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In this paper, we study the derivative Yajima–Oikawa (YO) system which
describes the interaction between long and short waves (SWs). It is shown
that the derivative YO system is classified into three types which are similar
to the ones of the derivative nonlinear Schrödinger equation. The general
N -bright and N -dark soliton solutions in terms of Gram determinants
are derived by the combination of the Hirota’s bilinear method and the
Kadomtsev–Petviashvili hierarchy reduction method. Particularly, it is found
that for the dark soliton solution of the SW component, the magnitude of
soliton can be larger than the nonzero background for some parameters,
which is usually called anti-dark soliton. The asymptotic analysis of two-
soliton solutions shows that for both kinds of soliton only elastic collision
exists and each soliton results in phase shifts in the long and SWs. In
addition, we derive two types of breather solutions from the different
reduction, which contain the homoclinic orbit and Kuznetsov–Ma breather
solutions as special cases. Moreover, we propose a new (2+1)-dimensional
derivative Yajima–Oikawa system and present its soliton and breather
solutions.

1. Introduction

The long wave (LW)–short wave (SW) resonance interaction describes
a resonant interaction process which takes place between a LW and a
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SW when the phase velocity of the former exactly or almost matches
the group velocity of the latter. The theoretical investigation of this
nonlinear resonance interaction originated from the study of the dynamics of
Langmuir and ion acoustic waves in plasma by Zakharov [1]. In the case of
LW propagating in only one direction, the Zakharov system reduces to the
Yajima–Oikawa (YO) system [2]

iŜt + Ŝxx + Ŝ L̂ = 0, (1)

L̂ t = 2σ (|Ŝ|2)x , σ 2 = 1, (2)

which was shown to be integrable by using inverse scattering transform
(IST) and admits multisoliton solutions [2, 3].

Based on the general theory established by Benney for the interaction
between the SW and LW [4], Newell presented an exactly solvable model
via IST [5, 6]

iSt + Sxx + iSLx + SL2 − 2σ S|S|2 = 0, (3)

Lt = 2σ (|S|2)x , (4)

where S = S(x, t) represents the envelope of the SW and L = L(x, t) is
the amplitude of the LW. This system was found to be related to the YO
system (1) and (2) through the appropriate gauge transformation or Muira
transformation [7]

L̂ = iLx + L2 − 2σ |S|2, Ŝ = S, Ŝ∗ = 2iS∗
x + 2S∗L . (5)

Thus, such system can be called the derivative Yajima–Oikawa (DYO)
system. The complete Painlevé integrability of the DYO system was checked
by the Weiss–Tabor–Carnevale approach in [8]. Ling et al. constructed
the Darboux transformation for the DYO system and found a closed
multisoliton solution formula [9, 10]. By applying the dressing method,
soliton solutions including cusp solution for the DYO system were derived
by using the properties of Cauchy matrix [11]. Geng et al. provided the
algebro-geometric constructions of quasi-periodic flows of the DYO system
and their explicit theta function representations [12].

The derivative nonlinear Schrödinger (DNLS) equations are the well-
known integrable models with a variety of physical applications. Among
these DNLS equations, there are three representative types, namely, the
Kaup–Newell equation (DNLS-I) [13]

iqt + qxx ± 4i(|q|2q)x = 0, (6)

the Chen–Lee–Liu equation (DNLS-II) [14]

iqt + qxx ± 4i|q|2qx = 0, (7)
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and the Gerdjikov–Ivanov equation (DNLS-III) [15]

iqt + qxx ∓ 4iq2q∗
x + 8|q|4q = 0. (8)

The relations of three types of the DNLS equations (6)–(8) were given
through the gauge transformations. Further, the DNLS equations (6)–(8)
correspond to special cases of the generalized DNLS equation [16] (ε = ∓4,
∓2 and 0, respectively)

iq̃t + q̃xx − 2iε|q̃|2q̃x − 2i(ε ± 2)q̃2q̃∗
x + (ε ± 2)(ε ± 4)q̃|q̃|4 = 0. (9)

Indeed, one can generate (9) from the Gerdjikov–Ivanov equation (8) via the
gauge transformation q̃ = qeiε

∫ x |q|2dx ′
, in which the continuity equation of

DNLS equation (8), i.e.,

(|q|2)t = [
i(q∗∂xq − q∂xq

∗) ± 2|q|4]
x

(10)

is used.
The DYO system (3) and (4) is similar to the DNLS equation of

Gerdjikov–Ivanov type, because the first Eq. (3) has the higher order
nonlinearity term SL2. In the same spirit of the DNLS equtions, we can
derive different types of the DYO systems. First, the second Eq. (4) itself is
a continuity equation. Thus, one can obtain the generalized DYO system

iS̃t + S̃xx − 2icS̃x L̃ − i(c − 1)S̃ L̃ x + 2σ (c − 1)S̃|S̃|2 − (c2 − 1)S̃ L̃2 = 0,

(11)

L̃ t = 2σ (|S̃|2)x . (12)

by defining new fields through the following gauge transformation

S̃ = SeicT , S̃∗ = S∗e−icT , L̃ = L , T =
∫ x

Ldx ′, (13)

where c is a constant.
For the particular case c = 1, Eqs. (11) and (12) reduce to the following

equation given in [5]

iS̃t + S̃xx − 2iS̃x L̃ = 0, (14)

L̃ t = 2σ (|S̃|2)x , (15)

which is similar to the DNLS equation of Chen–Lee–Liu type. The DYO
system (14) and (15) is linked to the YO system (1) and (2) via the
transformation:

L̂ = iL̃ x + L̃2 − 2σ |S̃|2, Ŝ = S̃e−i
∫ x
−∞ L̃dx ′

, Ŝ∗ = 2iS̃∗
xe

i
∫ x
−∞ L̃dx ′

. (16)

For the particular case c = −1, Eqs. (11) and (12) become

iS̃t + S̃xx + 2i(S̃ L̃)x − 4σ S̃|S̃|2 = 0, (17)
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L̃ t = 2σ (|S̃|2)x , (18)

in which the first Eq. (17) contains two types of derivative nonlinear term
that is analogue to the DNLS equation of Kau–Newell type. The relation
between this DYO system (17) and (18) and the YO system (1) and (2) is
given by the transformation:

L̂ = iL̃ x + L̃2 − 2σ |S̃|2, Ŝ = S̃e−i
∫ x
−∞ L̃dx ′

,

Ŝ∗ = 2
(
iS̃∗

x + 2S̃∗ L̃
)
ei
∫ x
−∞ L̃dx ′

. (19)

It is noted that general N -soliton solutions to three types of DNLS equations
can be expressed by same tau functions for bright and dark solitons,
respectively, as shown in [17–19]. Here, we also show that above three
types of DYO systems share same tau functions for bright and dark soliton
solutions in subsequent sections.

On the other hand, from the DYO system (3) and (4), one can derive a
second continuity equation of the form

∂t (σ L2 − 2|S|2) − 2∂x
[
i
(
SS∗

x − S∗Sx
)+ 2L|S|2] = 0. (20)

Similar to the first case, we can define new fields through the transformation
as follows:

S̃ = SeicT , S̃∗ = S∗e−icT , L̃ = L , T =
∫ x

σ L2 − 2|S|2dx ′.

(21)

This gauge transformation leads to the DYO system with more higher order
nonlinearity and derivative nonlinear terms

iS̃t + S̃xx − 2σ S̃|S̃|2 + iS̃ L̃ x + 4ic(|S̃|2)x S̃ − 2icσ L̃(L̃ S̃)x

+ S̃[(L̃ + 2c|S̃|2)2 − cL̃4] = 0, (22)

L̃ t = 2σ (S̃ S̃∗)x . (23)

The purpose of this paper is to construct the N -bright and dark soliton
(for the SW component) solutions of the DYO system in the framework
of the bilinear approach and the Kadomtsev–Petviashvili (KP) hierarchy
reduction. Specifically, both N -bright and dark soliton solutions of the
DYO system expressed in determinants are derived. Based on the soliton
solution, we investigate the properties of one-soliton solutions of bright and
dark types. In particular, it is shown that when the SW takes dark soliton
soliton, both dark and anti-dark solitons appear on the nonzero background
under the different parameters’ conditions. We also perform the asymptotic
analysis of two-soliton solutions for both cases and discuss the collision
dynamics of the SW and LW components. In addition, two kinds of breather
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solutions are derived by considering the reduction differed from reductions
for soliton solutions. Such two kinds of breather solutions are linked by
p2k−1 → −ip2k−1, p2k → ip2k , p̄2k−1 → −i p̄2k−1, and p̄2k → i p̄2k , in which
the homoclinic orbit and Kuznetsov–Ma breather solutions are two special
cases, respectively. Moreover, a (2+1)-dimensional DYO system which, to
our knowledge, is a new integrable two-dimensional analogue of the (1+1)-
dimensional DYO system, is proposed in the process of the derivation of
breather solutions.

The rest of the paper is organized as follows. In Sections 2 and 3,
the bright and dark soliton solutions in terms of determinants of the DYO
system are constructed from the reduction of the KP hierarchy. The soliton
properties and collision behaviors are analyzed in detail. Section 4 is
devoted to breather solutions of the DYO system, which is the relatively new
results in the literature. The paper is summarized in Section 5. Appendices
A and B provide the proofs of Lemmas 1 and 2, respectively.

2. The bright N-soliton solution

In this section, we construct the bright soliton solution for the DYO system
under the boundary condition S → 0, L → 0 because |x | → ∞. The DYO
system is first transformed to a set of bilinear equations, and then we
show such bilinear equations can be obtained from the reduction of the
two-component KP hierarchy.

2.1. Bilinearization

By means of the dependent variable transformations

S = g

f
, L = i

∂

∂x
ln

f ∗

f
, (24)

the DYO system (3) and (4) is converted to the following bilinear form

(iDt + D2
x )g · f = 0, (25)

iDt f · f ∗ = D2
x f · f ∗, (26)

iDt f · f ∗ = −2σ |g|2, (27)

where g and f are complex-valued functions and ∗ denotes the complex
conjugation hereafter. The Hirota’s bilinear differential operators are defined
by

Dn
x D

m
t (a · b) =

(
∂

∂x
− ∂

∂x ′

)n (
∂

∂t
− ∂

∂t ′

)m

a(x, t)b(x ′, t ′)
∣∣∣∣
x=x ′,t=t ′

,
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where n and m are nonnegative integers. Here, substitution of (24) into the
gauge transformation (13) yields the bright soliton solutions for the second
kind of DYO system (14) and (15) with the form

S̃ = g

f ∗ , L̃ = i
∂

∂x
ln

f ∗

f
(28)

and for third kind of DYO system (17) and (18) with the form

S̃ = g f ∗

f 2
, L̃ = i

∂

∂x
ln

f ∗

f
. (29)

2.2. The N-bright soliton solution

We first give N -bright soliton to the DYO system by the following theorem.

