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Glasses possess more low-frequency vibrational modes than predicted by Debye theory. These
excess modes are crucial for the understanding of the low temperature thermal and mechanical
properties of glasses, which differ from those of crystalline solids. Recent simulational studies suggest
that the density of the excess modes scales with their frequency ω as ω4 in two and higher dimensions.
Here, we present extensive numerical studies of two-dimensional model glass formers over a large
range of glass stabilities. We find that the density of the excess modes follows Dexc(ω) ∼ ω2 up to
around the boson peak, regardless of the glass stability. The stability dependence of the overall scale
of Dexc(ω) correlates with the stability dependence of low-frequency sound attenuation. However,
we also find that in small systems, where the first sound mode is pushed to higher frequencies,
at frequencies below the first sound mode there are excess modes with a system size independent
density of states that scales as ω3.

Low-temperature glasses exhibit thermal and mechan-
ical properties [1–7] that distinguish them from crys-
talline solids. The low-frequency vibrational modes in
crystalline solids are plane waves. Their density of states
is well described by Debye theory and scales with fre-
quency ω as ωd−1 where d is the spatial dimension. For
glasses, there are additional low-frequency modes that
result in a peak in the reduced total density of states
D(ω)/ωd−1, which is referred to as the boson peak [8–
11]. Understanding the nature of the additional modes
provides insight into the physics behind the anomalous
properties of glasses [12–20].

Mean field theory [21, 22] predicts that the density
of the low-frequency excess modes Dexc(ω) grows as ωβ

with β = 2, while several phenomenological models [23–
27] predict β = 3 or 4. Fluctuating elasticity theory [28]
predicts that β = d+1. An analysis based on a fold sta-
bility predicts β = 3 in glasses approaching marginal sta-
bility [29], while other recent theories predict β = 4 [30–
33].

Characteristics of individual modes can be examined
in computer simulations but studying finite systems
presents some difficulties. One is that the plane-wave-like
modes occur around discrete frequencies, which can be
approximated using Debye theory. For this reason care
is needed when calculating the density of states. Simulat-
ing two-dimensional glasses adds another difficulty since
Mermin-Wagner [34–37] fluctuations lead to pronounced
finite size effects in some static and dynamic properties
of 2D solids.

With increasing system size the glass behaves increas-
ingly as a continuous elastic solid, and it is expected that
there are plane-wave-like modes similar to those of De-
bye theory, which lead researchers to distinguish between
plane-wave-like modes and additional modes. One simple
way to do this is to use the participation ratio, which is
a measure of how many particles significantly participate
in the mode [38, 39]. Another approach is to introduce

an order parameter that quantifies the similarity between
a low-frequency mode in an amorphous solid and a plane
wave [39]. Although these methods are naturally suited
for large systems, in principle they can be used for sys-
tems of any size. An alternative approach is to study
small systems in which the first plane-wave-like mode
is pushed to higher frequencies [40]. The low-frequency
modes found in these small systems are postulated to be
the modes in excess of the Debye prediction.

Mizuno et al. [39] used the participation ratio and an
order parameter to separate modes into extended and
excess modes in over one-million particle, two- (2D) and
three-dimensional (3D) systems. In both dimensions they
found that the density of the modes with large participa-
tion ratio obeyed Debye scaling. In 3D they found that
the density of the excess modes, which they determined
are quasi-localized, scales as Dloc(ω) ∼ ω4.

The scaling of the density of excess modes Mizuno et
al. found in 3D agrees with the scaling observed previ-
ously by studying small systems [40]. Subsequent work
by Wang et al. [41] confirmed the picture observed by
Mizuno et al. in 3D in glasses of a wide range of stabil-
ity. Numerical simulations have demonstrated the uni-
versality of D(ω) ∼ ω4 scaling in 3D model glass form-
ers, irrespective of glass preparation or interaction poten-
tials [39–54]. In their studies of large 2D systems, Mizuno
et al. found very few low-frequency modes with small
participation ratio or with small values of plane-wave or-
der parameter. However, Kapteijns, Bouchbinder, and
Lerner [55], who studied small systems, found modes be-
low the first plane-wave-like mode with density scaling
as ω4. The ω4 scaling was inferred from the distribution
of the minimum vibrational frequencies in Ref. [56] by
studying small 2D systems.Notably, unlike in higher di-
mensions, Kapteijns et al. found that the pre-factor for
the ω4 scaling grew with system size as [logN ]5/2 in 2D.
For the much larger system studied by Mizuno et al., it
might be expected that there would be a discernible in-
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crease in the density of states over the Debye spectrum,
but the logarithmic increase with system size would make
the increase modest.

