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General high-order rogue wave solutions for the (1+1)-dimensional Yajima—Oikawa (YO) system are derived by
using the Hirota’s bilinear method and the KP hierarchy reduction method. These rogue wave solutions are presented in
terms of determinants in which the elements are algebraic expressions. The dynamics of first-order and higher-order
rogue wave are investigated in details for different values of the free parameters. It is shown that the fundamental (first-
order) rogue waves can be classified into three different patterns: bright, intermediate and dark ones. The higher-order
rogue waves correspond to the superposition of fundamental rogue waves. Especially, compared with the nonlinear
Schrodinger equation, there exists an essential parameter a to control the pattern of rogue wave for both first-order and
higher-order rogue waves since the YO system does not possess the Galilean invariance.

1. Introduction

Rogue waves, which are initially used for the vivid
description of the spontaneous and monstrous ocean surface
waves,!) have recently attracted considerable attention both
experimentally and theoretically. Rogue waves have been
observed in a variety of different fields, including optical
systems,”* Bose—FEinstein condensates,>® superfluids,”¥
plasma,”!?9 capillary waves'! and even finance.!? Compared
with the stable solitons, rogue waves are the localized
structures with the instability and unpredictability.'>!9 A
typical model for characterizing the rogue wave is the
celebrated nonlinear Schrodinger (NLS) equation. The most
fundamental rogue wave of the NLS equation is described by
Peregrine soliton,'> which is the first-order rogue wave and
expressed in a simple rational form including the polynomials
up to second order. This rational solution has localized
behavior in both space and time, and its maximum amplitude
attains three times the constant background. The Peregrine
soliton can be obtained from a breather solution when the
period is taken to infinity. More recently, significant progress
on higher-order rogue waves has been made'®*! since a few
special higher-order rogue waves from first-order to fourth-
order were provided theoretically by Akhmediev et al.'® via
the Darboux transformation. The higher-order rogue waves
were also excited experimentally in a water wave tank,*>%>
which guarantees that such nonlinear complicated waves are
meaningful physically. In fact, higher-order rogue waves can
be treated as the nonlinear superposition of fundamental
rogue wave and they are usually expressed in terms of
complicated higher-order rational polynomials. These higher-
order waves were also localized in both coordinates and
could exhibit higher peak amplitudes or multiple intensity
peaks.

Another major development of importance is the study of
rogue waves in multicomponent coupled systems, as a lot of
complex physical systems usually contain interacting wave
components with different modes and frequencies.**? As
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stated in Ref. 44, the cross-phase modulation term in coupled
systems leads to the varying instability regime characters.
Due to the additional degrees of freedom, there exist more
abundant pattern structures and dynamics characters for
rogue waves in coupled systems. For instance, in the scalar
NLS equation, because of the existence of Galilean
invariance, the velocity of the background field does not
influence the pattern of rogue waves. However, for the
coupled NLS system, the relative velocity between different
component fields has real physical effects, and cannot be
removed by any trivial transformation. This fact brings some
novel patterns for rogue waves such as dark rogue waves,*
the interaction between rogue waves and other nonlinear
waves, ¥4 a four-petaled flower structure*”’ and so on.
In particular, those more various higher-order rogue waves
in coupled nonlinear models enrich the realization and
understanding of the mechanisms underlying the complex
dynamics of rogue waves.

Among coupled wave dynamics systems, the long wave-
short wave resonance interaction (LSRI) is a fascinating
physical process in which a resonant interaction takes place
between a weakly dispersive long-wave (LW) and a short-
wave (SW) packet when the phase velocity of the former
exactly or almost matches the group velocity of the
latter.*6) The theoretical investigation of this LSRI was
first done by Zakharov®? on Langmuir waves in plasma. In
the case of long wave propagating in one direction, the
general Zakharov system was reduced to the LSRI system
which is often called the one-dimensional (ID) Yajima-—
Oikawa (YO) system.%® This phenomenon has been
predicted in diverse areas such as plasma physics,526%
hydrodynamics®-%® and nonlinear optics.®>’® For instance,
this resonance interaction can occur between the long gravity
wave and the capillary-gravity one,%" between long and short
internal waves,® and between a long internal wave and a
short surface wave in a two layer fluid.®® In a second-order
nonlinear negative refractive index medium, it can be
achieved when the short wave lies on the negative index
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branch while the long wave resides in the positive index (D? + 2iaD, — iD))g - f = 0, )
branch.”” The 1D YO system (1D LSRI system) can be ) .

