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The bilinearization of the generalized derivative nonlinear Schrödinger (GDNLS) equation is investigated
systematically. It is known recently that the GDNLS equation can be decomposed into two different bilinear systems
under the vanishing and nonvanishing boundary condition, respectively. However, it remains a question of how these two
systems are related. In this letter, we show that all the bilinear equations can be derived uniformly from the KP hierarchy
through appropriate reductions. Bright and dark soliton solutions in terms of Gram-type determinants are presented.

To explore the effects of higher order perturbations,
various extensions of the nonlinear Schrödinger (NLS)
equation have been proposed and studied. Among them,
one class of the integrable models is called the derivative
nonlinear Schrödinger (DNLS) equation due to the existence
of derivative-type nonlinearities. Generally speaking, there
are mainly three types of the DNLS equation: the first one is
the Kaup–Newell (KN) equation1)

iut þ uxx þ 2iðjuj2uÞx ¼ 0; ð1Þ
the second one is called the Chen–Lee–Liu (CLL) equation2)

iut þ uxx þ 2ijuj2ux ¼ 0; ð2Þ
while the third one named the Gerdjikov–Ivanov (GI)
equation3)

iut þ uxx � 2iu2u�x þ 2juj4u ¼ 0; ð3Þ
here the superscript denotes complex conjugation. These
three integrable equations are linked each other through
gauge transformations. Indeed, this kind of gauge-equivalent
connection was firstly found between the KN equation and
the CLL equation by Wadati.4) Following the idea of gauge
transformation, Kundu proposed a generalized derivative
nonlinear Schrödinger (GDNLS) equation, which can be
written as the normalized form5,6)

iut þ uxx þ 2i�juj2ux þ 2ið� � 1Þu2u�x
þ ð� � 1Þð� � 2Þjuj4u ¼ 0; ð4Þ

where γ is an arbitrary real constant. It is obvious that the
GDNLS equation reduces to the KN equation for � ¼ 2, the
CLL equation for � ¼ 1 and the GI equation for � ¼ 0.
Clarkson and Cosgrove7) have performed the Painlevé
integrability test for the GDNLS equation (4). These DNLS
equations (1)–(4) have been studied in the framework of the
bilinear formalism. Nakamura and Chen bilinearized the CLL
equation and constructed bright soliton solution.8) The bright
soliton solution expressed by Wronski-type determinants for
the GDNLS equation was derived by Kakei et al. in which
two auxiliary independent variables are introduced.6) Under
the nonvanishing boundary condition, dark soliton solutions
to the KN and the CLL equations were presented in Refs. 9
and 10. Through the Kadomtsev–Petviashvili (KP) hierarchy
reduction method, general rogue waves for the GDNLS
equation (4) were recently constructed by decomposing it
into two bilinear systems.11)

In this letter, we will study the bilinearization of the
GDNLS equation (4) systematically under both the vanishing
and nonvanishing boundary conditions, and derive soliton
solutions via the KP hierarchy reductions. The main results
show that even though the GDNLS equation (4) can be
decomposed into two bilinear systems either under the
vanishing or nonvanishing boundary condition, all these
bilinear members can be obtained uniformly from the KP
hierarchy through appropriate reductions.

A. The bright soliton solution. For the vanishing boun-
dary condition, we introduce the following dependent
variable transformation

u ¼ f ���1g
f �

; ð5Þ

where g and f are complex functions. Then the GDNLS
equation (4) can be decoupled into a set of bilinear equations

B1 ¼ 0; B3 ¼ 0; B4 ¼ 0; B5 ¼ 0; ð6Þ
or another set of bilinear equations

B2 ¼ 0; B3 ¼ 0; B4 ¼ 0; B5 ¼ 0; ð7Þ
where Bi (i ¼ 1 � � � 5) are defined by

B1 � ðiDt þD2
x Þg � f; ð8Þ

B2 � ðiDt þD2
x Þg � f �; ð9Þ

B3 � ðiDt þD2
x Þf � f �; ð10Þ

B4 � Dx f � f � � ijgj2; ð11Þ
B5 � D2

x f � f � � iDxg � g�; ð12Þ
with Dx and Dt being the Hirota’s bilinear operators

Dn
xD

m
t ða � bÞ

¼ @

@x
� @

@x 0

� �n @

@t
� @

@t 0

� �m

aðx; tÞbðx 0; t 0Þjx¼x 0;t¼t 0 :
For the arbitrary value of γ, either the bilinear system (6)
or (7) gives the GDNLS equation (4). But such bilinear
equations are different from the ones given by Kakei et al.6)

