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We propose an alternative theory for the relaxation of density fluctuations in glass-forming fluids. We derive
an equation of motion for the density correlation function which is local in time and is similar in spirit to the
equation of motion for the average non-uniform density profile derived within the dynamic density functional
theory. We identify the Franz-Parisi free energy functional as the non-equilibrium free energy for the evolution
of the density correlation function. An appearance of a local minimum of this functional leads to a dynamic
arrest. Thus, the ergodicity breaking transition predicted by our theory coincides with the dynamic transition
of the static approach based on the same non-equilibrium free energy functional.

I. INTRODUCTION

Slow dynamics in glass-forming systems is usually
monitored through time-dependent density correlation
functions1. The commonly used theoretical descrip-
tion of the density correlation function starts with the
memory function representation, which absorbs the com-
plicated dynamics of density fluctuations into a time-
delayed friction kernel called memory function2. The ex-
act expression for the memory function involves a pair-
density correlation function evolving with the so-called
projected dynamics3 which is difficult to analyze or even
simulate4. To proceed, a factorization approximation is
used which expresses the pair-density correlation func-
tion evolving with projected dynamics as a product of
two density correlation functions evolving with stan-
dard dynamics3. The resulting closed set of equations
constitutes the mode-coupling theory of glass-forming
liquids3,5,6, which describes well several features of glassy
dynamics. Its most often quoted success is the descrip-
tion of the cage effect, which manifests itself through a
characteristic two-step decay of the density correlation
function, with an intermediate-time plateau whose ex-
tension grows upon cooling. The theory reproduces well
the wavevector dependence of the plateau and non-trivial
power laws describing the approach to and the depar-
ture from the plateau3. The factorization approxima-
tion can be pushed to higher-level correlation functions,
leading to one of generalized mode-coupling theories7–9.
Qualitatively, predictions of these theories are similar to
those of the standard mode-coupling theory. However,
these more sophisticated theories significantly improve
upon the standard theory: they describe well the time-
dependence of the density correlation function for a larger
range of control parameters9.
One common feature of all mode-coupling-like ap-

proaches is the prediction of an ergodicity breaking tran-
sition, referred to as the mode-coupling transition, at
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which the plateau of the density correlation function ex-
tends infinitely. In two- or three-dimensional systems
the mode-coupling transition is replaced by a smooth
crossover. The dynamics beyond the crossover is called
“activated”1 but there is no commonly accepted quanti-
tative description of the postulated activated processes10.

In addition to the fundamental problems of the avoided
transition and the activated dynamics, the standard
mode-coupling theory and its generalizations suffer from
another important conceptual problem. Some time af-
ter the mode-coupling theory was formulated a num-
ber of static descriptions of the glass formation were
proposed18–21. Most of these descriptions rely upon
a free-energy-like functional derived using the replica
method. They predict a transition which, on the basis of
the analogy with the results obtained for exactly solvable
spin-glass models, is referred to as the dynamic transi-
tion. At this transition non-trivial replica off-diagonal
density correlations appear which are conceptually iden-
tified with the plateau of the time-dependent correlation
function at the mode-coupling transition21,22. However,
the location of the dynamic transition and the wavevec-
tor dependence of the replica off-diagonal density correla-
tions are different from the location of the mode-coupling
transition and the wavevector dependence of the infi-
nite time plateau, respectively. In particular, in static
theories of the glass formation replica off-diagonal cor-
relations are obtained by minimizing a free-energy-like
functional. In contrast, the self-consistent equation for
the wavevector dependence of the plateau derived within
mode-coupling approaches cannot be obtained by a func-
tional minimization. Thus, the two approaches are fun-
damentally incompatible23. This is a major conceptual
problem since the static and dynamic (mode-coupling)
approaches are considered to be the two facets of a uni-
fied description of glassy phenomena referred to as ran-
dom first-order transition theory25,26.

Recall that in the limit of large spatial dimensions a
consistent description of the glass formation and glassy
dynamics has been formulated27. Both exact static28 and
dynamic29 theories have been developed and it was shown
that the dynamic transition predicted by the static ap-
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proach coincides with the mode-coupling-like transition
predicted by the dynamic theory27.
Importantly, while there exist static approaches that

with increasing spatial dimension reproduce the exact
large dimensional static theory, in the same limit the
mode-coupling theory becomes drastically different from
the exact large dimensional dynamic theory30,31. To ra-
tionalize this fact we recall that the mode-coupling theory
and the exact large dimensional dynamic theory, while
similar in spirit, are nevertheless technically quite differ-
ent. In particular, within the mode-coupling theory one
derives a self-consistent equation for the time-dependent
density correlation function whereas the exact large di-
mensional dynamic theory imposes a self-consistency
condition on a stochastic process32. This condition can-
not be expressed in terms of a self-consistent equation for
a correlation function.