written in a dimensionless form: DD+ f-f= 488" ®)

iS; =S+ SL=0, (1)
L, = —4(S]),. (2)

where S and L represent the short wave and long wave
component, respectively. The 1D YO system was shown to be
integrable with a Lax pair, and was solved by the inverse
scattering transform method.®” It admits both bright and
dark soliton solutions.®”®® In Refs. 71 and 72, it is shown
that the 1D YO system can be derived from the so-called
k-constrained KP hierarchy with k=2 while the NLS
equation with k= 1. Very recently, the first-order rogue
wave solutions to the 1D YO system have been derived by
using the Hirota’s bilinear method’® and the Darboux
transformation.”*”> These vector parametric solutions indi-
cate interesting structures such that the long wave field always
keeps a single hump structure, whereas the short-wave field
can be manifested as bright, intermediate and dark rogue
wave. In our previous paper,®? rational solutions including
lump solutions and rogue wave solutions of the 2D multi-
component YO system were presented and some rogue wave
solutions of the 1D multi-component YO system through
reduction were discussed. Nevertheless, as far as we know,
there is no report about high-order rogue wave solutions for
the 1D YO system. Therefore, the objective of present paper is
to study high-order rogue wave solutions of the 1D YO
system (1)—(2) by using the bilinear method in the framework
of KP hierarchy reduction. As will be shown in the subsequent
section, a general rogue wave solutions in the form of Gram
determinant is derived based on Hirota’s bilinear method and
the KP hierarchy reduction method. This determinant solution
can generate rogue waves of any order without singularity.

The remainder of this paper is organized as follows. In
Sect. 2, we start with a set of bilinear equations satisfied by
the 7 functions in Gram determinant of the KP hierarchy, and
reduce them to bilinear equations satisfied by the 1D YO
system (1)—(2). The reductions include mainly dimension
reduction and complex conjugate reduction. We should
emphasize here that the most crucial and difficult issue is
to find a general algebraic expression for the element of
determinant such that the dimension reduction can be
realized. In Sect. 3, the dynamical behaviors of fundamental
and higher-order rogue wave solutions are illustrated for
different choices of free parameters. The paper is concluded
in Sect. 4 by a brief summary and discussion.

2. Derivation of General Rogue Wave Solutions

This section is the core of the present paper, in which an
explicit expression for general rogue wave solutions of the
ID YO system (1)-(2) will be derived by Hirota’s bilinear
method. To this end, let us first introduce dependent variable
transformations

2

=29 logf 3)

. 2 g
S e ax+(h+a°)t , L
axz

where f is a real-valued function, g is a complex-valued
function and « and & are real constants. Then the 1D YO
system (1)—(2) is converted into the following bilinear
equations
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where * denotes the complex conjugation hereafter and the D
is Hirota’s bilinear differential operator defined by

D'D!(a - b)

o o\'[/o a9\ '
= (a_a> (5_£> a(x9t)b(x’t)|x=x/1=’/'

Prior to the tedious process in deriving the polynomial
solutions of the functions f'and g, we highlight the main steps
of the detailed derivation, as shown in the subsequent
subsections.

Firstly, we start from the following bilinear equations of
the KP hierarchy:

(D} +2aDy, = D))ty - Ty =0, (6)
1
<§DX]Dla - I)Tn Tn = —Tn+1Tn—-1, (7)

which admit a wide class of solutions in terms of Gram or
Wronski determinant. Among these determinant solutions,
we need to look for algebraic solutions to satisfy the
reduction condition:

(0x, + 210;,)7, = CTp, (8)

such that these algebraic solutions satisfy the (1+1)-dimen-
sional bilinear equations:

(D} +2aDy, — Dy))tui1 - 7, = 0, ©)
(iDx, Dy, = D)ty - 7y = =4TH41T0-1. (10)
Furthermore, by introducing the variable transformations:
(11
and taking f= 19, g =71, h =71, and a = ia, the above
bilinear equations (9)—(10) become
(D* + 2iaD, —iD))g - f= 0, (12)
(DD, +4)f-f=4gh. (13)

Lastly, by requiring the real and complex conjugation
condition:

X| =X, Xxp= —it,

f=19:real, g=r1, h=1_=g" (14)

in the algebraic solutions, then the bilinear equations (12)—
(13) are reduced to the bilinear equations (4)—(5), hence the
general higher-order rogue wave solutions are obtained
through the reductions.

2.1 Gram determinant solution for the bilinear equations in
the KP hierarchy
In this subsection, through the Lemma below, we present
and prove that a pair of bilinear equations are satisfied by the
7 functions of the KP hierarchy.

Lemma 2.1. Ler ml(;'), depending on ¢" and '/’j('n): be
function of the variables x|, x, and t,, and satisfy the

following differential and difference relations:
oxmi = oy,
0y = 105, 0" 1" — 9" [0, p",

“1). (n+1
o, my” = =" Dy,

©2018 The Physical Society of Japan
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1 1
my* = m + Py, (15)
where " and 1//;") are functions satisfying
|
0’ =02 9", "V = (0, — a)p”,
-1
IV = =02, ) = =0y, +ay”.  (16)
Then the t functions of the following determinant form
— (n)
o= det (n), (7

satisfy the following bilinear equations (6) and (7) in KP
hierarchy:

Proof. By using the differential formula of determinant

N
O 15(11'32N(aij) - ,'12:21 Rt 20
and the expansion formula of bordered determinant
g 7" ZN:Ab ddet(ay), (1)
et = — iibici + et(a;i),
¢ d — ij0iCj ij

with Aj; being the (i, j)-cofactor of the matrix (a;;), one can
check that the derivatives and shifts of the 7 function are
expressed by the bordered determinants as follows:

2
(DXl +2aD,, — Dy,)tp41 -7, =0, (18)
1
EDxlDla = 1)t = —Tpq 1701 (19)
O I T NI I U
e A S + ) ’
—y; 0 —y; 0 —0x,y; 0
-1
5 mgjfl) 05, 0" mgjfl) " 5 Ejf’) (=D
X Tn = - P t.Tn = s
2 _l//;n) 0 _ax”//j('n) 0 y/j(n+l) 0
() (n—1) (n)
mi; Pi @i
(05,0, — Dra = |y 0 -1},
n)
~y 1 0
mf]n) <ogn) mf}n) (Dgn_l) (a N ) mfjn) axl g05}1)
Tn+1 s Tp—1 = s X a)tyy1 = s
_y/}(n+1) 1 V/J(_n) 1 _U/j(n+1) 4
(n) (n) (n)
W 52,0 mi o Ouei @
2 m;j o Pi (n+1)
(Ox, + ) Tpy1 = (1) 5 + | - a 1 |,
J _V/;n) 0 0
(n) (n) (n)
R ™ my o Ouei @
O + @)y = | S P PV R 1
X2 n+l — _ (_n+1) a2 l//j
J _U/J(n) 0 0
With the help of these relations, one has
(axl atﬂ - I)Tn X1, — axlfn X atuTn + (_Tn—l)(_7n+1)
(n) (n—1) (n)
M= @i Pi W m SRORRCEY
(n+1) 0 —1|x lm(n)l _ i Pi i Pi
J ij _V/(n) 0 W(n+1) 0
_ (n) _ J J
7 1 0
(n) (n—1) (n) (n)
My @i My P
_V/(n) ~1 W(n+1> 170 (22)
J J
L5 L 5
E (ax] + zaaxl - axz)Tn+l X1, — (axl + a)Tn+l X axl Tn + Tng1 X 5 (axl + axz)Tn
(n) (n) (n)
i I i IR0 ™ 5 o™
= | oy u I ?i y ij @i
= i ij ™ 0 _, i+ D) 4
(n) 0 0 ll/] WJ
Y
mg]n) axlfﬂ,(‘n) mgl) (pl(n)
W (1) (23)
v 0 v !

The r.h.s of both (22) and (23) are identically zero because of the Jacobi identity and hence the 7 functions (17) satisfy the

bilinear equations (18) and (19). This completes the proof.
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2.2 Algebraic solutions for the (1+1)-dimensional YO
system
This subsection is crucial in the KP hierarchy reduction
method. We will construct an algebraic expression for the
elements of 7 function of preceding subsection so that the
dimension reduction condition (8) is satisfied. The main
result is given by the following Lemma.

Lemma 2.2. Suppose the entries m\" " of the matrix m
are
(UH") (A(V)B(ﬂ) (”l))l =Cg=C*> (24)
where
= (P e el 4
p+q\ q+a ’ ’
n=4qgx1 —¢g X2,
. V3 K% - 4a?
C=§r+lgia Crzil_ K s
¢ 1 1a? N 2
= ~——+-a
T 12 3K 37

3
K = (8a® + 108 + 12v/12a3 + 81)!/3, (a > — 52‘“),

and A,((”) and BE” ) are differential operators with respect to p
and q, respectively, given by

[(p — a)g,I"™*
A(V) @) i >0, 25
Yo e e
[(q + a)9, "™
BY = H”——————n n>0, (26)
! kX(; (n—K!
where a,({”) and b,(;’) are constants satisfying the iterated
relations
L 2P p—a) + (-1 +2a(p — a)
w+1) _ pP— )
a;” = - ' Qs
= G+ 2!
v=0,1,2,..., (27)
¢ 2P g+ a) - (=1Y @+
a
B =y — W,
=0 J+ 2!
v=0,1,2,..., (28)
then the determinant
6= det (iTAT)
N=LN=Ln)  (N=1N=2.n) (N=1,0,n)
myy my3 12N-1
N-2,N—1,1) N=2,N—2,1) N-2.0,
m(31 ! m(33 ! (3 2N—1n)
= . (29)
(0,N—=1,n) (0.N=2,n) 0.0
2N-1,1 Mon-13 Mon_12N-1
satisfies the bilinear equations
(D}, +2aD,, = Dy,)tyy1 - 70 = 0, (30)
(lilez - 4)Tn cTp = _4Tn+lTn—l- (31)

Proof.  Firstly, we introduce the functions m, qTJ(”), and
W™ of the form
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" =

