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Sound attenuation in low temperature amorphous solids originates from their disordered structure. However,
its detailed mechanism is still being debated. Here we analyze sound attenuation starting directly from the
microscopic equations of motion. We derive an exact expression for the zero-temperature sound damping
coefficient. We verify that the sound damping coefficients calculated from our expression agree very well with
results from independent simulations of sound attenuation. The small wavevector analysis of our expression
shows that sound attenuation is primarily determined by the non-affine displacements’ contribution to the
sound wave propagation coefficient coming from the frequency shell of the sound wave. Our expression involves
only quantities that pertain to solids’ static configurations. It can be used to evaluate the low temperature
sound damping coefficients without directly simulating sound attenuation.

I. INTRODUCTION

The physics of sound attenuation in amorphous solids
is drastically different than in crystalline solids. At low
temperatures, when thermal effects can be neglected,
sound is attenuated due to the inherent disorder of amor-
phous solids, whereas the attenuation is absent in crys-
talline solids. To understand the physical mechanism be-
hind sound attenuation one can examine its wavevector
k dependence. Sound attenuation in amorphous solids
has a complicated dependence on the wavevector1, but
small wavevector k4 scaling of sound damping coeffi-
cients has long been conjectured on an experimental
basis2,3. An initial interpretation was that this small
wavevector behavior originates from Rayleigh scattering
of sound waves from the solid’s inhomogeneities. Recent
computer simulations4–6 verified that in classical three-
dimensional zero-temperature amorphous solids at the
smallest wavevectors sound damping coefficients scale as
k4, although a logarithmic correction to this scaling was
also claimed7.
The specific physical mechanism of sound attenuation

in low temperature amorphous solids is still debated.
Zeller and Pohl2 obtained the Rayleigh scattering law us-
ing an “isotopic scattering”3 model in which every atom
of the glass is an independent source of scattering. Sev-
eral recent experimental and simulational results were
analyzed within the framework of the fluctuating elastic-
ity theory of Schirmacher8–10. This theory posits that an
amorphous solid can be modeled as a continuous medium
with spatially varying elastic constants. The inhomo-
geneity of the elastic constants causes sound scattering
and attenuation. In the limit of the wavelength being
much larger than the characteristic spatial scale of the
inhomogeneity this mechanism is equivalent to Rayleigh
scattering and the theory predicts that sound damping
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coefficients scale with the wavevector as k4. If the elastic
constant variations have slowly decaying, power-law-like
correlations, the theory predicts a logarithmic correction
to Rayleigh scattering7,15. Other physical approaches,
e.g. local oscillator9,11–14 and random matrix16–18 mod-
els, can also be used to derive the Rayleigh scattering
law. For this reason, Rayleigh scaling cannot serve to
distinguish between different models9, and other model
predictions must be used to determine the mechanism
behind sound attenuation.

Three recent studies came to very different conclu-
sions regarding the applicability of the fluctuating elas-
ticity theory for sound attenuation. First, Caroli and
Lemâıtre19 analyzed a version of the theory derived from
microscopic equations of motion. They obtained all the
parameters needed to calculate sound attenuation from
the theory from the same simulations that were used
to test the theoretical predictions. Caroli and Lemâıtre
showed that this version of the theory underestimates
sound damping coefficients by about two orders of mag-
nitude.

Second, Kapteijns et al.20 analyzed the dependence of
sound attenuation in a two-dimensional glass on a param-
eter δ, which “resembles” changing the stability of the
amorphous solid. To calculate the disorder parameter8

of the fluctuating elasticity theory they replaced fluctu-
ations of local elastic constants (which are used in the
theoretical description) by the sample-to-sample fluctu-
ations of bulk elastic constants. In this way they were
able to sidestep the issue of the definition of local elastic
constants21 and of the correlation volume. While Kaptei-
jns et al. showed that the disorder parameter and the
sound damping coefficient have the same dependence on
δ, they left the calculation of the pre-factor for the scaling
for further research.

Finally, Mahajan and Pica Ciamarra22 argued that
sound attenuation is proportional to the square of the
disorder parameter γ according to a version of fluctuating
elasticity theory that incorporates an elastic correlation
length9,23. They relied upon a relation between the bo-
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son peak, the speed of sound, and an elastic correlation
length to show that the speed of sound and the boson
peak frequency can be used to infer the change of the
sound damping coefficient. Again, the magnitude of the
sound damping coefficient was not addressed.

The results described above show that it is difficult
to distinguish between and to validate different semi-
phenomenological models invoked to describe sound at-
tenuation in zero-temperature amorphous solids. One
of the reasons is that most of these approaches involve
an adjustable parameter (or parameters) and therefore
are able to predicts trends rather than absolute values of
sound damping coefficients. For example, neither Kaptei-
jns et al. nor Mahajan and Pica Ciamarra calculated the
values of sound damping coefficients (in contrast to Car-
oli and Lemâıtre), but rather investigated the variation of
the sound attenuation between different glasses. Limited
range of glasses that can be created in silico makes it dif-
ficult to distinguish between trends predicted by different
models or different versions of a model.

Our goal is to understand the microscopic origin of
the sound attenuation. We derive an exact expression
for the sound damping coefficient in terms of quanti-
ties that can be calculated from static configurations of
amorphous solids, without the need to directly simulate
sound attenuation. Our expression is analogous to well-
known Green-Kubo formulae for transport coefficients24.
The latter expressions allow one to calculate transport
coefficients without explicitly simulating transport pro-
cesses. While both our expression and Green-Kubo for-
mulae need to be evaluated numerically, they can also
serve as starting points for approximate analyses and
treatments that can shed light at the validity of semi-
phenomenological models. We hope that the results of
one such analysis, which we present at the end of the pa-
per, can inspire new models or be incorporated into the
existing ones.