The above described unsatisfactory state of the finite-
dimensional dynamic theory calls for a reformulation of
the mode-coupling approach and/or for exploration of
other approaches to the dynamics of glassy fluids. In this
contribution we propose a possible alternative approach.
Our theory is consistent with static approaches that rely
upon free-energy-like functionals. We identify a func-
tional generalization of the Franz-Parisi potential33,34,
which we call the Franz-Parisi functional, as the free-
energy-like object generating the time dependence of the
density correlation function. The equation of motion that
we derive is similar in spirit to the equation of motion
derived within dynamic density functional theory35. It
is local in time and thus it does not capture the time-
delayed friction which is considered the central feature of
glassy dynamics. We believe that the present equation is
just the first ingredient of a new dynamic theory and that
the time-delayed friction can be recovered if an analogue
of the memory function is identified.

In the following we present a somewhat heuristic
derivation of our theory. A more formal, projection
operator-based, derivation and incorporation of time-
delayed friction are left for future work.

II. FORMULATION OF THE PROBLEM

We consider a system of N particles in volume V ,
with pair-wise additive interactions determined through
spherically-symmetric potential V (r). We assume that
the microscopic dynamics is Brownian36. We denote the
diffusion and friction coefficients of an isolated particle
by D0 and γ, respectively, with D0 = T/γ, where T is
the temperature and the Boltzmann constant is set to 1.

We aim to develop a theory for the density correlation
function in the Fourier space, F (k; t),

F (k; t) = N−1
⟨︁
n(k)eΩtn(−k)

⟩︁
. (1)

Here n(k) =
∑︁

j e
−ik·rj is the Fourier transform of the

microscopic density and Ω is the N -particle evolution

operator, i.e. the Smoluchowski operator,

Ω = −D0

∑︂
j

∂rj ·
[︁
−∂rj + βFj

]︁
, (2)

where β = 1/T and Fj is the force on particle j,
Fj =

∑︁
l ̸=j F(rjl) with F(rjl) = −∂rjV (rjl). Finally,

⟨. . .⟩ in Eq. (1) denotes the equilibrium average; we use
the convention that the probability distribution stands
to the right of the quantity being averaged, and all oper-
ators to its left act on it as well as on everything else.
The standard approach to develop a theory for the den-

sity correlation function starts with the projection oper-
ator manipulations38. Below we present an equivalent
formulation of the first step of the standard approach,
which avoids an explicit introduction of a projector op-
erator. This formulation is inspired by the so-called lin-
ear kinetic theory developed to describe time-dependent
equilibrium correlation functions39–41. We will contrast
this approach with our new theory in Sec. IV.
We start by recognizing that the right-hand-side of Eq.

(1) can be interpreted as the density of a N -particle sys-
tem that has time-dependent “probability distribution”
of the following form,

Pl(t) = eΩtn(−k)Peq, (3)

where Peq is the equilibrium probability distribution. We
used quotation marks to emphasize that strictly speak-
ing Pl(t) is not a probability distribution; in particular,
it is not properly normalized. However, as explained by
Résibois and Lebowitz39, “formally, this makes no differ-
ence”. Subscript “l” in Pl(t) indicates that distribution
(3) has the same form as the linear change of the N -
particle distribution due to an external potential that is
turned off at the initial time, t = 0.
Next, we write the equation of motion for the density

correlation function

∂tF (k; t) = N−1 ⟨n(k)Ω⟩l , (4)

where ⟨. . .⟩l indicates averaging with time-dependent dis-
tribution Pl(t), Eq. (3). We recall that following our
convention, the evolution operator acts on distribution
(3), which stands to the right of Ω.

