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a b s t r a c t

In this paper, we consider the robust inverse scattering method for the Ablowitz–Ladik (AL) equation
on the non-vanishing background, which can be used to deal with arbitrary-order poles on the branch
points and spectral singularities in a unified way. The Darboux matrix is constructed with the aid
of loop group method and considered within the framework of robust inverse scattering transform.
Various soliton solutions are constructed without using the limit technique. These solutions include
general soliton, breathers, as well as high order rogue wave solutions.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Schrödinger equation (NLSE)

iqτ = qxx + 2σ |q|2q, σ = ±1 (1)

s a universal model for weakly nonlinear dispersive waves, both in the focusing case σ = 1 and defocusing case σ = −1. It appears in
any different physical contexts, for instance: the deep water waves, nonlinear optics, Bose–Einstein condensates [1,2]. The integrable
emi-discrete analogue for NLSE (1)

iun,t = un+1 − 2un + un+1 + σ |un|
2(un+1 + un−1), un = hqn, t = τ/h2, (2)

was discovered by Ablowitz and Ladik in 1970s [3,4], therefore it is often called the Ablowitz–Ladik (AL) equation. Besides being used
s a difference numerical schemes for its continuous counterpart, the AL equation also possesses numerous physical applications, such
s the dynamics of anharmonic lattices [5], self-trapping on a dimer [6], Heisenberg spin chains [7,8] and so on [9].
Recently, there are quite a lot of work for the study of the AL equation (2) on the non-vanishing background using different

pproaches, such as the inverse scattering method [10–13], Hirota’s bilinear method [14], Darboux transformation [15,16], algebraic
eometry method [17–19]. For the traditional scattering analysis on the rogue wave solution, it shares the same scattering data with
he background. Thus, it cannot be used to analyze the rogue wave solutions, as well as high order ones. Very recently a robust inverse
cattering method was proposed by Bilman and Miller so as to deal with the rogue wave solutions [20]. The key point is to use the
ormalization method to reconstruct the meromorphic matrix function. By applying the Darboux transformation method within the
rame of robust inverse scattering method, the general high order rogue waves could be obtained without taking the limit on the
pectral parameter.
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In this work, we use the robust inverse scattering method [20–22] to analyze the focusing AL equation (2) on the non-vanishing
background:

lim
n→±∞

un = u±

n ≡ ρei
[
θ (n+ 1

2 )+2ωt+θ±
]
, ω = 1 − (1 + ρ2) cos θ, (3)

here parameters θ , ρ and θ± are real constants. Comparing with the previous studies on the non-vanishing background, the boundary
ondition (3) involves the parameter θ , which can be used to regulate the modulational instability [23]. We will show the fact in the
Appendix: if θ ̸=

π
2 + nπ (n ∈ Z), the background is modulational unstable; otherwise, it is modulational stable. In the modulational

unstable region, there exist Akhmediev breather, Kuznetz–Ma breather, Tajiri–Watanabe breather and rogue wave solutions; whereas,
with the modulational stable background the corresponding solutions will turn to either periodic solutions or (rational) soliton solutions
of W-shape. These phenomena are different from the focusing NLSE (1), whose non-vanishing background is always modulational
nstable. With the aid of the Darboux transformation, the general soliton solutions, which include multi-breather solution, the high
rder lattice rogue wave and so on, are constructed by the Bäcklund transformation. In the original work of robust inverse scattering
ransform [20], the authors used a Darboux matrix with the unit determinant. Instead, we use the Darboux matrix of the loop group
ersion [24,25], which could provide a compact formula for soliton solutions. Some special propositions for the exact solutions could
e analyzed by the elementary Bäcklund transformation.
The rest of the paper is arranged as follows: In Section 2, the robust inverse scattering transform for the AL equation (2) on the

on-vanishing background is constructed by following the method proposed in [20]. A key step to construct robust inverse scattering
ransform is to seek a new Riemann–Hilbert problem to capture the solutions with spectral singularity. Comparing with the robust
nverse scattering method for NLSE (1), in which the Riemann–Hilbert problem is normalized in the neighborhood of ∞ with the identity
atrix, here for the AL equation the Riemann–Hilbert problem of (2) is normalized with a diagonal matrix depending on n and t in the
eighborhood of ∞ and 0. So we need more careful analysis on this procedure to obtain the robust inverse scattering transform. As a
y-product, the conservation laws are obtained by performing the expansions in the neighborhood of ∞ and 0 respectively, which are
iven in Appendix B. In Section 3, we construct the elementary Darboux matrix by the loop group method. Through the robust inverse
cattering transform, the general Darboux matrix can possess the Riemann–Hilbert representation. Then the compact solitonic formulas
re obtained. In Section 4, various exact solutions including breathers, (rational) solitons of W-shape and rogue wave solutions are
onstructed and analyzed. The interaction between breathers and solitons are analyzed by performing the asymptotic analysis. The
ighest peak value for the high order rogue wave solution is obtained by the Bäcklund transformation. Section 5 is devoted to some
onclusions and discussions.

. The robust inverse scattering transform to the AL equation on the non-vanishing background

The Lax pair for the AL equation (2) is given by [3,4]:

vn+1 = Xnvn, Xn =

[
z un

−ūn z−1

]
, (4a)

vn,t = Tnvn, Tn =

[
−iunūn−1 −

i
2 (z − z−1)2 −iunz + iun−1z−1

−iūnz−1
+ iūn−1z iun−1ūn +

i
2 (z − z−1)2

]
, (4b)

where vn is a two-component vector, z ∈ C is the spectral parameter and un(t) is the potential function, the overbar represents the
omplex conjugation. The compatibility condition Xn,t + XnTn − Tn+1Xn = 0 gives the AL equation (2).
To study the above Cauchy problem conveniently, we set the following gauge transformation

un = wne
i
[
θ (n+ 1

2 )+2ωt
]
, fn = e−

i
2 [θn+2ωt]σσσ333vn, λ = ze−

iθ
2 ,

where σσσ333 is the third Pauli matrix. It follows that Eq. (2) becomes

iwn,t = (1 + |wn|
2)(wn+1eiθ + wn−1e−iθ ) − 2 cos θ (1 + ρ2)wn, (5)

nd the Lax pair (4) turns to

fn+1 = Lnfn, Ln ≡ λE+ + Qn + E−λ
−1, (6a)

fn,t = Mnfn, (6b)

here

E+ =

[
1 0
0 0

]
, E− =

[
0 0
0 1

]
, Qn =

[
0 wn

−w̄n 0

]
,

Mn =

[
−iwnw̄n−1eiθ −

i
2 (λe

iθ
2 − λ−1e−

iθ
2 )2 − iω −iwneiθλ+ iwn−1e−iθλ−1

−iw̄ne−iθλ−1
+ iw̄n−1eiθλ iwn−1w̄ne−iθ

+
i
2 (λe

iθ
2 − λ−1e−

iθ
2 )2 + iω

]
.

(7)

hus the Cauchy problem for (2) is equivalent to the Cauchy problem for (5) with boundary condition

lim
n→±∞

wn = w±
≡ ρeiθ± . (8)
2
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Fig. 1. The two red segments denote the branch cuts. The four black points denote the branch points. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

2.1. Scattering analysis

For direct scattering problem, we merely need to analyze the spectral problem (6a). To analyze the spectral problem, we introduce
the following transformation:

f±n = exp
(

i
2
θ±σσσ333

)
χχχ±

n , (9)

under which the spectral problem can be reduced to

χχχ±

n+1 = [ΛΛΛ+ Q±

n ]χχχ±

n ,

here

ΛΛΛ =

[
λ ρ

−ρ λ−1

]
, Q±

n =

[
0 wne−iθ± − ρ

−(w̄neiθ± − ρ) 0

]
.

e diagonalize the matrix

ΛΛΛ = rMζσσσ333M−1, r =

√
1 + ρ2, ζσσσ333 = diag

(
ζ , ζ−1)

where

M =

[
1 ξ

ξ 1

]
, ξ =

1 − λ2 +

√
(1 − λ2)2 − 4ρ2λ2

2ρλ
,

nd ζ satisfies the following equation

r(ζ + ζ−1) = λ+ λ−1, i.e. ζ =
1 + λ2 +

√
(1 + λ2)2 − 4r2λ2

2rλ
, (10)

where ζ (λ) defines a two sheet Riemann surface Γ with genus one, which is pieced together by two pieces Γ+ and Γ− slit along the
line segments Ω = [−(r + ρ),−(r − ρ)] ∪ [(r − ρ), (r + ρ)] as shown in Fig. 1. For the functions ζ (λ) and ξ (λ) on the branch cut Ω ,
e have the jump conditions ζ− = ζ+ζ