In Sec. II we start from the microscopic equations
of motion for harmonic vibrations. We derive an ex-
act equation of motion for an auto-correlation function
that has been used to determine sound attenuation. We
identify the self-energy and show that its real part repro-
duces the non-Born contribution to the zero-temperature
wave propagation coefficients. The imaginary part of the
self-energy is the origin of sound attenuation. We show
that sound damping coefficients calculated this way agree
very well with those obtained from direct simulations of
sound attenuation in zero-temperature glasses with dif-
ferent stability. In Sec. III we present the small wavevec-
tor expansion of our expression for the sound damping co-
efficient. It shows that the limiting k4 sound attenuation
originates from the same physics as the non-Born con-
tribution to the elastic constants and wave propagation
coefficients, i.e. from the forces inducing non-affine dis-
placements, which appear due to the amorphous solids’
disordered structure. More precisely, attenuation of the
sound wave is primarily determined by the contribution
to the non-Born part of the wave propagation coefficient

from a shell of frequencies around the frequency of the
sound wave. We thus show the common origin of the
renormalization of the elastic constants and of sound at-
tenuation. In Sec. IV we discuss the results of an approx-
imate evaluation of our expression for the sound damp-
ing coefficient which assumes that the exact eigenvectors
of the Hessian matrix can be replaced by plane waves.
These results allow us to critically evaluate the relation
between our exact expression and the fluctuating elas-
ticity theory. We end the paper with a discussion of our
results and related descriptions of the sound attenuation.

II. MICROSCOPIC ANALYSIS OF SOUND
ATTENUATION

We start from microscopic equations of motion for
small displacements of N spherically symmetric particles
of unit mass comprising our model amorphous solid,

∂2
t ui = −

∑︂
j

Hij · uj . (1)

Here ui is the displacement of the ith particle from its in-
herent structure (potential energy minimum) position Ri

and H is the Hessian calculated at the inherent structure,

Hij =
∑︂
l ̸=i

∂2V (Ril)

∂Ri∂Rj
(2)

where V (r) is the pair potential and Hij is a 3x3 tensor.
To derive an expression for the sound damping coeffi-

cient we use a slightly modified procedure proposed by
Gelin et al.7. We assume that at t = 0 the particles are
displaced from their equilibrium positions according to
ui(t = 0) = ê exp(−ik · Ri), u̇i(t = 0) = 0, where ê is
a unit vector and wavevector k is one of the wavevectors
allowed by periodic boundary conditions. We then ana-
lyze the time dependence of the auto-correlation func-
tion of the single-particle displacement averaged over
the whole system, C(t) = N−1

∑︁
i u

∗
i (t = 0) · ui(t).

We anticipate that in the limit of small wavevectors k
the auto-correlation function will exhibit damped oscilla-
tions, C(t) ∝ cos(vkt) exp(−Γ(k)t/2), and we will iden-
tify v as the speed of sound and Γ(k) as the damping
coefficient.
Solving Eqs. (1) with our initial conditions is equiva-

lent to solving the following equations

∂2
t ai = −

∑︂
j

Hij(k) · aj , (3)

where H(k) is the wavevector-dependent Hessian,
Hil(k) = Hil exp[ik · (Ri −Rl)], with initial conditions
ai(t = 0) = ê, ȧi(t = 0) = 0. In terms of the new
variables, C(t) = N−1

∑︁
i ai(t = 0) · ai(t).

To analyze C(t) we use the standard projection op-
erator approach25. First, we define a scalar product
of two displacement vectors, ai and bj , i, j = 1, ..., N ,
⟨a|b⟩ =

∑︁
i a

∗
i ·bi. Next, we define a unit vector |1⟩ with
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components 1i = N−1/2ê, and projection operator P on
the unit vector, P = |1⟩ ⟨1| and orthogonal projection
Q, Q = I − |1⟩ ⟨1| where I is the identity matrix.

Using the projection operator approach we obtain the
following expression for the Fourier transform C(ω) =´∞
0

C(t) exp(i(ω + iϵ))dt of the displacement auto-
correlation function,

C(ω) =
i (ω + iϵ)

(ω + iϵ)
2 − ⟨1|H(k)|1⟩+Σ(k;ω)

, (4)

where the self-energy Σ(k;ω) reads

Σ(k;ω) =

⟨︃
1

⃓⃓⃓⃓
H(k)Q 1

−(ω + iϵ)2 +QH(k)Q
QH(k)

⃓⃓⃓⃓
1

⟩︃
.

(5)

Equations (4-5) are exact. While it is straightforward
to calculate ⟨1|H(k)|1⟩, evaluation of the self-energy re-
quires inversion of a large-dimensional matrix for each
allowed wavevector. To make the numerical effort man-
ageable, in the denominator in Eq. (5) we approximate
H(k) by H. As argued in Appendix A, this approxima-
tion does not influence the small wavevector dependence
of the sound damping coefficients.

In the small wavevector limit, the first non-trivial term
in the denominator in Eq. (4), ⟨1|H(k)|1⟩, can be ex-
pressed in terms of the Born contributions to the zero-
temperature wave propagation coefficients26,

⟨1|H(k)|1⟩ = ρ−1êαA
Born
αβγδkβ êγkδ + o(k2) (6)

where ρ = N/V is the number density, Greek indices
denote Cartesian components, the Einstein summation
convention for Greek indices is hereafter adopted, and
ABorn

αβγδ is the Born wave propagation coefficient, which
can be expressed as the average of the local Born wave
propagation coefficients ABorn

j,αβγδ,

ABorn
j,αβγδ =

ρ

2

∑︂
l ̸=j

∂2V (Rjl)

∂Rj,α∂Rj,γ
Rjl,βRjl,δ (7)

over the whole system,

ABorn
αβγδ = N−1

∑︂
j

ABorn
j,αβγδ. (8)

For example, if the coordinate system is chosen such that
ê is in the x direction, and we are interested in a trans-
verse wave and choose k in the y direction, then the right
hand side of (6) becomes ρ−1ABorn

xyxyk
2.

