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1. Introduction

Rogue waves (RWs) or freak waves are spontaneously excited local nonlinear waves with large amplitudes which appear from
nowhere and disappear with no trace [1]. The first rogue wave recorded, known as “The Draupner Wave”, was measured in 1995 off
the coast of Norway at 84 ft (25.6 m) with surrounding waves of approximately 40 ft (12 m), making the original rogue wave about
twice the size of those around it [2]. Most recently, the record-breaking rogue wave was recorded off the coast of Vancouver Island in
November 2020 measured at almost 58 ft (17.6 m) in comparison to surrounding waves of around 20 ft (6 m) [3]. The mathematical
study of rogue waves starts with the rational solution of the nonlinear Schrédinger (NLS) equation, a generic model in nonlinear waves.
The simplest form of such waves was firstly discovered by Peregrine in the NLS equation [4], and their higher order forms were found in
1986 in [5] and later by many authors (see, for example, [6-12]). Such extreme waves have been observed in various different contexts
such as oceanography [13], hydrodynamic [14,15], Bose-Einstein condensate [16], plasma [17] and nonlinear optic [14,18,19].

Motivated by these physical applications, rogue wave solutions have been found in many other nonlinear wave equations such
as the derivative Schrodinger (NLS) equation [20-24], the Manakov system [25-27], Davey-Stewartson I and II equation [28,29], the
three-wave equation [30], the Boussinesq equation [31], the Yajima-Oikawa equation [32,33]. There are some developments in the
study of RW most recently, Yang et al. found universal rogue wave patterns for RW behind many soliton equations [27]. Miller et al.
developed a robust inverse scattering transform for the analysis of RW of infinite order [34].

On the other hand, in spite of potential applications in optical waveguides [35,36], the study of rogue waves in discrete integrable
systems is much less. As far as we are aware, the rogue waves in semi-discrete NLS equation, or the so-called Ablowitz-Ladik
equation [37-40] and in semi-discrete complex short pulse equation have been reported in the literature [41]. The inverse scattering
transform for the AL equation was studied and discrete soliton solutions including the Kuznetsov-Ma, Akhmediev breather and
Peregrine soliton solutions were obtained [42]. The vector discrete rogue waves in the coupled AL equations were investigated in [43,44].
It should be pointed out that the correspondence of breather and first order rogue wave solutions between the NLS and AL equations
was found and has been extended to periodic solutions between Manakov system and coupled AL equation [43].

Since the monumental work by Ablowitz and Hirota [45-48], the study of discrete integrable systems has attracted much
attention [49]. Discrete integrable systems become continuous integrable systems when an appropriate limiting procedure is applied.
Discrete integrable systems have rich but complicated mathematical structures which go to ones of continuous integrable systems in
appropriate continuous limits. What about the possible rogue wave solutions in fully discrete systems? This natural question motivates
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our present work. In the present paper, we attempt to construct the rogue wave solutions to the fully discrete nonlinear Schrédinger
(fd-NLS) equation, which was originally discovered by Ablowitz and Ladik [45,46] and rediscovered by Hirota and Ohta through Hirota’s
bilinear approach [50]. The bright soliton solutions and the reduction from the two-component Kadomtsev-Petviashvili hierarchy was
discussed in [51,52].

The remainder of the present paper is organized as follows. In Section 2, we will construct general breather solution to the fd-NLS
equation. We derive general rogue wave solutions to the fd-NLS equation by taking the limit to the general breather solution in Section 3.
The paper is concluded in Section 4. In the Appendix, we give the derivation of two bilinear equations associated with fully discrete
NLS equation from higher order discrete Kadomtsev-Petviashvili (KP) equation.

2. Breather solution for the fully discrete NLS equation
In order to derive breather solutions to the fd-NLS equation, we first give two bilinear equations in discrete KP-Toda hierarchy.