1 —a\" s,
p+q<_z+z)eﬁm o= (p -

1 n
) — o _ el
v < q+a> ’

where

1 . 1
&= fta+px1 +p Xy, 1 =——1,+ qgx —qzxz.

qg+a
These functions satisfy the differential and difference rules:

9, ™ = GG,

N A A A LA AR
at ~(n) _ _¢(n—l)y7(11+1)

n~,l(n+l) — n~;l(n) (n+l)

+(P l//
and

0" =02 4", " = (0, — g,

(n) _ 0}2“ lp(")’

O, "D = —(0y, + )",

We then define

sopn) _ 4 (V) p(p) =~ (n) ~(wn) _ AW ~(n)
m =A7BmT, g =A@,

li/j(ﬂn) _ B(”)r[/(”) (32)

Since the operators A* and B(") commute with differential

operators dy,, Ox,, and oy, these functions m(j"””) ”f””) and

ylj(”") obey the differential and difference relations as well
(15)-(16). From Lemma 2.1, we know that for an arbitrary
sequence of indices (i1,i2,...,iN} U1, V2,s - s UNJ1sJ2s-- -5
JNs M1, M2, - - .5 JN), the determinant

~ 7 (Wiop1,m)
T = ISCIIS;N(m”‘ Ji )
satisfies the bilinear equations (18) and (19), for instance,
the bilinear equations (18) and (19) hold for 7, =
det;<; J<N(m(21j_1’]2\; /,") ) with arbitrary parameters p and g.

Based on the Leibniz rule, one has,

.
[(p — @)d,]" <p2+ e )
p—a

=2:(m)P%p—m2+@4Y¥§—+2mp—aﬁ
! p-a

=0

X [(p— a)o,1" ™" + a’[(p — @)9,]", (33)

and

w2 2
(g +a)7,] (q ; +a>

= i(m)[f(qm)z - (—1)’2i—2a<q+a>}
[ q+a

1=0

X [(q + @)d, 1" ™" + a*[(q + @)a, ™.
Furthermore, one can derive

o]
p—a

-1 (I./)
kZ ey [((p —a)d,)" ", p’ +

n—1 (I./) n—k n—k
_Z(n—sz( I )

©2018 The Physical Society of Japan
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o with a =ia, then ¢ has an explicit expression given
X (21(1? —a) + (—1)lm + 2a(p — a)) previously. Hence we have
X ((p — a)d,)" 1, [A;u)’pz " L] =0,
where [,] is the commutator defined by [X, Y] = XY — YX. p=allp=
Let ¢ be the solution of the cubic equation forn =0,1 and
24
2(p—a)2——1+2a(p—a) =0
p—a
2]
’ P =allp=
n—2 (v) n—k n— k 2
A 1 2 1Al n—lk—1
= 2(p—a)y 4+ (=1) —— +2a(p - —a)d -
;m—kﬂ;( l ){ (= + (=) "= +2a(p a)}[(p % G
n—2 n—k—2 a(u) 5 5
k j+
= 2/ —a)* + (=1 + 2a(p —
2 Z (Hz)!(n_k_j_z)!{ (p=a)’+ (=1 a(p a)}
= Jj=0
X [(p = a)3,)" ™77
: 22(p—a) + (=1 2, 2a(p — a) A
_ 2‘2: i p-a o | @ =@yt
| = (GJ+2)! Ui (n—2-k)! =t
_ Z W+ ((P a)a ) -2~
- !
n—2-k! ¢
_A(l/+1)|p -
for n > 2. Thus the differential operator A® satisfies the following relation
2i y
|:A(l’),p + i| A( +1)|p o (35)
P =allp=¢
where we define A% = 0 for n < 0.
Similarly, it is shown that the differential operator B satisfies
2i
B(u), C]2 _ :| — B(l/+1)| . (36)
[ ! qt+all, =

where we define B¥) = 0 for n < 0.
Consequently, by referring to above two relations, we have

(O, + 200, " g g

= [AYBY(0,, + 210, )" | p=r g+

1 1
= (Af(”)Bf”) <p2 -q+ 21( - ))m“‘))
p—a q +a p=C.q=C*
w2 2\ pwzm wpw (2 _ 21\ =

=\A | p"+—— B/ 'm -|\AB g ——— |m

p—a p=C.q=C* qt+a

2i
= {<<p2 + —>A§;> + A;”_+2”>B§”>na<")}

p—a

p=Cq=C*

p=C.q=C*

2i
) ~ (vun) ~(v,u+1,n)
_(C _C*+ia) M p=ta=c- = s " lp=gg=c-
By using the formula (20) and the above relation, the differential of the following determinant