In the absence of the self-energy term, (4) predicts the
Born value of the speed of sound and no sound damp-
ing. Both the renormalization of the sound speed and
the sound attenuation originate from the self-energy.

The self-energy can be calculated using the eigenvalues
and eigenvectors of the Hessian. In the thermodynamic
limit27, when the spectrum of the Hessian becomes con-
tinuous, we can use the Plemelj identity to identify the
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FIG. 1. Upper panels: the transverse (a) and longitudi-
nal (b) speed of sound obtained from the theory, Eq. (13),
(red squares) and calculated from the elastic constants (black
circles) as a function of parent temperature Tp. The black
triangles are the Born values of the speed of sound. Lower
panels: the transverse (c) and longitudinal (d) damping co-
efficients obtained from the theory, Eq. (14), (squares) and
obtained from sound attenuation simulations5 (circles) for dif-
ferent parent temperatures. Rayleigh scaling Γ ∝ k4 is recov-
ered at small wavevectors. The error bars for the theoretical
calculation represent the uncertainty due to using different
bin sizes.

imaginary component of the self-energy, which is respon-
sible for sound attenuation. The real Σ′(k;ω) and imag-
inary Σ′′(k;ω) parts of the self-energy read,

Σ′(k;ω) =

 
dΩΥ(k,Ω)

(︁
Ω2 − ω2

)︁−1
, (9)

Σ′′(k;ω) =
π

2ω
Υ(k, |ω|), (10)

where
ffl

denotes the Cauchy principal value. The func-
tion Υ(k,Ω) is defined through the sum over eigenvectors
Ep of the Hessian matrix with non-zero28 eigenvalues Ω2

p

such that Ωp ∈ [Ω,Ω+ dΩ], where dΩ is the bin size,

Υ(k,Ω) = (1/dΩ)
∑︂

Ωp∈[Ω,Ω+dΩ]

|⟨1 |H(k)Q| Ep⟩|2 . (11)

The key conceptual issue in writing Eq. (11) (and closely
related equations (18,21)) is that the thermodynamic
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limit is implied for the expression at the right-hand-side.
In this limit the spectrum becomes dense and phonon
bands are not distinguishable. Thus, to calculate Υ(k,Ω)
from the analysis of finite-size simulations we need to
choose bin size dΩ such that phonon bands are not re-
solved. In the numerical calculations described below we
tried a few bin sizes between 0.1 and 0.2 and found that
within this range the results were not very sensitive to
the bin size.

To evaluate the displacement auto-correlation function
we need to find complex poles of the denominator at the
right-hand-side of Eq. (4). In the small wavevector limit
this can be done perturbatively, using k as the small pa-
rameter. This leads to the following pair of poles,

ω± = ±vk − iΣ′′(k; vk)/(2vk) (12)

where the renormalized speed of sound v is given by

v2 = lim
k→0

k−2
[︁
⟨1|H(k)|1⟩ −Σ′(k; 0)

]︁
. (13)

The last term in Eq. (12) is our main result. It says that
the sound damping in zero-temperature amorphous solids
is determined by Υ(k,Ω)/Ω2 calculated at the wave’s fre-
quency, Ω = vk,

Γ(k) =
Σ′′(k; vk)

vk
=

π

2

Υ(k, vk)

(vk)
2 . (14)

We emphasize that Υ(k,Ω)/Ω2 is the same function that,
after integration over the whole frequency spectrum, de-
termines the renormalization of the wave propagation
coefficients. Note that v, Γ(k), and related quantities
defined below depend on the angle between the polariza-
tion of the initial condition ê and the direction of the
wavevector k̂.
To verify Eqs. (13-14) we calculated v and Γ(k) for

model zero-temperature glasses analyzed in Ref.5. These
glasses were obtained by instantaneously quenching su-
percooled liquids equilibrated using the swap Monte
Carlo algorithm29 at different parent temperatures Tp to
their inherent structures using the fast inertial relaxation
engine minimization30. The glasses consist of spherically
symmetric, polydisperse particles which interact via a po-
tential ∝ r−12, with a smooth cutoff, see Appendix B and
Refs.5,29 for details. The parent temperature controls the
glass’s stability and thus its properties5,31,32.

We calculated eigenvalues and eigenvectors of the Hes-
sian using ARPACK33 and Intel Math Kernel Library34.
Then, using Eqs. (13-14) we evaluated v and Γ(k) for

the longitudinal, ê ∥ k̂, and the transverse, ê ⊥ k̂,
sound. To calculate Υ(k,Ω) one chooses a kn compatible
with periodic boundary conditions. Then one calculates
|⟨1|H(kn)Q|Ep(Ωp)⟩| and bins the results according to
the square root of the eigenvalue of |Ep⟩ to determine
Υ(kn,Ω). Note that Ω2

p is the eigenvalue corresponding
to |Ep⟩. The damping is given by (14) where Υ(kn,Ω) is
evaluated at Ω = |kn|v.
Fig. 1 shows results for v and Γ for three parent tem-

peratures. Tp = 0.2; glasses obtained by quenching liq-
uid samples equilibrated at 0.2 are much less stable than

typical laboratory glasses. Tp = 0.085, which is be-
tween the mode-coupling temperature Tc ≈ .108 and
the estimated laboratory glass transition temperature
Tg ≈ 0.072; glasses obtained by quenching samples equili-
brated at 0.085 are about as stable as typical laboratory
glasses. Tp = 0.062, which is well below estimated Tg;
glasses obtained by quenching liquid samples equilibrated
at 0.062 are as stable as laboratory ultrastable glasses ob-
tained by the vapor deposition method35,36. We previ-
ously showed5 that sound damping coefficients decrease
by more than an order of magnitude over this range of
stability.