Lemma 1. The following t function of discrete KP-Toda hierarchy
ok, K L L) = det (mg”(k, K1, L)) , (1

1<i,j<N
satisfies the discrete bilinear equations
(1—aA)ty(k+1,K + 1,1, L)ta(k, K, I, L)
—to(k+ 1,K, L, L)to(k, K + 1,1, L) (2)
+aAtp(k+ 1,K, 1, L)t 1(k, K + 1,1, L) = 0,
Ala — b)(1 —aB)tpp1(k+ 1, K, I+ 1, L+ 1)to(k, K + 1,1, L)
—a(A — B)(1 — Ab)tpia(k+ 1, K, I, )ta(k, K + 1,14+ 1,L+ 1)
+Ab(1 — aA)tp 1 (k, K, I+ 1, L+ 1)1y(k+ 1, K+ 1,1, L)
—aB(1 — aA)tna(k+ 1, K + 1,1, Dta(k, K, 1+ 1,L+ 1) = 0,

(3)

(n)

if the matrix element my satisfies

m{" Ok, K, 1L L) — miP (kKL L) = (=1 oMk, K, 1L Lyl "Dk K L L),

m(")(k—i-l K. LL)—m(k, K, 1 L) = (—1)"ap"(k + 1, K, L, L)y " (k, K, I L),

m(k, K + 1,1, 1) — m{"(k. K. L) = (=1)"A¢\" (k. K + 1,1, Ly} " "(k. K. I, L),

m(k, K, 1+ 1,L) — m{P(k, K, 1, L) = (—=1)"bg"(k, K, 1+ 1, L)y} " (k. K, 1. L),

m(”)(k K LL+1)—m{ (kK. 1, L) = (—1)"Be{" (k. K., 1L+ 1)y " (k. K, 1, L),
where qb-") and wj(") are arbitrary functions satisfying the linear dispersion relations,

"k, K, L L) — ¢k — 1,K, 1, L) = ag{" (k, K, I, L),

"k, K, 1L L) — ¢k, K — 1,1, L) A" Dk, K, 1, L),

"k, K, L L) — ¢k, K, 1—1,L) = bp" (K, K, I, L),

"k, K, 1 L) — ™Mk, K, LL—1) =B (k. K, L L),

(k.K.1.L)=ay" (k. K., L),
Yk K+ 1,00 — 9k, KL L) = Ay V(KL L
Yk K1+ 1, L) — 9k, KL L) = by ™ Dk KL L

Yk KL L+ 1) — 9Pk, KL L) = By "V (kKL L)

Yk + 1K, 1L — "

) )
) )
)s
)
Here k, K, I, L are discrete independent variables and a, A, b, B are lattice constants.

The link of above two bilinear equations with higher order discrete KP hierarchy is given in the Appendix.
Based on the bilinear formulation, we are able to derive the breather solution of the fully discrete NLS equation, which is given by
the following theorem.

Theorem 1. The fully discrete NLS equation,
(g™ —qj) = (q,m + a1+ elgh )
14 elqtl® 1 (4)
]+6|qt+1|
where € = %1, admits the N-breather solution,
o g7 (1 —c1+r(‘:>f po_ 4R sy i
o m \T-éi+re Gy T
2

o
Fk+l -

(5)
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where ~ means complex conjugate, r is a real constant whose sign coincides with €, ¢ = signr, c is a complex constant, R and 6 are determined
by

Tldcl—rt _ L, ©
il—c1+rc ’
and f and g; are given by
fi = %(0), g =7e(1), (7)
with
wim = det (AP, 0)), (8)
1<i,j<N
1 -
AP = - (ai0n(Pi)aj9—n(P}) + bign(—P)bjo—n(—p))
v (ai@n(P)bjo—n(—D;) + biwn(—Pi)ajo—n(p})) . 9)
1—1m 1+p 1+p 1+4p/c
wn(p)=( ) ( ) < /c ) , (10)
1+p 1+mp 1+m1+r1cp

where p;, a;, b; are complex constants.

Proof. We set

"k KL L)y = > agph(1— aps) (1 = A/ps) (1 — bpi) (1 — B/psn) ™", (11)
v=1
2
W0 KL L) =Y bl (1+ agi) (1 + A/q5. ) (1 + bgy ) (1 + B/gj ) (12)
n=1

where pj,, qju, G, bj, are arbitrary constants. Obviously, the ¢f") and 1//}") defined satisfy the above linear dispersion relations in
Lemma 1. Therefore the determinant 7, with element defined by

m{"(k, K, 1, 1 (13)

