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The bilinearization of the generalized derivative nonlinear Schrodinger (GDNLS) equation is investigated
systematically. It is known recently that the GDNLS equation can be decomposed into two different bilinear systems
under the vanishing and nonvanishing boundary condition, respectively. However, it remains a question of how these two
systems are related. In this letter, we show that all the bilinear equations can be derived uniformly from the KP hierarchy
through appropriate reductions. Bright and dark soliton solutions in terms of Gram-type determinants are presented.

To explore the effects of higher order perturbations,
various extensions of the nonlinear Schrodinger (NLS)
equation have been proposed and studied. Among them,
one class of the integrable models is called the derivative
nonlinear Schrédinger (DNLS) equation due to the existence
of derivative-type nonlinearities. Generally speaking, there
are mainly three types of the DNLS equation: the first one is
the Kaup-Newell (KN) equation®

i1, + 1 + 2i(|ul*u), = 0, (1)
the second one is called the Chen-Lee-Liu (CLL) equation®
iy + e + 2i|ul?u, = 0, (2)

while the third one named the Gerdjikov—Ivanov (GI)
equation®

i, + ty, — 20w’ + 2|ul*u = 0, 3)

here the superscript denotes complex conjugation. These
three integrable equations are linked each other through
gauge transformations. Indeed, this kind of gauge-equivalent
connection was firstly found between the KN equation and
the CLL equation by Wadati.* Following the idea of gauge
transformation, Kundu proposed a generalized derivative
nonlinear Schrodinger (GDNLS) equation, which can be
written as the normalized form>®

iy + e + 2iy|uluy + 2i(y — l)uzu;k

+ (7= D@ = Dlul*u =0, “)
where y is an arbitrary real constant. It is obvious that the
GDNLS equation reduces to the KN equation for y = 2, the
CLL equation for y =1 and the GI equation for y =0.
Clarkson and Cosgrove” have performed the Painlevé
integrability test for the GDNLS equation (4). These DNLS
equations (1)—(4) have been studied in the framework of the
bilinear formalism. Nakamura and Chen bilinearized the CLL
equation and constructed bright soliton solution.® The bright
soliton solution expressed by Wronski-type determinants for
the GDNLS equation was derived by Kakei et al. in which
two auxiliary independent variables are introduced.® Under
the nonvanishing boundary condition, dark soliton solutions
to the KN and the CLL equations were presented in Refs. 9
and 10. Through the Kadomtsev—Petviashvili (KP) hierarchy
reduction method, general rogue waves for the GDNLS
equation (4) were recently constructed by decomposing it
into two bilinear systems.!"
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In this letter, we will study the bilinearization of the
GDNLS equation (4) systematically under both the vanishing
and nonvanishing boundary conditions, and derive soliton
solutions via the KP hierarchy reductions. The main results
show that even though the GDNLS equation (4) can be
decomposed into two bilinear systems either under the
vanishing or nonvanishing boundary condition, all these
bilinear members can be obtained uniformly from the KP
hierarchy through appropriate reductions.

A. The bright soliton solution. For the vanishing boun-
dary condition, we introduce the following dependent
variable transformation

[ g

u= I

where g and f are complex functions. Then the GDNLS
equation (4) can be decoupled into a set of bilinear equations

(5)

B, =0, B3;=0, Bs=0, Bs=0, (6)
or another set of bilinear equations
B, =0, B3;=0, Bs=0, Bs=0, 7
where B; (i = 1---5) are defined by
By = (iD;+ D))g - f, (8)
By = (D, + D})g - f*, ©)
By = (iD, + D))f - f*, (10)
By = Dyf-f* —ilgl. (11

Bs=Dff* —iD.g-g",
with D, and D, being the Hirota’s bilinear operators
D!D/"(a - b)

0 o\"/0 o\" .
= (a - @) (E - 5) a(x, b, 1) =y =y -

For the arbitrary value of y, either the bilinear system (6)
or (7) gives the GDNLS equation (4). But such bilinear
equations are different from the ones given by Kakei et al.”)
in which two auxiliary dependent variables need to be
introduced. The connection of two bilinear systems is given
by