094007-5 ©2018 The Physical Society of Japan
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z ~(N—i,N— ]n)
= 133’2N(m2’ 121 Ip=tg=")
can be calculated as
(0x, + 2i0,,) s
N N
~(N—i.N=j,n)
= Z AU(G,Q + 2lazu)(m21 llzj Jln |p=§,q=é’*)
i=1 j=1
Y& 2i (N—i,N—jn) LN=jm)
_ 2 ~(N=i,N—j,n —i+1,N—j,n
- ZZAU (é’ + = ia)mZi—l,Zj—l |p=§,q=§* +m2[ 3,2j—1 |p=cf,q=§*
=1 j=1
_ *2 2i ~(N—i,N—j,n)| _ (N 1N—j+1 n)|
¢ O +ia Mai—12j-1 lp=tg=¢* ~ M2i-12j-3 p=C.q=¢*
N N 1
— ~(N—i+1,N—j,n)
- (g +C )Nr,, ZZAU e N
=1 j=1
( N
~(N—i, N—j+1 )
Sl Giirer) LR D) BV i M
j— p=.q=C">
& +ia pos i
where Ay, is the (i,j)-cofactor of the matrix Since x; = x is real and x, = —ir is pure imaginary, the
NeiN- . .. . . .
it (2 " 112] Jln)lp camt )i jen- For the term  complex conjuga(tof; condlt(lo?n can be easily satls.ﬁed by taking
Nt LN=jm) ) ) . the parameters a;’ and b, to be complex conjugate to each
pd 12, 1 A 30,71 Ip=gg=¢+» it vanishes, since for o0 1t then follows

i = 1 this summation is a determinant with the elements in
first row being zero and for i = 2,3, ... this summation is
a determinant with two identical rows. Similarly, the term
P Sl Ay Z_]“")lp ¢q4=¢+ vanishes. Therefore, 7,
satisfies the reduction condition

2i 2i
{— C *
Since 7, is a special case of 7, it also satisfies the bilinear
equations (18) and (19) with z, replaced by 7,. From (18),
(19), and (37), it is obvious that 7, satisfies the (1+1)-
dimensional bilinear equations

(O, + 2i0,)7, = (Cz -7+ )NT,, (37)

(D2 +2aDy, — D)%y - 70 = 0, (38)
(lilez - 4)%}1 . %n = _4%71+1%n—1' (39)
Due to the reduction condition (37), z, becomes a dummy
variable which can be taken as zero. Thus 75~ 1”2\;_’1”) |p=t =t

and 7, reduce to m(zly__li:g:jl’") and 7, (29) in Lemma 2.2.
Therefore 7, satisfies the bilinear equations (30) and (31) and
the proof is complete. O

2.3 Complex conjugate condition and regularity
From Lemma 2.2, by taking the independent variable
transformations:

Xy =x, Xxp=—it, (40)

it is found that f = 7y, g = 71 and h = 7_; satisfy the (1+1)-
dimensional bilinear equations:

(D* + 2iaD, —iD)g - f= 0, A1)
(D:D;+4)f-f=4gh. (42)

Next we consider the complex conjugate condition and the
regularity (non-singularity) of solutions. The complex
conjugate condition requires

b 4= = (@ 1p=0", (44)
forv=0,1,2,.... Then, by referring to (44), we have
t(‘jl‘/’ll’n)* = mfl/ﬂ )la(“)eb(“) Xoe—xp,ae—a,lelt T mj(llll’ n)’ (45)
which implies
T =T, (46)

On the other hand, under the condition (44), we can show
that 7o is nonzero for all (x,7). Note that f= 7y is the
determinant of a Hermitian matrix M = (m :12\/].:11’0)) 1<i,j<N-
From the appendix in Ref. 56, it is known that when the real
part of the parameter { is positive, the element of the

Hermitian matrix M can be written as an integral

X

(N i,.N—},0) (N=i) p(N=j) é+

Myi_12j°1 —/ Ay By e Tdx| g g=gr. (47)
—o0

For any non-zero column vector v = (vy, v, ..., vN)T and o'
being its complex transpose, one can obtain

N

oMo = Z u?mgy__fz__j"o)u}'
ij=1
Sy N 2
:/ ZujA(z[;’__li)eglng dx > 0,
—00

i=1

which shows that the Hermitian matrix M is positive definite,
hence the denominator f = detM > 0.

When the real part of the parameter p is negative, the
element of the Hermitian matrix M can be cast into

+
(N=i.N=j.0) _ (N—i) (N /) +
My, 1,2j-1 / A21 1 B ef ! dxlp:{,q:é‘*' (4’8)
X

Then one obtains

of — (N=i,N—},0)
79 :real, T_|=1] (43) Mo = ZU Mai12j-1 Vj
. ) -1 =1
094007-6 ©2018 The Physical Society of Japan
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2
dx <0,

+o0| N
—— [ ealed e

x o |i=l
which proves that the Hermitian matrix M is negative
definite, hence the denominator f = det M < 0. Therefore, for
either positive or negative of the parameter ¢, the rogue wave
solution of the short wave and long wave components is

always nonsingular.