2
−

and ξ− = ξ+ξ
2
−
, where ζ± = ζ (λ ± i0+) and ξ± = ξ (λ ± i0+) are the nontangential limits

rom the ‘‘±" side of branch cut Ω respectively (see Fig. 1). The branch cut Ω can be decomposed into two pieces Ω = Ω+ ∪Ω− (see
ig. 1), where

Ω+ = [1, (r + ρ)] ∪ [−(r + ρ),−1]
and
Ω− = [(r − ρ), 1] ∪ [−1,−(r − ρ)] .

e can verify that |ζ (λ)| = 1 when λ ∈ {λ : |λ| = 1} ∪ Ω , and |ξ (λ)| = 1 for λ ∈ Ω . In the piece Γ+, the functions ξ (λ) and ζ (λ)
are the meromorphic function in the whole complex plane with the first order pole at λ = 0 and the removable singularity at λ = ∞.
In the piece Γ−, the functions ξ (λ) and ζ (λ) are the analytic function in the whole complex plane with the first order pole at λ = ∞

and the removable singularity at λ = 0. In what follows, we just consider the analysis on the piece Γ− since we can apply the similar
analysis for the piece Γ+. Since the functions ξ (λ) and ζ (λ) are analytic in the region λ ∈ Sin/Ω− and the norm of them equals to 1 on
the boundary Ω−, we have |ξ (λ)| ≤ max{1,max|λ|=1 |ξ (λ)|} = (1 + r)/ρ and |ζ (λ)| ≤ 1 by the maximum modulus principle, where
Sin := {λ : |λ| < 1}. Both equations ξ 2 = 1 and ζ 2 = 1 have the same four simple roots λ = r ± ρ and λ = −r ± ρ.

Then we introduce the gauge transformation τττ+
n =

(∏
+∞

k=n
1+|wk|

2

r2

)
M−1χχχ+

n and τττ−
n = M−1χχχ−

n . It follows that

τττ+

n = [r−1ζ−σσσ333 − r−2M−1Q+

n M]τττ+

n+1, τττ−

n+1 = [rζσσσ333 + M−1Q−

n M]τττ−

n . (11)

Based on above equation (11) and boundary condition (8), we can rewrite them as the summation equation

I − (rζσσσ333 )−nτττ+

n = r−2
+∞∑
k=n

(rζσσσ333 )−kM−1Q+

k Mτττ
+

k+1, (12)

(rζσσσ333 )−nτττ−

n − I =

n−1∑
(rζσσσ333 )−(k+1)M−1Q−

k Mτ
−

k . (13)

k=−∞

3
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From Eq. (12), multiply M(rζσσσ333 )n from the left and (rζσσσ333 )−n from the right at both sides, we can obtain the following equation

µµµ+

n = M − r−2
+∞∑
k=n

M(rζσσσ333 )n−kM−1Q+

k µµµ
+

k+1(rζ
σσσ333 )−n+k+1, (14)

µµµ−

n = M +

n−1∑
k=−∞

M(rζσσσ333 )n−(k+1)M−1Q−

k µµµ
−

k (rζ
σσσ333 )−n+k, (15)

where µµµ±
n = Mτττ±

n (rζ
σσσ333 )−n

= χχχ±
n (rζ

σσσ333 )−n.
Next, we consider the analytic property for solution µµµ±

n = [µµµ±

n,1,µµµ
±

n,2]. Then Eqs. (14)–(15) can be rewritten as the following form:

µµµ+

n,1 =

[
1
ξ

]
− ζ

+∞∑
k=n

G1(k, n; λ)
Q+

k

r
µµµ+

k+1,1, µµµ−

n,1 =

[
1
ξ

]
+

n−1∑
k=−∞

G1(k + 1, n; λ)
Q−

k

rζ
µµµ−

k,1, (16)

µµµ+

n,2 =

[
ξ

1

]
−

+∞∑
k=n

G2(k, n; λ)
Q+

k

rζ
µµµ+

k+1,2, µµµ−

n,2 =

[
ξ

1

]
+ ζ

n−1∑
k=−∞

G2(k + 1, n; λ)
Q−

k

r
µµµ−

k,2, (17)

where

G1(k, n; λ) = M
[
1 0
0 ζ 2(k−n)

]
M−1

= I +
ζ 2(k−n)

− 1
1 − ξ 2

[
−ξ 2 ξ

−ξ 1

]
,

G2(k, n; λ) = M
[
ζ 2(n−k) 0

0 1

]
M−1

= I +
ζ 2(n−k)

− 1
1 − ξ 2

[
1 −ξ

ξ −ξ 2

]
.

he existence and analytic properties of solution µµµ±
n can be summarized as the following lemmas. The proofs of two following lemmas

re followed by the method of Ref. [26], which are given in Appendix A.

emma 1. If
∑

∞

n=n0
|wne−iθ+ − ρ| < ∞ for any finite n0 ∈ Z and take arbitrary 0 < ϵ < min(r −ρ, 1− (r −ρ)), then the solution µµµ+

n,1 is
analytic in the set Sin\Ω− and uniformly bounded to Sin\(Ω−∪Bϵ(−(r−ρ))∪Bϵ(r−ρ)), where Bϵ(z0) = {z ∈ C : |z − z0| < ϵ/2}; the solution

+

n,2 is analytic in the set Sout \Ω+ and uniformly bounded for Sout \ (Ω+ ∪Bϵ(−(r +ρ))∪Bϵ(r +ρ)), where Sout := {λ : 1 < |λ| < ∞}. In a
imilar way, if

∑n0
n=−∞

|wne−iθ− − ρ| < ∞ for any finite n0 ∈ Z, then solutionµµµ−

n,1 is analytic in the set Sout\Ω+ and uniformly bounded for
out\(Ω+∪Bϵ(−(r+ρ))∪Bϵ(r+ρ)); solutionµµµ−

n,2 is analytic in the set Sin\Ω− and uniformly bounded for Sin\(Ω−∪Bϵ(−(r−ρ))∪Bϵ(r−ρ)).
oreover, the solutions of above summation equations are unique in the set Sout \Ω+ or Sin \Ω− under the space of bounded functions.

emma 2. If
∑

+∞

k=n(1 + |k|)∥Q+

k ∥ < +∞, there exists a positive constant ϵ > 0, such that solution µµµ+

n,1 can be uniformly bounded to the
egion (B2ϵ(r − ρ) ∪ B2ϵ(−(r − ρ))) \Ω−; the solution µµµ+

n,2 can be uniformly bounded to the region (B2ϵ(r + ρ) ∪ B2ϵ(−(r + ρ))) \Ω+.
If
∑k=n−1

−∞
(1 + |k|)∥Q−

k ∥ < +∞, there exists a positive constant ϵ > 0, such that solution µµµ−

n,1 can be uniformly bounded to the region
B2ϵ(r + ρ) ∪ B2ϵ(−(r + ρ))) \Ω+; the solution µµµ−

n,2 can be uniformly bounded to the region (B2ϵ(r − ρ) ∪ B2ϵ(−(r − ρ))) \Ω−.

Together with the above two lemmas on the Jost functions, we conclude that

heorem 1. If
∑

∞

k=n0
(1 + |k|)|wke−iθ+ − ρ| < ∞ for any finite n0 ∈ Z, then the solution µµµ+

n,1 is analytic in the region Sin \ Ω− and is
ontinuous to its boundary; the solution µµµ+

n,2 is analytic in the region Sout \Ω+ and is continuous to its boundary.
If
∑n0

k=−∞
(1 + |k|)|wke−iθ− − ρ| < ∞ for any finite n0 ∈ Z, then solution µµµ−

n,1 is analytic in the region Sout \Ω+ and is continuous to
ts boundary; solution µµµ−

n,2 is analytic in the region Sin \Ω− and is continuous to its boundary.

.2. Scattering matrix

The Jost solutions J±(n; λ) = f±n (λ)(E(λ))−n are linear dependent, which can be related by

J−(n; λ) = J+(n; λ)E(λ)nS(λ)E(λ)−n, λ ∈ {λ : |λ| = 1}, (18)

where S(λ) is the scattering matrix,

S(λ) =

[
a(λ) c(λ)
b(λ) d(λ)

]
, E(λ) = r

[
ζ (λ) 0
0 ζ (λ)−1

]
.