To calculate the right-hand-side of Eq. (4) we assume
that at later times, t > 0, distribution Pl(t) has the same
form as at the initial time but with a different magnitude,

Pl(t) ≈ P a
l (t) ≡ n(−k)f(t)Peq (5)

where superscript “a” indicates the approximate charac-
ter of distribution P a

l and function f(t) is chosen in such
a way that averaging with P a

l (t) reproduces the density
correlation function at time t,

N−1 ⟨n(k)⟩al = F (k; t). (6)

In Eq. (6) ⟨. . .⟩al indicates averaging with P a
l (t).

A simple calculation gives f(t) = F (k; t)/S(k),
where S(k) is the static structure factor, S(k) =
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N−1 ⟨n(k)n(−k)⟩, and approximate distribution (5)
which depends linearly on the density correlation func-
tion at time t, P a

l (t) = n(−k) (F (k; t)/S(k))Peq.
Using distribution P a

l in Eq. (4) we obtain the fol-
lowing approximate equation of motion for the density
correlation function,

∂tF (k; t) = −D0

(︁
k2/S(k)

)︁
F (k; t). (7)

The same equation is obtained using the first step of the
standard projection operator procedure, i.e. when one
neglects the memory function term. We note that equa-
tion of motion (7) is local in time and predicts that dif-
ferent Fourier components of F (k; t) relax independently.
Only after the memory function is included, the relax-
ation of different Fourier components (modes) becomes
coupled. This fact was the motivation for the name
“mode-coupling” given to the first theory of this type,
which was developed to describe critical dynamics42.

III. AN ALTERNATIVE FORMULATION OF THE
THEORY FOR DENSITY CORRELATION FUNCTION

We propose the following alternative approach to ap-
proximately evaluate the time evolution of the density
correlation function. First, we re-write definition (1)
of the density correlation function by distinguishing be-
tween averaging over the time evolution (which corre-
sponds to averaging over noise in the Langevin formula-
tion of Brownian dynamics) and averaging over the ini-
tial positions of the particles that will be denoted by r0j ,
j = 1, . . . , N ,

F (k; t) = N−1
⟨︁
⟨n(k)⟩n n

0(−k)
⟩︁
0
. (8)

Here ⟨. . .⟩n denotes averaging with the following time-
dependent distribution

Pn(t) = eΩt (N !)
−1

∑︂
π

∏︂
j

δ(rj − r0π(j)), (9)

where
∑︁

π denotes sum over permutations of particle la-
bels, π(j) is the label of particle j in permutation π and
subscript “n” emphasizes that distribution Pn(t) cannot
be interpreted as a linear change from the equilibrium
distribution. We note that Pn(t) is the distribution of
particles’ positions at time t, which are denoted by rj ,
j = 1, . . . , N , but it depends parametrically on the ini-
tial positions r0j , j = 1, . . . , N . Furthermore, in Eq. (8)

n0(−k) denotes the microscopic density calculated for

the initial configuration, n0(k) =
∑︁

j e
−ik·r0j and ⟨. . .⟩0

denotes averaging over the equilibrium distribution of the
initial positions of the particles.

Eqs. (8-9) allow for the following procedure to evaluate
the density correlation function. First, one calculates av-
erage density, ⟨n(k)⟩n, using distribution (9). This aver-
age density depends on the initial positions of all the par-
ticles. Then, one calculates the joint average of ⟨n(k)⟩n

and density configuration n0(−k) over the equilibrium
distribution of the initial positions.
The advantage of this formulation is that to describe

the evolution of density ⟨n(k)⟩n one can (in fact, one
should) go beyond the expansion used in the linear ki-
netic theory. In other words, the approximate theory for
⟨n(k)⟩n should be non-linear.
Since one has to calculate the time evolution of the

average density, one could try using the dynamic density
functional theory35. However, one cannot use the stan-
dard version of this approach43–45 since the important
feature of average density ⟨n(k)⟩n is that it depends on
the initial positions of all the particles, i.e. on N param-
eters, r0j , j = 1, . . . , N .
Our proposed approach is similar in spirit to that

used by Dufty and Rodriguez46 to elucidate an earlier
result due to Hauge47. Hauge showed that one can
obtain long-time mode-coupling contributions to time-
dependent equilibrium correlation functions from the
non-linear Boltzmann equation. This was un-expected
since mode-coupling contributions were thought to orig-
inate from correlated sequences of particles’ interac-
tions whereas the Boltzmann equation was known to in-
clude only uncorrelated collisions. Dufty and Rodriguez
pointed out that Hauge’s result could be explained if his
one-particle density were re-interpreted as a density that
implicitly depends on the positions of all the particles.
They showed that for the hard-sphere system this new
density satisfies exactly a non-linear equation that has
the same form as the Boltzmann equation. Once the time
dependence of the new density is evaluated, its correla-
tion with the density of the initial configuration repro-
duces the exact time-dependent equilibrium correlation
function. Our average density ⟨n(k)⟩n is analogous to the
one-particle density introduced by Dufty and Rodriguez.