(12)

fB2 + g0:Bs = f*B + g(Bs — Bs) + 2g.Bu,
upon using the following trilinear identities
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IDg - f*=f"Dig-f+8D:ff, (13)
ID3g [+ 80u(Dif - f*) = f*Dig - f+28:Duf - f*. (14)
Subsequently, we show how the bilinear equations (8)—(12)
are derived uniformly from the KP hierarchy. To this end, we

list the following bilinear equations in the two-component
hierarchy

(Dy, —D:)G-F =0, (15)
(Dy, -D;)G-F =0, (16)
(Dy, =D} )F-F =0, (17)
D, F-F-uGG=0, (18)
D,F-F—uD,G-G=0, (19)

which admit the following Gram-type determinant solutions

F=1Al, F=lA', (20)

G = _ , G= _ , (21)
-¥Y 0 - 0

where A and A’ are N X N matrices, and ®, ¥, ®, ¥ are N-
component row vectors, whose elements are defined by

aj = ! _ efite 7,uq,<_ et
Pitpj 9+ 9q;
a;j — ;_efi*'gj + ﬂj_e'li*'ﬁ/’
pitp; qi t+q;
D= (e,e,...,e%), W=("em, ..., M),
O = (eg',egz, . ..,eEN), P = (e, eh,... eM),

& =pixi +pixy+ o, M= qivi + @2 + Nios

E=pxi—pixa+ & Mi=qy— @2+l

Here pi, p;» qis Gi» 0> Sios Mio> Mio» and p are arbitrary
constants.

In order to perform the dimension reduction, we rewrite
tau functions F and F as

F = eZZl'gﬁgi —1 — — —ﬂQi_ eni+ﬁ[_§i_éj
pitp; qitg;

N -
= 2 Ty
F= eZi] &+, 1 — + ﬂj_en[_"ﬁj_é[_gj
pitp; qitgq;
N _
— eZi=1§i+§i|b§j|.

By imposing the constraint condition g; = p; and g; = p;, we
have the following relations

(05, +0y)b;; =0, (05, +0,)b; =0, (i=12), (22)
which give rise to the dimensional reduction relations
Oy, + 0y)F = ciF, (0, +0y)F =c;F, (i=1,2), (23)

with ¢, =YL (pi+p) and =3 (p? — p}). This

Furthermore, we set y = —i, x; = x, xo = it, ;0 = ;0 =0
and require p; = pj, ;o = &, then the following complex
conjugate relations hold

ap=a;, F"=F, G"=G. (25)
Thus, by defining

the bilinear equations (15)—(16), (24), and (18)—(19) are
reduced to the bilinear equations (8)—(12). As a byproduct,
the bright soliton solution of the GDNLS equation (4) is
given by the following theorem. Here we comment that upon
dimension reduction, y; and y, become dummy variables,
which can be taken as zero values. Thus, #; and 77; can also be
treated as zero values.

Theorem 1. The GDNLS equation (4) possesses the bright
soliton solution (5) with the Gram-type determinants

(DT

0
where A is a N X N matrix, and ®, 1 are N-component row
vectors, whose elements are given by

. A
f=1Al. g= [—I (27)

. 1 e ip}
aij = * efﬁ_&f - ’ * 2
Pi +I7j Pi +pj
D= (e, e,...,¢), I=(,1,....1).
Here & = pix + ipizt + &0, pi and &; o are complex constants.

B. The dark soliton solution. For the nonvanishing
boundary condition, we consider the dependent variable
transformation with the background

#y—1
_ i(/)f 8
u=pe —f” ,

where ¢ =[x = (y = Dplx = [(y = Dk +p*)? = y* =
2kp?]t, and p, k are real constants. Then the GDNLS equation
(4) can be decomposed into one set of bilinear equations

(28)

D, =0, D3=0, Ds=0, Ds=0, (29)
or another set of bilinear equations
D, =0, D3=0, Ds=0, Ds=0, (30)
where D; (i = 1---5) are defined by
Dy =iD,g-f+ D2g f+2ikDg - f, (31
Dy =iDg-f* + Dig-f* + 2i(x + p)Dig - f*, (32)
Dy =iD,f-f* + Df f* +2ip°D.f-f*, (33)
Dy =Dyf-f* = ip*(Isl” = 117, (34)

Ds=Diff*~ip’Dig-g" +p* 2k~ p*)Igl> = If1P).
(35
Two bilinear systems are linked by
fDZ + gaxD4
=f*Dy + g(D3 — Ds) + [2g: + 12k — p*)g]Da,

upon using (13), (14) and the following trilinear identities

implies DY F-F=D}F-F, Dy,F-F==DyF-F. Thus, fDg f* =f"Dug [+ gDuf f*, (36)
Fa. (17 reduces to 2Dg-f* = gDuff* = 80:(111) + 2.l 1.