In this work, we present results for the density of ex-
cess modes, Dexc(ω), in 2D model glass formers with dif-
ferent interaction potentials and stability. We used two
ways to calculate Dexc(ω). The first method is to sub-
tract off the Debye prediction. Except for very low fre-
quencies, this should allow one to examine how Dexc(ω)
changes with frequency, but the discrete nature of the
spectrum makes it hard to determine the low-frequency
growth of Dexc(ω). Using this procedure we found that
Dexc(ω) ∼ ω2 in 2D. Importantly, Dexc(ω) is corre-
lated with the low-frequency scaling of sound attenua-
tion, which resembles the correlation found in 3D [19].
In the second method, we studied small systems to make
a more direct connection with previous results. Unlike
previous work, we found a system size and model inde-
pendent ω3 scaling of the density of states far below the
first mode predicted by Debye theory. However, these
low-frequency modes are very rare in poorly annealed
systems and we did not find them in stable systems.

We performed extensive simulation studies of four 2D
model glass formers: (I) a polydisperse system with an
inverse power law potential ∝ r−n (r is the interparticle
distance) with n = 12 (IPL-12) [57]; (II) a bidisperse
system with an inverse power law potential where n = 10
(IPL-10) [44]; (III) a bidisperse system with a Lennard-
Jones potential (LJ) [58]; (IV) a bidisperse system with a
harmonic potential (HARM) [59]. Details regarding the
four models can be found in Supplemental Material [60].

We created zero-temperature glasses by instanta-
neously quenching equilibrated liquid configurations at
parent temperatures Tp to T = 0 using the fast iner-
tial relaxation engine [61]. Equilibrated liquids at high
parent temperatures were obtained by performing molec-
ular dynamic simulations using LAMMPS [62]. Glasses
obtained using this method are not very stable. To gen-
erate stable glasses for the IPL-12 system, we employed
the swap Monte Carlo method [63–65] to prepare equi-
librated supercooled liquids at low Tp, down to 37%Tg,
where Tg ≈ 0.082 is the estimated experimental glass
transition temperature [57].

The normal modes of T = 0 glasses were obtained
by diagonalizing the Hessian matrix using ARPACK [66]
and Intel Math Kernel Library [67]. The density of states

is given by D(ω) = 1
2N−d

∑︁2N−d
l=1 δ(ω − ωl) with ωl the

frequency of mode l and N the number of particles. In
glasses, there are no pure plane-wave modes and the
frequencies of the plane-wave-like modes are clustered
around the Debye predictions [68, 69]. Since Debye the-
ory predicts discrete modes in finite systems, if the bin
size to be used in the calculation of D(ω) is not cho-
sen correctly, the density is inaccurate. The calculation
of the cumulative density of states I(ω) =

∫︁ ω

0
D(ω′)dω′

does not suffer from this issue since it amounts to count-
ing the number of states up to ω and dividing by the total
number of states. For this reason, we focus on I(ω).

To obtain the excess modes Mizuno and coworkers [39]
defined a threshold of the participation ratio Pc = 0.01 to
divide plane-wave-like modes and quasi-localized modes.
They concluded that there are few to no low-frequency
quasi-localized modes in poorly annealed 2D glasses [39].
Additionally, the Debye theory accurately predicted the
low-frequency density of states, but there was still a bo-
son peak at higher frequencies. We attempted to use the
participation ratio to separate the modes, but we found
that the scaling behavior of the excess modes in 2D sta-
ble IPL-12 model glasses depends strongly on Pc, which
makes it impossible to determine the scaling of I(ω) using
the participation ratio. Therefore, we utilized a different
procedure by subtracting from I(ω) the Debye predic-
tion [28]

Iexc(ω) = I(ω)− ID(ω), (1)

where ID(ω) is the Debye prediction [70], ID(ω) =
ADωd/d with Debye level AD determined from mechan-
ical moduli [70]. This procedure does not take into ac-
count that the mode frequencies are discrete for finite
systems.

Figure 1(a) shows Iexc(ω) for our 2D IPL-12 model
glasses for N = 20000 at different parent tempera-
tures Tp. The glass’s stability increases with decreas-
ing Tp [41, 47, 57]. We use parent temperatures rang-
ing from Tp = 0.400, which is above the onset tempera-
ture of slow dynamics To = 0.250, down to Tp = 0.030,
which is below Tg = 0.082 [57]. For the lowest frequencies
where we can clearly estimate a power law, we find that
Iexc(ω) ≃ A2ω

3/3, which suggests that Dexc(ω) ≃ A2ω
2.

We find that this scaling continues to about the Ioffe-
Regel limit or the boson peak frequency [10], irrespective
of the glass’s stability. We find that the coefficient quan-
tifying the magnitude of the excess modes density, A2, is
stability-dependent, Fig. 1(b). A2 decreases by a factor
of 13 for our lowest Tp. This indicates that there are fewer
excess modes for increasingly stable 2D glasses, which is
consistent with observations for 3D glasses [41, 47, 54].