IV. QUASI-EQUILIBRIUM APPROXIMATION

To proceed, we write down equation of motion for the
density correlation function

∂tF (k; t) =
⟨︁
⟨n(k)Ω⟩n n

0(−k)
⟩︁
0
. (10)

To evaluate the right-hand-side of Eq. (10) we need an
approximate expression for Pn(t).
At this point we recall the central assumption of the

dynamic density functional theory, which is known as the
adiabatic approximation35,44. It states that the correla-
tions in a non-equilibrium system are the same as those in
an equilibrium system with a non-uniform density equal
to the instantaneous density of the non-equilibrium sys-
tem. We follow this approximation in spirit and assume
that non-equilibrium correlations embodied in distribu-
tion (9) are the same as in an equilibrium system in which
averaged density averaged over the initial conditions is
uniform and the correlation of the averaged density with
the density of the initial configuration reproduces the
time-dependent density correlation function.
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Specifically, we propose the following approximate for- mula for Pn(t),

Pn(t) ≈ P a
n (t) ≡

exp
[︂
−β

∑︁
j ̸=l V (rjl)

]︂
Z[V ext

1 , V ext
2 ]

exp

⎡⎣−β
∑︂
j

V ext
1 (rj)− β

∑︂
j,l

V ext
2 (|rj − r0l |)

⎤⎦ , (11)

where Z[V ext
1 , V ext

2 ] is the partition function,

Z[V ext
1 , V ext

2 ] =

ˆ
dr1 . . . drN exp

⎡⎣−β
∑︂
j ̸=l

V (rjl)− β
∑︂
j

V ext
1 (rj)− β

∑︂
j,l

V ext
2 (|rj − r0l |)

⎤⎦ , (12)

and where one- and two-body time-dependent external
potentials, V ext

1 and V ext
2 , are determined by two condi-

tions described above. Explicitly, we require that density
⟨n(k)⟩an, where ⟨. . .⟩

a
n denotes averaging with distribution

(11), is on average uniform,

N−1 ⟨⟨n(k)⟩an⟩0 = δk,0. (13)

Second, we require that the correlation of density ⟨n(k)⟩an
and the density of the initial configuration reproduces the
density correlation function at time t,

N−1
⟨︁
⟨n(k)⟩an n

0(−k)
⟩︁
0
= F (k; t). (14)

We assume that conditions (13-14) uniquely determine
potentials V ext

1 and V ext
2 .

Physically, two-body potential V ext
2 is the interaction

necessary to maintain the correlation between the state
of the system at time t and the initial configuration that
is equal to F (k; t), while keeping the uniform average
density, which is maintained by the additional one-body
potential. We emphasize that approximate instantaneous
distribution (11) depends on the density correlation func-
tion at time t in a non-linear and complicated way.
We note that in the first step of the two-step averaging

process, i.e. while evaluating ⟨. . .⟩an, the initial positions
r0j , j = 1, . . . , N , play the role of the quenched variables.
Within our theory they appear in a very natural way.

We propose the name quasi-equilibrium approximation
for formula (11) to emphasize that the distribution of par-
ticle positions at time t is the same as in an equilibrium
state that satisfies conditions (13-14). The additional
motivation for this name is the conceptual similarity of
our approximation with quasi-equilibrium construction
for the long-time glassy dynamics proposed by Franz et
al.48,49. We comment on this point in the Discussion.

The final step is the evaluation of the average at the
right-hand-side of Eq. (10) with the approximate dis-
tribution (11) in terms of reduced distribution functions
and external two-body potential V ext

2 . After some work
we arrive at the following equation of motion

∂tF (k; t) = D0

ˆ
dk1

(2π)3
k · (k− k1) (15)

×N−1
⟨︁
⟨n(k1)⟩an n

0(−k)n0(k− k1)
⟩︁
0
βV ext

2 (|k− k1|).