For all three parent temperatures there is excellent
agreement between results of Eqs. (13-14) and transverse
and longitudinal sound speeds, vT and vL, and transverse
and longitudinal sound damping coefficients, ΓT and ΓL

obtained previously5 from direct simulations of sound
attenuation. At small wavevectors we recover Rayleigh
scaling, Γ ∝ k4, but the theory also accurately predicts
sound damping for wavevectors outside the Rayleigh scal-
ing regime. The predicted damping coefficients depart
from the simulation results for larger wavevectors, but
at larger wavevectors the assumptions used to find the
poles, Eq. (12), become invalid.

III. THE ORIGIN OF SOUND ATTENUATION:
NON-AFFINE EFFECTS

To get some physical insight into the origin of sound
attenuation in zero-temperature amorphous solids we ex-
amine the small wavevector expansion of ⟨1 |H(k)Q| Ep⟩,

⟨1 |H(k)Q| Ep⟩ = −iN−1/2
∑︂
j

Ξj,γδ êγkδ · Ep
j (15)

+ρ−1N−1/2
∑︂
j

[︁
ABorn

j,αβγδ − êαêµA
Born
µβγδ

]︁
êγkβkδEp

j,α + o(k2).

In Eq. (15) Ep
j denotes the component of the pth eigen-

vector of the Hessian corresponding to particle j and Ep
j,α

denotes its Cartesian component α. Furthermore, Ξj,βγ

denotes the vector field describing forces due affine de-
formations,

Ξj,γδ = −
∑︂
l ̸=j

∂2V (Rjl)

∂Rj,γ∂Rj
Rjl,δ. (16)

Specifically, Ξj,γδ is proportional to the force on parti-
cle j resulting from a deformation along the γ direction
that linearly depends on the δ coordinates. Finally, the
2nd term at the right-hand-side of Eq. (15) accounts for
the spatial variation of the local Born wave propagation
coefficients.
As discussed in the literature37,38, forces encoded in

vector field Ξj,γδ do not seem to posses any longer-
range correlations. In contrast, non-affine displace-
ments given by H−1 ·Ξ exhibit characteristic vortex-like
structures and correlations extending over many particle
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FIG. 2. The terms that contribute to the transverse sound
attenuation for k1 = 2π/L = 0.13722, where L is the length
of the simulation box, given by Eq. 20 for Tp = 0.200 (a)
and Tp = 0.062 (b). The vertical lines marks the frequency
Ω = vT k1, where vT is the transverse speed of sound, and the
horizontal line is the sound attenuation calculated in simula-
tions from Ref.5. The value of πΥ(k1,Ω = vT k1)/[2(vT k1)

2]
gives the damping for k1.

diameters37–40. The characteristic length of these cor-
relations determines the minimal length scale on which
a macroscopic elastic approach can be used to describe
the response of amorphous solids39. It follows from the
combination of Eqs. (9), (13) and (15) that the renor-
malization of the wave propagation coefficients originates
from the first term in Eq. (15),

lim
k→0

k−2Σ′(k; 0) = N−1

ˆ
dΩΘ(Ω)Ω−2 (17)

where Θ(Ω) is defined analogously to Υ(k,Ω),

Θ(Ω) = (1/dΩ)
∑︂

Ωp∈[Ω,Ω+dΩ]

⃓⃓⃓
Ξp

γδ êγ k̂δ

⃓⃓⃓2
(18)

with

Ξp
γδ = N−1/2

∑︂
j

Ξj,γδ · Ep
j . (19)

Equations (17-18) reproduce the exact expression for
the non-Born contribution to the wave propagation co-
efficients derived from the analysis of the non-affine
displacements37,38. We note that function Θ(Ω) is closely
related to function Γαβκχ(ω) introduced and evaluated
by Lemâıtre and Maloney, see Eq. (32) of Ref.38.

While only the first term in Eq. (15) determines
the renormalization of the wave propagation coefficients,
both terms contribute to sound attenuation,

Γ(k) =
π

2v2
[︁
Θ(vk) + k2∆(vk)

]︁
(20)

where ∆(Ω) is defined analogously to Υ(k,Ω),

∆(Ω) = (1/dΩ)
∑︂

Ωp∈[Ω,Ω+dΩ]

⃓⃓⃓
δAp

βγδk̂β êγ k̂δ

⃓⃓⃓2
(21)

with

δAp
βγδ = ρ−1N−1/2

∑︂
j

[︁
ABorn

j,αβγδ − êαêµA
Born
µβγδ

]︁
Ep
j,α.

(22)

We note that the second term in Eq. (20) is expressed in
term of the fluctuations of the local Born wave propaga-
tion coefficients, see Eq. (22). Thus, the physical content
of the second term resembles that of the fluctuating elas-
ticity theory. We will discuss this correspondence further
in the next section.
It is the first term in Eq. (20) that makes the dominant

contribution to the damping coefficient, see Fig. 2. This
implies that the sound damping is primarily determined
by function Θ(Ω), which is the same function that also
determines the renormalization of the wave propagation
coefficients, Eq. (17). While previous studies suggested41

and analyzed approximately42 the importance the non-
affine effects for the sound attenuation, we have presented
the first approach that accounts for these effects exactly.