THEOREM 1. The tau functions satisfying the bilinear equations (25)–(27)
are given by the determinants f , g, f ∗, and g∗ where

f =
∣∣∣∣ A I
−I B

∣∣∣∣ , f ∗ =
∣∣∣∣ A′ I
−I B

∣∣∣∣ , (30)

g =
∣∣∣∣∣∣
A I �T

−I B 0T

0 −C 0

∣∣∣∣∣∣ , g∗ = −
∣∣∣∣∣∣
A′ I 0T

−I B C∗T

−�∗ 0 0

∣∣∣∣∣∣ . (31)

Here, I is an N × N identity matrix, A, A′, and B are N × N matrices
whose entries are

ai j = p∗
j

pi + p∗
j

eξi+ξ∗
j , a′

i j = − pi
pi + p∗

j

eξi+ξ∗
j , bi j = − 2σα∗

i α j

p∗2
i − p2j

,

and 0 is a N-component zero-row vector, � and C are N-component row
vectors given by

� = (eξ1, . . . , eξN ), C = (α1, . . . , αN ),

with ξi = pi x + ip2i t + ξi0.

The above bright N -soliton solution is characterized by 3N complex pa-
rameters pi , αi , and ξi0(i = 1, . . . , N ). The former parameters pi determine
the amplitude and velocity of the solitons, whereas the latter ones αi and ξi0
determine the polarizations and the envelope phases of the solitons.

2.3. Proof of the bright N-soliton solution

LEMMA 1. The following bilinear equations in the extended KP hierarchy(
Dx2 − D2

x1

)
τ
0,0
1,−1 · τ

0,0
0,0 = 0, (32)
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(
D2

x1 + Dx2

)
τ
0,0
0,0 · τ

0,−1
0,0 = 0, (33)

Dy1τ
0,0
0,0 · τ

0,−1
0,0 = −τ

0,0
1,−1τ

0,−1
−1,1 , (34)

have the Gram-type determinant solutions

τ
0,0
0,0 =

∣∣∣∣ A I
−I B

∣∣∣∣ , τ
0,−1
0,0 =

∣∣∣∣ A′ I
−I B

∣∣∣∣ , (35)

τ
0,0
1,−1 =

∣∣∣∣∣∣
A I �T

−I B 0T

0 −	̄ 0

∣∣∣∣∣∣ , τ
0,−1
−1,1 =

∣∣∣∣∣∣
A′ I 0T

−I B 	T

−�̄ 0 0

∣∣∣∣∣∣ , (36)

where I is an N × N identity matrix, A, A′, and B are N × N matrices
whose entries are

ai j = p̄ j

pi + p̄ j
eξi+ξ̄ j , a′

i j = − pi
pi + p̄ j

eξi+ξ̄ j , bi j = 1

qi + q̄ j
eηi+η̄ j ,

and 0 is a N-component zero-row vector, �, 	, �̄, and 	̄ are N-component
row vectors given by

� = (eξ1, . . . , eξN ), �̄ = (eξ̄1, . . . , eξ̄N ), 	 = (eη1, . . . , eηN ),

	̄ = (eη̄1, . . . , eη̄N ),

with

ξi = pi x1 + p2i x2 + ξi0, ξ̄ j = p̄ j x1 − p̄2j x2 + ξ̄ j0,

ηi = qi y1 + ηi0, η j = q̄ j y1 + η̄ j0.

Here, pi , p̄ j , qi , q̄ j , ξi0, ξ̄ j0, ηi0, and η̄ j0 are complex parameters.

The proof is given in Appendix A.
Now, we consider the reduction of above bilinear equations (32)–(34) in

the extended KP hierarchy to the bilinear equations (25)–(27), by which the
N -bright soliton solution can be derived. First, we conduct the dimension
reduction. To this end, by performing row and column operations, one can
rewrite tau functions τ

0,0
0,0 and τ

0,−1
0,0 as

τ
0,0
0,0 =

∣∣∣∣ Ã I
−I B̃

∣∣∣∣ , τ
0,−1
0,0 =

∣∣∣∣ Ã′ I
−I B̃

∣∣∣∣ (37)

where Ã, Ã′, and B̃ are N × N matrices whose elements given by

ãi j = p̄ j

pi + p̄ j
, ã′

i j = − pi
pi + p̄ j

, b̃i j = 1

qi + q̄ j
eηi+η̄ j+ξ̄i+ξ j ,
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with

ηi + ξ̄i = qi y1 + p̄i x1 − p̄2i x2 + ηi0 + ξ̄i0,

η̄ j + ξ j = q̄ j y1 + p j x1 + p2j x2 + η̄ j0 + ξ j0.

Imposing the constraints on parameters

qi = − p̄2i
2σ

, q̄i = p2i
2σ

, (38)

the following relations hold(
∂y1 − 1

2σ
∂x2

)
τ
0,0
0,0 = 0,

(
∂y1 − 1

2σ
∂x2

)
τ
0,−1
0,0 = 0, (39)

by which, the bilinear equation (34) reduces to

Dx2τ
0,0
0,0 · τ

0,−1
0,0 = −2στ

0,0
1,−1τ

0,−1
−1,1 . (40)

Next, we consider the complex conjugate reduction. By assuming x1 is
real, x2, y1 are pure imaginary and letting p∗

i = p̄i , ξ ∗
i0 = ξ̄i0, and η∗

i0 = η̄i0,
it can be verified that

a∗
ij = −a′

ji, bij = −b∗
ji. (41)

Therefore, if we can define

f = τ
0,0
0,0 , f ∗ = τ

0,−1
0,0 , g = τ

0,0
1,−1, g∗ = −τ

0,−1
−1,1 , (42)

then the bilinear equations (32), (33), and (40) become(
Dx2 − D2

x1

)
g · f = 0, (43)(

D2
x1 + Dx2

)
f · f ∗ = 0, (44)

Dx2 f · f ∗ = 2σgg∗. (45)

Furthermore, by applying the variable transformations

x1 = x, x2 = it, (46)

i.e.,

∂x1 = ∂x , ∂x2 = −i∂t . (47)

Equations (43)–(45) are nothing but the bilinear equations of the DYO
system (25)–(27). Under the above variable transformations, the variable y1
becomes a dummy variable, which can basically be treated as a constant.
Consequently, we could let eηi = α∗

i , eη̄i = αi (i = 1, . . . , N ) and define
	̄ = C and 	 = C∗, and then we arrive at Theorem 1 which gives N -bright
soliton solution of the DYO system.
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2.4. The bright one- and two-soliton solutions

In this subsection, we investigate the properties of the one- and two-bright
soliton solutions. First, we redefine ξ ′

i = ξi + ξ̃ ′
i with αi = exp(ξ̃ ′

i ), and
further assume the complex parameters pi and ξ̃ ′

i as

pi = ai + ibi , ξ ′
i0 = γi0 + iζi0, i = 1, 2, (48)

where ai , bi , γi0, and ζi0 are real constants. Then, the variables ξ ′
i (i = 1, 2)

can be expressed by

ξ ′
i = γi + iζi , γi = ai (x − 2bi t) + γi0, ζi = bi x + (

a2i − b2i
)
t + ζi0,

i = 1, 2. (49)

2.4.1. The bright one-soliton solution. By taking N = 1 in (30) and (31),
we get the tau functions for the bright one-soliton solution

f1 = 1 + 2σα1α
∗
1 p

∗
1

(p1 + p∗
1)

2(p1 − p∗
1)
eξ1+ξ∗

1 , g1 = α1e
ξ1 (50)

or

f1 = 1 + σ (a1 − ib1)

4ib1a21
e2γ1, g1 = eγ1+iζ1, (51)

in terms of the parameters defined by (48) and (49). These tau functions
yield the one-bright soliton solution

S = eγ1+iζ1

1 + σ (a1−ib1)
4ib1a21

e2γ1
, L = − σe2γ1

b1
∣∣∣1 + σ (a1−ib1)

4ib1a21
e2γ1

∣∣∣2 . (52)

The square of the modulus of S and L can be written as:

|S|2 = 2|b1|a21√
a21 + b21

1

cosh(2γ1 + 2δ) − σ |b1|√
a21+b21

, (53)

L = −2sgn(b1)σa21√
a21 + b21

1

cosh(2γ1 + 2δ) − σ |b1|√
a21+b21

, (54)

with e4δ = a21+b21
16b21a

4
1
. Thus, the SW and LW have the amplitudes AS and AL

given by

AS =
√
2|b1|

(√
a21 + b21 + σ |b1|

)
=
√

|v|
2

(√
4a21 + v2 + σ |v|

)
, (55)

AL = 2

(√
a21 + b21 + σ |b1|

)
=
√
4a21 + v2 + σ |v|, (56)
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Figure 1. The amplitude–velocity relations for a1 = 1: (a) σ = 1 and (b) σ = −1.

which also implies the amplitude–velocity relations with the velocity
v = 2b1. Without loss of generality, we discuss the amplitude–velocity
relations for the case of the velocity v > 0. As a result, one can find that
for a fixed value of the real part of p1 (a1), both AS and AL are increasing
functions of v when σ = 1, whereas AS is an increasing function of v and
AL is a decreasing function of v when σ = −1. The amplitude–velocity
relations are displayed in Fig. 1.

In the case of σ = 1, it is necessary to point out that the amplitudes AS

and AL remain finite in the limit of a1 → 0. Indeed, when a1 approaches
to zero, the one-bright soliton in (52) becomes an algebraic soliton of the
form

S = ± ei[b1(x−b1t)+ζ10]

x − 2b1t + x0 + i
2b1

, L = − 1

b1
∣∣∣x − 2b1t + x0 + i

2b1

∣∣∣2 , (57)

where we have put e2γ10 = e2a1x0−2δ. The similar structure of the solution
can be found for the bright soliton solution of the DNLS-type equations
[13, 20].

