wear leveling because it behaves the opposite
of what is expected. We examine the bimodal distribution
of 𝐷𝑃 (5) and find that the blocks associated with the cold
pool are older than those in the hot pool. The DP algorithm’s
underlying assumption is that blocks containing hot data are
older than blocks with cold data, and it compares the erase
count of the oldest block in the hot pool and the youngest
block in the cold pool. If the youngest block in the cold pool

(a) 𝑟/ℎ = 0.9/0.1
with small footprint.

(b) 𝑟/ℎ = 0.5/0.5
with small footprint.

Figure 4: The distribution of erase count when only 5% of
the logical address space is used. The red dot indicates the
average erase count for NoWL.

happens to be older than the oldest block in the hot pool,
however, it will still trigger the swap between the two blocks,
causing this inversion. DAGC also achieves good evenness
but amplifies data writes by 18% compared to 𝑁𝑜𝑊𝐿.
On the other hand, with a uniformly random workload

(Figure 3b), there is a negligible difference among DP, PWL,
and NoWL. This is because, with a uniform workload, all
blocks are used equally, and there is little room for wear
leveling. We do observe, however, that 𝐷𝑃 (5) still exhibits a
performance anomaly though at a smaller degree than un-
der 𝑟/ℎ = 0.9/0.1 (cf. Figure 3a) As for DAGC, the overall
efficiency for garbage collection is reduced as its victim se-
lection considers both valid ratio and erase count, incurring
15% more data writes than NoWL.

These experiments show that WL algorithms are a double-
edged sword. As shown in Figure 3a, it can make the distri-
bution of wear worse than not running WL at all. On the
other hand, it can achieve good wear leveling but at a high
cost of accelerated overall wear state.
Small access footprint. Here we explore the performance
of wear leveling when the accesses are restricted to a small
address space (5% of total) using two synthetic workloads,
𝑟/ℎ = 0.9/0.1 and 𝑟/ℎ = 0.5/0.5, as shown in Figure 4.

Overall, we observe that most WL techniques are effec-
tive in equalizing the erase count, as shown by the near-
vertical CDF curve in both Figure 4a and Figure 4b. 𝑁𝑜𝑊𝐿,
on the other hand, shows a bimodal distribution between
used blocks and unused blocks in both workloads.We also ob-
serve that when the workload is skewed (Figure 4a), the WL
techniques achieve this evenness by amplifying the amount
of data writes, as shown by the rightward shift in the CDF
curves. For a uniform workload, on the other hand (Fig-
ure 4b), the overall write amplification from wear leveling is
much lower as data are equally likely to be invalidated.

Unlike the results from Figure 3a and Figure 3b where the
entire logical address space is written, WL is effective only
when a small fraction of the address space is used, restricting
its overall usefulness.

74

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Ziyang Jiao, Janki Bhimani, and Bryan S. Kim

2.3 Summary of Findings
Table 4 summarizes the effectiveness of WL from our ex-
periments using synthetic workloads. Only when the access
pattern is uniform and footprint is small, WL is beneficial;
otherwise, it is detrimental or has negligible effect.
Instead of proposing a new wear leveling algorithm that

solves both the write amplification overhead and perfor-
mance anomaly, we question the circumstances that require
wear leveling and examine its necessity in the next section.

Table 4: Qualitative effectiveness of wear leveling.

Skewed access Uniform access

Large footprint Anomalous
(Figure 3a)

Negligible
(Figure 3b)

Small footprint Write amplified
(Figure 4a)

Effective
(Figure 4b)

3 CASE STUDY ON CAPACITY VARIANCE
If the interface were to allow a reduction in the SSD’s ex-
ported capacity,WL becomes unnecessary as it does not need
to ensure that all blocks wear out evenly. The idea of capac-
ity variance is not new [18]: the Zoned Namespace (ZNS)
specification allows zones to be taken offline [34], effectively
shrinking the SSD’s capacity. In this section, we study such
a case of capacity reduction and the overall lifetime of the
SSD with and without WL.
We implement a capacity-variant SSD on the extended

FTLSim [9] from § 2 and use the SSD configuration in Table 2
for our evaluation. However, we set the endurance limit to
500 erases, a typical level for QLC [21, 22], and once a block
reaches this, it will be mapped out and no longer used in the
SSD, effectively reducing the SSD’s physical capacity. For
the fixed capacity SSD, the SSD is considered to reach its end
of life once the physical capacity becomes smaller than its
logical capacity: the SSD is considered to have failed once

this happens. On the other hand, the capacity-variant SSD
gracefully reduce its capacity below the initial logical space,
to a user defined threshold (if set) or as low as the access
footprint for the workload. For a capacity-variant SSD, if
the logical capacity can no longer be reduced without losing
user data, the SSD is considered to have failed.