Previous work [18, 19, 28] found a connection between
sound attenuation and density of excess low-frequency
modes. In particular, in Ref. [19] we showed that the
prefactor B4 in the sound attenuation coefficient Γ(ω) =
B4ω

4 scales linearly with the prefactor A4 in the scaling
Iexc(ω) = A4ω

5/5 in 3D glasses. Inspired by this re-
sult, we examined whether A2 is related to the prefactor
B3 in the sound attenuation coefficient Γ(ω) = B3ω

3 in
2D. Previously, B3 was found to decrease with increasing
glass stability [18]. Here, we find A2 ∼ Bγ

3 with γ ≈ 2/3,
and thus we establish that in 2D the excess modes density
is related to sound attenuation, which is consistent with
our result for 3D glasses [19]. Further work is needed to
elucidate the non-linear relationship between A2 and B3

in 2D, which contrasts with A4 ∝ B4 in 3D.
Since the method introduced here is different from

methods used before we checked what results it produces
for 3D glasses where it has been firmly established that
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FIG. 1: (color online) (a) Cumulative density of states of
excess modes Iexc(ω) = I(ω)− ID(ω) at Tp = 0.400 (circles),
0.085 (diamonds), and 0.030 (squares) in N = 20000 system
in the 2D IPL-12 model. I(ω) is the total cumulative density
of states while ID(ω) = ADω2/2. The red lines are fits to
Iexc(ω) = A2ω

3/3while vertical lines indicate boson peak fre-
quencies. (b) Tp dependence of A2, with the estimated glass
transition temperature Tg indicated for reference. Glass sta-
bility increases with decreasing Tp. (Inset) A2 against the
pre-factor B3 in Γ(ω) = B3ω

3 with Γ the transverse sound
attenuation coefficient. Details for the calculation of Γ can
be found in Ref.[19]. The blue line indicates a fit to A2 ∼ Bγ

3

with γ ≈ 2/3.

Iexc(ω) ∼ ω5. In Fig. 2 we show Iexc(ω) in 3D IPL-
12 glasses for two stabilities, a poorly annealed glass
with Tp = 0.200 and a stable glass with Tp = 0.062
(the same glasses were examined in Ref. [41]). We find
that Iexc(ω) ∼ ω5 up to a frequency close to the bo-
son peak for both glasses, which indicates the resulting
scaling of Iexc(ω) determined using Eq. 1 is consistent
with that of Iexc(ω) calculated with previously used pro-
cedures [39, 41, 43]. Additionally, these results suggest
that in 3D the end of the ω5 scaling of Iexc(ω) is around
the boson peak frequency. We note that our procedure
cannot be used for frequencies below the lowest plane
wave mode frequency. More importantly, it will only re-
veal the proper scaling if there is a near continuum of
modes [68].

It has been claimed [40, 48, 55]that the scaling of the
excess modes could be obtained from the low-frequency
density of states for small systems since the frequency
of the lowest plane-wave-like mode is pushed up. One
may expect the total cumulative density of states I(ω) =
Iexc(ω) for low frequencies if the excess modes were in-
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FIG. 2: (color online) Cumulative density of states of excess
modes Iexc(ω) = I(ω)−ID(ω) in the 3D IPL-12 model glasses,
with the boson peak frequency ωBP indicated. I(ω) is the
total cumulative density of states and ID(ω) = ADω3/3. Red
filled squares and circles represent I(ω) at frequencies below
around the first Debye frequency at Tp = 0.200 and Tp =
0.062, respectively, in the N = 48000 system. The red lines
correspond to Iexc(ω) ∼ ω5.

dependent of the plane-wave-like modes, which we found
for 3D glasses with different stabilities, see Fig. 2. The
low-frequency tail of I(ω) is well described by a power
law Iexc(ω) ∼ ω5 for Tp = 0.200 and Tp = 0.062. How-
ever, in 2D glasses much below the first Debye frequency
we find I(ω) ∼ ω4, which suggests that D(ω) ∼ ω3. Pre-
vious studies reported D(ω) ∼ ω4 in 2D [55, 56], which
would imply that I(ω) ∼ ω5. To make sure this obser-
vation is model independent, we repeated this procedure
for different model glass formers.