By above substitution and Eqs. (6), we have

J±(n + 1; λ) = Ln(λ)J±(n; λ)E(λ)−1. (19)

Furthermore, we can obtain that

J†±(n + 1; λ∗) = [E(λ∗)−1
]
†J†±(n; λ∗)L†

n(λ
∗) =

1
2 E(λ)J

†
±(n; λ

∗)L†
n(λ

∗),

r

4
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ere λ∗
≡ λ̄−1, and † represents the Hermite conjugate. Together with the symmetry property of Ln(λ), i.e. L†

n(λ∗)Ln(λ) = (1+|ωn|
2)I2,

e arrive at

J†±(n + 1; λ∗)J±(n + 1; λ) = ρnE(λ)J†±(n; λ∗)J±(n; λ)E(λ)−1,

here ρn =
1
r2
(1 + |ωn|

2).
On the other hand, boundary conditions for J±(n; λ) are

J±(±∞; λ) = exp
(

i
2
θ±σσσ333

)[
1 ρ−1(rζ − λ)

ρ−1(rζ − λ) 1

]
.

t follows that

J†±(±∞; λ∗) =

[
1 ρ−1(rζ−1

− λ−1)
ρ−1(rζ−1

− λ−1) 1

]
exp

(
−

i
2
θ±σσσ333

)
.

hen we can obtain the following proposition:

roposition 1. The Jost solutions J± possesses the following symmetry relation:

J†+(n; λ∗)J+(n; λ) =[1 − ξ 2]∆+

n , ∆+

n =

+∞∏
l=n

ρ−1
l ,

J†−(n; λ∗)J−(n; λ) =[1 − ξ 2]∆−

n , ∆−

n =

n−1∏
l=−∞

ρl.

(20)

On the other hand, we have the following relation for determinants J±,

det(J+(n; λ)) =[1 − ξ 2]

+∞∏
l=n

ρ−1
l ,

det(J−(n; λ)) =[1 − ξ 2]

n−1∏
l=−∞

ρl.

(21)

t follows that

det(S(λ)) =

+∞∏
l=−∞

ρl ≡ v.

Through above relations, we can obtain that

J†−(n; λ∗) = E(λ)nS†(λ∗)E(λ)−nJ†+(n; λ∗)

nd

J−1
−

(n; λ) = E(λ)nS−1(λ)E(λ)−nJ−1
+

(n; λ).

ith the aid of Proposition 1, we can obtain that the following proposition.

roposition 2. The scattering matrix S(λ) possesses the following symmetry properties:

S†(λ∗) = vS(λ)−1.

Based on Proposition 2, we can rewrite S(λ) as

S(λ) =

[
a(λ) −b̄(λ∗)
b(λ) ā(λ∗)

]
. (22)

here exists another symmetry relation for Jost solution J±(n; λ):

J±(n; λ) = σσσ333J±(n; −λ)σσσ333. (23)

t follows that the scattering matrix possesses the following symmetry relation:

S(λ) = σσσ333S(−λ)σσσ333. (24)

Based on the analytic properties of Jost functions, we define the following analytic matrices:

Φ+(n; λ) =
[
J−,1(n; λ), J+,2(n; λ)

]
, Φ−(n; λ) =

[
J+,1(n; λ), J−,2(n; λ)

]
hich are analytic in the region Sin/Ω− and Sout/Ω+ respectively.
5
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roposition 3. The analytic matrices Φ±(n; λ) possess the following asymptotic behavior:

Φ+(n; λ) =

[
e

i
2 θ− 0
0 e−

i
2 θ+∆+

n

]
+ O(λ−1), as λ → ∞

Φ−(n; λ) =

[
e

i
2 θ+∆−

n 0
0 e−

i
2 θ−

]
+ O(λ), as λ → 0

(25)

Proof. When λ → ∞, the matrices E(λ) and Φ+(n; λ) have the asymptotic expansion

E(λ) = E+λ+ E[∞]

0 λ−1
+ O(λ−3),

Φ+(n; λ) = Φ+

0 (n) +Φ+

1 (n)λ−1
+ O(λ−2),

(26)

here

E[∞]

0 =

[
1 − r2 0

0 r2

]
.

nserting the above expansions into (19) and comparing the coefficients, we have

Φ+

0 (n + 1)E+ = E+Φ
+

0 (n),
Φ+

1 (n + 1)E+ = QnΦ
+

0 (n) + E+Φ
+

1 (n),
(27)

hich implies that

Φ+

0 (n) =

[
c+ 0
0 α+

n

]
, Φ+

1 (n) =

[
β+

−α+
n wn

−wn−1 γ+
n

]
,

where c+, β+ are constants which are independent of n. On the other hand, we know the boundary conditions

J−,1(n; λ) = e
i
2 θ−σσσ333

[
1
ξ

]
, as n → −∞,

and

J+,2(n; λ) = e
i
2 θ+σσσ333

[
ξ

1

]
, as n → +∞,

which deduce that c+
= e

i
2 θ− , β+

= 0 and α+
n → e−

i
2 θ+ as n → +∞. Meanwhile, the determinant has the following relation

det(Φ+(n + 1; λ)) =
1 + |wn|

2

r2
det(Φ+(n; λ))

which infers that α+

n+1 =
1+|wn|

2

r2
α+
n . Together with the boundary condition, we obtain α+

n = e−
i
2 θ+∆n.

While λ → 0, the matrices E(λ) and Φ−(n) have the asymptotic expansion

E(λ) = E−λ
−1

+ E[0]
0 λ+ O(λ3),

Φ−(n; λ) = Φ−

0 (n) +Φ−

1 (n)λ+ O(λ2),
(28)

here

E[0]
0 =

[
r2 0
0 1 − r2

]
.

nserting the above expansions into (19) and comparing the coefficients of λ, we have

Φ−

0 (n + 1)E− = E−Φ
−

0 (n),
Φ−

1 (n + 1)E− = QnΦ
−

0 (n) + E−Φ
−

1 (n),
(29)

hich implies that

Φ−

0 (n) =

[
α−
n 0
0 c−

]
, Φ−

1 (n) =

[
γ−
n wn−1

α−
n wn β−

]
.

imilar as above, by the boundary conditions, we have c−
= e−

i
2 θ− , β−

= 0 and α−
n = ∆−

n e
i
2 θ+ . This completes the proof. □

Through the definition of scattering matrix S(λ) (18) and (22), we know that

a(λ) =
det(Φ+(n; λ))
(1 − ξ 2)∆+

n
, b(λ) =

det
([
J+,1(n; λ), J−,1(n; λ)

])
(1 − ξ 2)∆+

n
ζ 2n,

ā(λ∗) =
det(Φ−(n; λ))
(1 − ξ 2)∆+

n
, b̄(λ∗) = −

det
([
J−,2(n; λ), J+,2(n; λ)

])
(1 − ξ 2)∆+

n
ζ−2n.

(30)

In virtue of Proposition 3, the a(λ) function has the following asymptotic expression:

a(λ) = e
i
2 (θ−−θ+)

+ O(λ−1), as λ → ∞. (31)
6
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The function a(λ) can be analytically extended to the region λ ∈ Sout/Ω+. For convenience, assuming that it only has finitely many
zeros and has no zeros on the boundary ∂(Sout/Ω+), then a(λ) can be represented in the form

a(λ) = â(λ)
k∏

i=1

(
λ2 − λ2i

λ2 − (λ∗

i )2

)mi

(32)

where â(λ) is an analytic function without zeros in the region λ ∈ Sout/Ω+, and mi ∈ Z+ is the order of zeros. Denote Φ±(n; λ) =

Φ±(n; λ)ζ nσσσ333 . The kernel of Φ+(n; λ) and high order information at λ = λi are determined by⎡⎢⎢⎢⎣
Φ

[0]
+ (n; λi) 0 · · · 0

Φ
[1]
+ (n; λi) Φ

[0]
+ (n; λi) · · · 0

...
...

. . .
...

Φ
[mi−1]
+ (n; λi) Φ

[mi−2]
+ (n; λi) · · · Φ

[0]
+ (n; λi)

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
γγγ 000(λi)
γγγ 111(λi)
...

γγγmmmiii−111(λi)

⎤⎥⎥⎦ = 0, (33)

where Φ+(n; λ) =
∑

∞

j=0Φ
[j]
+ (n; λi) (λ− λi)

j. It is easy to verify the symmetry relation:

Φ+(n; λ) = σσσ222Φ−(n; λ∗)σσσ222, σσσ222 =

[
0 −i
i 0

]
, (34)

hich infers that⎡⎢⎢⎢⎣
Φ

[0]
− (n; λ∗

i ) 0 · · · 0
Φ

[1]
− (n; λ∗

i ) Φ
[0]
− (n; λ∗

i ) · · · 0
...

...
. . .

...

Φ
[mi−1]
− (n; λ∗

i ) Φ
[mi−2]
− (n; λ∗

i ) · · · Φ
[0]
− (n; λ∗

i )

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
σσσ222γγγ 000(λi)
σσσ222γγγ 111(λi)

...