2
ZZ Giv bjy <_pl'V>n (1 +aqfu>k (1 "‘A/qfu)K (1 +qu>l (1 +B/qm>L (14)
— = Div + G \ i 1 —ap; 1—A/piv 1 — bpiy 1—B/pi
satisfies the bilinear equations (2)-(3).
Next, we proceed to the reduction procedure. By imposing
Al—apn A1+GQJ1
P2 =——
agp+A’

app—A’
we can show that t, satisfies the following reduction condition,

Q2 =

N
qi1qi2

To(k+1,K — 1,1 L) = 7y(k, K, I, L) ,
_1 PinbPi2

(15)

it follows that the bilinear equations (2)-(3) are reduced to
(1-— aA)J,fH(n)a,f (n)— Uk( )ok(n) + aAak(n + l)ok(n —1)=0,
A(a — b)(1 — aB)o, "' (n + 1)of(n) — a(A — B)(1 — Ab)oi(n + 1)o "' (n) (16)
+Ab(1 — aA)o | (n 4+ 1)o{, ,(n) — aB(1 — aA)o, ((n + 1)oyt(n) = 0
by taking ak‘(n) = 1u(k, O, t, t). Furthermore by taking
_ . apin +e€a a; a;
where € = +1 or —1, o(n) satisfies the complex conjugate condition,

o4 (—n)G = o/ (n)G,
with a gauge factor G given below in Eq. (22). In order to simplify the final expression, let us parametrize by
r—2+4+1/r b 2a 1—rc _1=1/r1—1p;
4 T 1—-r1+4c’ b= 1+p
3

la]” = (18)

’



Y. Ohta and B.-F. Feng Physica D 439 (2022) 133400

ai, ap = —a(a+ epp)b;, (19)

where r is a real constant, ¢ is a complex constant, p; represents the complex wave number of the ith breather, a; and b; stand for the
complex phase constants of the ith breather. We comment that € is equal to the sign of r because of the positivity of |a|?. Then we
have

ik, K. 1, 1)
n L
—4 1—p 1—p%/2 1-p?
= mji(k, K, 1, L) m— L) ey e plz/cz —
(1 =r)14+pi)1+Dp)) 1—rp] 1—r2p} 1—r2¢%p;
_ag (1—rp,~1+ﬁj>"<1+p,~ 1+pj> (1—rpil—r13]->K
1—Tp,‘l_)j 1~|—p1-1—rf)j 1~|—rp,—1+rf)j 1—pl 1—1_71

><< 1+pi 1+ﬁj/C>l(1+pi/E 1+ P )L
1+rep; 1+ r1p; 1+1p; 14 rcCp;

. a,-l_Jj <1—rp,- 1—1_7]' >n<1+p,’ 1—f)j )"(1—rp,~1+rﬁj>K
1+mip; \ 14+pi 1+71p; 1+ 1 —r1p; 1—pi 14p;
X( 1+p; 1—ﬁj/c>’<1+p,—/é 1- )L
1+rep; 1—rp; 1+r1p; 1—rcp;

b,‘(_lj <1+rpi 1+I_7j >n<1—pi 1-}-[_)]' )’<<1+rp,~1—rf)j>l(
S 14mip \1—p 1—p; 1—rpi 1+1p; 1+pi 1-p
X( 1-pi 1+15,-/c>’<1—p,-/5 1+ p; )L
1—rep; 1+ r1p; 1—1p; 14 1rCp;
N bib; <1+rp,- 1—5;)”(1—19,- 1—13])"(1+rp,-1+r13j)’<
1—rpif)j 1—p; 1+r[)j 1—1’[),']—1”[_)]' 1+ p; 1+I_3j

y ( 1-pi 1—ﬁj/c>’ (1 —pi/C 1P )‘
1—rep; 1—rp; 1—rp; 1—rcp;)
and the bilinear equations (16) are reduced to
(1+ P ()i (n) — 4rri(n)zi(n) — (1 —r)*ri(n+ 1)rg(n — 1) = 0,
(1—c)1+re)f ™ (n+ Vrf(n) — (1 — &)1 +re)ri(n + 1)z (n) (20)
—(1+0)1 —re)yr (n+ Dl () + (1+ )1 — ro)rl, (n+ Dt (n) =0,

where t{(n) is given by
t = t
Ti(n) = 1§§§N (mj(k. 0, t, 1)) = oy (n)G, (21)

with

N =2 \" = 2 /72 =2\
€= l_[ (1-r)1 +p1)(1 + i) < rll— rf;?) . (g 11 _%C.z 1 1r2§;ﬁz) ' (22)
i=1 1 i i
which is nothing but z/(n) in Theorem 1. For f{ = t(0), gt = t{(1), & = ti(—1), the bilinear equations are written as
(U rPR L — 4 — (1= rVeigt =,
(1—c)1+re)g ' — (1 — o)1+ ro)glfi !
—(1+0)1 —re)g 1 fily + (14 o)1 —rogf, fi]

from which the fully discrete NLS equation (4) is stralghtforwardly derived through the variable transformation (5). This completes the
proof of Theorem 1. O