2.4.2. The bright two-soliton solution. By taking N = 2 in (30) and (31),
we get the tau functions for the bright two-soliton solution

f2 = 1 + c11∗eξ1+ξ∗
1 + c21∗eξ2+ξ∗

1 + c12∗eξ1+ξ∗
2

+ c22∗eξ2+ξ∗
2 + c121∗2∗eξ1+ξ2+ξ∗

1 +ξ∗
2 , (58)

g2 = α1e
ξ1 + α2e

ξ2 + c121∗eξ1+ξ2+ξ∗
1 + c122∗eξ1+ξ2+ξ∗

2 , (59)



The Derivative Yajima-Oikawa System 155

where

ci j∗ = 2σαiα
∗
j p

∗
j

(pi + p∗
j )
2(pi − p∗

j )
, c12i∗ = (p2 − p1)

(
α2c1i∗

p2 + p∗
i

− α1c2i∗

p1 + p∗
i

)
,

c121∗2∗ = |p1 − p2|2
[

c11∗c22∗

(p1 + p∗
2)(p2 + p∗

1)
− c12∗c21∗

(p1 + p∗
1)(p2 + p∗

2)

]
.

With the tau functions provided above, we are able to analyze the
asymptotic properties of two-bright soliton solution (58) and (59). To this
end, we choose a1 > 0, a2 > 0 for convenience and assume b1 > b2 > 0,
then the two-soliton solution (58) and (59) has the following asymptotic
forms.

(a) Before collision (t → −∞):
(i) soliton 1 (γ1 	 0, γ2 → −∞ ):

S 	 eγ1+iζ1

1 + 2σ p∗
1

(p1+p∗
1 )

2(p1−p∗
1 )
e2γ1

≡ S1(γ1, ζ1), (60)

L 	 i
d

dx
ln

1 + 2σ p1
(p1+p∗

1 )
2(p∗

1−p1)
e2γ1

1 + 2σ p∗
1

(p1+p∗
1 )

2(p1−p∗
1 )
e2γ1

≡ L1(γ1); (61)

(ii) soliton 2 (γ2 	 0, γ1 → +∞ ):

S 	
(p1+p2)(p1−p2)2

(p2−p∗
1 )(p2+p∗

1 )
2 eγ2+iζ2

1 + 2σ p∗
2

(p2+p∗
2 )

2(p∗
2−p2)

∣∣∣ (p1+p2)(p1−p2)2

(p1−p∗
2 )(p1+p∗

2 )
2

∣∣∣2 e2γ2 ≡ S2(γ2 + �γ12, ζ2 + �ζ2),

(62)

L 	 i
d

dx
ln

1 + 2σ p2
(p2+p∗

2 )
2(p∗

2−p2)

∣∣∣ (p1+p2)(p1−p2)2

(p1−p∗
2 )(p1+p∗

2 )
2

∣∣∣2 e2γ2
1 + 2σ p∗

2
(p2+p∗

1 )
2(p2−p∗

2 )

∣∣∣ (p1+p2)(p1−p2)2

(p1−p∗
2 )(p1+p∗

2 )
2

∣∣∣2 e2γ2 ≡ L2(γ2 + �γ2). (63)

(b) After collision (t → +∞):
(i) soliton 1 (γ1 	 0, γ2 → +∞ ):

S 	
(p1+p2)(p1−p2)2

(p1−p∗
2 )(p1+p∗

2 )
2 eγ1+iζ1

1 + 2σ p∗
1

(p1+p∗
1 )

2(p1−p∗
1 )

∣∣∣ (p1+p2)(p1−p2)2

(p1−p∗
2 )(p1+p∗

2 )
2

∣∣∣2 e2γ1 ≡ S1(γ1 + �γ12, ζ1 + �ζ1), (64)

L 	 i
d

dx
ln

1 + 2σ p1
(p1+p∗

1 )
2(p∗

1−p1)

∣∣∣ (p1+p2)(p1−p2)2

(p1−p∗
2 )(p1+p∗

2 )
2

∣∣∣2 e2γ1
1 + 2σ p∗

1
(p1+p∗

1 )
2(p1−p∗

1 )

∣∣∣ (p1+p2)(p1−p2)2

(p1−p∗
2 )(p1+p∗

2 )
2

∣∣∣2 e2γ1 ≡ L1(γ1 + �γ1); (65)
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Figure 2. The interaction of two bright soliton with the parameters α1 = α2 = 1,
p1 = 1 + i, and p2 = 1 + 1

4 i: (a) σ = 1 and (b) σ = −1; (c) the bound state with σ = 1,
p1 = 1 + 1

3 i, and p2 = 3
5 + 1

3 i; (d) the resonant soliton with σ = −1, p1 = −p2 = 1 + 1
3 i.

(ii) soliton 2 (γ2 	 0, γ1 → −∞ ):

S 	 eγ2+iζ2

1 + 2σ p∗
2

(p2+p∗
2 )

2(p2−p∗
2 )
e2γ2

≡ S2(γ2, ζ2), (66)

L 	 i
d

dx
ln

1 + 2σ p2
(p2+p∗

2 )
2(p∗

2−p2)
e2γ2

1 + 2σ p∗
2

(p2+p∗
2 )

2(p2−p∗
2 )
e2γ2

≡ L2(γ2). (67)

The quantities in the above expressions are defined by

�γ12 = ln

∣∣∣∣ (p1 + p2)(p1 − p2)2

(p1 − p∗
2)(p1 + p∗

2)
2

∣∣∣∣ ,
�ζ1 = arg

[
(p1 + p2)(p1 − p2)2

(p1 − p∗
2)(p1 + p∗

2)
2

]
, �ζ2 = arg

[
(p1 + p2)(p1 − p2)2

(p2 − p∗
1)(p2 + p∗

1)
2

]
.

From above asymptotic results, two solitons remain their shape after
the collision; thus, they undertake elastic collision. However, the solitons
undergo phase shifts in the interaction process. Specifically, the first soliton
has the positive phase shifts (�γ12, �ζ1) and the second one has the
negative phase shifts (−�γ12, −�ζ2) in the SW, while the phase shifts of
two solitons in the LW are given by �γ12 and −�γ12.

Figure 2 depicts two bright soliton interaction with different parameters.
As shown in Fig. 2(a) and (b), the SW always exhibits the regular collision
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of solitons, in which the larger soliton propagates faster than the smaller
soliton. The solitons in the LW also undergo the same interaction process
for σ = 1. However, in the case of σ = −1, the LW has the collision in
which the smaller soliton moves faster than the larger soliton.

Besides, the bound soliton state belongs to one class of special multi-
soliton solutions, in which multiple solitons move with the same velocity.
For the bright two-soliton solution of the DYO system, one needs to restrict
b1 = b2 to obtain the bright two-soliton bound state. Such a bound state is
illustrated in Fig. 2(c). In addition, by choosing p1 = −p2, one can find
that c121∗ = c122∗ = c121∗2∗ = 0 in (58) and (59) and the bright two-soliton
features the special localized structure, namely, resonant soliton. Indeed,
more abundant resonant soliton solutions were given in [9]. We display this
resonant soliton of V-Y type in Fig. 2(d).

3. The N-dark soliton solution

In this section, we derive the dark soliton solution for the DYO system. To
this end, it is necessary to consider the nonvanishing boundary condition
S → ρei[αx−(α2+2σρ2)t], L → 0 because |x | → ∞ with ρ and α being real
constants. Then, it is shown that the DYO system is transformed to
another set of the bilinear equations, which can be reduced from the
single-component KP hierarchy but with shifted singular points.

3.1. Bilinearization

To derive the dark soliton solution, we apply the dependent variable
transformations

S = ρei[αx−(α2+2σρ2)t] g

f
, L = i

d

dx
ln

f ∗

f
, (68)

which convert the DYO system (3) and (4) to the following bilinear
equations (

iDt + 2iαDx + D2
x

)
g · f = 0, (69)

iDt f · f ∗ = D2
x f · f ∗, (70)

iDt f · f ∗ = 2σρ2(| f |2 − |g|2). (71)

Similar to the bright soliton solution, by substituting (24) into the gauge
transformation (13), one can give the dark soliton solutions for the second
kind of DYO system (14) and (15) in the form

S̃ = ρei[αx−α2t] g

f ∗ , L̃ = i
∂

∂x
ln

f ∗

f
,
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and for the third kind of DYO system (17) and (18) in the form

S̃ = ρei[αx−(α2+4σρ2)t] g f
∗

f 2
, L̃ = i

∂

∂x
ln

f ∗

f
.

3.2. The N-dark soliton solution

The N -dark soliton solution to the DYO system is given by the following
theorem:

THEOREM 2. The tau functions satisfying bilinear equations (69)–(71) are
given by the determinants f and g where

f =
∣∣∣∣∣δi j − ip∗

j

pi + p∗
j

eξi+ξ∗
j

∣∣∣∣∣
N×N

, (72)

g =
∣∣∣∣∣δi j + ip∗

j

pi + p∗
j

(
pi − iα

p∗
i + iα

)
eξi+ξ∗

j

∣∣∣∣∣
N×N

, (73)

with ξi = pi x + ip2i t + ξi0. Here, pi , ξi0 are complex constants, and these
parameters satisfy the constraint condition:

2iσαρ2

|pi − iα|2 = pi − p∗
i . (74)

Note that if pi = pi,R + ipi,I , we can solve the real part of pi :

pi,R = ±
[
σαρ2

pi,I
− (pi,I − α)2

] 1
2

. (75)

Thus, the dark N -soliton solution involves N + 2 real parameters
pi,I (i = 1, . . . , N ), α, ρ, and N complex parameters ξi0(i = 1, . . . , N ).
The parameters pi determine the amplitude and the velocity of the solitons,
whereas the parameters ξi0 determine the phase of the solitons.

3.3. Proof of the N-dark soliton solution

LEMMA 2. The following bilinear equations in the extended KP hierarchy(
Dx2 − 2aDx1 − D2

x1

)
τn,k+1 · τn,k = 0, (76)

(
Dx2 + D2

x1

)
τn,k · τn+1,k = 0, (77)

(aDx−1 + 1)τn,k · τn+1,k = τn,k+1τn+1,k−1, (78)
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where a is a complex constant, n and k are integers, and have the
Gram-type determinant solutions

τn,k =
∣∣∣mn,k

i j

∣∣∣
1≤i, j≤N

, (79)

where the entries of the determinant are given by

mn,k
i j = δi j + ipi

pi + p̄ j

(
− pi

p̄ j

)n (
− pi − a

p̄ j + a

)k

eξi+ξ̄ j ,

with

ξi = 1

pi − a
x−1 + pi x1 + p2i x2 + ξ ′

i0,

ξ̄ j = 1

p̄ j + a
x−1 + p̄ j x1 − p̄2j x2 + ξ̄ ′

j0.