To summarize the results, we have the following theorem
for the general higher order rogue wave solutions of the 1D

YO system (1)-(2):

Theorem 2.3. The 1D YO system (1)—~(2) has the non-
singular rational solutions

2

: h+a) Tl d
S = etk — L=h-2-5logz,  (49)
0 X
with
_ (N— ZN—J n)
T, = 1<(}et (m; Z12j-1 )
(N-1.N—1,n) (N-1.N-2.n) (N—1,0.n)
myy my3 Tt MyoN-g
(N-2.N—1,n) (N-2.N-2.n) (N—=2.0.n)
ms ms33 32N-1
= , (50)
(0.N—1.n) (0.N=2.n) 0.0 n)
2N-1.1 2N-13 MyN_12N-1

where g =1y, f=19, and h=1_y, and the elements in
determinant 7, are defined by
(v) (/4)*

j
mn =
" ZZ(l—k)'(J—l)'

k=0 1=0
X [(p = i)0,] ™ [(g + ia)9, '™
1 pP— i(l " ( (2 2Y;
% _ PHOx=(p =gt .y (51
p+q< 61+ia>e Ip=ta=> OD
and
, V3 K —4a?
¢=¢r+id, Cr—_ﬁ X s
¢ 1 K+ 1 a? N 2
1 = -5 A _a’
12 3K 3
with
3
K = (8a® + 108 + 12v/12a% + 81)'/3, (a > — 521/3),
where af) are complex constants and need to satisfy the
relations:
L 2P (p —i)? + (-1 + 2ia(p — ia)
w+1) _ -
FZO (Jj+2)!
xal, v=012.... (52)

3. Dynamics of Rogue Wave Solutions

In this section, we analyze the dynamics of rogue wave
solutions to the 1D YO system in detail. To this end, we
fix the parameter ¢, = ‘/_ 3 Ki—4a® without loss of generality.
Meanwhile, due to the fact that the long wave L is a real-
valued function and its rogue wave structure is always

bn’ght,73—75) in what follows, we omit the discussion of the
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long wave component and only consider the dynamical
properties of the complex short wave component S.
3.1 Fundamental rogue wave

According to Theorem 2.3, in order to obtain the first-
order rogue wave, we need to take N = 1 in Egs. (49)-(52).

For simplicity, we set a(o) b(o) =1, (0) b(o) 0, then
the functions f and g take the form
1
f= ge24<x+2<f’>(6r9* + 6p), (53)
g= lezg,_(x.'.zg,.;) |:_ &+l - a)i|
& &G—iGi—a)
1 1 .11
0— -+~ 0+ -+ —i 0 4
[(o-2edi) (e by en) o
with
= (k1 + ikp)x + (hy + i)t + (I + ibb),
1 1
kl=§(a+é‘f_€i)7 k2=§(a_é’r_é‘l)7

hy=a(i—C)+ 8 +208 -
hy = a(Ci+ )+ 8 =208 - ¢
_bi—a 1 _Gi—a 1
h="gr "3 b=ty
G- a)
90_W+§

Thus, the fundamental rogue wave solution is given by
&+ i - 0!)} [l (L) + L) — 1/2]
L =il —a) Li+L3+6y |
(55)
(ki + k3)0

S = e—i[ax+(h+a2)t] |:_

(kiLy + kaLo)* — (kaLy — kiLo)* —

L=h+4
(L} + L} + 6,)*

(56)

where L1 = kyx + hit+ [y and Ly = kox + hot + I,.
It is found that the modular square of the short-wave
component |S|* possesses critical points

1
(Xl,t]) = (f’0)7

(lm@=-22) 1 1
“%”)‘<2 A +2®’4QA)

_ Lup(ali+ =8 1 Lu(a—¢)
(x3,13) = _Eé’%—A-'-Z_C,’ZC%T >

with

(57)

(58)

(59)

Hi = +3(@— ) = &2,
M = 238 = (@= ),
A=(a@-C)+¢.

Note that (x3,73) are also two characteristic points, at which

the values of the amplitude are zero.
At these points, the local quadratic forms are

H()’E f) 3 62|S|2 aZlSl2 B 02|S|2 2
B 0xot

©2018 The Physical Society of Japan
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Fig. 1. (Color online) The extreme values of |S| with the parameter a: (a) dark state; (b) intermediate state; and (c) bright state.
@ _(b) (©
Fig. 2. (Color online) First-order rogue wave of the YO system: (a) dark state « = — %; (b) intermediate state @ = —1; and (c) bright state @ = %
16384¢1042 2
H(xy, 1) = — TX”, - % 2173 to — %32/3, the maximal amplitudes increase from 1
6410272 to %\/§ while the minimal one decreases from 1 to 0; for
H(xo, 1) = % , H(x3,t3) = 64/4%A2, (60) the intermediate state, as @ changes from — %32/ 3 to 0, the
(a—C) maximal amplitudes increase from (% V3 to 2 while the
and the second derivatives are minimal amplitude is always zero; for the bright state, as
PSP a > 0, the maximal amplitude is changed from 2 to its
Hi(%1) = 5 , asymptotic value of 3 while the minimal value is always
0xX* |y zero.
19284 (a = &) = 2] Figure 2 displays three patterns of fundamental rogue
Hi(x,t) = A2 ’ wave for short wave component. In three cases, the
624 A amplitudes of the short wave uniformly approach to the
Hy(x2, 1) = — m, H;(x3,13) = 6A. (61) background 1 as (x, ) goes to infinity. Figure 2(a) exhibits a
—Gi