In the case of N = 1, we have one-breather solution,

1 -
7(n) = P (IaP@a(p)p—n(D) + b1 n(—P)p—n(—P)) (23)
1 - [
RFTT (abgn(p)p—n(—Pp) + @bon(—p)p_n(p)) . (24)

with (5)-(10) where p, a, b are complex constants (the index 1 of py, a;, by are omitted for notational simplicity). The Akhmediev
breather which is the breather solution localized in time t can be derived by taking the wave number p pure imaginary. If we require
the regularity of the solution only on the lattice points, i.e., ff # 0 for integers k and ¢, then r can be either positive or negative and
the discrete NLS equations (4) of both focusing type and defocusing type admit regular breather solutions by locating the singularities
(if exist) off the lattice points. On the other hand if we require the solution to be regular in whole real space, i.e., f,f is non-zero for all

4
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real numbers k and ¢, then r has to be positive and only the focusing discrete NLS admits the regular breathers for generic parameters.
An example is shown in Fig. 1. Some exceptional regular solutions for r < 0 can be derived from the above r,ﬁ (n) but usually they are
not called breathers and we do not discuss about such solutions.

3. Rogue wave solution to fully discrete NLS equation

The rogue wave solution of rational function type can be derived as a limit of the breather solution. In Theorem 1, we take

<1+chp2v 1) b = ( chpzv 1) (25)

and scale the 7 function by t{(n)/ ]_[i:1(piﬁi)2"*1 and finally take the limit p; — 0 successively for i = 1, 2, ..., N. Then the leading
order of z{(n) in p;’s gives a polynomial of k and ¢ which turns to be the rogue wave solution. This result is summarized in the following
theorem.

Theorem 2. The Nth order rogue wave solution for the fully discrete NLS equation (4) is given by the variable transformations (5)-(7) and

2 min(i,j)
Ti(m) = det (Bi;%k, t)) = 5;£N< Z ol ol )> (26)

where

-

ka

o = Si(x(n) + Z CuSiv1—2u(X(n)). @
pu=1
Here x(n) = (x1(n), x2(n), ..., x5(n), ...) with
4y
) = T (= (= (= = (= P (U — o) h=12, (28)

where [ ] means the Gauss symbol and S, (x) is the so-called elementary Schur function defined by ZZ":O S (x)A* = exp Z,fil xpA. This
solution has N complex parameters ¢, u = 1,2,...,N.

Proof. Firstly ¢,(p) in (10) is written as ¢n(p) = ZZO:O S, (x(n))p*. We rewrite AE;) in Theorem 1 as

% (aien(p) + biga(—p0)) (9P F Bo—n(—P}))-
U]

Denoting a; — b; = p;d; and a; + b; = s;, the four factors in the above expression are written as

aign(pi) — bign(—p)) = Y _ Su(x(m)p!'(a; — (=1)"by)
=(p,-d,-,p,~s,~,p?d,~,p?si,.. ) (So(X(n)), S1(x(n)), Sa(x(m)), Ss(x(m)), ...,
ajo_n(py) — m—Zsu — (—1)by)

n=0
= (So(x(—n)), SI(X(_n)) Sy(x(—n)), Ss(x(=n)), ...) (Byd;, BsS)» By, B - - -),

aign(pi) + bign(—pi) Zs n)p} (e + (—1)b)
= (si, P{d;, P}si, P; d,-, - ) (So(x(n)), Si(x(n)), Sa(x(m)), Ss(x(m)), ....),

G9_n(pj) + bjo—n pj)—Zs n))p!'(a; + (—1)by)

= (So(x(=n)), 54 (X(—ﬂ)), Sa(x(—=n)), S3(x(=n)), ...) ;. B} dy, b5y, B, - ),

where ‘v means transpose of v. Thus we obtain

oo

AP = (g (pidi, pisi, i, psi - - ) (So(x(m)), S1(x(n), Sa(x(m)), S3(x(n)), ...)
r=0

X (So(x(=n)), $i(x(=n)), Sa(x(—n)), S3(x(=n)), ...) " (Bydj. B;5;, B; dj, B;, - - )
5
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Fig. 1. One-breather solution for r = 0.5, ¢ = 3+ 2i, p = 0.5i.

+ Y (B (i, Y, pPsi, B, ) (So(x(m)), Si(x(m)), S>(x(n)), Ss(x(n)), ....)