Here, pi , p̄ j , ξ ′
i0, ξ̄ ′

j0, and a are complex parameters.

The proof is given in Appendix B.
Now, we turn to perform the reduction of above bilinear equations (76)–

(78) in the extended KP hierarchy to the bilinear equations (69)–(71) and
derive the dark soliton solution. For the dimension reduction, it is easy to
show that if pi and p̄i satisfy the condition

1

pi − a
+ 1

p̄i + a
= 1

2σaρ2

(
p2i − p̄2i

)
, (80)

or

2σaρ2

(pi − a)( p̄i + a)
= (pi − p̄i ), (81)

the following relation holds(
a∂x−1 − 1

2σρ2
∂x2

)
τn,k = 0, (82)

by which the bilinear equation (78) reduces to(
Dx2 + 2σρ2

)
τn,k · τn+1,k = 2σρ2τn,k+1τn+1,k−1. (83)

Next, we perform the complex conjugate reduction. Assuming x1, x−1 to
be real, x2, a(= iα) pure imaginary, and p̄i = p∗

i , ξ̄ ′
i0 = ξ

′∗
i0 , one can verify(

m−n−1,−k
ij

)∗
= mn,k

ji . (84)

Therefore, we have

τ−1,0 = τ ∗
0,0, τ−1,1 = τ ∗

0,−1. (85)
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For the sake of convenience, we define

f = τ−1,0, g = τ−1,1, f ∗ = τ0,0, g∗ = τ0,−1. (86)

Therefore, the bilinear equations (76), (77), and (83) become(
Dx2 − 2aDx1 − D2

x1

)
g · f = 0, (87)(

Dx2 + D2
x1

)
f · f ∗ = 0, (88)(

Dx2 + 2σρ2
)
f · f ∗ = 2σρ2gg∗. (89)

Finally, by using the same variable transformations (46), the above
bilinear equations (87)–(89) become ones of the DYO system (69)–(71).
Moreover, the variable x−1 becomes a dummy variable, and then we could
let 1

pi−iα x−1 + ξ ′
i0 = ξi0 and 1

p∗
i +a x−1 + ξ

′∗
i0 = ξ ∗

i0. In summary, we construct
the dark soliton solution to the DYO system as stated in Theorem 2.

3.4. The one- and two-dark soliton solutions

In this subsection, we give explicit solutions to the one- and two-dark
soliton solutions and study their properties. Similarly, we rewrite the
complex parameters pi and ξ̃ ′

i as

pi = ai + ibi , ξi0 = ϑi0 + iχi0, i = 1, 2, (90)

where ai , bi , ϑi0, and χi0 are real constants, and then the variables ξi
(i = 1, 2) are taken in the form

ξi = ϑi + iχi , ϑi = ai (x − 2bi t) + ϑi0, χi = bi x + (
a2i − b2i

)
t + χi0,

i = 1, 2. (91)

3.4.1. The one-dark soliton solution. By taking N = 1 in (72) and (73),
we obtain the tau functions for the dark one-soliton solution

f1 = 1 − ip∗
1

p1 + p∗
1

eξ1+ξ∗
1 , g1 = 1 + ip∗

1

p1 + p∗
1

(
p1 − iα

p∗
1 + iα

)
eξ1+ξ∗

1 , (92)

or

f1 = 1 − b1 + ia1
2a1

e2ϑ1, g1 = 1 + b1 + ia1
2a1

[
a1 + i(b1 − α)

a1 − i(b1 − α)

]
e2ϑ1, (93)

in terms of the parameters defined by (90) and (91). These tau functions
lead to the one-dark soliton solution for the SW and LW components

S = ρei[αx−(α2+2σρ2)t]
1 + b1+ia1

2a1

[
a1+i(b1−α)
a1−i(b1−α)

]
e2ϑ1

1 − b1+ia1
2a1

e2ϑ1
, (94)
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L = −2a1e2ϑ1(
1 − b1+ia1

2a1
e2ϑ1

) (
1 − b1−ia1

2a1
e2ϑ1

) . (95)

The square of the modulus of S and L reads

|S|2 = ρ2

⎡
⎣1 + 2αa21sgn(a1)[

a21 + (b1 − α)2
]√

a21 + b21

1

cosh(2ϑ1 + 2δ′) − b1sgn(a1)√
a21+b21

⎤
⎦ ,

(96)

L = −2a21sgn(a1)√
a21 + b21

1

cosh(2ϑ1 + 2δ′) − b1sgn(a1)√
a21+b21

, (97)

with e4δ
′ = a21+b21

4a21
. This suggests that if αa1 < 0, then the SW takes the form

of a dark soliton, whereas if αa1 > 0, it becomes an anti-dark soliton on a
constant background S = ρ, which means that the amplitude of the soliton
is larger than ρ. Besides, if we define

e2ϑ0 =
√
a21 + b21

−2a1
, e2iφ = b1 + ia1√

a21 + b21

, e2iφ
+ = a1 + i(b1 − α)

a1 − i(b1 − α)
, (98)

the dark one-soliton solution of the SW and LW can be written as:

S = ρ

2
ei[αx−(α

2+2σρ2)t]
[
1 + e2iφ

+ + (e2iφ
+ − 1) tanh(ϑ1 + ϑ0 + iφ)

]
, (99)

L = 2a21√
a21 + b21

1

cosh(2ϑ1 + 2ϑ0) + b1√
a21+b21

. (100)

Thus, the phase of the SW acquires shifts in the amount of 2φ+ but the
LW’s phase shift is zero because ϑ1 varies from −∞ to +∞.

Note that the constraint condition (75) satisfies

a21 = σαρ2

b1
− (b1 − α)2 = 2σαρ2

v
− (v − 2α)2

4
> 0. (101)

We then find that there are two cases for the real parameter b1:

(i) for σ = 1, the real b1 lies in the interval b1,min < b1 < b1,max where

b1,max = (μ1 + 2α)2

6μ1
, μ1 =

[
4α�1 + 12

√
3α2ρ2�1

]1/3
, α > 0,

(102)
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b1,min = (ν1 + 2α)2

6ν1
, ν1 =

[
4α�1 − 12

√
3α2ρ2�1

]1/3
, α < 0,

(103)

with �1 = 27ρ2 − 2α2 and − 3
2

√
3ρ2 ≤ α ≤ 3

2

√
3ρ2.

(ii) for σ = −1, the real b1 lies in the interval b′
1,min < b1 < b′

1,max
where

b′
1,max = (μ′

1 + 2α)2

6μ′
1

, μ′
1 =

[
−4α�2 + 12

√
3α2ρ2�2

]1/3
, α < 0,

(104)

b′
1,min = (ν ′

1 + 2α)2

6ν ′
1

, ν ′
1 =

[
−4α�2 − 12

√
3α2ρ2�2

]1/3
, α > 0,

(105)

with �2 = 27ρ2 + 2α2.
In what follows, we discuss the amplitude–velocity relations for the dark

one-soliton. Without loss of generality, we consider the case of the velocity
v = 2b1 > 0.

Case 1: α > 0. In this case, Eq. (75) implies σ = 1 and 0 < v < v1,max =
2b1,max .
(i) a1 > 0, anti-dark soliton for the SW. The amplitude–velocity

relations are given by

AS =
√
2

2

√
2ρ2 + 2v

√
α

v
(v2 + 2ρ2 − αv) + v2 − ρ, (106)

AL = 2

√
α

v
(v2 + 2ρ2 − αv) + v. (107)

As can be seen from Fig. 3(a), AS is an increasing function,
whereas AL is a decreasing function in the interval 0 < v < v1
and increasing function in v1 < v < v1,max , where v1 is a
critical velocity satisfied by

v5
1 − 2αv4

1 + 2ρ2v3
1 + 4αρ2v2

1 − 4αρ2 = 0.

Figure 4 shows the profiles of the one-soliton for the SW and
LW with α > 0 and σ = 1. The profiles a and b in the SW
represent anti-dark soliton, which exhibits the behavior of the
bright soliton, but it differs from the usual bright soliton due to
the nonzero background.
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Figure 3. The amplitude–velocity relations for σ = α = ρ = 1: (a) the anti-dark soliton
for the SW and (b) the dark soliton for the SW.

(ii) a1 < 0, dark soliton for the SW. The amplitude–velocity relation
has the form

AS = ρ −
√
2

2

√
2ρ2 − 2v

√
α

v
(v2 + 2ρ2 − αv) + v2, (108)

AL = 2

√
α

v
(v2 + 2ρ2 − αv) − v. (109)

As shown in Fig. 3(b), AL is a decreasing function, whereas
AS is an increasing function in the interval 0 < v < v2 and
decreasing function in v2 < v < v1,max , where v2 is a critical
velocity satisfied by

4v3
2 − 5αv2

2 + 2α2v2 − 2αρ2 = 0.

Case 2: α < 0. In this case, Eq.(75) suggests σ = −1 and 0 < v < v2,max =
2b′

1,max .
(i) a1 > 0, dark soliton for the SW. The amplitude–velocity rela-

tions read

AS = ρ −
√
2

2

√
2ρ2 − 2v

√
α

v
(v2 − 2ρ2 − αv) − v2, (110)

AL = 2

√
α

v
(v2 − 2ρ2 − αv) + v. (111)
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Figure 4. Profiles of the amplitudes of soliton for σ = α = ρ = 1 at t = 0: (a) b1 = 0.2;
(b) b1 = v1

2 = 0.45; and (c) b1 = b1,max = 1.75. Profile c is the algebraic soliton.

As depicted in Fig. 5(a), AL is a decreasing function, whereas
AS is an increasing function in the interval 0 < v < v3 and
decreasing function in v3 < v < v2,max , where v3 is a critical
point v3 = α +

√
α2 + 2ρ2. It is noted that this point leads to

black soliton for the SW.
Figure 6 displays the profiles of the one-soliton for the SW and
LW with α < 0 and σ = −1. The profiles (a) and (b) of the SW
represent the usual dark soliton that the center intensity is lower
than the background. Particularly, the profile (b) shows a black
soliton for the SW component.

(ii) a1 < 0, anti-dark soliton for the SW. The amplitude–velocity
relations take the form

AS =
√
2

2

√
2ρ2 + 2v

√
α

v
(v2 − 2ρ2 − αv) − v2 − ρ, (112)

AL = 2

√
α

v
(v2 − 2ρ2 − αv) − v. (113)

As is illustrated in Fig. 5(b), AL is a decreasing function,
whereas AS is an increasing function in the interval 0 < v < v4
and decreasing function in v4 < v < v2,max , where v4 is a
critical velocity satisfied by

4v3
4 − 5αv2

4 + 2α2v4 + 2αρ2 = 0.