σσσ222γγγmmmiii−111(λi)

⎤⎥⎥⎥⎦ = 0, (35)

here Φ−(n; λ) =
∑

∞

j=0Φ
[j]
− (n; λ∗

i )
(
λ− λ∗

i

)j.
From the symmetry relation (23), we know that Ker(Φ+(n; λ)) and high order information at λ = −λi are⎡⎢⎢⎢⎣

Φ
[0]
+ (n; −λi) 0 · · · 0

Φ
[1]
+ (n; −λi) Φ

[0]
+ (n; −λi) · · · 0

...
...

. . .
...

Φ
[mi−1]
+ (n; −λi) Φ

[mi−2]
+ (n; −λi) · · · Φ

[0]
+ (n; −λi)

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
σσσ333γγγ 000(λi)
σσσ333γγγ 111(λi)

...

σσσ333γγγmmmiii−111 (λi)

⎤⎥⎥⎦ = 0, (36)

here Φ+(n; λ) =
∑

∞

j=0Φ
[j]
+ (n; −λi) (λ+ λi)

j, and Ker(Φ−(n; λ)) at λ = −λ∗

i is⎡⎢⎢⎢⎣
Φ

[0]
− (n; −λ∗

i ) 0 · · · 0
Φ

[1]
− (n; −λ∗

i ) Φ
[0]
− (n; −λ∗

i ) · · · 0
...

...
. . .

...

Φ
[mi−1]
− (n; −λ∗

i ) Φ
[mi−2]
− (n; −λ∗

i ) · · · Φ
[0]
− (n; −λ∗

i )

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
σσσ333σσσ222γγγ 000(λi)
σσσ333σσσ222γγγ 111(λi)

...

σσσ333σσσ222γγγmmmiii−111(λi)

⎤⎥⎥⎥⎦ = 0, (37)

here Φ−(n; λ) =
∑

∞

j=0Φ
[j]
− (n; −λ∗

i )
(
λ+ λ∗

i

)j. These kernels and high order information conditions (33), (35), (36), (37) completely
determine the degenerate property of meromorphic function Φ±(n; λ) in the neighborhood of ±λi and ±λ∗

i , which can be used to
construct the solitonic solutions.

The conservation laws for AL-equation (5) on the non-vanishing background can be established based on the expansion of above
analytic Jost functions, which is shown in Appendix B.

2.3. Riemann–Hilbert Problem

In this subsection, we construct the corresponding Riemann–Hilbert problem. Firstly, we define the following sectional meromorphic
functions:

M(n; λ) =

⎧⎨⎩ M+(n; λ) = Φ+(n; λ)diag
(

1
a(λ) , 1

)
, λ ∈ Sout \Ω+,

M−(n; λ) = Φ−(n; λ)diag
(
1, 1

ā(λ∗)

)
, λ ∈ Sin \Ω−,

(38)

Rewriting the matrix function M±(n; λ) in a uniform form:

M+(n; λ) = J+(n; λ)ζ nσσσ333
[

1 0
r(λ) 1

]
ζ−nσσσ333 , r(λ) =

b(λ)
a(λ)

,

M−(n; λ) = J+(n; λ)ζ nσσσ333
[
1 −r̄(λ∗)
0 1

]
ζ−nσσσ333 ,

e deduce the jump condition between M+(n; λ) and M−(n; λ) on S = {λ : |λ| = 1}

M+(n; λ) = M−(n; λ)V1, V1 = ζ nσσσ333

[
1 + r(λ)r̄(λ∗) r̄(λ∗)

]
ζ−nσσσ333 , λ ∈ S. (39)
r(λ) 1

7
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T
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S
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hen we consider the jump condition on the cut Ω . We know the following boundary conditions for J±(n; λ)

J±(±∞; λ±) = exp
(

i
2
θ±σσσ333

)[
1 ξ±
ξ± 1

]
,

here λ± = λ± iϵ, ϵ → 0+, and ξ± = ξ (λ±). It follows that

J±(±∞; λ+) = J±(±∞; λ−)Sb, λ ∈ Ω,

where

Sb =

[
0 ξ+
ξ+ 0

]
.

Therefore, by the uniqueness of solutions to difference equations, we obtain that

J±(n; λ+) = J±(n; λ−)Sb, λ ∈ Ω. (40)

Then we know that

a(λ+) =
det

([
J−,1(n; λ+), J+,2(n; λ+)

])
∆n(1 − ξ 2+)

=
ξ 2
+
(1 − ξ 2

−
)

(1 − ξ 2+)

det
([
J−,2(n; λ−), J+,1(n; λ−)

])
∆n(1 − ξ 2−)

= ā(λ∗

−
)

(41)

and

b(λ+) =
det

([
J+,1(n; λ+), J−,1(n; λ+)

])
∆n(1 − ξ 2+)

ζ 2n
+

=
ξ 2
+
(1 − ξ 2

−
)

(1 − ξ 2+)

det
([
J+,2(n; λ−), J−,2(n; λ−)

])
∆n(1 − ξ 2−)

ζ 2n
+

= −b̄(λ∗

−
)

(42)

which deduces that r(λ+) = −r̄(λ∗
−
). Furthermore, we obtain the jump condition on Ω±. If λ ∈ Ω+, then we have

M+(n; λ+) =J+(n; λ+)ζ
nσσσ333
+

[
1 0

r(λ+) 1

]
ζ

−nσσσ333
+

=M+(n; λ−)
1
ξ−

[
1 0

r(λ−)ζ−2n
− 1

][
0 1
1 0

][
1 0

r(λ+)ζ−2n
+ 1

]
=M+(n; λ−)V2,+, V2,+ =

1
ξ−

[
−r̄(λ∗

−
)ζ 2n

−
1

1 + r(λ−)r̄(λ∗
−
) −r(λ−)ζ−2n

−

]
.

(43)

imilarly, if λ ∈ Ω−, we have

M+(n; λ+) = M+(n; λ−)V2,−, V2,− =
1
ξ−

[
r̄(λ∗

−
)ζ 2n

−
1 + r(λ−)r̄(λ∗

−
)

1 r(λ−)ζ−2n
−

]
. (44)

In summary, we can define the following Riemann–Hilbert problem:

iemann–Hilbert Problem 1.

• The sectionally analytic matrix-valued function M(n; λ) in C/{S ∪Ω};
• The jump conditions:

M+(n; λ) = M−(n; λ)V1, λ ∈ S,
M+(n; λ) = M−(n; λ)V2,±, λ ∈ Ω±,

(45)

where V1 and V2,± are given by (39), (43) and (44).
• The principal part of M(n; λ) is given by

M(n; λ) =

⎡⎣ k∑
i=1

mi∑
j=1

(
M[i]

1,j(n)

(λ− λi)j
+

M[−i]
1,j (n)

(λ+ λi)j

)
,

n∑
i=1

mi∑
j=1

(
M[i]

2,j(n)

(λ− λ∗

i )j
+

M[−i]
2,j (n)

(λ+ λ∗

i )j

)⎤⎦ , (46)

where the M[s]
k,j’s are the column vectors of the principal part, which will be determined by the analytic part of M(n; λ) by the conditions

(33), (35), (36) and (37).
8



Y. Chen, B.-F. Feng and L. Ling Physica D 424 (2021) 132954

f

T

a

T

a

• The normalization condition:

M(n; λ) =

[
e

i
2 θ− 0
0 e−

i
2 θ+∆+

n

]
+ O(λ−1), λ → ∞,

M(n; λ) =

[
e

i
2 θ+∆−

n 0
0 e−

i
2 θ−

]
+ O(λ), as λ → 0.

(47)

Following the way in [20], the existence and uniqueness of solutions of the above Riemann–Hilbert Problem 1 for all n ∈ Z follows
by means of Zhou’s vanishing lemma argument [27] after replacing the poles by jumps along small circular contours and the Schwartz
reflection about the unit circle {λ : |λ| = 1}.

2.4. Evolution of scattering data

Lemma 3. Let wn(t) be a solution of Eq. (5) which decays to ρeiθ± as n → ±∞, and f±n (t; λ) be the Jost solutions for each t ∈ [0,+∞).
Then W±(n, t; λ) = f±n (t; λ)C±(t; λ) solves the Lax pair simultaneously, where

C±(t; λ) = eρ
2 sin(θ )t+i(λ−1e−iθ

−λeiθ )γσσσ333t , γ =

√
(1 + λ2)2 − 4r2λ2

2λ
. (48)

Proof. Since the function f±n (t; λ) solves the n-part of Lax pair for the fixed t , by the fundamental solution theory of difference
equation there exists a solution W±(n, t; λ) = f±n (t; λ)C±(t; λ) solves the Lax pair (5) simultaneously. Inserting the ansatz W±(n, t; λ) =
±
n (t; λ)C±(t; λ) into the t-part of Lax pair, we have

d
dt

(
f±n (t; λ)

)
C±(t; λ) + f±n (t; λ)

d
dt

(
C±(t; λ)

)
= Mnf±n (t; λ)C

±(t; λ). (49)

hrough the boundary conditions (8), we know that

f±n (t; λ) → exp
(

i
2
θ±σσσ333

)[
1 ξ

ξ 1

]
rnζ nσσσ333 (50)

nd

Mn → M±

n = e
i
2 θ±σσσ333

(
i(λ−1e−iθ

− λeiθ )
[
λ ρ

−ρ λ−1

]
+ δI2

)
e−

i
2 θ±σσσ333 (51)

where δ =
i
2 (e

iθλ2−e−iθλ−2)+i(r2 cos(θ )−eiθρ2
−e−iθ ). Solving the differential equation for C±(t; λ) with the initial data C±(0; λ) = I2,

we obtain the solution (48), which completes the proof.