in which two auxiliary dependent variables need to be
introduced. The connection of two bilinear systems is given
by

fB2 þ g@xB4 ¼ f �B1 þ gðB3 � B5Þ þ 2gxB4;

upon using the following trilinear identities
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fDtg � f � ¼ f �Dtg � f þ gDt f � f �; ð13Þ
fD2

x g � f � þ g@xðDx f � f �Þ ¼ f �D2
x g � f þ 2gxDx f � f �: ð14Þ

Subsequently, we show how the bilinear equations (8)–(12)
are derived uniformly from the KP hierarchy. To this end, we
list the following bilinear equations in the two-component
hierarchy

ðDx2 � D2
x1
ÞG � F ¼ 0; ð15Þ

ðDx2 � D2
x1
ÞG � �F ¼ 0; ð16Þ

ðDy2 � D2
y1
ÞF � �F ¼ 0; ð17Þ

Dx1F � �F � �G �G ¼ 0; ð18Þ
Dx2F � �F � �Dx1G � �G ¼ 0; ð19Þ

which admit the following Gram-type determinant solutions

F ¼ jAj; �F ¼ jA0j; ð20Þ

G ¼ A �T

� �� 0

" #
; �G ¼ A0 �T

� �� 0

" #
; ð21Þ

where A and A0 are N � N matrices, and Φ, Ψ, ��, �� are N-
component row vectors, whose elements are defined by

aij ¼ 1

pi þ �pj
e�iþ ��j � �qi

qi þ �qj
e�iþ ��j ;

a0ij ¼
1

pi þ �pj
e�iþ ��j þ � �qj

qi þ �qj
e�iþ ��j ;

� ¼ ðe�1 ; e�2 ; . . . ; e�NÞ; � ¼ ðe�1 ; e�2 ; . . . ; e�NÞ;
�� ¼ ðe ��1 ; e

��2 ; . . . ; e
��NÞ; �� ¼ ðe ��1 ; e ��2 ; . . . ; e ��NÞ;

�i ¼ pix1 þ p2i x2 þ �i;0; �i ¼ qiy1 þ q2i y2 þ �i;0;

��i ¼ �pix1 � �p2i x2 þ ��i;0; ��i ¼ �qiy1 � �q2i y2 þ ��i;0:

Here pi, pi, qi, qi, �i;0, �i;0, �i;0, �i;0, and μ are arbitrary
constants.

In order to perform the dimension reduction, we rewrite
tau functions F and �F as

F ¼ e
PN

i¼1 �iþ ��i
1

pi þ �pj
� �qi

qi þ �qj
e�iþ ��j��i� ��j

�����
�����

¼ e
PN

i¼1 �iþ ��i jbijj;

�F ¼ e
PN

i¼1 �iþ ��i
1

pi þ �pj
þ � �qj

qi þ �qj
e�iþ ��j��i� ��j

�����
�����

¼ e
PN

i¼1 �iþ ��i jb0ijj:
By imposing the constraint condition qi ¼ pi and �qi ¼ �pi, we
have the following relations

ð@xi þ @yi Þbij ¼ 0; ð@xi þ @yiÞb0ij ¼ 0; ði ¼ 1; 2Þ; ð22Þ
which give rise to the dimensional reduction relations