A=0
X(So(x(—n)), S1(x(—n)), Sy(x(—n)), S3(x(—n)), .. .) (5, B} d;. B}5). B} d. - . )
So(x(n)) 0
Si(x(n))  So(x(n))
= (mdi pisi pidi ps ---) [ S2&(m) Si(x(n)) So(x(m)
S3(x(n))  Sa(x(n))  Si(x(n))  So(x(n))
1 0) [Sox(=m)) Si(x(=n)) Sa(x(=n)) S3(x(—n)) Did;
r So(x(—n))  Si(x(—n)) Sy(x(—n)) pjs
x r? So(x(—n)) Six(—m) -~ | | PPy
r’ So(x(—n)) p}s;

Therefore t{(n) in Theorem 1 is given in the form of the following determinant,

1
pidi  pisi pidi pisi - o(x(n)) O
pady  pasy  pidy  pis, .- S1(x(n))  So(x(n))
ti(n) = 2 2 S(x()  Si(x(n))  So(x(n))
S3(x(n))  Sa(x(n))  S1(x(n))  So(x(n))

Ndn  DNSN P?de P13\15N

1 0\ [Sox(=m)) Si(x(=n)) Sa(x(—n)) S3(x(—n))
r So(x(—n))  Si(x(—n))  Sa(x(—n))
% r? So(¥(—n))  Si(x(—n))
r? So(x(—n))
0 0
ﬁlal ﬁZaZ e ﬁNaN
PiS1 D252 -+ DNSN
« | Pidi B3dy - Pydn
pis1 P32 - Dasw
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Now let usltake i ;
1
2v—1 2v—1
ai=5<1+ 2_1 CP; ) bi=5(l— 2_1 CvP; )

Then we have d; = Zi:l cl,piz"’2 and s; = 1, and the above r,f(n) is O(p1p1p2D2 - - -PnPn) as pi — 0 for 1 < i < N. In order to take
the lowest order in p;, we consider the limit, T{(n) := limp, ¢ 7£(n)/(p1p1). In this limit, the leading order becomes O((p2p; - - -pNDN)?),
thus for picking up the lowest order in p,, we take the limit, limy,_.o %,ﬁ(n)/(pzﬁzf'. So the leading order becomes O((p3ps - - - pNDn )°)-
Repeating this procedure, finally we obtain the t function of rogue wave solution from that of breather z/(n)

7. (n)

lim --- lim_lim £

pN—0 p2—>0p;—0 plﬁlpgﬁg .. 'p12\1N71[)12VN7]

a1 0\ /Sox(n) 0
& 0 ¢ 1 S1(x(n))  So(x(n))
_|les 0 & 0 ¢ 1 Sa(x(n))  Si(x(n))  So(x(n))
S3(x(n))  Sa(x(n))  Si(x(n))  So(x(n))
cn 0 coyeq O oo e el 1 :
1 0\ [Sox(=n)) Si(x(—n)) Sa(x(=n)) S3(x(—n))
r So(x(—n))  Si(x(—n)) Sa(x(—n))
% r? So(x(—n))  Si(x(—n))
r? So(x(—n))
0 0
&1 & G Cn
0 0 --- 0
El EZ EN—]
1 0 0
C1
X
1
G
1
0

" 0 1 0
o oV o" ol r
=l &7 o o’ of o of r’
T3
o5, o, ofl, o, o o oop o )0
o7 ol o7 . o,
AT AT
o ol ol
I Y
i "
o™
0 "
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Fig. 2. First order rogue wave solution (a) r =2.0,c=1+2i,¢c; =2 (b)r=0.5,¢c=1+2i,¢; =2.

14

124

(a) (b)
Fig. 3. Second order rogue wave solution (a) r =2.0,c =14+2i,¢; =2.0,¢c; =2+2i; (b)r=05c=2+4+1i,¢, =2, ¢, =2+ 2i.

By calculating the matrix element, it is easy to see that the above determinant is equal to det;<; j<y (B%"’(k, t)). We complete the proof
of Theorem 2. O

By taking N = 1 we obtain the fully discrete Peregrine rogue wave solution,

gm) =1 +rm+(1—-rk+1—r+1/c—rc)t +cy)
X((14rm+(1—rk+(1—r+1/c— 1Ot + &) +1, (29)

where c; is a complex constant. Similarly to the breather solution, there are rogue wave solutions regular on the lattice for both focusing
case (r > 0) and defocusing case (r < 0), since if there are zeros of fi we can avoid explosion of solution by displacing the zeros off
the lattice points. However for regularity of the solution on the real two dimensional space of (k, t), we have to take r positive. First
order and second-order rogue wave solutions are shown in Figs. 2 and 3, respectively.