Similar to the bright soliton, at the limit value of the wave width, the
algebraic soliton can be produced from the soliton of hyperbolic type.
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Figure 5. The amplitude–velocity relations for σ = α = −ρ = −1: (a) the dark soliton
for the SW and (b) the anti-dark soliton for the SW.
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Figure 6. Profiles of the amplitudes of soliton for σ = α = −ρ = −1 at t = 0: (a)
b1 = 0.2; (b) b1 = v3

2 = 0.37; and (c) b1 = b′
1,max = 0.47. Profile c is the algebraic soliton

and for the SW profile b is black soliton.

Indeed, if we put ϑ10 = x0 − δ′ in (93), then the following expansion
formulae hold for small a1:

f1 ∼ 1 − sgn(a1)sgn(b1)

[
1 + 2a1

(
x − 2b1t + x0 + i

2b1

)]
+ O

(
a21
)
, (114)

g1 ∼ 1 − sgn(a1)sgn(b1)

[
1 + 2a1

(
x − 2b1t + x0 + i

2b1

α + b1
α − b1

)]
+ O

(
a21
)
,

(115)
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Thus, we know that only sgn(a1)sgn(b1) = 1 or a1b1 > 0 yields the algebraic
soliton:

(i) For σ = 1, one obtains the anti-dark algebraic soliton for the SW
component

S = ρei[αx−(α2+2ρ2)t]
x − 2b1t + x0 + i

2b1
α+b1
α−b1

x − 2b1t + x0 + i
2b1

,

L = − 1

b1

1∣∣∣x − 2b1t + x0 + i
2b1

∣∣∣2 ,
(116)

which can be realized in two cases: (a) a1 > 0, b1 > 0, α > 0 then
b1 = b1,max ; (b) a1 < 0, b1 < 0, α < 0 then b1 = b1,min .

(ii) For σ = −1: we have the dark algebraic soliton for the SW
component

S = ρei[αx−(α2−2ρ2)t]
x − 2b1t + x0 + i

2b1
α+b1
α−b1

x − 2b1t + x0 + i
2b1

,

L = − 1

b1

1∣∣∣x − 2b1t + x0 + i
2b1

∣∣∣2 ,
(117)

which can be achieved in two cases: (a) a1 > 0, b1 > 0, α < 0 then b1 =
b′
1,max ; (b) a1 < 0, b1 < 0, α > 0 then b1 = b′

1,min .
The similar structure of the solution can be also found for the dark

soliton solution of the DNLS-type equations [19].

3.4.2. The two-dark soliton solution. By taking N = 2 in (72) and (73),
we have the tau functions for the dark two-soliton solution

f2 = 1 + d11∗eξ1+ξ∗
1 + d22∗eξ2+ξ∗

2 + d11∗d22∗�12e
ξ1+ξ2+ξ∗

1 +ξ∗
2 , (118)

g2 = 1 + d11∗K1e
ξ1+ξ∗

1 + d22∗K2e
ξ2+ξ∗

2 + d11∗d22∗K1K2�12e
ξ1+ξ2+ξ∗

1 +ξ∗
2 , (119)

with

dii∗ = − ip∗
i

pi + p∗
i

, Ki = − pi − iα

p∗
i + iα

, �12 = |p1 − p2|2
|p1 + p∗

2 |2
.

Because of the analysis of one-soliton solution, the SW allows dark and
anti-dark soliton solution. Therefore, two-soliton solution of the SW can be
classified into three types, i.e., dark-dark solitons, dark-anti-dark solitons,
and anti-dark-anti-dark solitons. Here, we mainly investigate the asymptotic
behavior of dark-dark solitons in the SW. To do so, we only discuss this
interaction process for α < 0. Furthermore, we choose a1 > 0, a2 > 0 and
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assume b1 > b2 > 0, then the dark two-soliton solution (118) and (119)
takes the following asymptotic forms.

(a) Before collision (t → −∞):
(i) soliton 1 (ϑ1 	 0, ϑ2 → −∞ ):

S 	 ρei[αx−(α2+2σρ2)t] 1 + d11∗K1eξ1+ξ∗
1

1 + d11∗eξ1+ξ∗
1

≡ S1(ϑ1), (120)

L 	 i
d

dx
ln

1 − d1∗1eξ1+ξ∗
1

1 + d11∗eξ1+ξ∗
1

≡ L1(ϑ1). (121)

(ii) soliton 2 (ϑ2 	 0, ϑ1 → +∞ ):

S 	 ρei[αx−(α2+2σρ2)t+2φ1]
1 + d22∗K2e2ϑ2+2�ϑ12

1 + d22∗e2ϑ2+2�ϑ12
≡ e2iφ1S2(ϑ2 + �ϑ12), (122)

L 	 i
d

dx
ln

1 − d2∗2�12e2ϑ2

1 + d22∗�12e2ϑ2
≡ L2(ϑ2 + �ϑ12). (123)

(b) After collision (t → +∞):
(i) soliton 1 (ϑ1 	 0, ϑ2 → +∞ ):

S 	 ρei[αx−(α2+2σρ2)t]K2
1 + d11∗K1�12eξ1+ξ∗

1

1 + d11∗�12eξ1+ξ∗
1

≡ e2iφ2S1(ϑ1 + �ϑ12), (124)

L 	 i
d

dx
ln−d2∗2

d22∗

1 − d1∗1�12e2ϑ1

1 + d11∗�12e2ϑ1
≡ L1(ϑ1 + �ϑ12), (125)

(ii) soliton 2 (ϑ2 	 0, ϑ1 → −∞ ):

S 	 ρei[αx−(α2+2σρ2)t] 1 + d22∗K2eξ2+ξ∗
2

1 + d22∗eξ2+ξ∗
2

≡ S2(ϑ2), (126)

L 	 i
d

dx
ln

1 − d2∗2eξ2+ξ∗
2

1 + d22∗eξ2+ξ∗
2

≡ L2(ϑ2). (127)

Here, the quantities in the above expressions are given by �12 = e2�ϑ12 ,
K1 = e2iφ1 , and K2 = e2iφ2 .

Based on the asymptotic expressions, as the analysis of the amplitude
of one-soliton, we know that only elastic collision takes place in the
SW and LW components. In the interaction process, each soliton in the
SW component suffers the phase shifts (+2φ2, +�ϑ12) and (−2φ1, −�ϑ12)
respectively, and both solitons suffer the phase shifts +�ϑ12 and −�ϑ12 in
the LW component where
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Figure 7. The interaction of two soliton with the parameters σ = α = −ρ = −1, b1 = 0.4
and b2 = 0.2: (a) dark-dark soliton for the SW a1 = 0.73, a2 = 1.89; (b) dark-anti-dark
soliton for the SW a1 = 0.73, a2 = −1.89; and (c) anti-dark-anti-dark soliton for the SW
a1 = −0.73, a2 = −1.89.

φi = arg

[
− pi − iα

p∗
i + iα

]
, �ϑ12 = ln

|p1 − p2|
|p1 + p∗

2 |
,

−�ϑ12 = − ln
|p1 − p2|
|p1 + p∗

2 |
. (128)

In Fig. 7, dark-dark solitons, dark-anti-dark solitons, and anti-dark-anti-dark
solitons for the SW are illustrated with the different parameters. In addition,
under the constraint conditions (74) or (75), one cannot get different value
of ai for the same value of bi ; thus, there does not exist bound state and
resonant soliton for the dark-soliton in the DYO system.

4. The breather solution

4.1. A (2+1)-dimensional derivative YO system

To construct the breather solution of the DYO system, we need to consider
the same transformations under nonvanishing boundary condition, same
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as the dark soliton in previous section, which lead to the same bilinear
equations.

Starting from the bilinear equations (76)–(78) in KP hierarchy, we
define

f = τ−1,0, g = τ−1,1, f̂ = τ0,0, ĝ = τ0,1, (129)

and introduce independent variable transformations

x1 = x, x2 = iy, x−1 = 2iaσρ2(t − y), (130)

i.e.,

∂x1 = ∂x , ∂x2 = −i(∂t + ∂y), ∂x−1 = − i

2aσρ2
∂t , (131)

and then a set of bilinear equations can be obtained:(
iDt + iDy + 2aDx + D2

x

)
g · f = 0, (132)

(
iDt + iDy − D2

x

)
f · f̂ = 0, (133)

(
iDt − 2σρ2

)
f · f̂ = −2σρ2gĝ, (134)

which admit the following determinant solutions

f =
∣∣∣∣δi j − i p̄ j

pi + p̄ j
eξi+ξ̄ j

∣∣∣∣
N×N

, g =
∣∣∣∣δi j − i p̄ j

pi + p̄ j

(
− pi − a

p̄ j + a

)
eξi+ξ̄ j

∣∣∣∣
N×N

,

(135)

f̂ =
∣∣∣∣δi j + ipi

pi + p̄ j
eξi+ξ̄ j

∣∣∣∣
N×N

, ĝ =
∣∣∣∣δi j + ipi

pi + p̄ j

(
− p̄ j + a

pi − a

)
eξi+ξ̄ j

∣∣∣∣
N×N

,

(136)

with

ξi = 2σaρ2

pi − a
(t − y) + pi x + ip2i y + ξ ′

i0,

ξ̄ j = 2σaρ2

p̄ j + a
(t − y) + p̄ j x1 − i p̄2j y + ξ̄ ′

j0.

If we set the complex conjugate condition

f̂ = f ∗, ĝ = g∗, (137)
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and a = iα, the above bilinear equations become(
iDt + iDy + 2iαDx + D2

x

)
g · f = 0, (138)

(
iDt + iDy − D2

x

)
f · f ∗ = 0, (139)

(
iDt − 2σρ2

)
f · f ∗ = −2σρ2gg∗. (140)

By using the following dependent variable transformations

S = ρei[αx+βy−(α2+β+2σρ2)t] g

f
, L = i

d

dx
ln

f ∗

f
, U = i

d

dy
ln

f ∗

f
,

(141)

a (2 + 1)-dimensional derivative YO system can be derived from bilinear
Eqs. (138)–(140),

i(St + Sy) + Sxx + iSLx + SL2 − 2σ S|S|2 −US = 0, (142)

Lt = 2σ
(|S|2)

x
, Ux = Ly. (143)

If we insert p̄i = p∗
i for i = 1, 2, . . . , N , it is easy to verify that Eq.(137) is

satisfied. Therefore, the (2 + 1)-dimensional derivative YO system (142) and
(143) has multisoliton solution (141), and (135) and (136) with p̄i = p∗

i for
i = 1, 2, . . . , N .