In Fig. 3 we show I(ω) for N = 3000 system in the 2D
IPL-12 model. There is a range of frequencies below the
lowest Debye mode frequency (≈ 0.261) where I(ω) ∼ ω4.
To check this scaling, we examined I(ω)/ω4, see the in-
set to Fig. 3, and we find that there is a low-frequency
plateau. Previous results suggest that I(ω) ∼ ω5 at
frequencies much below the first Debye mode in 2D
glasses [55, 56]. However, we find that the ω5 scaling
is only valid for an intermediate-frequency regime below
the peak of I(ω), and appears to be a transient between
the low-frequency scaling and the change of the scaling
due to the emergence of plane-wave-like modes.

Moreover, we find that this low-frequency I(ω) ∼ ω4

scaling in 2D does not depend on the model glass for-
mer, see Fig. 1 of the Supplemental Material [60]. There
are common features shared by each model. First, the
pre-factor of the scaling law does not depend on system
size. This conclusion is different than the conclusion of
Ref. [55] that I(ω) = A4ω

5/5 and the pre-factor A4 grows
as (logN)5/2. Second, the quartic law works up to a
larger frequency with decreasing system size.

There are very few modes that contribute to the low-
frequency ω4 scaling of I(ω) for our least stable 2D glass.
On average there is only one mode in the low-frequency
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FIG. 3: (color online) The total cumulative density of states
I(ω) for N = 3000 system at Tp = 0.400 with different ensem-
ble sizes NEn in the 2D IPL-12 model. The solid and dashed
lines represent power laws of ω4 and ω5 respectively, while the
dash-dotted line indicates Debye scaling I(ω) = ADω2/2. For
reference, the lowest Debye mode frequency is about 0.261.
(Inset) The same data plotted as I(ω)/ω4 vs. ω.

I(ω) ∼ ω4 regime every one hundred configurations for
the N = 3000 system. The lower the frequency we want
to examine, the larger the ensemble size NEn (num-
ber of configurations) we need. However, we do not
observe NEn dependence of the I(ω) ∼ ω4 regime in
N = 3000 system when NEn ranges from around 100,000
to 710,000, see Fig. 3. The same conclusion can also be
drawn in our study of the N = 1000 system where NEn

is around 2,200,000 [60]. We checked that the previously
reported ω5 scaling in some systems is due to ensemble
size not being large enough, which hinders the observa-
tion of the ω4 scaling at much lower frequencies. We also
find that the ω5 scaling regime vanishes for very small
systems [60]. Since the number of these low-frequency
modes decreases with increasing stability, we could not
examine the stability dependence of these modes. We do
not exclude the possibility that annealing can change the
scaling of I(ω) [45, 53].

In conclusion,we utilized two methods to examine the
excess density of states in 2D glasses. In large systems,
we found evidence that the excess density of states scales
as A2ω

2 and A2 correlates with the sound attenuation
coefficient. However, in small systems we found that the
modes below the lowest Debye frequency have density
of states scaling as ω3, with a system-size independent
pre-factor. This inconsistent behavior is not found in 3D
glasses.

Our results leave several open questions. First, why
is the scaling of excess modes different above and be-

low the lowest Debye frequency? One possibility is that
our systems are not large enough to accurately deter-
mine Iexc(ω) by subtracting off the Debye contribution
at low frequencies. However, we do find a frequency range
where the excess density of states calculated by subtract-
ing off the Debye contribution exhibits systematic devi-
ation from the density of excess states in small systems,
see Fig. 4 of the Supplemental Material [60]. Thus, it
seems that the presence of plane waves influences the be-
haviours of the excess density of states in 2D glasses.

Second, is it possible that the ω2 and ω3 scalings do
not extend to ω = 0? A gap in the excess density of states
would be consistent with the conclusions of Ref. [39]. It
is very difficult to numerically test this since the ω2 and
ω3 scalings represent very few modes. Future theoretical
work may shed some light on this issue.

Third, why is the excess density of states of 2D glasses
different from that of 3D glasses? Fluctuating elasticity
theory predicts that Dexc(ω) depends on spatial dimen-
sion as ωd+1 [28]. Thus, the predicted Dexc(ω) ∼ ω4 in
3D glasses is consistent with 3D numerical observations.
The predicted scaling of Dexc(ω) ∼ ω3 of 2D glasses is
consistent with what we find in small systems.

Finally, is it possible that the upper frequency cutoff
of the low-frequency scaling, ωg, is below the frequency
range where we found ω2 scaling of Dexc(ω) in large 2D
glasses? If this were the case, it would differ from our
finding in 3D that ωg is around the boson peak frequency.
Future work should examine what determines ωg and its
d dependence.

The dimensional dependence of properties of glasses
has implications of the nature of the glass transition and
the theoretical understanding of the properties of glasses.
This work is another demonstration that some charac-
teristics of 2D and 3D glasses profoundly differ, and thus
any extrapolation of the properties of two-dimensional
glasses to higher dimensions should be done with care.
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