Based on the above analysis, the fundamental rogue wave
can be classified into three patterns:

(a) Dark state (- 32'/% < a < —23?/%): two local maxima
at (xp, 1) with the |S|’s amplitude &%, one local minimum
at (xj,7;) with the |S|’s amplitude —%. Especially, when
a=— % 32/3 the local minimum is located at the character-
istic point (x,#;) = (x3,3) = (§3°/%,0).

(b) Intermediate state (—33%? < a < 0): two local max-
ima at (x, t) with the |S|’s amplitude g,-%’ two local minima
at two characteristic points (x3,13).

(c) Bright state (@ >0): two local minima at two
characteristic points (x3,#3), one local maxima at (xp,7;)
with the |S|’s amplitude ’%. Particularly, @ = 0, the local
maximum is located at (x1,1;) = (x2, 1) = (53'/2,0).

At the extreme points, the evolution of the amplitudes for
the short wave with the parameter a is exhibited in Fig. 1. It
can be clearly seen that, for the dark state, as a changes from
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dark rogue wave, in which it has one hole falling to 0.0247
at (0.8420,0) and two humps with the height 1.1450 at
(0.1531,0.4981) and (1.5309,—-0.4981). For Fig. 2(b), as
an example of the intermediate state of rogue wave, it
attains its maxima 1.3118 at (0.1645,0.3356) and (1.1780,
—0.3356), and minima 0 at (1.0975,0.2823) and (0.2451,
—0.2823). In Fig. 2(c), the amplitude of the short wave
features a bright rogue wave, which possesses the two zero-
amplitudes points (1.0715,0.2168) and (0.0966,—0.2168)
and acquires a maximum of 2.2965 at (0.5840,0). This
bright rogue wave is similar to the Peregrine soliton, but its
structure possesses the moving zero-amplitude points and the
varying peak height owing to the arbitrary parameter a.
From Eqgs. (55)-(56), it is known that the family of first-
order rogue solutions contains two free parameters o and
h. The latter one h is merely a constant determining the
background of the long wave component. Therefore, based
on the previous discussion, it is found that the feature of

©2018 The Physical Society of Japan
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Fig. 3.

—1
(1—3.

(Color online) Second-order rogue wave of the YO system ago)

rogue waves for the short wave component depends on the
parameter a. The choice of the parameter a determines these
local waves patterns such as the number, the position, the
height and the type of extrema. We comment here that the
same parameter is also introduced in the construction of
dark—dark soliton solution for the coupled NLS system’® and
the coupled YO system,”” in which this treatment results in
the generation of non-degenerate dark—dark soliton solution.
As interpreted in Ref. 76, this parameter can be formally
removed by the Galilean transformation in the scalar NLS
equation, while the same copies cannot be removed
simultaneously in the coupled NLS system. For the YO
system, it contains the long wave and short wave coupling
and is not Galilean invariant, so the introduction of the
parameter « is necessary and essential for the construction of
the general rogue wave solutions including intermediate and
dark rogue wave ones.
3.2 Higher-order rogue wave

The second-order rogue wave solution is obtained from
Egs. (49)-(52) with N =2. In this case, setting ago) =
Y =1, a? =b =0, o =b =0, we obtain the
functions f and g as follows

12 -12 0 12
X

= 85: (a) dark state a = — %; (b) intermediate state @ = —1; and (c) bright state

1 .
AP = A i), > + af’,

1 , .
BY = c [(q + ia)d, 1 + a",

and

. n
M = ! ( p—la) P Ox=(p*=gP)ir

p+q a q+ia
In addition

i

a(()l) =2(p - ia)2 + +ia(p — i),

p—ia

1 i
I _ = 4(p — i 2 _
% 3[(1) ia) p—ia

Three groups of second-order rogue wave solutions with
different values of the parameter ago) are displayed in Figs. 3
and 4. As shown in these figures, the second-order rogue
waves can be viewed as the superposition of three
fundamental rogue waves, and they have different dynamical
behaviors for different values of the parameters a and ay.
Here we first observe that the structure of the second-order

+ia(p — ia)].