For the workload, we use nine real-world block I/O traces
that were collected from running YCSB [36], a virtual desktop
infrastructure (VDI) [19], and Microsoft production servers
(WBS, DTRS, DAP-PS, LM-TBE, MSN-CFS, MSN-BEFS, RAD-
BE) [17]. In particular, the Microsoft production traces are
outdated, but we use it to include a wider variety of work-
loads. The traces aremodified into a 256GiB range (the logical
capacity of the SSD), and all the requests are aligned to 4KiB
boundaries. Similar to the synthetic workload evaluation, the
SSD is pre-conditioned with one sequential full-drive write
and three random full-drive writes on the entire logical space.
The traces run in a loop indefinitely, continuously generating
I/O until the SSD becomes unusable. Table 3 summarizes the
trace workload characteristics.

We evaluate the following eight designs.
Fix_NoWL runs no WL on a fixed capacity SSD.
Fix_DP runs 𝐷𝑃 (5) on a fixed capacity SSD.
Fix_PWL runs 𝑃𝑊𝐿(50) on a fixed capacity SSD.
Fix_DAGC runs 𝐷𝐴𝐺𝐶 on a fixed capacity SSD.
Var_NoWL runs no WL on a capacity-variant SSD.
Var_DP runs 𝐷𝑃 (5) on a capacity-variant SSD.
Var_PWL runs 𝑃𝑊𝐿(50) on a capacity-variant SSD.
Var_DAGC runs 𝐷𝐴𝐺𝐶 on a capacity-variant SSD.

Figure 5 shows the amount of data written to the SSD
before failure for the nine I/O traces. The 𝑦-axis is in terms
of the number of drive writes. For example, for 100 drive
writes, 25TiB of data have been written. Overall, we observe
that with fixed capacity SSDs, running WL is better than not
running WL, but only by a small margin: 𝐹𝑖𝑥_𝐷𝑃 extends
the lifetime by only 13% on average compared to 𝐹𝑖𝑥_𝑁𝑜𝑊𝐿,
and with workloads such as VDI and DTRS, 𝐹𝑖𝑥_𝐷𝑃 and
𝐹𝑖𝑥_𝐷𝐴𝐺𝐶 perform worse than 𝐹𝑖𝑥_𝑁𝑜𝑊𝐿. However, with

Table 3: Trace workload characteristics. YCSB-A is from running YCSB [36], VDI is from a virtual desktop infrastruc-
ture [19], and the remaining 7 (from WBS to RAD-BE) are from Microsoft production servers [17].

Workload Description Footprint (GiB) Avg. write size (KiB) Hotness (𝑟/ℎ) Sequentiality

YCSB-A User session recording 89.99 50.48 64.69/35.31 0.49
VDI Virtual desktop infrastructure 255.99 17.99 64.45/35.55 0.14
WBS Windows build server 56.05 27.82 60.34/39.66 0.02
DTRS Developer tools release 150.63 31.85 54.20/45.80 0.12

DAP-PS Advertisement payload 36.06 97.20 55.02/44.98 0.16
LM-TBE Map service backend 239.49 61.90 60.29/39.71 0.94
MSN-CFS Storage metadata 5.58 12.92 69.28/30.72 0.25
MSN-BEFS Storage backend file 31.42 11.62 70.18/29.82 0.03
RAD-BE Remote access backend 14.73 13.02 65.51/34.49 0.33

75

Wear Leveling in SSDs Considered Harmful HotStorage ’22, June 27–28, 2022, Virtual Event, USA

Figure 5: Evaluation of the presence and absence of wear leveling in both a fixed capacity and a capacity-variant SSD. Capacity
variance extends the lifetime by 86% on average, and as high as 2.94× in the case of RAD-BE.