To find the breather solution, we assume that the integer N in (135) and
(136) is even, i.e., N = 2M , and then tau functions f , f̂ , g, and ĝ can be
rewritten as:

f = �0�1

∣∣∣∣δi j (−1)i

p̄ieξi+ξ̄i
− (−1)i i

pi + p̄ j

∣∣∣∣
N×N

≡ �0�1

∣∣(Fi j )1≤i, j≤N

∣∣ , (144)

f̂ = �0�̄1

∣∣∣∣δi j (−1)i+1

pieξi+ξ̄i
+ (−1)i+1i

pi + p̄ j

∣∣∣∣
N×N

≡ �0�̄1

∣∣∣(F̂ i j )1≤i, j≤N

∣∣∣ , (145)

g = �0�1�2

∣∣∣∣δi j (−1)i

p̄ieξi+ξ̄i

(
− p̄i + a

pi − a

)
− (−1)i i

pi + p̄ j

∣∣∣∣
N×N

≡ �0�1�2

∣∣(Gi j )1≤i, j≤N

∣∣ , (146)

ĝ = �0�̄1

�2

∣∣∣∣δi j (−1)i+1

pieξi+ξ̄i

(
− pi − a

p̄i + a

)
+ (−1)i+1i

pi + p̄ j

∣∣∣∣
N×N

≡ �0�̄1

�2

∣∣∣(Ĝi j )1≤i, j≤N

∣∣∣ ,
(147)
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with

�0 = e
∑N

i=1 ξi+ξ̄i , �1 =
M∏
k=1

(− p̄2k−1 p̄2k),

�̄1 =
M∏
k=1

(−p2k−1 p2k), �2 =
N∏
i=1

(
pi − a

p̄i + a

)
.

Further, we conduct the dimension reduction, and then the bilinear
equations (138)–(140) reduce to the bilinear form of the (1+1)-dimensional
DYO system (69)–(71). The derivation of the breather solution corresponds
to different reduction from same bilinear members in KP hierarchy as the
construction of dark solutions. As shown in the subsequent section, there
exist two types of breather solution.

4.2. The breather I solution to (1+1)-dimensional DYO system

The breather I solution for the (1+1)-dimensional DYO system is given in
the following theorem:

THEOREM 3. The tau functions satisfying bilinear equations (69)–(71)
are given by the determinants f = |Fk,l | and g = |Gk,l |, where the matrix
elements are defined by

Fk,k =
⎛
⎝− 1

(iωk+�k )eζk
+ 1

2ωk
− i

�k+�∗
k

− i
�k+�∗

k
− 1

(iωk+�∗
k )e

ζ∗
k

+ 1
2ωk

⎞
⎠ , (148)

Gk,k =
⎛
⎝ 1

(iωk+�k )eζk

(
�k+iα+iωk

�k+iα−iωk

)
+ 1

2ωk
− i

�k+�∗
k

− i
�k+�∗

k
− 1

(iωk+�∗
k )e

ζ∗
k

(
�∗

k−iα+iωk

�∗
k−iα−iωk

)
+ 1

2ωk

⎞
⎠ ,

(149)

Fk,l = Gk,l =
( i

i(ωk−ωl )−(�k−�l )
i

i(ωk−ωl )−(�k+�∗
l )

i
i(ωk−ωl )−(�∗

k+�l )
i

i(ωk+ωl )−(�∗
k−�∗

l )

)
, (150)

with ζk = 2iωk x − 4iσαρ2ωk

(i�k−α)2−ω2
k
t + ζk,0. Here, �k, ζk,0 are complex parameters

and ωk are real parameters for k = 1, 2 . . . , M, and these parameters satisfy
the constraint condition:

iσαρ2

(i�k − α)2 − ω2
k

+ �k = 0. (151)
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Proof. By taking

p2k−1 = iωk − �k, p2k = −iωk + �∗
k , p̄2k−1 = iωk + �k,

p̄2k = −iωk − �∗
k , (152)

and a = iα, ξ ′
2k−1,0 = ξ

′∗
2k,0 ≡ ξk,0, ξ̄ ′

2k−1,0 = ξ̄
′∗
2k,0 ≡ ηk,0, ζk,0 = ξk,0 + ηk,0,

where �k, ξk,0, ηk,0, ζk,0 are complex parameters and ωk are real parameters
for k = 1, 2 . . . , M , we have

ξ2k−1 + ξ̄2k−1 = ξ ∗
2k + ξ̄ ∗

2k = 2iωk x + 4ωk

[
iσαρ2

(i�k − α)2 − ω2
k

+ �k

]
y

− 4iσαρ2ωk

(i�k − α)2 − ω2
k

t + ζk,0, (153)

and �0 is real, �̄1 = �∗
1, and �−1

2 = �∗
2.

Let

F̃ = H1F
T HT

1 , G̃ = H1G
T HT

1 , (154)

where T denotes the transposition, and H1 is an antisymmetric 2M × 2M
matrix:

H1 =

⎛
⎜⎝
K1

. . .
K1

⎞
⎟⎠ , K1 =

(
0 1

−1 0

)
,

one can find

F̃∗
i j = F̂ i j , G̃∗

i j = Ĝi j , (155)

and

|F̃ | = ∣∣H1F
T HT

1

∣∣ = |F |, |G̃| = ∣∣H1G
T HT

1

∣∣ = |G|. (156)

Considering the gauge freedom of tau functions and noting that |�2| = 1,
we can redefine f = |F |, f̂ = |F̂ |, g = |G|, and ĝ = |Ĝ|, and then the
complex conjugate condition (137) is satisfied and the breather solution is
obtained for the (2 + 1)-dimensional DYO bilinear equations (138)–(140).
Further, inserting the dimensional reduction condition (151), the bilinear
form of the (1 + 1)-dimensional DYO system (69)–(71) holds and we get the
first kind of breather solution as given in Theorem 3. �

4.2.1. The breather I solution for M = 1 and M = 2. By taking M = 1,
the tau functions for the breather I solution are written as:

f = 1

4ω2
1

+ 1(
�1 + �∗

1

)2 − e−ζ1

2ω1A1
− e−ζ ∗

1

2ω1B1
+ e−ζ1−ζ ∗

1

A1B1
, (157)
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Figure 8. The breather I solution with the parameter σ = ρ = 1 and ζ1,0 = 0: (a) the

general breather: α = −2, ω1 =
√
3
3 , and �1 =

√
15
6 + 1

2 i; (b) the homoclinic orbit: α = 3
2 ,

ω1 =
√
7
2 , and �1 =

√
2
2 .

g = 1

4ω2
1

+ 1(
�1 + �∗

1

)2 − P1e−ζ1

2ω1A1
− Q1e−ζ ∗

1

2ω1B1
+ P1Q1e−ζ1−ζ ∗

1

A1B1
, (158)

with

A1 = iω1 + �1, B1 = iω1 + �∗
1,

P1 = − iω1 + (
�∗

1 − ia
)

iω1 − (
�∗

1 − ia
) , Q1 = −ω1 + (a − i�1)

ω1 − (a − i�1)
,

and ζ1 = 2iω1x − 4iσαρ2ω1

(i�1−α)2−ω2
1
t + ζ1,0, in which the parameters need to satisfy

(151) for k = 1. In particular, if we take the imaginary part of the
coefficient of t be zero, one breather solution reduces to the homoclinic
orbit solution. Such two kinds of solutions are exhibited in Fig. 8 by
choosing the different parameters. More specifically, Fig. 8(a) represents
the general breather solution and Fig. 8(b) indicates the homoclinic orbit
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Figure 9. The breather I solution for M = 2 with the parameter σ = ρ = 1, α = −2,
ω1 =

√
3
3 , �1 =

√
15
6 + 1

2 i, ω2 =
√
265
15 , �1 =

√
110
15 + 1

3 i, and ζ1,0 = ζ2,0 = 0.

solution with the parameters satisfying the condition Im [ 4iσαρ2ω1

(i�1−α)2−ω2
1
] = 0.

For M = 2, the expression of the breather solution is too complicated to list
and we only illustrate it in Fig. 9.

4.3. The breather II solution to the (1+1)-dimensional DYO system

The breather II solution for the the (1+1)-dimensional DYO system is given
in the following theorem:

THEOREM 4. The tau functions satisfying bilinear equations (69)–(71)
are given by the determinants f = |Fk,l | and g = |Gk,l |, where the matrix
elements are defined by

Fk,k =
⎛
⎝− i

(iωk+�k )eζk
+ i

2ωk

i
2ωk+i(�k−�∗

k )

i
−2ωk+i(�k−�∗

k )
i

(iωk+�∗
k )e

ζ∗
k

− i
2ωk

⎞
⎠ , (159)

Gk,k =
⎛
⎝− i

(iωk+�k )eζk

(
ia−i�k+ωk

ia−i�k−ωk

)
+ i

2ωk

i
2ωk+i(�k−�∗

k )

i
−2ωk+i(�k−�∗

k )
i

(iωk+�∗
k )e

ζ∗
k

(
i�∗

k−ia−ωk

i�∗
k−ia+ωk

)
− i

2ωk

⎞
⎠ ,

(160)

Fk,l = Gk,l =
( i

(ωk+ωl )+i(�k−�l )
i

(ωk+ωl )+i(�k−�∗
l )

− i
(ωk+ωl )+i(�∗

k−�l )
− i

(ωk+ωl )+i(�∗
k−�∗

l )

)
, (161)

with ζk = 2ωk x − 4σαρ2ωk

(�k−α)2+ω2
k
t + ζk,0. Here, �k, ζk,0 are complex parameters

and ωk are real parameters for k = 1, 2 . . . , M, and these parameters satisfy
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the constraint condition:

σαρ2

(�k − α)2 + ω2
k

− �k = 0. (162)

Proof. Indeed, the breather II solution can be directly obtained from
the breather I solution by taking p2k−1 → −ip2k−1, p2k → ip2k , p̄2k−1 →
−i p̄2k−1, and p̄2k → i p̄2k . More specifically, by setting

p2k−1 = ωk + i�k, p2k = ωk + i�∗
k, p̄2k−1 = ωk − i�k,

p̄2k = ωk − i�∗
k, (163)

and a = iα, ξ ′
2k−1,0 = ξ

′∗
2k,0 ≡ ξk,0, ξ̄ ′

2k−1,0 = ξ̄
′∗
2k,0 ≡ ηk,0, ζk,0 = ξk,0 + ηk,0,

where �k, ξk,0, ηk,0, ζk,0 are complex parameters and ωk are real parameters
for k = 1, 2 . . . , M , one has

ξ2k−1 + ξ̄2k−1 = ξ ∗
2k + ξ̄ ∗

2k = 2ωk x + 4ωk

[
σαρ2

(�k − α)2 + ω2
k

− �k

]
y

− 4σαρ2ωk

(�k − α)2 + ω2
k

t + ζk,0, (164)

and �0 is real, �̄1 = �∗
1, and �−1

2 = �∗
2.