Through the evolution of Jost solutions, the evolution of scattering data and kernel Ker(Φ±(n; λ)) can be stated as

W+(n, t; λ) = W−(n, t; λ)S(λ), W±(n, t; λ) = Φ±(n, t; λ)eρ
2 sin(θ )t+i(λ−1e−iθ

−λeiθ )γσσσ333t (52)

and ⎡⎢⎢⎢⎣
W[0]

+ (n, t; λi) 0 · · · 0
W[1]

+ (n, t; λi) W[0]
+ (n, t; λi) · · · 0

...
...

. . .
...

W[mi−1]
+ (n, t; λi) W[mi−2]

+ (n, t; λi) · · · W[0]
+ (n, t; λi)

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
γγγ 000(λi)
γγγ 111(λi)
...

γγγmmmiii−111(λi)

⎤⎥⎥⎦ = 0, (53)

where i = 1, 2, . . . , k,

W+(n, t; λ) =

∞∑
j=0

W[j]
+ (n, t; λi)(λ− λi)j.

he evolution of kernel Ker(Φ±(n; λ)) at the other points −λi, ±λ∗

i can be stated as above by the symmetric relations (23), (34).
Then the evolution of jump matrices V1(t) and V2,±(t) are given by

V1(λ; t) = ei(λ
−1e−iθ

−λeiθ )γσσσ333tV1(λ)e−i(λ−1e−iθ
−λeiθ )γσσσ333t , (54)

and

V2,±(λ; t) = ei(λ
−1e−iθ

−λeiθ )γ−σσσ333tV2,±(λ)e−i(λ−1e−iθ
−λeiθ )γ+σσσ333t , γ± = γ (λ±). (55)

The evolution of kernel and high order information at λ = λi can be represented as⎡⎢⎢⎣
γγγ 000(λi; t)
γγγ 111(λi; t)

...

γγγmmmiii−111(λi; t)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
ei(λ

−1e−iθ
−λeiθ )γσσσ333t 0 · · · 0

d ei(λ
−1e−iθ

−λeiθ )γσσσ333t

dλ ei(λ
−1e−iθ

−λeiθ )γσσσ333t · · · 0
...

...
. . .

...

dmi−1ei(λ
−1e−iθ

−λeiθ )γσσσ333t

dλmi−1
dmi−2ei(λ

−1e−iθ
−λeiθ )γσσσ333t

dλmi−2 · · · ei(λ
−1e−iθ

−λeiθ )γσσσ333t

⎤⎥⎥⎥⎥⎥⎦
⏐⏐⏐
λ=λi

⎡⎢⎢⎣
γγγ 000(λi)
γγγ 111(λi)
...

γγγmmmiii−111(λi)

⎤⎥⎥⎦ , (56)

nd i = 1, 2, . . . , k.
9
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.5. Robust inverse scattering method

The above procedure is the classical inverse scattering method. However, under the classical one, the rogue waves and high order
ogue wave cannot be captured. To solve this problem, we apply the robust inverse scattering method [20]. The key point of the
obust inverse scattering method is to construct a new analytic function instead of original Jost function. The new analytic function
s constructed by the following proposition:

roposition 4. Suppose that wn(t) is a bounded classic solution for Eq. (5). For arbitrary n ∈ Z and t ∈ R, there exists a unique analytic
olution U(n, t; λ) on the torus region Γ = {λ : R−1 < |λ| ≤ R, R > r + ρ} which solves the Lax pair (6) simultaneously with the initial
ondition U(0, 0; λ) = I2.

roof. Firstly, we define the shift operator Efn = fn+1. Since wn(t) satisfies Eq. (5), the compatibility condition d
dt (Efn(t)) = E( d

dt fn(t)),
i.e

d
dt

Ln(t; λ) + Ln(t; λ)Mn(t; λ) − (EMn(t; λ))Ln(t; λ) = 0 (57)

is valid automatically. The compatibility condition guarantees that the value of fn(t) from the origin point (n, t) = (0, 0) by the
ifference–differential equation (6) is independent of the path. Actually, we can show the iteration on the basic path from (n, 0) to
n + 1, t):

fn+1(t; λ) =E(fn(0; λ)) +

∫ t

0

d
dt ′

(Efn(t ′; λ))dt ′

=E
(
fn(0; λ) +

∫ t

0

d
dt ′

fn(t ′; λ)dt ′
) (58)

where the first equation is along the path (n, 0) → (n+ 1, 0) → (n+ 1, t) and the second equation is along the path (n, 0) → (n, t) →

(n + 1, t). The equivalence between the first and second equality is from the compatibility condition (57). Fixed a path, the solution
U(n, t; λ) with the initial data U(0, 0; λ) = I2 can be represented as the following integral form:

U(n, t; λ) = Ln−1(0; λ)Ln−2(0; λ) · · · L0(0; λ) +

∫ t

0
Mn(t ′; λ)U(n, t ′; λ)dt ′, n ∈ Z+,

U(n, t; λ) = (Ln(0; λ))−1 (Ln+1(0; λ))−1
· · · (L−1(0; λ))−1

+

∫ t

0
Mn(t ′; λ)U(n, t ′; λ)dt ′, n ∈ Z−,

(59)

The standard Picard iteration and the assumption that wn(t) is a bounded classical solution of (5) guarantee uniform convergence of
iterating series. Then, the first expression at the right hand side of Eq. (59) and Mn(t; λ) are analytic in the region Γ , so is U(n, t; λ).

In view of above proposition, the existence and uniqueness theorem of ordinary differential equation, the analytic solution on the
region Γ can be constructed:

Uin(n, t; λ) = UB(n, t; λ)[UB(0, 0; λ)]−1

= M±(n, t; λ)rnesin(θ )ρ
2te[n ln(ζ )+i(λ−1e−iθ

−λeiθ )γ t]σσσ333 [M±(0, 0; λ)]−1,
(60)

where the matrix function UB(n, t; λ) is the fundamental solutions for the Lax pair (6).
We now define the sectionally analytic matrix function:

M(n, t; λ) =

{
Uin(n, t; λ)r−ne− sin(θ )ρ2te−[n ln(ζ )+i(λ−1e−iθ

−λeiθ )γ t]σσσ333 , λ ∈ Γ ,

M±(n, t; λ), λ ∈ Γ±.
(61)

where the regions Γ± and Γ are shown in Fig. 2, which solves the following Riemann–Hilbert problem:

Riemann–Hilbert Problem 2. The 2 × 2 matrix function M(n, t; λ) that has the following properties:

Analyticity M(n, t; λ) is analytic in λ ∈ C \ {∂Γ ∪Ω}.

Jump condition M(n, t; λ) takes continuous boundary values M±(n, t; λ) on ∂Γ ∪Ω , and they are related by the jump conditions of the
form M+(n, t; λ) = M−(n, t; λ)V(n, t; λ) on ∂Γ ∪Ω , where

V(n, t; λ) =e−2[n ln(ζ+)+i(λ−1e−iθ
−λeiθ )δ+t]σσσ333 , λ ∈ Ω,

V(n, t; λ) =e[n ln(ζ )+i(λ−1e−iθ
−λeiθ )δt]σσσ333 [M+(0, 0; λ)]e−[n ln(ζ )+i(λ−1e−iθ

−λeiθ )γ t]σσσ333 , λ ∈ ∂Γ+,

V(n, t; λ) =e[n ln(ζ )+i(λ−1e−iθ
−λeiθ )δt]σσσ333 [M−(0, 0; λ)]−1e−[n ln(ζ )+i(λ−1e−iθ

−λeiθ )γ t]σσσ333 , λ ∈ ∂Γ−,

(62)

Normalization

M(n, t; λ) =

[
e

i
2 θ− 0
0 e−

i
2 θ+∆+

n (t)

]
+ O(λ−1), as λ → ∞,

M(n, t; λ) =

[
e

i
2 θ+∆−

n (t) 0
0 e−

i
2 θ−

]
+ O(λ), as λ → 0.