Figure 6: Write amplification caused by WL and GC. While a large sequential workload such as LM-TBE only has a low write
amplification overhead of 1.26, most other workloads exhibit high wear leveling overhead for DP and DAGC, reaching as high
as 6.9. Without wear leveling, the average write amplification is only 2.89.

capacity variance, not runningWL is better than runningWL
by a large margin: 𝑉𝑎𝑟_𝑁𝑜𝑊𝐿 extends the lifetime by 86%
on average, and as much as 2.94× for RAD-BE. We explain
this result by the measurement of write amplification caused
by wear leveling, shown in Figure 6.
Workloads with a relatively small footprint. We ob-
serve that capacity variance is most effective on workloads
such as DAP-PS, MSN-CFS, and RAD-BE. These workloads are
characterized by a small access footprint where gracefully
reducing the capacity achieves more lifetime extension than
WL. Specifically, capacity variance without wear leveling
allows 2.94× more data to be written to the SSD for RAD-BE.

MSN-BEFS also has a small footprint, but we observe a
comparatively lower lifetime extension of 0.91×. In fact, the
lifetime of 𝐹𝑖𝑥_𝑁𝑜𝑊𝐿 isn’t too far off from that of 𝐹𝑖𝑥_𝐷𝑃 ,
only 5% less. The reason for this is due to garbage collection:
This workload contains a lot of small random writes, causing
garbage collection to be active, dwarfing the WL-induced
WAF. Because of this, MSN-BEFS only allows 145 full-drive
writes (36.27 TiB) even for the capacity-variant SSD.
Workloads with a relatively large footprint. LM-TBE and
VDI are two workloads with the largest footprint, and the
benefit of capacity variance is diminished in such workloads.
However, we find that capacity variance still achieves the
similar lifetime extension compared to the best case via WL
under this scenario: for VDI, 𝐹𝑖𝑥_𝑃𝑊𝐿 extends the lifetime by
only 3.1% compared to𝑉𝑎𝑟_𝑁𝑜𝑊𝐿, and for LM-TBE, 𝐹𝑖𝑥_𝐷𝑃
extends it by only 3.6% compared to 𝑉𝑎𝑟_𝑁𝑜𝑊𝐿. A large
footprint means that there is little to gain from reducing
the capacity as data are still in use. For LM-TBE, the large
sequential write with relatively high uniformity causes the
write amplification for WL to be small, as low as 1.18. This
allows wear leveling to squeeze more writes out of the SSD.

DTRS is one of the rare occasions where not running WL
is better in a fixed capacity SSD. 𝐹𝑖𝑥_𝑁𝑜𝑊𝐿 allows 18%
more writes compared to 𝐹𝑖𝑥_𝐷𝑃 , and 7% more compared
to 𝐹𝑖𝑥_𝐷𝐴𝐺𝐶 . This is due to the high write amplification
of wear leveling. Although the write access pattern of DTRS
is fairly uniform, we suspect that a wear leveling anomaly
occurred, causing a subset of blocks to age rapidly. Introduc-
ing capacity variance extends the lifetime for all three cases,
however, with 𝑉𝑎𝑟_𝑁𝑜𝑊𝐿 extending the lifetime by 24%
compared to 𝐹𝑖𝑥_𝐷𝑃 . 𝑉𝑎𝑟_𝑃𝑊𝐿 outperforms 𝑉𝑎𝑟_𝑁𝑜𝑊𝐿,
but the difference is only 3%.

4 DISCUSSION AND RELATED WORK
Wear leveling is a mature and well-understood topic in both
academia and industry, but getting it right has proven to be
difficult as shown by the recent large-scale field study [23].
This study on millions of modern SSDs shows that some
blocks wear out 6× faster than the average, revealing the in-
effectiveness of wear leveling algorithms. We discuss related
work on wear leveling and file system support necessary for
capacity variance.
Wear leveling and write amplification. There exists a
large body of work on garbage collection and its associ-
ated write amplification (WA) for SSDs, from analytical ap-
proaches [9, 12, 27, 37] to experimental results [4, 16, 38].
However, there is surprisingly limited work that measures
the WA caused by wear leveling (WL), and they often rely on
a back-of-the-envelope calculation for estimating the overhead
and lifetime [39]. Even those that perform a more rigorous
study evaluate the efficacy of WL by measuring the amount
of writes the SSD can endure [6, 14, 20, 35] or the distribution
of erase count [1, 3, 13]; only the Dual-Pool algorithm [3]
present the overhead of WL.