Dy, + Dfl F-F=0. 24) (fefH. 37
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Next we show how the bilinear equations (31)—(35) are
reduced uniformly from the KP hierarchy. To this end, let us
start with the bilinear equations in the extended KP hierarchy

(sz - D)zcl - zanl )Tn+1,k,l *Tnkl = 0’ (38)
(Dy, = D3, = 26D )tnjs11-1 * Tusei=1 = 0, (39)
(D, + D2, = 2Dy )Tn -1 * Tups = 0, (40)
[(c = b)Dy, + tnps Taki-1 = Tnp—1Tnps1,0-1,  (41)
[(c— b)Dxle,l + Dxl - 2(c— b)]Tn,k,l * Thk,l—1
+ [Dy, + 2(c = D) ltnp-1,1 " Tags1,-1 = 0, (42)
which have the Gram-type determinant solutions
Tk = 1M e (43)
where the entries of the determinant are given by
. n k
mn,k,l_é‘_ﬁ_l(pi_c) _pi—a _pi—b
g + D, 2 .+ b
pl + pj p] + a p] +
!
x (-2 eotd (44)
pj +c
with
&= X_1 +pix1 + pixa + o,
pi—b
_ 1 B . _
&= X_1 +pix1 — pixa + &,

Cpi+b
where p;, p;, &ip, ijo, a, b, and c are arbitrary constants. By
imposing the reduction condition

(c—b)( ! +L>=%(p[+ﬁi), a+c=>b, (45)

pi—b pi+b
or
(pi—b)p;+b)=clc—b), a+c=b, (46)
one can check that 7, satisfies
1
(c=D)ox_ Ty = - O Tnkls  Tndd = Tn-tht1,i=1.  (47)

It then follows that bilinear equations (41) and (42) become

(D, + O Tnst * Tnki=1 = CTne1 kim1Tnt1 ks (48)
(D}, + cDy, + 2a0) Tk - Tukizt
+ (¢Dy, — 2a0)tp—1 ji-1 * Tnr1 k1 = 0. (49)
Furthermore, a substitution of (48) into (49) leads to
D} Tuks - Tuki-t + Dy Tustkict * Tusikd
+ (¢* = 2a0)(Ty1 o 1=1 Tt 1l — TukiTuki—1) = 0. (50)

Next, let us take a = ik, ¢ = ip?, x| = x, X = it, and require

Pi =D;s $ip = &g, then the following complex conjugate
relations hold
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* sk
70,00 = 70.0~1>  Tip0 = T-1,0,-1- (51)

Therefore, by defining
7000 =f  T00-1=f", T_0-1=8", (52)

the bilinear equations (38)-(40), (48), and (50) coincide
exactly with the bilinear equations (31)—(35). Meanwhile, we
obtain the dark soliton solution of the GDNLS equation (4)
given by the following theorem.

71,00 = &>

Theorem 2. The GDNLS equation (4) admits the dark
soliton solution (28) with the Gram-type determinants

i L3152 —
=y + LMD ey (53)
pit D 1<i,j<N
. L . 2 L . _
g= %+f@f W) (_PizK) e . (54)
Di~+D; pj+1k 1<i j<N
where &;=pix+ ip?t + &0, and p;, &g are complex

constants, K, p are real constants, which satisfy the constraint
condition

(pi = i+ p*)(p] + ik + p?) = kp?. (55)

In summary, we have investigated the bilinearization of the
GDNLS equation under both the vanishing and nonvanishing
boundary conditions, and we have derived soliton solutions
via the KP hierarchy reduction. It is shown that the GDNLS
equation can be derived from two different bilinear systems.
We have shown that, for either the vanishing or nonvanishing
boundary condition, these bilinear members can be uniformly
reduced from the KP hierarchy through appropriate reduc-
tions. As a byproduct, we have constructed bright and dark
soliton solutions to the GDNLS equation expressed by Gram-
type determinants.
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