There is an exceptional regular solution for r < 0 which is obtained by taking c real and (Imc;)* > —r in (29), but this is not a
rogue wave solution but a traveling wave solution. An example is shown in Fig. 4.

4. Concluding remarks

Even though the study of rogue waves has attracted much attention in more than one decade, the rogue wave solution in fully
discrete integrable systems has not been reported yet. In this paper, we firstly constructed the general breather solution of the fully
discrete NLS equation via the KP-Toda reduction method. Then we succeeded in constructing its general rogue wave solution by taking
the limit of p; — 0 successively fori = 1, ..., N. More study of rogue wave solutions in other discrete systems including non-integrable
ones is called for in the future.
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Fig. 4. Traveling wave solution with r = —0.5, ¢ = 1.0, ¢c; = 1+ i: (a) profile, (b) contour plot.
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Appendix

The discrete two-dimensional Toda lattice hierarchy in bilinear form can be written as

rn(kl + ]7 ey kl) + ]7I<1 + 1)7:11(’(17 LR} kle)
1
e 41k LK)k Ky Ky 1)

v

[Ja-aan
i=1
+Aq 2‘): aﬁv

"= (1 - apA) [ J(an — @)

izh
XToe1(k, oo kn+ 1, .00k, Kt (ke + 1, ..ok, ook + 1, K+ 1) =0, (30)
where n is the lattice number, ky, ..., k,, K; are discrete independent variables, ay, ..., a,, A; are corresponding difference intervals

and v > 1.

Eq. (2) is derived from the above bilinear equation with v = 1 and rewriting kq, K;, a;, A; to k, K, a, A, respectively. We also have
the first modified Toda hierarchy,

Artapiki + 1,00k + 1, K+ Drg(kpr + 1,000 ko + 1, K5 + 1)

v Ao
—A] 1_[ %Tn+1(kv+1 =+ l, ey k2v + 1,1(2 + 1)Tn(k1 + 15 ceey kv + 1sK'l + 1)
=1

+Aa -]

1—a, A
ﬁrn+l(k1+17--'sku+1)7n(kv+1+17--'sk2u+]7K1+15K2+1)
— a;Aq
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v

(1— @) | J(an — avsi)

—A Y. =1 Toei(kn + 1 kosr + 1, oo koy + 1, K + 1)
=1 ay(1 - ahAl)H(ah —a;)
2
xTaki+1, .. kit + Lk + 1,0 ke + 1, Ky +1) =0, (31)

where v > 0 and ay, Aj, are difference intervals for discrete independent variables kj, Kj,, respectively. Here and hereafter we denote
shifted independent variables only and omit unshifted independent variables for simplicity. Eq. (3) is derived from this bilinear equation
by taking v = 1 and rewriting ki, k3, Ky, K3, ay, az, A1, A, to k, I, K, L, a, b, A, B, respectively.

In principle, the above two bilinear equations can be obtained from the discrete KP hierarchy,

aw_l”_z H(ah — aj)

o
> - T Tui = 0, (32)
a

iel\{h}

where I, ] are finite sets of integers satisfying |I| > |J| 42, ay, is the difference interval of ky,, 7; means t function with shifts of k; (i € I,
e, p=rtlky+1,k,+1,...,k, +1)forI ={iy, ip,...,i,}. By taking I = {—1,0, 1, ..., v}, ] = ¢, we obtain

aU
Y 0 T = 0. (33)
=T e —a)
ii:#—hl
Taking the limit aqg — oo, denoting a_; = 1 / 1 and applying variable transformations K; = k_1, n = —k_q; — kg, the first bilinear
equation (30) is derived. If we take I = {—1,0,1,...,v,2v+ 1} and J = {-2,v+ 1, ..., 2v}, we have
2v 2v
, (an— a_y) 1_[ (an — q;) (azp41 — a_3) H (azv41 — @)
Jj=v+1 Jj=v+1
Z m \h Tuin) + > T\ 2v+1) Juze+) = 0.
=1 (an — azrn) [ [ (an — @) [T@s —a)
II_;ZII1 i=—1
Similarly by taking the limit ap — oo, denoting a_; = 1/A4, a_, = 1/A,, taking a,,1; = 0 and demanding t independent of k,,, 1, the
second bilinear equation (31) is recovered through variable transformations Ky = k_1, K = k_5, n = —k_5 — k_1 — ko.
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