76

HotStorage ’22, June 27–28, 2022, Virtual Event, USA Ziyang Jiao, Janki Bhimani, and Bryan S. Kim

File system support. Using a capacity-variant SSD would
need support from the file system. Thankfully, the current
system design canmake this transition less painful for the fol-
lowing reasons. First, the TRIM command, widely supported
by interface standards such as NVMe allows the file system
to explicitly declare that the data (at the specified addresses)
are no longer in use. This allows the SSD to discard the data
safely and would help determine if the exported capacity can
be gracefully reduced. Second, modern file systems can safely
compact their content so that the data in use are contiguous
in the logical address space. Log-structure file systems such
as F2FS support this more readily, but file system defragmen-
tation can also achieve the same effect in in-place update file
systems such as ext4. Lastly, zoned namespace (ZNS), a new
abstraction for storage devices that gained significant inter-
est in the research community [2, 11, 32], already supports
shrinking the device capacity by taking zones offline [34].
The capacity variance potentially incurs overhead for the
file system to relocate data from one logical space to another.
Naïvely, the file system would relocate not only the data at
the high address space, but also update any metadata for
the block allocation and inode. A more advanced command
such as SHARE [25] can be used to reduce the relocation
overhead.

5 CONCLUSION
From a system design standpoint, it is easier to build the
storage stack with a fixed capacity abstraction. However, this
abstraction requires the implementation of a wear leveler
in SSDs that is surprisingly both ineffective and inefficient.
Furthermore, with increasing flash memory block size and
decreasing endurance limit for flash, we expect the wear
leveling problem to exacerbate in the near future. We believe
it is necessary to re-think the benefits and costs of the wear
leveler in SSDs and the block interface abstraction.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful com-
ments and suggestions that help us to improve the quality
of this paper. Peter Desnoyers provided the original version
of FTLSim used in this work. This research was supported,
in part, by the National Science Foundation awards CNS-
2008324 and CNS-2008453.

REFERENCES
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis,

Mark S. Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for
SSD Performance. In USENIX Annual Technical Conference (ATC). 57–
70.

[2] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,
Damien Le Moal, Gregory R. Ganger, and George Amvrosiadis. 2021.
ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. InUSENIX
Annual Technical Conference (ATC). 689–703.

[3] Li-Pin Chang. 2007. On efficient wear leveling for large-scale flash-
memory storage systems. In ACM Symposium on Applied Computing
(SAC).

[4] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. 2004. Real-time garbage
collection for flash-memory storage systems of real-time embedded
systems. ACM Trans. Embed. Comput. Syst. 3, 4 (2004), 837–863.

[5] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. 2010. Improving
Flash Wear-Leveling by Proactively Moving Static Data. IEEE Trans.
Computers 59, 1 (2010), 53–65.

[6] Fu-Hsin Chen, Ming-Chang Yang, Yuan-Hao Chang, and Tei-Wei Kuo.
2015. PWL: a progressive wear leveling to minimize data migration
overheads for NAND flash devices. In Design, Automation & Test in
Europe Conference & Exhibition, (DATE).

[7] Zhe Chen and Yuelong Zhao. 2020. DA-GC: A Dynamic Adjustment
Garbage Collection Method Considering Wear-leveling for SSD. In
Great Lakes Symposium on VLSI (GLSVLSI). 475–480.

[8] Mei-Ling Chiang, Paul CH Lee, and Ruei-Chuan Chang. 1999. Using
data clustering to improve cleaning performance for flash memory.
Software: Practice and Experience 29, 3 (1999), 267–290.

[9] Peter Desnoyers. 2012. Analytic modeling of SSD write performance.
In International Systems and Storage Conference (SYSTOR).

[10] Thomas Gleixner, Frank Haverkamp, and Artem Bityutskiy. 2006. UBI -
Unsorted Block Images. http://linux-mtd.infradead.org/doc/ubidesign/
ubidesign.pdf.

[11] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooyoung Hwang.
2021. ZNS+: Advanced Zoned Namespace Interface for Supporting
In-Storage Zone Compaction. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 147–162.