The right-hand-side of Eq. (15) is written
in terms of two objects, a three-body average⟨︁
⟨n(k1)⟩an n0(−k)n0(k− k1)

⟩︁
0
and the Fourier transform

of two-body potential V ext
2 . Both of these objects are

functionals of the instantaneous value of the density
correlation function, F (k; t). We discuss two possible
technical approximations for the three-body average⟨︁
⟨n(k1)⟩an n0(−k)n0(k− k1)

⟩︁
0
in Appendix A. We show

that for non-interacting particles Eq. (15) reproduces
the known exact result in Appendix B.
According to equation (15), the driving force for the

time evolution of the density correlation function is the
interaction necessary to maintain instantaneous correla-
tions between the density at time t and the initial den-
sity. We recall that at a dynamic transition of a static
theory of the glass formation the correlation between the
density of the system and the so-called template (also
know as the zeroth replica) appears spontaneously, with-
out any system-template interaction. This implies that
at the dynamic transition of a static theory the right-
hand-side of Eq. (15) vanishes and the density correla-
tion function freezes. In other words, Eq. (15) predicts
an ergodicity-breaking transition that coincides with the
dynamic transition of the static theory.
To further develop the connection with static glass for-

mation theories we note that partition function (12) can
be used to introduce a free-energy-like functional,

F [V ext
1 , V ext

2 ] = −T lnZ[V ext
1 , V ext

2 ]. (16)

At a given time, functional F depends on the initial po-
sitions of the particles, which play the role of quenched
variables. It should be self-averaging with respect to the
distribution of initial positions. By a Legendre transform
of functional F with respect to the one- and two-body
potentials one can obtain a functional that depends on
the average density and average instantaneous value of
the time-dependent density correlation function. The lat-
ter functional is a functional generalization of the Franz-
Parisi potential33,34. We believe that two-body poten-
tial V ext

2 can be obtained as a functional derivative of
the Franz-Parisi functional with respect to the instanta-
neous density correlation function, at constant average
density. Thus, the time evolution predicted by Eq. (15)
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stops when the Franz-Parisi functional reaches its local
minimum.

Finally, to make explicit contact with the dynamic den-
sity functional theory we recall that its equation for the
time evolution of the non-uniform average density n̄(k; t)
can be written in a very similar way50,

∂tn̄(k; t) = D0

ˆ
dk1

(2π)3
k · (k− k1)n̄(k1; t)βV

ext(k− k1).

(17)

In Eq. (17) V ext is the external potential needed to main-
tain non-uniform equilibrium density equal to the instan-
taneous average density n̄(k; t).

V. DISCUSSION

We proposed here an alternative theory for the relax-
ation of density fluctuations in glassy fluids and the glass
transition. The main approximation of our theory is that
the correlations between the state of the system at time
t and the initial state of the system can be reproduced
by a Boltzmann-like formula coupling these two systems
in a quasi-equilibrium fashion. The central quantity that
allows one to calculate the required coupling is a gener-
alization of the Franz-Parisi potential which gives more
freedom to the coupling between the system and the tem-
plate. Our equation of motion for the density correlation
function is local in time but the relaxation of different
Fourier components of the density correlation function is
coupled. Our approach predicts an ergodicity-breaking
transition identical to the dynamic transition predicted
by a static theory of the glass formation based on the
same Franz-Parisi functional. We believe that a numer-
ical implementation of our theory should start with a
specific approximate Franz-Parisi functional and use it
to calculate the two-body potential needed to integrate
Eq. (15). This task is is left for future research.

It would be interesting to test the present approach on
a spherical p-spin model for which the time-dependence
of correlation functions can be analyzed exactly.

We envision two directions to extend our theory. First,
the present theory uses an order parameter, density cor-
relation function, that is uniform in space. The time
evolution of this order parameter stops at the ergodicity-
breaking transition which corresponds to a local mini-
mum of the Franz-Parisi functional. However, in finite
dimensions relaxation beyond the local minimum can
happen via nucleation and growth processes. To inves-
tigate such processes one needs to allow for inhomoge-
neous order parameter fields, in the spirit of Franz11,13

and Wolynes et al.12. We also note that inhomogeneous
order parameter fields were observed in numerical investi-
gation of Cammarota et al.51. They were also introduced
within dynamic field theory developed by Rizzo16,17.