(1,1,0) (1,0,0) (1,1,1) (1,0,1) rogue wave exhibits the triangle arrays of three elementary
iy mi3 myy mi3 . .
f= ©0.10) 000 | =1 oL oo |’ (62) patterns occurring in the first-order rogue waves, i.e., the
myy ms3 myy my3 fundamental dark, intermediate and bright ones, respectively,
where the elements are determined by when the value of the parameter « is chosen the same as in
w1 = AD B0 ) Figs. 2(a)-2(c). Then it is easy to see that the dynamical
B L p=bg=c* behavior for the second-order rogue waves depends on the
m(113,0,n) — A(ll) B(30)n~1(n) [ values of a(30) when the vall'le of a is ﬁzg)zd. For' example,.two
groups of rogue wave solutions with ay” = 50i and —50i are
m(301,1,n) = A(SO)B(ll)ﬁl(”) Ingquﬁ, shown in Fig. 4, the triar}gles for the arrays of elementary
Q08 _ 4O gz rogue waves are sy.mmetrlc.. .
33 T 43 53 p=C.q=C"> For the construction of third and higher-order rogue waves,
with the differential operators which represent the superposition of more fundamental ones,
AP =al(p —ia), + dl", one need to take larger N in (49)—(52). The expressions is too
o (s e complicated to illustrate here. However we can show the
By’ =a, " (g +ia)0d +alV : : _
1 0 q Lo dynamical structures of rogue waves graphically. For N = 3,
094007-9 ©2018 The Physical Society of Japan
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Fig. 5. (Color online) Third-order rogue wave of the YO system a§°> = 2000: (a) dark state @ = — %; (b) intermediate state @ = —1; and (c) bright state

a=0.

we choose af’ =1, a¥ = a’ = a{’ =0, a¥ = 2000 in
Eqgs. (49)-(52), and plot the third-order rogue wave solution
in Fig. 5. It can be seen that this third-order rogue waves
exhibit the superposition of six fundamental rogue waves and
they constitute a shape of pentagon.

Finally, we remark that the fundamental pattern occurring
in the higher-order rogue wave completely depends on the
parameter a (see Figs. 2-5). In other words, three types of
fundamental rogue waves and their higher-order super-
position appear at three different intervals of «, i.e.,
(=323, - 2323] for dark state, (— 33%3,0) for intermedi-
ate state and [0, +o0) for bright state. Therefore, there is no
pattern of superposition among different types of fundamen-
tal rogue waves, for example, between bright ones and dark
ones. The underlying reason is due to the fact that only a
single parameter « is introduced in the 1D YO system. In
constructing general solutions to the coupled YO system with
multi-short wave components,*” the multiple copies of a; can
be introduced which allows the superposition of different
types of fundamental rogue waves by taking appropriate
values of the parameters. In addition, we comment that the
1D YO system with one short wave and one long wave
coupling is different from the vector NLS equation
representing two short wave coupling. As reported in
Refs. 49 and 50, two copies of a can be imposed and
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different fundamental rogue wave’s superpositions can be
exhibited. The comparison reveals that the degree of freedom
in the 1D YO system is less than the one in the two-
component NLS system.

Theoretically speaking, three types of rouge wave can be
observed in the experiments modeled by the YO system,
which can describe the long wave-short wave resonance
interaction in nonlinear optics®-’” and other physical fields.
Specifically, as reported in Ref. 46 regarding bright-dark
rouge waves of the vector NLS equations, nonlinear optics is
a fertile ground to develop the phenomenon of vector rogue
waves. Thus, the certain experimental conditions in nonlinear
optics can give rise to three patterns of rogue wave in first-
and higher-order cases. Furthermore, in the relevant numer-
ical simulation, each types of rouge wave may be
characterized from the initial seeds with the different
frequencies spectrum associated with the modulation insta-
bility analysis.*¢74

4. Summary and Discussions

In this paper, we have derived general high-order rogue
wave solutions for the 1D YO system by virtue of the
Hirota’s bilinear method. These rogue wave solutions are
obtained by the KP hierarchy reduction method and are
expressed in terms of determinants whose elements are

©2018 The Physical Society of Japan



J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 24.243.110.153 on 08/17/18

J. Phys. Soc. Jpn. 87, 094007 (2018)

J. Chen et al.

algebraic formulae. By choosing different values of parame-
ters in the rogue wave solutions, we have analytically and
graphically studied the dynamics of first-order, second-order,
and third-order rogue wave solutions. As a result, the
fundamental (first-order) rogue waves have been classified
into three different patterns: bright, intermediate and dark
states. The higher-order rogue waves correspond to the
superposition of fundamental rogue waves. In particular,
we should mention here that, in compared with the NLS
equation, there exists an essential parameter « to control the
pattern of rogue wave for both first- and higher-order rogue
waves since the YO system does not possess the Galilean
invariance.

Apart from rogue waves appearing in the continuous
models, the behavior of rogue waves in discrete systems have
recently drawn much attention.?'~3% Paralleling to the novel
patterns of rogue waves such as dark and intermediate ones in
the continuous coupled systems with multiple waves, the
discrete counterparts of such rogue waves can be attained in
discrete systems. We have recently proposed an integrable
semi-discrete analogue of the 1D YO system.”® Thus the
semi-discrete rogue wave, especially the semi-discrete dark
and intermediate ones are worthy to be expected. We will

report the results on this topic in the future.
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