ð@xi þ @yiÞF ¼ ciF; ð@xi þ @yi Þ �F ¼ ci �F; ði ¼ 1; 2Þ; ð23Þ
with c1 ¼

PN
i¼1ðpi þ �piÞ and c2 ¼

PN
i¼1ðp2i � �p2i Þ. This

implies D2
y1
F � �F ¼ D2

x1
F � �F, Dy2F � �F ¼ �Dx2F � �F. Thus,

Eq. (17) reduces to

ðDx2 þ D2
x1
ÞF � �F ¼ 0: ð24Þ

Furthermore, we set � ¼ �i, x1 ¼ x, x2 ¼ it, �i;0 ¼ ��i;0 ¼ 0

and require �pi ¼ p�i , ��i;0 ¼ ��i;0, then the following complex
conjugate relations hold

a�ij ¼ a0ji; F� ¼ �F; G� ¼ �G: ð25Þ
Thus, by defining

F ¼ f �; �F ¼ f; G ¼ g; �G ¼ g�; ð26Þ
the bilinear equations (15)–(16), (24), and (18)–(19) are
reduced to the bilinear equations (8)–(12). As a byproduct,
the bright soliton solution of the GDNLS equation (4) is
given by the following theorem. Here we comment that upon
dimension reduction, y1 and y2 become dummy variables,
which can be taken as zero values. Thus, �i and ��i can also be
treated as zero values.

Theorem 1. The GDNLS equation (4) possesses the bright
soliton solution (5) with the Gram-type determinants

f ¼ j ~Aj; g ¼
~A �T

�I 0

" #
; ð27Þ

where ~A is a N � N matrix, and �, I are N-component row
vectors, whose elements are given by

~aij ¼ 1

pi þ p�j
e�iþ�

�
j � ip�j

pi þ p�j
;

� ¼ ðe�1 ; e�2 ; . . . ; e�NÞ; I ¼ ð1; 1; . . . ; 1Þ:
Here �i ¼ pix þ ip2i t þ �i;0, pi and �i;0 are complex constants.

B. The dark soliton solution. For the nonvanishing
boundary condition, we consider the dependent variable
transformation with the background

u ¼ �ei�
f ���1g
f �

; ð28Þ

where � ¼ ½� � ð� � 1Þ�2�x � ½ð� � 1Þð� þ �2Þ2 � ��2 �
2��2�t, and ρ, κ are real constants. Then the GDNLS equation
(4) can be decomposed into one set of bilinear equations

D1 ¼ 0; D3 ¼ 0; D4 ¼ 0; D5 ¼ 0; ð29Þ
or another set of bilinear equations

D2 ¼ 0; D3 ¼ 0; D4 ¼ 0; D5 ¼ 0; ð30Þ
where Di (i ¼ 1 � � � 5) are defined by

D1 � iDtg � f þ D2
xg � f þ 2i�Dxg � f; ð31Þ

D2 � iDtg � f � þ D2
xg � f � þ 2ið� þ �2ÞDxg � f �; ð32Þ

D3 � iDt f � f � þ D2
x f � f � þ 2i�2Dx f � f �; ð33Þ

D4 � Dx f � f � � i�2ðjgj2 � j f j2Þ; ð34Þ
D5 � D2

x f � f � � i�2Dxg � g� þ �2ð2� � �2Þðjgj2 � j f j2Þ:
ð35Þ

Two bilinear systems are linked by
fD2 þ g@xD4

¼ f �D1 þ gðD3 �D5Þ þ ½2gx þ ið2� � �2Þg�D4;

upon using (13), (14) and the following trilinear identities
fDxg � f � ¼ f �Dxg � f þ gDx f � f �; ð36Þ
2fDxg � f � ¼ gDx f � f � � g@xðj f j2Þ þ 2gxj f j2;

ð f $ f �Þ: ð37Þ
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Next we show how the bilinear equations (31)–(35) are
reduced uniformly from the KP hierarchy. To this end, let us
start with the bilinear equations in the extended KP hierarchy

ðDx2 � D2
x1
� 2aDx1 Þ	nþ1;k;l � 	n;k;l ¼ 0; ð38Þ

ðDx2 � D2
x1
� 2bDx1 Þ	n;kþ1;l�1 � 	n;k;l�1 ¼ 0; ð39Þ

ðDx2 þ D2
x1
� 2cDx1 Þ	n;k;l�1 � 	n;k;l ¼ 0; ð40Þ

½ðc � bÞDx�1 þ 1�	n;k;l � 	n;k;l�1 ¼ 	n;k�1;l	n;kþ1;l�1; ð41Þ
½ðc � bÞDx1Dx�1 þDx1 � 2ðc � bÞ�	n;k;l � 	n;k;l�1