IV. SOUND DAMPING IN THE PLANE-WAVE
APPROXIMATION

The most recent version of the fluctuating elastic-
ity theory discussed by Mahajan and Pica Ciammarra22

posits that “amorphous materials can be described as ho-
mogeneous isotropic elastic media punctuated by quasilo-
calized modes acting as elastic heterogeneities.” This
suggests that plane waves should be a reasonable zeroth
order approximation for the eigenvectors of the Hessian
matrix describing an amorphous solid. To check this sup-
position we calculated Θ and ∆ contributions in Eq. (20)
approximating the exact eigenvectors by plane waves,
Ep
j ∝ êqe

−iq·Rj , see Appendix C for details. For the
contributions to transverse wave damping coefficient we
obtained the following expressions

π

2v2
Θ(vT k) ≈

1

60π

k4

ρ3

[︃(︃
v2T
v5L

+
4

v3T

)︃⟨︁
ABorn

αβxyA
Born
αβxy

⟩︁
+

(︃
v2T
v5L

− 1

v3T

)︃⟨︁
ABorn

ααxyA
Born
γγxy +ABorn

αβxyA
Born
βαxy

⟩︁]︃
, (23)

πk2

2v2
∆(vT k) ≈

1

12π

k4

ρ3

(︃
1

v3L
+

2

v3T

)︃[︂⟨︂(︁
∆ABorn

xyxy

)︁2⟩︂
+
⟨︂(︁

ABorn
yyxy

)︁2⟩︂
+

⟨︂(︁
ABorn

zyxy

)︁2⟩︂]︂
, (24)
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where we implicitly assumed analyticity of the correlation
functions of local wave propagation coefficients at the
vanishing wavevector. For example, we assumed that at
q → 0,

⟨︂(︁
∆ABorn

xyxy

)︁2⟩︂
= lim

q→0
N−1

⃓⃓⃓⃓
⃓⃓∑︂

j

eiq·Rj
(︁
ABorn

j,xyxy −ABorn
xyxy

)︁⃓⃓⃓⃓⃓⃓
2

(25)

and other similar equalities, as discussed in Appendix C.
We note that while the exact formula (18) for Θ contri-

bution involves non-affine forces Ξ, approximate formula
(23) is expressed in terms of correlations of local wave
propagation coefficients. This follows from the fact that,
as shown in Appendix C, for small wavevectors q∑︂
j

Ξj,γδ · êqe−iq·Rj =
i

ρ

∑︂
j

ABorn
j,αβγδ êqαqβe

−iq·Rj + o(q).

(26)

Furthermore, we note that formulae (23-24) are reminis-
cent of Zeller and Pohl’s “isotopic scattering” model in
that every atom j is a source of scattering of a plane wave,
with the amplitude depending on its local wave propa-
gation coefficient ABorn

j,αβγδ. Importantly, our approximate
formulae involve correlations of local wave propagation
coefficients that vanish at the macroscopic level and thus
do not appear in the semi-phenomenological fluctuating
elasticity theory, e.g. ABorn

j,yyxy.
The plane wave approximation recovers analytically

the Rayleigh scattering k4 scaling of the sound damp-
ing coefficient. However, it is quantitatively quite inac-
curate, see Fig. 3. This implies that at least for the pur-
pose of calculating sound damping, eigenvectors of the
Hessian are not well approximated by plane waves. We
note that the plane-wave approximation becomes more
accurate with decreasing parent temperature or increas-
ing glass stability.

Finally, we note that the first term in square brackets
in Eq. (24), which involves correlations of the fluctua-
tions of the local shear modulus, ∆ABorn

j,xyxy, represents the
result of the microscopic, isotopic scattering-like, version
of the fluctuating elasticity theory. As shown in Fig. 3,
this term is about 2.5-4 times smaller than the complete
plane-wave result, and thus it severely underestimates
sound attenuation.

In Fig. 3 we also show the result of a semi-
phenomenological fluctuating elasticity theory. To cal-
culate this result we started from the celebrated formula
of Rayleigh43 that predicts the attenuation of a trans-
verse wave due to inclusions of volume Vd and number
density n, ΓR(k) = nVdvT γk

4/(6π), where γ is the dis-
order parameter. In Rayleigh’s calculation γ character-
ized the variation of “optical density”. To adopt his
calculation to the present problem we expressed γ in
terms of the variation of the square of the transverse
speed of sound, γ = (δv2T )

2Vd/v
4
T . Next, we added to

Tp = 0.062Tp = 0.2

Simulation
Theory
Plane Wave
FET
(ΔABorn

xyxy)2

Γ T

10−4

10−3

10−2

10−1

1
Γ

T

10−4

10−3

10−2

10−1

1

k
0.1 1

k
0.1 1

FIG. 3. Comparison of the sound damping coefficients ob-
tained from the theory (squares) and evaluated from sound
attenuation simulations (circles) with predictions of the plane-
wave approximation, Eqs. (23-24) (red symbols) and micro-
scopic version of the fluctuating elasticity theory, i.e. the

contribution due to
⟨︂(︁

∆ABorn
xyxy

)︁2⟩︂
term in Eq. (24) (black

line). Also shown is the result of a semi-phenomenological
fluctuating elasticity theory (FET, green line).