(63)
10
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Fig. 2. The two red segments denote the branch cuts. The four black points denote the branch points. Definition of the regions Γ , Γ± . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

emark 1. In the assumption of function a(λ): (32), it only has finitely many zeros. Then we can choose the radii of annulus Γ to
nclude all zeros of a(λ) and a∗(λ).

The existence and uniqueness of Riemann–Hilbert Problem 2 can be proved by mimicking the proof of Theorem 2.4 in Ref. [20] but
eplacing the Schwartz symmetry on the line with that on the contour {λ : |λ| = 1}. Finally, the potential function wn can be recovered
rom the following formula:

wn = − lim
λ→∞

λ
M1,2(n, t; λ)
M2,2(n, t; λ)

. (64)

3. Darboux transformation in the frame of robust inverse scattering

In this section, we firstly construct the Darboux matrix by the loop group method [28]. Then by the robust inverse scattering
transform, the Darboux matrix can be inserted into a proper Riemann–Hilbert problem, which can be used to reconstruct the potential
functions.

3.1. Darboux transformation

In this subsection, we construct the elementary Darboux matrix T1(n, t; λ) for the spectral problem of AL equation (5). Assume that
we have an analytic solution Φ(n, t; λ) in the region C \ {0,∞} that solves the Lax pair (6). The loop group construction infers that
the Darboux matrix T1(n, t; λ) is linear fractional transformation of matrix. The conditions of Darboux matrix can be summarized as

(1) The ansatz of Darboux matrix

T1(n, t; λ) =

[
1 0
0 a1(n, t)

](
I +

|x1(n, t)⟩⟨y1(n, t)|
λ− λ∗

1
−
σσσ333|x1(n, t)⟩⟨y1(n, t)|σσσ333

λ+ λ∗

1

)
(65)

2) The kernel conditions and residue conditions

Ker(T1(n, t; λ1)) = Φ(n, t; λ1)c1, Ker(T1(n, t; −λ1)) = σσσ333Φ(n, t; λ1)c1,

and

Res
λ=λ∗

1

(T1(n, t; λ))σ2Φ(n, t; λ1)c̄1 = 0, Res
λ=−λ∗

1

(T1(n, t; λ))σ2σσσ333Φ(n, t; λ1)c̄1 = 0,

where c1 is a column vector.

(3) The normalization conditions

T1(n, t; λ) →

[
b1(n, t) 0

0 β1

]
+ O(λ), as λ → 0,

T1(n, t; λ) →

[
1 0
0 c1(n, t)

]
+ O(λ−1), as λ → ∞,

(66)

where β1 is an undetermined constant independent with n and t , b1(n, t) and c1(n, t) are the undetermined functions.

(4) The symmetry for the potential functions

L[1]
n (t) = λE+ + λ−1E− + Q[1]

n (t) ≡ T1(n + 1, t; λ)Ln(t)[T1(n, t; λ)]−1, (67)
11
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w
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I

T

here

Q[1]
n =

[
0 w

[1]
n

−w
[1]
n 0

]
. (68)

These above four conditions determine the elementary Darboux matrix with the form:

T1(n, t; λ) =

[
1 0
0 |λ1|

2

1+2|ϕ1|2β−1

][
I −

(
λ∗

1K
−1

|y1⟩⟨y1|
λ− λ∗

1
−
λ∗

1σσσ333K−1
|y1⟩⟨y1|σσσ333

λ+ λ∗

1

)]
(69)

where K = diag (α, β), α =
⟨y1|y1⟩

|λ1|2−1
−

⟨y1|σσσ333|y1⟩

|λ1|2+1
, β =

⟨y1|y1⟩

|λ1|2−1
+

⟨y1|σσσ333|y1⟩

|λ1|2+1
and |y1⟩ = (ψ1, ϕ1)T = Φ(n, t; λ1)c1, and ⟨y1| = (|y1⟩)† uses

he Dirac bra–ket notation. Note that T1 depends only on span(|y1⟩), i.e. it is invariant under any rescaling |y1⟩ ↦→ k|y1⟩, k ∈ C. The
orresponding Bäcklund transformation can be obtained by performing the expansion of Eq. (67) in the neighborhood of ∞ together
ith Eq. (69):

w[1]
n =

(
|ψ1|

2
+ |λ1|

2
|ϕ1|

2)wn + λ∗

1(|λ1|
4
− 1)ψ1ϕ̄1

|λ1|
2
|ψ1|

2
+ |ϕ1|

2 . (70)

he new analytic matrix solution can be constructed with the form:

Φ[1](n, t; λ) = T1(n, t; λ)Φ(n, t; λ)(T1(0, 0; λ))−1, (71)

hich satisfies the Lax pair (6) with the new potential function (70).
The Darboux transformation can be iterated to yield the multi ones or high order ones. To represent the solution by the determinant

orm, we rewrite the multi-fold Darboux matrices with the following theorems:

heorem 2. Suppose we have N different solutions |yi⟩ for (6) at λ = λi, then the Darboux matrix for analytic solution matrix Φ(n, t; λ) is

TN (n, t; λ) =

[
1 0
0 aN (n, t)

][
I +

N∑
i=1

(
|xi⟩⟨yi|
λ− λ∗

i
−
σσσ333|xi⟩⟨yi|σσσ333

λ+ λ∗

i

)]
(72)

here ⟨xi| = |xi⟩†, ⟨yi| = |yi⟩†, |xi⟩ can be determined by the following linear equations:

X1 = −Y1A−1, X2 = −Y2B−1,[
X1
X2

]
= [|x1⟩, |x2⟩, . . . , |xN⟩] ,

[
Y1
Y2

]
= [|y1⟩, |y2⟩, . . . , |yN⟩] ,

ere

A =

(
⟨yi|yj⟩
λj − λ∗

i
−

⟨yi|σσσ333|yj⟩
λj + λ∗

i

)
1≤i,j≤N

, B =

(
⟨yi|yj⟩
λj − λ∗

i
+

⟨yi|σσσ333|yj⟩
λj + λ∗

i

)
1≤i,j≤N

nd

aN (n, t) =

∏N
i=1 |λi|

2

1 + 2Y2B−1DY†
2

, D = diag
(
λ̄1, λ̄2, . . . , λ̄N

)
.

Based on the Darboux matrix (72), we obtain the Bäcklund transformation between new potential functions and old ones:

w[N]

n =
wn − bN

aN
,

where

bN = 2
N∑
i=1

(|xi⟩⟨yi|)1,2 = −2Y1A−1Y†
1.

t follows that

w[N]

n =

(
wn + 2Y1A−1Y†

2

)(
1 + 2Y2B−1DY†

2

)
∏N

i=1 |λi|
2

. (73)

We take the seed solution with wn = ρ, then the general solution formula can be represented by the following theorem:

heorem 3. The general solitonic solution formula (73) with wn = ρ can be represented as

w[N]

n = ρ
det(H)

, (74)

det(M)

12
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s
g

here

M =

[
λ̄iλjψ̄iψj + ϕ̄iϕj

λ̄2i λ
2
j − 1

]
1≤i,j≤N

,

H =

[
ψ̄iψj + λ̄iλjϕ̄iϕj

λ̄2i λ
2
j − 1

+
ϕ̄iψj

ρλ̄i

]
1≤i,j≤N

.

roof. Firstly, from the Darboux matrix, we know that(
1 + 2Y1A−1DY†

1

)(
1 + 2Y2B−1DY†

2

)
=

N∏
i=1

|λi|
4.

hen the solution formula becomes

w[N]

n =

(
N∏
i=1

|λi|
2

)
ρ + 2Y1A−1Y†

2

1 + 2Y1A−1DY†
1

.

Denote

|yj⟩ =

[
ψj
ϕj

]
, ⟨yj| =

[
ψ̄j ϕ̄j

]
.

It can be easily shown that

1 + 2Y1A−1DY†
1 =

det(A + 2DY†
1Y1)

det(A)
,

nd

ρ + 2Y1A−1Y†
2 = ρ

(
1 +

2
ρ
ψA−1ϕ†

)
= ρ

det(A +
2
ρ
ϕ†ψ)

det(A)
,

here
ψ =

[
ψ1, ψ2, · · · , ψN

]
,

ϕ =
[
ϕ1, ϕ2, · · · , ϕN

]
.

oreover, the solution formula can be represented as

w[N]

n = ρ

N∏
i=1

|λi|
2
det

(
1
2A +

1
ρ
ϕ†ψ

)
det( 12A + Dψ†ψ)

.