Let

F̃ = HT
1 FT H1, G̃ = HT

1 G
T H1, (165)

we can verify

F̃∗
i j = F̂ i j , G̃∗

i j = Ĝi j , (166)

and

|F̃ | = ∣∣HT
1 FT H1

∣∣ = |F |, |G̃| = ∣∣HT
1 G

T H1

∣∣ = |G|. (167)

Similar to the breather I solution, due to the gauge freedom and |�2| =
1, we redefine f = |F |, f̂ = |F̂ |, g = |G|, and ĝ = |Ĝ|, and then the
complex conjugate condition (137) is satisfied and the breather solution
for the (2 + 1)-dimensional DYO bilinear equations (138)–(140) is obtained.
Further, inserting the dimensional reduction condition (162) gives the
bilinear form of the (1 + 1)-dimensional DYO system (69)–(71), and the
second kind of breather solution is derived in Theorem 4. �

4.3.1. The breather II solution for M = 1 and M = 2. By taking M = 1,
the tau functions for the breather II solution read

f = 1

4ω1

[
1 + 4 ω2

1

(�1−�∗
1)

2

] − e−ζ1

2ω1A1
− e−ζ ∗

1

2ω1B1
+ e−ζ1−ζ ∗

1

A1B1
, (168)
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Figure 10. The breather II solution with the parameters: (a) the general breather:
σ = ρ = ω1 = 1, α = 1

4 , �1 = 1
8 + 3

√
7

8 i; (b) the Kuznetsov–Ma breather: σ = 1, ρ = √
2,

α =
√
3
2 , ω1 = 1

2 , � = i; and (c) the anti-dark soliton: σ = ρ = 1, α = 1
2 , ω1 = 2,

�1 = 1
3 + 47

6r0
− 1

6r0, and r0 = (91 + 18
√
346)

1
3 .

g = 1

4ω1

[
1 + 4 ω2

1

(�1−�∗
1)

2

] − P1e−ζ1

2ω1A1
− Q1e−ζ ∗

1

2ω1B1
+ P1Q1e−ζ1−ζ ∗

1

A1B1
, (169)

with

A1 = iω1 + �1, B1 = iω1 + �∗
1,

P1 = − iω1 − (a − �1)

iω1 + (a − �1)
, Q1 = − iω1 − (

a − �∗
1

)
iω1 + (

a − �∗
1

) ,
and ζ1 = 2ω1x − 4σαρ2ω1

(�1−α)2+ω2
1
t + ζ1,0, in which the parameters need to satisfy

(162) for k = 1. Particularly, if the real part of the coefficient of t is
taken as zero, one breather solution reduces to the Kuznetsov–Ma breather
solution, whereas if the imaginary part of the coefficient of t be taken as
zero, the one breather solution degenerates to one dark soliton solution.
These kinds of solutions are displayed in Fig. 10 by choosing the different
parameters. For M = 2, the expression of the breather solution is too
complicated to be written here and we only illustrate it in Fig. 11.



The Derivative Yajima-Oikawa System 177

Figure 11. The breather II solution for M = 2 with the parameter σ = ρ = 1, α = 1
2 ,

and ζ1,0 = ζ2,0 = 0: (a) the breather-breather: ω1 = −1, �1 = 1
4 +

√
15
4 i, ω2 = −0.8241, and

�2 = 0.1517 + 0.8335i; (b) the breather-dark soliton: ω1 = −1, �1 = 1
4 +

√
15
4 i, ω2 = −1,

and �2 = 1
2 .

5. Summary and conclusion

In the present paper, we give a thorough study for the DYO system which
describes an LW–SW interaction model. We first show that such a system
can be classified into three types same as the DNLS equation. Then,
the N -bright and N -dark soliton solutions in terms of Gram determinants
are constructed via the KP-hierarchy reduction method. Based on these
soliton solutions, the properties of soliton propagation and collision have
been discussed in details. Particularly, it is found that when the SW takes
dark soliton solution, it allows the nonzero background anti-dark soliton
under certain parameters’ condition. The asymptotic analysis of two-soliton
solutions reveals that for both kinds of soliton only elastic collision exists
and each soliton suffers the phase shifts in the LW and SW.

We also propose a new (2+1)-dimensional DYO system and provide its
soliton and breather solutions. Moreover, by considering different reductions,
two types of breather solutions to (1+1)-dimensional DYO systems are
obtained. These two types of breather solutions are related by p2k−1 →
−ip2k−1, p2k → ip2k , p̄2k−1 → −i p̄2k−1, and p̄2k → i p̄2k , in which the
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homoclinic orbit and Kuznetsov–Ma breather solutions are two special cases,
respectively.

Finally, it should be pointed out that similar to the multicomponent YO
system [21, 22], we can extend the present study to obtain multisoliton and
breather solutions of the multicomponent DYO system which is composed of
multi-SWs and one LW. In addition, in parallel to the investigation of the
integrable YO system [23], the integrable semidiscrete analogue of the DYO
system is worth to be expected. We will report the relevant results in the
future work.
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Appendix A

In this appendix, we give the proof of Lemma 1. By using the differential
formula of determinant

∂x det
1≤i, j≤N

(ai j ) =
N∑

i, j=1

�i j∂xai j , (A1)

and the expansion formula of bordered determinant

det

(
ai j bi
c j d

)
= −

N∑
i, j

�i j bi c j + d det(ai j ), (A2)

with �i j being the (i, j)-cofactor of the matrix (ai j ), one can check that
the derivatives and shifts of tau functions are expressed by the bordered
determinants as follows:

∂x1τ
0,0
0,0 =

∣∣∣∣∣∣
A I �T

−I B 0T

−�̄x1 0 0

∣∣∣∣∣∣ , (A3)
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∂2
x1τ

0,0
0,0 =

∣∣∣∣∣∣
A I �T

x1−I B 0T

−�̄x1 0 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

A I �T

−I B 0T

−�̄x1x1 0 0

∣∣∣∣∣∣ , (A4)

∂x2τ
0,0
0,0 =

∣∣∣∣∣∣
A I �T

x1−I B 0T

−�̄x1 0 0

∣∣∣∣∣∣−
∣∣∣∣∣∣

A I �T

−I B 0T

−�̄x1x1 0 0

∣∣∣∣∣∣ , (A5)

∂x1τ
0,0
1,−1 =

∣∣∣∣∣∣
A I �T

x1−I B 0T

0 −	̄ 0

∣∣∣∣∣∣ , (A6)

∂2
x1τ

0,0
1,−1 =

∣∣∣∣∣∣
A I �T

x1x1−I B 0T

0 −	̄ 0

∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣

A I �T �T
x1−I B 0T 0T

0 −	̄ 0 0
−�̄x1 0 0 0

∣∣∣∣∣∣∣∣
, (A7)

∂x2τ
0,0
1,−1 =

∣∣∣∣∣∣
A I �T

x1x1−I B 0T

0 −	̄ 0

∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

A I �T �T
x1−I B 0T 0T

0 −	̄ 0 0
−�̄x1 0 0 0

∣∣∣∣∣∣∣∣
. (A8)

On the other hand, tau function τ
0,0
1,−1 can be rewritten as:

τ
0,−1
0,0 =

∣∣∣∣ A′ I
−I B

∣∣∣∣ =
∣∣∣∣ai j − eξi eξ̄ j I

−I B

∣∣∣∣ =
∣∣∣∣∣∣
A I �T

−I B 0T

�̄ 0 1

∣∣∣∣∣∣ , (A9)

then

τ
0,−1
0,0 =

∣∣∣∣ A I
−I B

∣∣∣∣+
∣∣∣∣∣∣
A I �T

−I B 0T

�̄ 0 0

∣∣∣∣∣∣ . (A10)

Similarly, one can get another expression of tau function τ
0,−1
−1,1

τ
0,−1
−1,1 =

∣∣∣∣∣∣
A I 0T

−I B 	T

−�̄ 0 0

∣∣∣∣∣∣ . (A11)

Furthermore, we have

∂x1τ
0,−1
0,0 =

∣∣∣∣∣∣
A I �T

x1−I B 0T

�̄ 0 0

∣∣∣∣∣∣ , (A12)
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∂2
x1τ

0,−1
0,0 =

∣∣∣∣∣∣
A I �T

x1x1−I B 0T

�̄ 0 0

∣∣∣∣∣∣+
∣∣∣∣∣∣
A I �T

x1−I B 0T

�̄x1 0 0

∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
A I � �T

x1−I B 0T 0T

�̄ 0 0 0
�̄x1 0 0 0

∣∣∣∣∣∣∣∣
,

(A13)

∂x2τ
0,−1
0,0 =

∣∣∣∣∣∣
A I �T

x1x1−I B 0T

�̄ 0 0

∣∣∣∣∣∣−
∣∣∣∣∣∣
A I �T

x1−I B 0T

�̄x1 0 0

∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣∣

A I � �T
x1−I B 0T 0T

�̄ 0 0 0
�̄x1 0 0 0

∣∣∣∣∣∣∣∣∣∣
,

(A14)

∂yτ
0,0
0,0 =

∣∣∣∣∣∣
A I 0T

−I B 	T

0 −	̄ 0

∣∣∣∣∣∣ , (A15)

∂yτ
0,−1
0,0 =

∣∣∣∣∣∣
A I 0T

−I B 	T

0 −	̄ 0

∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
A I 0T �T

−I B 	 0T

0 −	̄ 0 0
−�̄ 0 0 0

∣∣∣∣∣∣∣∣
. (A16)