Rayleigh’s expression the the contribution of the longitu-
dinal waves excited due to the presence of the inclusions,
δΓ(k) = nVdvT γk

4(v3T /(2v
3
L))/(6π). The complete for-

mula of the semi-phenomenological fluctuating elasticity
theory thus reads

ΓFET(k) =
k4vT
6π

(︃
1 +

1

2

v3T
v3L

)︃
nVdγ. (27)

We note that if one makes the identification⟨︂(︁
∆ABorn

xyxy

)︁2⟩︂
/(ρ3v4T ) = nVdγ, the contribution to

sound attenuation due to the first term in square brack-
ets in Eq. (24) becomes identical to expression (27).
To calculate the value of ΓFET we need the disorder
parameter γ and the volume fraction of the inclusions
nVd. For γ we used previously obtained results for the
fluctuations of local elastic constants44. We recall that
disorder parameters calculated this way increase slightly
with increasing box size used to define local elastic
constants, thus we used the largest box size considered
in Ref.44. Furthermore, we note that Mahajan and Pica
Ciamarra’s formulation of fluctuating elasticity theory
assumes nVd ≪ 1, see the SI of Ref.22. To calculate the
upper bound for ΓFET we substituted nVd = 1. Figure
3 shows that the result of this procedure significantly
underestimates sound attenuation.
We note that in addition to the microscopic ver-

sion of the fluctuating elasticity theory, originally de-
rived by Caroli and Lemâıtre and embodied in the first
term in square brackets in Eq. (24), and the semi-
phenomemonogical approach resulting in expression (27)
one could compare our results to predictions of more so-
phisticated versions of the fluctuating elasticity theory,
e.g. the version relying upon the self consistent Born
approximation8. This comparison is left for future work.
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V. DISCUSSION

According to our microscopic analysis, sound attenu-
ation in zero-temperature amorphous solids is primarily
determined by internal forces induced by initial affine
displacements of the particles, i.e. by the physics of non-
affine displacement fields. Quantitatively, the damping
coefficient is proportional to the non-affine contribution
to the wave propagation coefficients from the frequency
equal to the frequency of the sound wave. It is not trivial
that our exact calculation (as opposed to the plane-wave
approximation discussed in the previous section) repro-
duces the Rayleigh scaling of sound damping coefficients.
This fact results from the frequency dependence of Θ and
∆, which deserves further theoretical study.

The mechanism of the attenuation revealed by our mi-
croscopic analysis was mentioned by Caroli and Lemâıtre
in Ref.19. It was investigated in Ref.41, where Caroli and
Lemâıtre considered separately the effects of the long-
wavelength, elastic continuum-like, and small-scale, pri-
marily non-affine, motions with the small-scale motions
being the scatterers for the long-wavelength ones.

An earlier study by Wang, Szamel and Flenner5 found
a strong correlation between the sound attenuation co-
efficient and the amplitude of the vibrational density of
states of quasilocalized modes. The latter modes were
defined using a cutoff in the participation ratio, folow-
ing Mizuno et al.45 and Wang et al.31. We attempted to
quantify the relative contributions of the extended and
quasi-localized modes by separating the contributions of
modes with small and large participation ratio. We did
not find convincing evidence for the dominance of small
participation ratio modes versus larger participation ra-
tio modes.

We note in this context that local oscillator
models11–14 express the sound attenuation coefficient in
terms of the contributions from localized “defects”46,47

referred to as “soft modes”. The formulas derived in
these approaches are similar to our Eqs. (14) and (20).
The details of expressions of Refs.11–14 and our Eqs. (14)
and (20) differ; in particular we express the self-energy in
terms of all the exact eigenvectors and eigenvalues of the
Hessian matrix. In order to evaluate the local oscillator
based sound attenuation coefficient formulas one needs to
characterize the properties of the soft modes. In practical
applications one may parametrize the soft modes’ prop-
erties and fit the parameters to the experimental results.
Such a procedure was used by Schober14 and resulted in
a good agreement between the theory and experiment.

In view of both the previously found5 correlation be-
tween the sound attenuation coefficient and the ampli-
tude of the vibrational density of states of quasilocalized
modes and the success of local oscillator approach14 we
believe that future work should investigate whether dom-
inant contributions to the sound atteanuation coefficient
formulas (14) and (20) originate from well defined regions
that can be identified as “defects”.

Damart et al.40 demonstrated that the non-affine dis-

placement field was responsible for high-frequency har-
monic dissipation in a simulated amorphous SiO2. There-
fore, it appears that non-affine displacements are respon-
sible for dissipation over the full frequency range. Fur-
ther theoretical development is needed to connect the
low-frequency and high-frequency theories.

Recently, Baggioli and Zaccone developed an approxi-
mate microscopic theory for the sound attenuation that
takes into account non-affine displacements42. This the-
ory shares physical insight with our approach but it is
quantitatively as inaccurate as the plane-wave version of
our exact formula.

As we mentioned in the introduction, Gelin et al.7

found a logarithmic correction to the Rayleigh scattering
scaling of the sound damping coefficients, which within
the fluctuating elasticity theory could originate from the
slowly decaying correlations between local values of the
elastic constants7,15. Within our approach, a logarithmic
correction could originate from a logarithmic dependence
of Θ(Ω) or ∆(Ω) on frequency Ω. Our present numerical
data are consistent with the absence of such a logarith-
mic dependence but it would be interesting to investigate
this issue farther.

Within the plane-wave approximation a logarithmic
correction could result from a logarithmic small wavevec-
tor divergence of the correlation functions of local Born
wave propagation coefficients. We did not observe such
a divergence but we note that our systems were signif-
icantly smaller that those discussed in Ref.7. We note
that if the correlation functions of local wave propagation
coefficients are singular, additional terms in the plane-
wave approximation will appear. These terms will origi-
nate from the anisotropic small wavevector character of
the correlation functions of local wave propagation coef-
ficients.