[12] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and
Roman A. Pletka. 2009. Write amplification analysis in flash-based
solid state drives. In Israeli Experimental Systems Conference (SYSTOR).
10.

[13] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. 2017. FlashBlox:
Achieving Both Performance Isolation and Uniform Lifetime for Vir-
tualized SSDs. In USENIX Conference on File and Storage Technologies
(FAST). 375–390.

[14] Xavier Jimenez, David Novo, and Paolo Ienne. 2014. Wear unlevel-
ing: improving NAND flash lifetime by balancing page endurance.
In USENIX conference on File and Storage Technologies (FAST), Bianca
Schroeder and Eno Thereska (Eds.). 47–59.

[15] Han joon Kim and Sang goo Lee. 2002. An Effective Flash Memory
Manager for Reliable Flash Memory Space Management. IEICE Trans-
actions on Information and Systems 85 (2002), 950–964.

[16] Won-Kyung Kang, Dongkun Shin, and Sungjoo Yoo. 2017. Reinforce-
ment Learning-Assisted Garbage Collection to Mitigate Long-Tail La-
tency in SSD. ACM Trans. Embed. Comput. Syst. 16, 5s (2017), 134:1–
134:20.

[17] Swaroop Kavalanekar, Bruce L. Worthington, Qi Zhang, and Vishal
Sharda. 2008. Characterization of storage workload traces from pro-
duction Windows Servers. In International Symposium on Workload
Characterization (IISWC).

[18] Bryan S. Kim, Eunji Lee, Sungjin Lee, and Sang Lyul Min. 2019. CPR
for SSDs. In Workshop on Hot Topics in Operating Systems (HotOS).

[19] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo,
Naoto Fukumoto, and Mariko Sugawara. 2017. Understanding storage
traffic characteristics on enterprise virtual desktop infrastructure. In
ACM International Systems and Storage Conference (SYSTOR).

[20] Sungjin Lee, Taejin Kim, Kyungho Kim, and Jihong Kim. 2012. Lifetime
management of flash-based SSDs using recovery-aware dynamic throt-
tling. In USENIX conference on File and Storage Technologies (FAST).

77

http://linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf
http://linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf

Wear Leveling in SSDs Considered Harmful HotStorage ’22, June 27–28, 2022, Virtual Event, USA

[21] Shuwen Liang, Zhi Qiao, Sihai Tang, Jacob Hochstetler, Song Fu,
Weisong Shi, and Hsing-Bung Chen. 2019. An Empirical Study of
Quad-Level Cell (QLC) NAND Flash SSDs for Big Data Applications.
In IEEE International Conference on Big Data (Big Data). 3676–3685.

[22] Chun-Yi Liu, Yunju Lee, Myoungsoo Jung, Mahmut Taylan Kandemir,
and Wonil Choi. 2021. Prolonging 3D NAND SSD Lifetime via Read
Latency Relaxation. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
730–742. https://doi.org/10.1145/3445814.3446733

[23] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder.
2022. Operational Characteristics of SSDs in Enterprise Storage Sys-
tems: A Large-Scale Field Study. In USENIX Conference on File and Stor-
age Technologies (FAST). 165–180. https://www.usenix.org/conference/
fast22/presentation/maneas

[24] Muthukumar Murugan and David Hung-Chang Du. 2011. Rejuvena-
tor: A static wear leveling algorithm for NAND flash memory with
minimized overhead. In IEEE Symposium on Mass Storage Systems and
Technologies (MSST).

[25] Gihwan Oh, Chiyoung Seo, Ravi Mayuram, Yang-Suk Kee, and Sang-
Won Lee. 2016. SHARE Interface in Flash Storage for Relational and
NoSQL Databases. In International Conference on Management of Data
(SIGMOD). 343–354.

[26] Open NAND Flash Interface. 2021. ONFI 5.0 Spec. http://www.onfi.
org/specifications/.

[27] Changhyun Park, Seongjin Lee, Youjip Won, and Soohan Ahn. 2017.
Practical Implication of Analytical Models for SSDWrite Amplification.
In ACM/SPEC on International Conference on Performance Engineering
(ICPE). 257–262.