By using above formulae, the bilinear equations (32)–(34) become

(∂x2 − ∂x1x1 )τ
0,0
1,−1 × τ

0,0
0,0 − (∂x2 + ∂x1x1 )τ

0,0
0,0 × τ

0,0
1,−1 + 2∂x1τ

0,0
0,0 × ∂x1τ

0,0
1,−1

= 2

∣∣∣∣∣∣∣∣
A I �T �T

x1−I B 0T 0T

0 −	̄ 0 0
−�̄x1 0 0 0

∣∣∣∣∣∣∣∣
∣∣∣∣ A I
−I B

∣∣∣∣− 2

∣∣∣∣∣∣
A I �T

x1−I B 0T

−�̄x1 0 0

∣∣∣∣∣∣
∣∣∣∣∣∣
A I �T

−I B 0T

0 −	̄ 0

∣∣∣∣∣∣

+2

∣∣∣∣∣∣
A I �T

−I B 0T

−�̄x1 0 0

∣∣∣∣∣∣
∣∣∣∣∣∣
A I �T

x1−I B 0T

0 −	̄ 0

∣∣∣∣∣∣ , (A17)

(∂x1x1 − ∂x2 )τ
0,−1
0,0 × τ

0,0
0,0 + (∂x1x1 + ∂x2 )τ

0,0
0,0 × τ

0,−1
0,0 − 2∂x1τ

0,0
0,0 × ∂x1τ

0,−1
0,0

= 2

⎛
⎜⎜⎝
∣∣∣∣∣∣
A I �T

x1−I B 0T

�̄x1 0 0

∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
A I � �T

x1−I B 0T 0T

�̄ 0 0 0
�̄x1 0 0 0

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠
∣∣∣∣ A I
−I B

∣∣∣∣
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+2

∣∣∣∣∣∣
A I �T

x1−I B 0T

−�̄x1 0 0

∣∣∣∣∣∣
⎛
⎝∣∣∣∣ A I

−I B

∣∣∣∣+
∣∣∣∣∣∣
A I �T

−I B 0T

�̄ 0 0

∣∣∣∣∣∣
⎞
⎠

−2

∣∣∣∣∣∣
A I �T

−I B 0T

−�̄x1 0 0

∣∣∣∣∣∣
∣∣∣∣∣∣
A I �T

x1−I B 0T

�̄ 0 0

∣∣∣∣∣∣ , (A18)

∂yτ
0,0
0,0 × τ

0,−1
0,0 − ∂yτ

0,−1
0,0 × τ

0,0
0,0 + τ

0,0
1,−1τ

0,−1
−1,1

=
∣∣∣∣∣∣
A I 0T

−I B 	T

0 −	̄ 0

∣∣∣∣∣∣
⎛
⎝∣∣∣∣ A I

−I B

∣∣∣∣+
∣∣∣∣∣∣
A I �T

−I B 0T

�̄ 0 0

∣∣∣∣∣∣
⎞
⎠

−

⎛
⎜⎜⎝
∣∣∣∣∣∣
A I 0T

−I B 	T

0 −	̄ 0

∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
A I 0T �T

−I B 	T 0T

0 −	̄ 0 0
−�̄ 0 0 0

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠
∣∣∣∣ A I
−I B

∣∣∣∣

+
∣∣∣∣∣∣
A I �T

−I B 0T

0 −	̄ 0

∣∣∣∣∣∣
∣∣∣∣∣∣
A I 0T

−I B 	T

−�̄ 0 0

∣∣∣∣∣∣ , (A19)

which are nothing but Jacobi’s identities.

Appendix B

To prove Lemma 2, we first define

θi (n, k) = ipi p
n
i (pi − a)keξi , (B1)

ωi (n, k) = (− p̄i )
−n[−( p̄i + a)]−keξ̄i , (B2)

which satisfy the differential and difference rules:

∂x2θi (n, k) = ∂2
x1θi (n, k), ∂x2ωi (n, k) = −∂2

x1ωi (n, k), (B3)

∂x−1θi (n, k) = θi (n, k − 1), ∂x−1ωi (n, k) = −ωi (n, k + 1), (B4)

(∂x1 − a)θi (n, k) = θi (n, k + 1), (∂x1 + a)ωi (n, k) = −ωi (n, k − 1).

(B5)

Then, one can easily verify that

∂x1m
n,k
i j = θi (n, k)ω j (n, k), ∂x−1m

n,k
i j = −θi (n, k − 1)ω j (n, k + 1), (B6)
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∂x2m
n,k
i j = [∂x1θi (n, k)]ω j (n, k) − θi (n, k)[∂x1ω j (n, k)], (B7)

mn,k+1
i j = mn,k

i j + θi (n, k)ω j (n, k + 1),

mn+1,k
i j = mn,k

i j + θi (n, k)ω j (n + 1, k). (B8)

Define

m =

⎛
⎜⎜⎜⎝
mn,k

11 mn,k
12 · · · mn,k

1N

mn,k
21 mn,k

22 · · · mn,k
2N

...
...

...
...

mn,k
N1 mn,k

N2 · · · mn,k
N N

⎞
⎟⎟⎟⎠ ,

and

�(n, k) = (θ1(n, k), . . . , θN (n, k))T , �(n, k) = (ω1(n, k), . . . , ωN (n, k)) ,

then the following formulae are derived:

∂x1τn,k =
∣∣∣∣ m �(n, k)
−�(n, k) 0

∣∣∣∣ , (B9)

∂2
x1τn,k =

∣∣∣∣ m ∂x1�(n, k)
−�(n, k) 0

∣∣∣∣+
∣∣∣∣ m �(n, k)
−∂x1�(n, k) 0

∣∣∣∣ , (B10)

∂x2τn,k =
∣∣∣∣ m ∂x1�(n, k)
−�(n, k) 0

∣∣∣∣−
∣∣∣∣ m �(n, k)
−∂x1�(n, k) 0

∣∣∣∣ , (B11)

a∂x−1τn,k =
∣∣∣∣ m a�(n, k − 1)
�(n, k + 1) 0

∣∣∣∣ , (B12)

τn,k+1 =
∣∣∣∣ m �(n, k)
−�(n, k + 1) 1

∣∣∣∣ , (B13)

τn,k−1 =
∣∣∣∣ m �(n, k − 1)
�(n, k) 1

∣∣∣∣ , (B14)

(∂x1 + a)τn,k+1 =
∣∣∣∣ m ∂x1�(n, k)
−�(n, k + 1) a

∣∣∣∣ , (B15)

(∂x1 + a)2τn,k+1 =
∣∣∣∣ m ∂2

x1�(n, k)
−�(n, k + 1) a2

∣∣∣∣
+
∣∣∣∣∣∣

m ∂x1�(n, k) �(n, k)
−�(n, k + 1) a 1

−�(n, k) 0 0

∣∣∣∣∣∣ , (B16)
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(∂x2 + a2)τn,k+1 =
∣∣∣∣ m ∂2

x1�(n, k)
−�(n, k + 1) a2

∣∣∣∣
−
∣∣∣∣∣∣

m ∂x1�(n, k) �(n, k)
−�(n, k + 1) a 1

−�(n, k) 0 0

∣∣∣∣∣∣ . (B17)

Similarly,

τn+1,k =
∣∣∣∣ m �(n, k)
−�(n + 1, k) 1

∣∣∣∣ , (B18)

τn+1,k−1 =
∣∣∣∣ m a�(n, k − 1)
�(n + 1, k) 1

∣∣∣∣ , (B19)

∂x1τn+1,k =
∣∣∣∣ m ∂x1�(n, k)
−�(n + 1, k) 0

∣∣∣∣ , (B20)

(a∂x−1 − 1)τn+1,k =
∣∣∣∣∣∣

m �(n, k) a�(n, k − 1)
−�(n + 1, k) 1 −1
�(n, k + 1) −1 0

∣∣∣∣∣∣ , (B21)

∂2
x1τn+1,k =

∣∣∣∣ m ∂2
x1�(n, k)

−�(n + 1, k) 0

∣∣∣∣
+
∣∣∣∣∣∣

m ∂x1�(n, k) �(n, k)
−�(n + 1, k) 0 1

−�(n, k) 0 0

∣∣∣∣∣∣ , (B22)

∂x2τn+1,k =
∣∣∣∣ m ∂2

x1�(n, k)
−�(n + 1, k) 0

∣∣∣∣
−
∣∣∣∣∣∣

m ∂x1�(n, k) �(n, k)
−�(n + 1, k) 0 1

−�(n, k) 0 0

∣∣∣∣∣∣ . (B23)

Thus, the bilinear equations (76)–(78) become[(
∂x2 + a2

)− (
∂x1 + a

)2]
τn,k+1 × τn,k − (∂x2 + ∂x1x1 )τn,k × τn,k+1

+2(∂x1 + a)τn,k+1 × ∂x1τn,k

= −2

∣∣∣∣∣∣
m ∂x1�(n, k) �(n, k)

−�(n, k + 1) a 1
−�(n, k) 0 0

∣∣∣∣∣∣ |m|

−2

∣∣∣∣ m ∂x1�(n, k)
−�(n, k) 0

∣∣∣∣
∣∣∣∣ m �(n, k)
−�(n, k + 1) 1

∣∣∣∣
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+2

∣∣∣∣ m ∂x1�(n, k)
−�(n, k + 1) a

∣∣∣∣
∣∣∣∣ m �(n, k)
−�(n, k) 0

∣∣∣∣ , (B24)

(∂x2 + ∂x1x1 )τn,k × τn+1,k(∂x2 − ∂x1x1 )τn+1,k × τn,k − 2∂x1τn,k × ∂x1τn+1,k

= 2

∣∣∣∣ m ∂x1�(n, k)
−�(n, k) 0

∣∣∣∣
∣∣∣∣ m �(n, k)
−�(n + 1, k) 1

∣∣∣∣
−2

∣∣∣∣∣∣
m ∂x1�(n, k) �(n, k)

−�(n + 1, k) 0 1
−�(n, k) 0 0

∣∣∣∣∣∣ |m|

−2

∣∣∣∣ m �(n, k)
−�(n, k) 0

∣∣∣∣
∣∣∣∣ m ∂x1�(n, k)
−�(n + 1, k) 0

∣∣∣∣ , (B25)

a∂x1τn,k × τn+1,k − (a∂x1 − 1)τn+1,k × τn,k − τn,k+1τn+1,k−1

=
∣∣∣∣ m a�(n, k − 1)
�(n, k + 1) 0

∣∣∣∣
∣∣∣∣ m �(n, k)
−�(n + 1, k) 1

∣∣∣∣
−
∣∣∣∣∣∣

m �(n, k) a�(n, k − 1)
−�(n + 1, k) 1 −1
�(n, k + 1) −1 0

∣∣∣∣∣∣ |m|

−
∣∣∣∣ m �(n, k)
−�(n, k + 1) 1

∣∣∣∣
∣∣∣∣ m a�(n, k − 1)
�(n + 1, k) 1

∣∣∣∣ , (B26)

which are satisfied by Jacobi’s identities.
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