Our approach arrives at the physical picture of sound
attenuation different from that postulated in the fluctuat-
ing elasticity theory. While the latter theory can predict
trends20,22, it is quantitatively very inaccurate, as noted
earlier by Caroli and Lemâıtre19. Our analysis revealed
that the fluctuating elasticity theory misses the domi-
nant non-affine effects. In addition, it does not include
the contributions due to fluctuations of local microscopic
wave propagation coefficients that vanish at the macro-
scopic level. Most importantly, the fluctuating elastic-
ity theory uses plane-wave-like picture of sound in low-
temperature amorphous solids. The comparison of the
results obtained using the full theoretical expression and
adopting the plane-wave approximation, shown in Fig. 3,
suggests that this leads to large quantitative discrepan-
cies.

Finally, we note that calculating sound attenuation us-
ing Eq. (14) or (20) is somewhat numerically demanding
but more straightforward than analyzing the time de-
pendence of the velocity or displacement auto-correlation
functions. The latter analysis suffers from large finite-size
effects5,48 that make the evaluation of the sound damping
coefficients at the smallest wavevectors allowed by the pe-
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riodic boundary conditions difficult. Our approach offers
an attractive alternative way to evaluate sound damping
coefficients of low temperature elastic solids that does not
suffer from finite size effects.
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Appendix A: Approximation H(k) ≈ H in Eq. (5) of the
main text

First, we examine the small wavevector expansion of
QH(k)Q. The i, j element, which is a 3x3 tensor, reads

[QH(k)Q]ij = Hije
−ik·(Ri−Rj) −N−1

∑︂
l

Hile
−ik·(Ri−Rl) · ê ê−N−1ê

∑︂
l

ê · Hlje
−ik·(Rl−Rj)

+N−2ê
∑︂
l,m

ê · Hlm · ê e−ik·(Rl−Rm) ê = [QH(k = 0)Q]ij +
[︁
δHQ1(k)

]︁
ij
+

[︁
δHQ2(k)

]︁
ij
+ o(k2), (A.1)

where the matrix elements of the terms of the first and second order in k, δHQ1(k) and δHQ2(k), read

[︁
δHQ1(k)

]︁
ij
= i (1− δij)

{︄
∂2V (Rij)

∂R2
i

k · (Ri −Rj)−N−1
∑︂
l

ê ·

[︄
∂2V (Ril)

∂R2
i

k · (Ri −Rl)−
∂2V (Rlj)

∂R2
j

k · (Rj −Rl)

]︄
ê

}︄
,

(A.2)

[︁
δHQ2(k)

]︁
ij
=

1

2
(1− δij)

∂2V (Rij)

∂R2
i

(k · (Ri −Rj))
2 − 1

2
N−1

∑︂
l ̸=i

∂2V (Ril)

∂R2
i

· ê (k · (Ri −Rl))
2
ê

−1

2
N−1ê

∑︂
l ̸=j

ê · ∂
2V (Rlj)

∂R2
l

(k · (Rl −Rj))
2
+

1

2
N−2ê

∑︂
l ̸=m

ê · ∂
2V (Rlm)

∂R2
l

· ê (k · (Rl −Rm))
2
ê.

(A.3)

Next, we assume that for small wavevectors k we can
treat terms δHQ1(k) and δHQ2(k) in the denominator
of Eq. (5) of the main text perturbatively. Due to the
symmetry, the term of the first order in k, δHQ1(k), will

contribute in the second order of the perturbation ex-
pansion. In contrast, the term of the second order in k,
δHQ2(k), will contribute in the first order. Here we will
show the contribution of δHQ2(k) term. It reads

δΣQ2(k;ω) (A.4)

=−
∑︂

eigenvec.
p,q

⟨1 |H(k)Q| Ep⟩
⟨︂
Ep

⃓⃓⃓(︁
−(ω + iϵ)2 + λp

)︁−1
⃓⃓⃓
Ep
⟩︂ ⟨︁

Ep
⃓⃓
δHQ2(k)

⃓⃓
Eq
⟩︁ ⟨︂

Eq
⃓⃓⃓(︁
−(ω + iϵ)2 + λq

)︁−1
⃓⃓⃓
Eq
⟩︂
⟨Eq |QH(k)| 1⟩ .

Counting powers of k in the expression above shows that, at least perturbatively, term δHQ2(k) results in a correc-
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tion that is higher order in k than the dominant small
wavevector result of approximation H(k) ≈ H in the de-
nominator of Eq. (5).

Appendix B: Simulation details

We obtained zero-temperature glasses by instanta-
neously quenching supercooled liquids of unit number
density, ρ = 1.0, equilibrated through the swap Monte
Carlo algorithm29. The constituent particles of these
liquids have unit mass and diameters σ selected using
distribution P (σ) = A

σ3 , where σ ∈ [0.73, 1.63] and
A is a normalization factor. The cross-diameter σij

is determined according to a non-additive mixing rule,
σij =

σi+σj

2 (1 − ϵ|σi − σj |) with ϵ = 0.2. The interac-
tion between two particles i and j is given by the inverse
power law potential, V (rij) = (σij/rij)

12
+ Vcut(rij),

when the separation rij is smaller than the potential cut-
off rcij = 1.25σij , and zero otherwise. Here, Vcut(rij) =

c0+c2 (rij/σij)
2
+c4 (rij/σij)

4
, and the coefficients c0, c2

and c4 are chosen to guarantee the continuity of V (rij)
at rcij up to the second derivative.

The number of particles N varied between 48000 and
192000. The largest systems had to be analyzed to de-
termine sound attenuation at the lowest wavevectors re-

ported.