þ ½Dx1 þ 2ðc � bÞ�	n;k�1;l � 	n;kþ1;l�1 ¼ 0; ð42Þ
which have the Gram-type determinant solutions

	n;k;l ¼ jmn;k;l
ij j1�i; j�N; ð43Þ

where the entries of the determinant are given by

mn;k;l
ij ¼ 
ij þ iðpi � cÞ

pi þ pj
� pi � a

pj þ a

 !n

� pi � b

pj þ b

 !k

� � pi � c

pj þ c

 !l

e�iþ�j ; ð44Þ

with

�i ¼ 1

pi � b
x�1 þ pix1 þ p2i x2 þ �i;0;

�j ¼
1

pj þ b
x�1 þ pjx1 � p2j x2 þ �j;0;

where pi, pj, �i;0, �j;0, a, b, and c are arbitrary constants. By
imposing the reduction condition

ðc � bÞ 1

pi � b
þ 1

pi þ b

� �
¼ 1

c
ðpi þ piÞ; a þ c ¼ b; ð45Þ

or

ðpi � bÞðpi þ bÞ ¼ cðc � bÞ; a þ c ¼ b; ð46Þ
one can check that 	n;k;l satisfies

ðc � bÞ@x�1	n;k;l ¼
1

c
@x1	n;k;l; 	n;k;l ¼ 	n�1;kþ1;l�1: ð47Þ

It then follows that bilinear equations (41) and (42) become

ðDx1 þ cÞ	n;k;l � 	n;k;l�1 ¼ c	n�1;k;l�1	nþ1;k;l; ð48Þ
ðD2

x1
þ cDx1 þ 2acÞ	n;k;l � 	n;k;l�1

þ ðcDx1 � 2acÞ	n�1;k;l�1 � 	nþ1;k;l ¼ 0: ð49Þ
Furthermore, a substitution of (48) into (49) leads to

D2
x1
	n;k;l � 	n;k;l�1 þ cDx1	n�1;k;l�1 � 	nþ1;k;l
þ ðc2 � 2acÞð	n�1;k;l�1	nþ1;k;l � 	n;k;l	n;k;l�1Þ ¼ 0: ð50Þ

Next, let us take a ¼ i�, c ¼ i�2, x1 ¼ x, x2 ¼ it, and require
pi ¼ p�i , �i;0 ¼ ��i;0, then the following complex conjugate
relations hold

	�0;0;0 ¼ 	0;0;�1; 	�1;0;0 ¼ 	�1;0;�1: ð51Þ
Therefore, by defining

	0;0;0 ¼ f; 	0;0;�1 ¼ f �; 	1;0;0 ¼ g; 	�1;0;�1 ¼ g�; ð52Þ
the bilinear equations (38)–(40), (48), and (50) coincide
exactly with the bilinear equations (31)–(35). Meanwhile, we
obtain the dark soliton solution of the GDNLS equation (4)
given by the following theorem.

Theorem 2. The GDNLS equation (4) admits the dark
soliton solution (28) with the Gram-type determinants

f ¼ 
ij þ iðpi � i�2Þ
pi þ pj

e�iþ�j
�����

�����
1�i; j�N

; ð53Þ

g ¼ 
ij þ iðpi � i�2Þ
pi þ pj

� pi � i�

pj þ i�

 !
e�iþ�j

�����
�����
1�i; j�N

; ð54Þ

where �i ¼ pix þ ip2i t þ �i;0, and pi, �i;0 are complex
constants, �; � are real constants, which satisfy the constraint
condition

ðpi � ið� þ �2ÞÞðp�i þ ið� þ �2ÞÞ ¼ ��2: ð55Þ

In summary, we have investigated the bilinearization of the
GDNLS equation under both the vanishing and nonvanishing
boundary conditions, and we have derived soliton solutions
via the KP hierarchy reduction. It is shown that the GDNLS
equation can be derived from two different bilinear systems.
We have shown that, for either the vanishing or nonvanishing
boundary condition, these bilinear members can be uniformly
reduced from the KP hierarchy through appropriate reduc-
tions. As a byproduct, we have constructed bright and dark
soliton solutions to the GDNLS equation expressed by Gram-
type determinants.
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