In what follows, we calculate the explicit elements for matrices(
1
2
A +

1
ρ
ϕ†ψ

)
i,j

=
1
2

(
⟨yi|yj⟩
λj − λ∗

i
−

⟨yi|σσσ333|yj⟩
λj + λ∗

i

)
+

1
ρ
ϕ̄iψj

=
λ̄i

λ̄2i λ
2
j − 1

(
ψ̄iψj + λ̄iλjϕ̄iϕj

)
+

1
ρ
ϕ̄iψj,

nd (
1
2
A + Dψ†ψ

)
i,j

=
1
2

(
⟨yi|yj⟩
λj − λ∗

i
−

⟨yi|σσσ333|yj⟩
λj + λ∗

i

)
+ λ̄iψ̄iψj

=
λ̄i

λ̄2i λ
2
j − 1

(
ψ̄iψj + λ̄iλjϕ̄iϕj

)
+ λ̄iψ̄iψj

=
λ̄i

λ̄2i λ
2
j − 1

(
λ̄iλjψ̄iψj + ϕ̄iϕj

)
λ̄iλj.

inally, we obtain the solution formula (74). □

.2. High order darboux matrix

In Theorem 2, we assume that the spectral parameters λi’s are different. It is natural to ask what happens if we have the same
pectral parameter. Actually, this case corresponds exactly the generalized Darboux transformation. As presented in the literature, the
eneralized Darboux transformation comes from the elementary Darboux transformation. The key step to yield the generalized Darboux
13
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m
t

T

t

w

a

T

atrix is to construct the fundamental solution at λ = λ1. However, it will fail if we apply the Darboux matrix directly. In this work,
he normalization method [20] (Eq. (71)) is used to deal with this problem.

Following the construction from the appendix of [22], we have the following theorem:

heorem 4. Suppose we have the vector functions |y[j]
1 ⟩ = Φ[j](n, t; λ1)c1 at λ = λ1, where

Φ(n, t; λ) =

∞∑
j=1

Φ[j](n, t; λ1)(λ− λ1)j, (75)

hen the high order Darboux matrix for solution matrix Φ(n, t; λ) is

TN (n, t; λ) =

[
1 0
0 aN (n, t)

] [
I + XL(λ, λ̄1)Y†

+ σσσ 3XL(−λ, λ̄1)Y†σσσ 3
]

(76)

here X can be determined by the following linear equations:

X1 = −Y1A−1, X2 = −Y2B−1, X ≡

[
X1
X2

]
, Y ≡

[
Y1
Y2

]
=

[⏐⏐⏐y[0]
1

⟩
,

⏐⏐⏐y[1]
1

⟩
, . . . ,

⏐⏐⏐y[N−1]
1

⟩]
,

L(λ, λ̄1) =
λ̄1I

λλ̄1 − 1
+

N−1∑
i=1

1
i!

di

dxi

(
x

xλ− 1

) ⏐⏐⏐
x=λ̄1

(L0)i, L0 =
(
δi,j−1

)
1≤i,j≤N ,

and δi,j−1 is the standard Christoffel symbols δi,j =

{
1, i = j,
0, i ̸= j, here

A =

(
J†1C−J1 + K†

1C−K1

)
−

(
J†1C+J1 − K†

1C+K1

)
,

B =

(
J†1C−J1 + K†

1C−K1

)
+

(
J†1C+J1 − K†

1C+K1

)
nd

C± =

(
1

(i − 1)!(j − 1)!
di+j−2

dxi−1dyj−1

(
x

xy ± 1

) ⏐⏐⏐
x=λ̄1,y=λ1

)
1≤i,j≤N

,

J1 = ψ
[0]
1 IN +

N−1∑
j=1

ψ
[j]
1 Ej, E =

(
δi,j+1

)
1≤i,j≤N ,

K1 = ϕ
[0]
1 IN +

N−1∑
j=1

ϕ
[j]
1 Ej,

⏐⏐⏐y[j]
1

⟩
=
[
ψ

[j]
1 , ϕ

[j]
1

]T
,

(77)

and

aN (n, t) =
|λ1|

2N

1 + 2λ̄1Y2B−1Y†
2

.

he Bäcklund transformation between old potential functions and new ones is

w[N]

n =

(
wn + 2Y1A−1Y†

2

)(
1 + 2λ̄1Y2B−1Y†

2

)
|λ1|

2N . (78)

The above Darboux matrix has one higher order pole, it can extend to the general case with lots of different higher order poles. By a
similar calculation, we get the similar formula for high order solutions as in Theorem 3, which will be given in the subsequent section.

3.3. Riemann–Hilbert Problem for the Darboux matrix

We reconsider the Darboux matrix in the frame of robust inverse scattering transform. Following the steps in [22], we define the
following sectional analytic matrix function:

N(n, t; λ) =

{
N+(n, t; λ) = TN (n, t; λ), λ ∈ {λ||λ| > R} ∪ {λ||λ| < R−1

}

N−(n, t; λ) = TN (n, t; λ)Φ(n, t; λ)T−1
N (0, 0; λ)Φ−1(n, t; λ), λ ∈ {λ|R−1 < |λ| < R},

(79)

where R > max |λi|, which solves the following Riemann–Hilbert problem:

Riemann–Hilbert Problem 3.
Analyticity N(n, t; λ) is analytic in λ ∈ C \

(
{|λ| = R−1

} ∪ {|λ| = R}
)
.

Jump condition N(n, t; λ) takes continuous boundary values N±(n, t; λ) on {λ||λ| = R} ∪ {λ||λ| = R−1
}, and they are related by the jump

conditions of the form N+(n, t; λ) = N−(n, t; λ)V(n, t; λ) on {λ||λ| = R} ∪ {λ||λ| = R−1
}, where

V(n, t; λ) = Φ(n, t; λ)TN (0, 0; λ)Φ−1(n, t; λ) (80)
14
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N

a

s

4

s

ormalization

N(n, t; λ) →

[
1 0
0 aN (n, t)

]
, λ → ∞, (81)

and

N(n, t; λ) →

N∏
i=1

|λi|
2
[
[aN (n, t)]−1 0

0 1

]
, λ → 0. (82)

Through the recovering formula (64) and above Riemann–Hilbert Problem 3, the potential function is given by

w[N]

n (t) = lim
λ→∞

ρ − λN12(n, t; λ)
N22(n, t; λ)

. (83)

The jump matrix V(n, t; λ) of Riemann–Hilbert Problem 3 depends on the Darboux matrix at (x, t) = (0, 0) and a fundamental matrix
solution of Lax pair Φ(n, t; λ) with a trivial seed solution wn(t). As has been shown elsewhere [22], this Riemann–Hilbert representation
of the Darboux matrix is an effective method for analyzing the large order rogue waves or solitons for the integrable equations.

4. Soliton, breather and rogue wave solution

Through the formulas of Bäcklund transformation (70) or (83), we can construct various exact solutions. To this end, we first solve
the linear system with wn = ρ and λ = λi.

If λi ̸= r ± ρ,−r ± ρ, inserting the seed solution wn = ρ into Lax pair (6), we have

fn+1 =Uifn,
fn,t = [βiUi + δiI] fn,

(84)

where

Ui =

[
λi ρ

−ρ λ−1
i

]
, δi = δ(λi), βi = i

(
λ−1
i e−iθ

− λieiθ
)
.

Then we diagonalize the matrix Ui:

Ui = rViζ
σσσ333
i V−1

i , ζi = ζ (λi),

where

Vi =

[
1 ξi
ξi 1

]
, ξi = ξ (λi).

By the above diagonalization, the fundamental solution for linear system (84) can be solved simultaneously:

fn(t; λi) = rnesin(θ )ρ
2tVie(n ln ζi+βiγit)σσσ333 , γi = γ (λi). (85)

Inserting into formulas (74) the special vector solutions[
ψi
ϕi

]
=

fn(t; λi)
rnesin(θ )ρ2t

[ 1
2e

ci+iωi/2

−
1
2e

−ci+iωi/2

]
=

[
sinh

(
αi +

i
2ωi
)

− sinh
(
αi −

i
2ωi
)] , ωi = arccos

(
λi − λ−1

i

2ρ

)
(86)

where

αi = n ln ζi + βiγit + ci, e−iωi = −ξi =
λi − λ−1

i

2ρ
− i

√1 −

(
λi − λ−1

i

2ρ

)2

,

nd ci is a complex constant, we can obtain various solitonic solutions.
If λi = r ± ρ,−r ± ρ, we will use the normalization method to obtain the fundamental solution for the Lax pair (84), which will be

hown later. With these fundamental solutions, we will obtain the lattice rational solutions of AL equation (5).