Appendix C: Plane-wave approximation

We assume that for small wavevectors we can approxi-
mate eigenvectors of the Hessian matrix by plane waves.
We note that strictly speaking, for our amorphous solids
the normalization factor is configuration-dependent. We
checked that this dependence is weak and for this reason
we use the following approximation,

Ep
j ≈ N−1/2êqe

−iq·Rj . (C.1)

Approximate plane-wave eigenvectors are labeled by
their wavevector q and their polarization êq. For each
wavevector q we have one longitudinal and two trans-
verse modes. We assume that the associated eigenvalues
are given by (vLq)

2 and (vT q)
2 for the longitudinal and

transverse modes, respectively.
Here we will present the derivation of approximate for-

mula for the contribution to the transverse sound damp-
ing coefficient originating from Θ, Eq. (23) of the main
text. The contribution originating from ∆, Eq. (24) of
the main text and the approximate expression for the
longitudinal sound damping can be derived in a similar
way.
First, we need to calculate

−iN−1/2
∑︂
j

Ξj,γδ êγkδ · Ep
j ≈ −iN−1

∑︂
j

Ξj,γδ êγkδ · êqe−iq·Rj = iN−1
∑︂
j

∑︂
l ̸=j

∂2V (Rjl)

∂Rj,γ∂Rj
Rjl,δ êγkδ · êqe−iq·Rj .(C.2)

Using the i ↔ j symmetry we get

iN−1
∑︂
j

∑︂
l ̸=j

∂2V (Rjl)

∂Rj,γ∂Rj
Rjl,δ êγkδ · êqe−iq·Rj =

i

2N

∑︂
j

∑︂
l ̸=j

∂2V (Rjl)

∂Rj,α∂Rj,γ
Rjl,δ êqαêγkδ

[︂
1− eiq·(Rj−Rl)

]︂
e−iq·Rj

=
1

2N

∑︂
j

∑︂
l ̸=j

∂2V (Rjl)

∂Rj,α∂Rj,γ
Rjl,δRjl,β êqαqβ êγkδe

−iq·Rj + o(q) = (ρN)
−1

∑︂
j

ABorn
j,αβγδ êqαqβ êγkδe

−iq·Rj + o(q). (C.3)

Next, we need to take the square of the absolute value
of expression (C.3) for a given wavevector q and polar-
ization êq and then integrate over spherical shell with
frequency qvL = kvT for longitudinal and qvT = kvT for
transverse modes. We shall note that since the spher-
ical shell is specified in the frequency space, there will
be additional factors, 1/vL for longitudinal and 1/vT for
transverse modes. Finally, we need to multiply the result
by π/(2v2T k

2) to get the contribution to the transverse
sound damping coefficient.

To perform these calculations we assume that wavevec-
tor k is parallel to the y axis and the sound polarization ê
is along the x axis. Furthermore, we specify the polariza-
tion vector for the approximate plane-wave eigenvectors
as êLq = q̂ ≡ (sin θ cosϕ, sin θ sinϕ, cos θ) for the longi-

tudinal modes and êT1
q = (cos θ cosϕ, cos θ sinϕ,− sin θ)

and êT2
q = (− sinϕ, cosϕ, 0) for the two transverse

modes.

The contribution of the longitudinal modes reads

π

2 (vT k)
2

v4T
v5L

V k6

(2π)3
(C.4)

×
ˆ

dq̂

⃓⃓⃓⃓
⃓⃓(ρN)

−1
∑︂
j

ABorn
j,αβxy ê

L
qαq̂βe

−iq̂(kvT /vL)·Rj

⃓⃓⃓⃓
⃓⃓
2

.

Guided by our numerical calculations we assume that
the following small wavevector limit is finite and does not
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depend on the direction

lim
q→0

N−1
∑︂
j

ABorn
j,αβxye

iq·Rj

∑︂
l

ABorn
l,γδxye

−iq·Rl

≡
⟨︁
ABorn

αβxyA
Born
γδxy

⟩︁
. (C.5)

Expression (C.4) becomes

π

2 (vT k)
2

v4T
v5L

V k6

(2π)3
1

ρ2N

⟨︁
ABorn

αβxyA
Born
γδxy

⟩︁ ˆ
dq̂êLqαq̂β ê

L
qγ q̂δ

=
π

2 (vT k)
2

v4T
v5L

V k6

(2π)3
1

ρ2N

⟨︁
ABorn

αβxyA
Born
γδxy

⟩︁
×4π

15
(δαβδγδ + δαγδβδ + δαδδβγ)

=
1

60π

k4

ρ3
v2T
v5L

[︁⟨︁
ABorn

ααxyA
Born
ββxy

⟩︁
+
⟨︁
ABorn

αβxyA
Born
αβxy

⟩︁
+
⟨︁
ABorn

αβxyA
Born
βαxy

⟩︁]︁
. (C.6)

Assuming again that the small wavevector limit of the
correlation functions of local wave propagation coeffi-
cients is finite and does not depend on the direction, the
contribution of the two transverse modes reads

π

2 (vT k)
2

1

vT

V k6

(2π)3
1

ρ2N

⟨︁
ABorn

αβxyA
Born
γδxy

⟩︁
×
ˆ

dq̂
(︂
êT1
qαq̂β ê

T1
qγ q̂δ + êT2

qαq̂β ê
T2
qγ q̂δ

)︂
=

π

2 (vT k)
2

1

vT

V k6

(2π)3
1

ρ2N

⟨︁
ABorn

αβxyA
Born
γδxy

⟩︁
×4π

15
(4δαγδβδ − δαβδγδ − δαδδβγ)

=
1

60π

k4

ρ3
1

v3T

[︁
4
⟨︁
ABorn

αβxyA
Born
αβxy

⟩︁
−
⟨︁
ABorn

ααxyA
Born
ββxy

⟩︁
−
⟨︁
ABorn

αβxyA
Born
βαxy

⟩︁]︁
(C.7)

Adding expressions (C.6) and (C.7) we get Eq. (23) of
the main text.
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