Second, the local in time equation of motion implies
that our theory misses time-delayed friction. This is in

contrast to the mode-coupling approach, which promi-
nently features non-local in time relaxation processes.
We believe that a more formal derivation of our theory,
based on a Kawasaki-Gunton-style projection operator52,
can result in a generalization of equation of motion (15),
which will include a memory function term describing
time-delayed friction. Since the projection operator term
will involve time-dependent quasi-equilibrium distribu-
tion (11), we anticipate that the memory function expres-
sion will feature time-dependent vertices. We hope that
as a result, the incorporation of the memory function
will modify the relaxation near the ergodicity-breaking
transition but will not change its location.

In the context of the non-local in time relaxation pro-
cesses we would like to comment on the relation of our
approximation and the quasi-equilibrium construction of
Franz et al.48,49 We assumed that to calculate the time
derivative of the density correlation function we can ap-
proximate the exact probability distribution (9) by an
equilibrium distribution in an external potential that as-
sures that the correlation between the density of the sys-
tem at time t and its initial initial density is equal to
F (k; t). In contrast, the starting assumption of Franz
et al. is a quasi-equilibrium condition for the transition
probability. Franz et al. showed that this assumption
leads to non-local in time equations describing the long-
time behavior of the density correlations in the vicinity
of the plateau.

Finally, we note that the present theory shares some
features with the co-called “naive” mode-coupling theory
that is the starting point of the non-linear Langevin equa-
tion theory of activated hopping proposed by Schweizer
and collaborators14,53. This theory’s equation of motion
for the averaged order parameter is local in time, features
a non-equilibrium free-energy-like function and predicts
an ergodicity-breaking transition at the point at which
this function develops a local minimum. The main dif-
ference is that our order parameter is a collective quan-
tity whereas that of Schweizer and collaborators14,53 is a
single-particle quantity. In addition, we anticipate that
in our case barrier crossing is facilitated by non-uniform
order parameter fields whereas the theory of Schweizer
and collaborators14,53 implicitly assumes a uniform, ther-
mally facilitated barrier hopping.
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Appendix A: Two possible approximations for three-body
average

⟨︁
⟨n(k1)⟩an n

0(−k)n0(k− k1)
⟩︁
0

In a numerical implementation of our theory one would
like to start with a scheme that uses only two-particle cor-
relations. To this end one would express three-body aver-
age

⟨︁
⟨n(k1)⟩an n0(−k)n0(k− k1)

⟩︁
0
in terms of the density

correlation function and static pair correlation functions.
Here we propose two possible approximations, which are
linear in density correlation function. We note that the
right-hand-side on Eq. (15) is still a non-linear functional
of F (k; t) due to the presence of the two-body potential.

First, one can argue that at short times the two-body
potential V ext

2 is extremely short range and therefore in
approximate expression (11) a given rj is correlated only
with one of r0l s. This suggests that one may neglect off-
diagonal terms in n0(−k)n0(k− k1), which results in⟨︁
⟨n(k1)⟩an n

0(−k)n0(k− k1)
⟩︁
0
≈

⟨︁
⟨n(k1)⟩an n

0(−k1)
⟩︁
0
.

(A.1)

Alternatively, one may resort to a convolution-like ap-
proximation⟨︁

⟨n(k1)⟩an n
0(−k)n0(k− k1)

⟩︁
0
≈ (A.2)⟨︁

⟨n(k1)⟩an n
0(−k1)

⟩︁
0
S(k)S(|k− k1|).

where we used the equilibrium distribution of the initial
positions, which implies N−1

⟨︁
n0(k)n0(−k)

⟩︁
0
= S(k).

Appendix B: Limiting case: non-interacting particles

As a “sanity check”, which was also performed while
deriving dynamic density functional theory43, we con-
sider here Eq. (15) for non-interacting particles. In this
case the short-time approximation (A.1) is exact and Eq.
(15) in the direct space reads

∂tN(|r− r0|; t) = −D0∂rN(|r− r0|; t)∂rβV ext
2 (|r− r0|; t),

(B.1)

where N(|r− r0|; t)− n is the inverse Fourier transform
of F (k; t). Then, one can show that for non-interacting
particles βV ext

2 (|r − r0|) = − ln
[︁
N(|r− r0|; t)

]︁
and thus

Eq. (B.1) reproduces the exact equation of motion for
density correlation function of non-interacting particles.
We note that the same equation of motion is obtained
from Eq. (7), since for non-interacting particles S(k) = 1.
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