[28] Yi Qin, Dan Feng, Jingning Liu, Wei Tong, and Zhiming Zhu. 2014.
DT-GC: Adaptive Garbage Collection with Dynamic Thresholds for
SSDs. In 2014 International Conference on Cloud Computing and Big
Data. 182–188. https://doi.org/10.1109/CCBD.2014.28

[29] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and Im-
plementation of a Log-Structured File System. In PhD thesis, University

of California at Berkeley.
[30] Sandisk. 2003. Sandisk Flash Memory Cards Wear Leveling. http://

www.sandisk.com/Assets/File/OEM/WhitePapersAndBrochures/RS-
MMC/WPaperWearLevelv1.0.pdf.

[31] Esther Spanjer and Easen Ho. 2011. The Why and How of SSD
Performance Benchmarking - SNIA. https://www.snia.org/sites/
default/education/tutorials/2011/fall/SolidState/EstherSpanjer_The_
Why_How_SSD_Performance_Benchmarking.pdf.

[32] Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett, and Wyatt
Lloyd. 2021. Don’t be a blockhead: zoned namespaces make work on
conventional SSDs obsolete. InWorkshop on Hot Topics in Operating
Systems (HotOS). 144–151.

[33] STMicro. 2006. Wear Leveling in Single Level Cell NAND Flash Mem-
ories. STMicroelectronics Application Note (AN1822).

[34] Western Digital. 2020. Zoned Namespaces (ZNS) SSDs. https:
//zonedstorage.io/introduction/zns/.

[35] Ellis Herbert Wilson, Myoungsoo Jung, and Mahmut T. Kandemir.
2014. ZombieNAND: Resurrecting Dead NAND Flash for Improved
SSD Longevity. In IEEE International Symposium on Modelling, Analysis
& Simulation of Computer and Telecommunication Systems (MASCOTS).
229–238.

[36] Gala Yadgar, Moshe Gabel, Shehbaz Jaffer, and Bianca Schroeder. 2021.
SSD-based Workload Characteristics and Their Performance Implica-
tions. ACM Trans. Storage 17, 1 (2021), 8:1–8:26.

[37] Yudong Yang, Vishal Misra, and Dan Rubenstein. 2015. On the Opti-
mality of Greedy Garbage Collection for SSDs. SIGMETRICS Perform.
Evaluation Rev. 43, 2 (2015), 63–65.

[38] Qi Zhang, Xuandong Li, Linzhang Wang, Tian Zhang, Yi Wang, and
Zili Shao. 2015. Optimizing deterministic garbage collection in NAND
flash storage systems. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). 14–23.

[39] Tao Zhang, Aviad Zuck, Donald E. Porter, and Dan Tsafrir. 2017. Flash
Drive Lifespan *is* a Problem. In Workshop on Hot Topics in Operating
Systems (HotOS). 42–49.

78

https://doi.org/10.1145/3445814.3446733
https://www.usenix.org/conference/fast22/presentation/maneas
https://www.usenix.org/conference/fast22/presentation/maneas
http://www.onfi.org/specifications/
http://www.onfi.org/specifications/
https://doi.org/10.1109/CCBD.2014.28
http://www.sandisk.com/Assets/File/OEM/WhitePapersAndBrochures/RS-MMC/WPaperWearLevelv1.0.pdf
http://www.sandisk.com/Assets/File/OEM/WhitePapersAndBrochures/RS-MMC/WPaperWearLevelv1.0.pdf
http://www.sandisk.com/Assets/File/OEM/WhitePapersAndBrochures/RS-MMC/WPaperWearLevelv1.0.pdf
https://www.snia.org/sites/default/education/tutorials/2011/fall/SolidState/EstherSpanjer_The_Why_How_SSD_Performance_Benchmarking.pdf
https://www.snia.org/sites/default/education/tutorials/2011/fall/SolidState/EstherSpanjer_The_Why_How_SSD_Performance_Benchmarking.pdf
https://www.snia.org/sites/default/education/tutorials/2011/fall/SolidState/EstherSpanjer_The_Why_How_SSD_Performance_Benchmarking.pdf
https://zonedstorage.io/introduction/zns/
https://zonedstorage.io/introduction/zns/

	Abstract
	1 Introduction
	2 Wear Leveling: Boon or Bane?
	2.1 Experimental Setup
	2.2 Performance of Wear Leveling
	2.3 Summary of Findings

	3 Case Study on Capacity Variance
	4 Discussion and Related Work
	5 Conclusion
	References