.1. Single soliton solution

In this subsection, we construct a single soliton solution and analyze its dynamic behaviors. Plugging the solution (86) into the
olution formula, we obtain

w[1]
n = ρ

[
|ψ1|

2
+ |λ1|

2
|ϕ1|

2
+ (ρλ̄1)−1(|λ1|4 − 1)ϕ̄1ψ1

|λ1|
2
|ψ1|

2
+ |ϕ1|

2

]
, (87)

To analyze the properties of soliton solution, we need to simplify the expression (87). By the following identities

sinh(X) sinh(Y ) =
1
2
(cosh(X + Y ) − cosh(X − Y )) ,

A1 cosh(X + Y1) + A2 cosh(X + Y2) + A3 cosh(X + Y3)[ Y1 Y2 Y3 −Y1 −Y2 −Y3
]1/2
= (A1e + A2e + A3e )(A1e + A2e + A3e ) cosh(X + ω),
15
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w

w

T

F

P

|

t

ϕ

here

ω =
1
2
ln
(

A1eY1 + A2eY2 + A3eY3

A1e−Y1 + A2e−Y2 + A3e−Y3

)
,

we can obtain the following relations:

|λ1|
2
|ψ1|

2
+ |ϕ1|

2
= r1 cosh(α1 + ᾱ1 + θ1) − r2 cosh(α1 − ᾱ1 + θ2),

|ψ1|
2
+ |λ1|

2
|ϕ1|

2
+ (ρλ̄1)−1(|λ1|4 − 1)ϕ̄1ψ1 = r3 cosh(α1 + ᾱ1 + θ3) − r4 cosh(α1 − ᾱ1 + θ4)

(88)

here

θi =
1
2
ln
(
pi
qi

)
, ri = (piqi)1/2, i = 1, 2, 3, 4,

and

p1 =|λ1|
2e

i
2 (ω1−ω̄1) + e−

i
2 (ω1−ω̄1), q1 = |λ1|

2e−
i
2 (ω1−ω̄1) + e

i
2 (ω1−ω̄1),

p2 =|λ1|
2e

i
2 (ω1+ω̄1) + e−

i
2 (ω1+ω̄1), q2 = |λ1|

2e−
i
2 (ω1+ω̄1) + e

i
2 (ω1+ω̄1),

p3 = −
|λ1|

2eiω1 + eiω̄1

|λ1|
2e−iω̄1 + e−iω1

p1, q3 = −
|λ1|

2e−iω1 + e−iω̄1

|λ1|
2eiω̄1 + eiω1

q1,

p4 = −
|λ1|

2e−iω1 + eiω̄1

|λ1|
2eiω1 + e−iω̄1

p2, q4 = −
|λ1|

2eiω1 + e−iω̄1

|λ1|
2e−iω1 + eiω̄1

q2.

hen it is easy to verify that r1 = r3, r2 = r4, and

θ3 = θ1 + i(ω1 + ω̄1), θ4 = θ2 + i(ω1 − ω̄1).

inally, we obtain a compact expression for w[1]
n :

w[1]
n = ρ

[
cosh(χ + i(ω1 + ω̄1)) − G cosh(ϖ + i(ω1 − ω̄1))

cosh(χ ) − G cosh(ϖ )

]
, (89)

where χ = α1 + ᾱ1 +θ1, ϖ = α1 − ᾱ1 +θ2, G = r2/r1. From (89), we can see that the velocity of soliton is −
Re(β1γ1)
Re(ln(ζ1))

. If soliton solutions

exhibit the breather behavior, it will oscillate along lines which are perpendicular to the line 2Im(ln(ζ1))
(
n +

Im(β1γ1)
Im(ln(ζ1))

t
)

= const.
Moreover, we can obtain the asymptotic behavior for the single soliton solution:

w[1]
n →ρei(ω1+ω̄1), χ → +∞,

w[1]
n →ρe−i(ω1+ω̄1), χ → −∞.

(90)

Thus, if 2(ω1 + ω̄1) mod (2π ) ̸= 0, there is a non-trivial phase difference. Through the reduced formula (89), we obtain the phase
difference and the velocity of the localized lattice wave solution. However it is hard to analyze its maximum value. To answer this
problem, we give the following proposition:

Proposition 5. If |λ1| > 1 and c1 =
1
2 ln

(
1+(r+ρ)λ1e−iω1

(r+ρ)λ1+e−iω1

)
, then the modulus of solution (87) attains the maximum 1

2

(
(r + ρ)|λ1|2−

(r − ρ)|λ1|−2) at (n, t) = (0, 0).

roof. Rewriting the formula (87) as the following form:

w[1]
n = ρ

[
1 + |λ1|

2
|ϕ1/ψ1|

2
+ (ρλ̄1)−1(|λ1|4 − 1)ϕ̄1/ψ̄1

|λ1|
2
+ |ϕ1/ψ1|

2

]
, (91)

for arbitrary values on ϕ1/ψ1, we can find by choosing ψ1 = 1 and ϕ1 = (r + ρ)λ1 the maximum value of |w
[1]
n | for the solution (87) is

1
2

(
(r + ρ)|λ1|2 − (r − ρ)|λ1|−2). So if (ψ1(0, 0), ϕ1(0, 0)) = k(1, (r +ρ)λ1), where k ∈ C is a complex constant, the modulus of solution

w
[1]
n (t)| will attain the maximum value at (n, t) = (0, 0). Actually, by choosing c1 =

1
2 ln

(
1+(r+ρ)λ1e−iω1

(r+ρ)λ1+e−iω1

)
we can achieve this aim. □

Consequently, the parameter c1 in Proposition 5 can be used to generate the solutions with the maximum value at (n, t) = (0, 0).

Remark 2. Similar as the proof of Proposition 5, we can establish the maximum value between both old and new functions. Rewriting
the formula of elementary Bäcklund transformation (70):

w[1]
n = wn

[(
1 + |λ1|

2
|ϕ1/ψ1|

2)
+ (wnλ̄1)−1(|λ1|4 − 1)ϕ̄1/ψ̄1

|λ1|
2
+ |ϕ1/ψ1|

2

]
,

he maximum value of |w
[1]
n |: max |w

[1]
n | =

1
2

(
(
√
1 + m2 + m)|λ1|2 − (

√
1 + m2 − m)|λ1|−2

)
will attain by choosing ψ1(0, 0) = 1,

1(0, 0) = (m+
√
1 + m2)λ1 and m = max |wn| = |wn(t)|(n,t)=(0,0). The high order or multi-fold Darboux transformation is the recursive

iteration of elementary one. Thus the above proposition can be considered as the general rule for the solution generating by the Darboux
transformations.
16
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Fig. 3. ρ =
5
12 , θ = 0, (a): Akhmediev lattice breathers: λ1 =

5
4 , max |wn| = 0.96. (b): Kuznetsov–Ma lattice breather: λ1 =

7
4 , max |wn| = 2.19. The constant c1 is

given by Proposition 5.

Fig. 4. ρ =
5
12 , θ = π/2, (a): periodic lattice solution: λ1 =

5
4 , max |wn| = 0.96, (b): lattice soliton of W-shape: λ1 =

7
4 , max |wn| = 2.19. The constant c1 is given

y Proposition 5.

Now we turn to analyze the dynamic behavior of above soliton solution, which is closely related with the properties of modulational
nstability to the background solution. The modulational instability analysis is given in Appendix A. We find that the modulational
nstability for the focusing AL equation (5) is different from the focusing NLSE (1). The plane wave solution of focusing NLSE (1) is
lways modulational unstable. However, for the focusing AL equation (5), if θ ̸=

π
2 +kπ (k ∈ Z), the plane wave solution is modulational

unstable; while if θ =
π
2 + kπ (k ∈ Z), it is modulational stable.

For the modulational unstable background θ ̸=
π
2 + kπ (k ∈ Z), the Akhmediev lattice breather (localized in time and periodic in n,

ee Fig. 3(a)) is obtained by taking the parameters λ1 ∈ (1, r +ρ)∪ (−r −ρ,−1). If θ = 0, the Kuznetsov–Ma lattice breather (localized
n n and periodic in time, see Fig. 3(b)) can be obtained by taking the parameters λ1 ∈ (r + ρ,∞) ∪ (−∞,−r − ρ). For other choices
f parameters, we obtain the Tajiri–Watanabe lattice breather [29].
On the other hand, for the modulational stable background θ =

π
2 + kπ (k ∈ Z), if λ1 ∈ (1, r + ρ) ∪ (−r − ρ,−1), a periodic lattice

olution occurs instead of Akhmediev lattice breather (see Fig. 4(a)). If λ1 ∈ (r +ρ,∞)∪ (−∞,−r −ρ), the soliton solution of W-shape
ppears (see Fig. 4(b)). For other choices of parameters λ1 ∈ Sout/R, we also obtain the Tajiri–Watanabe lattice breather solution.

.2. Multi-solitonic solution

In this subsection, we consider the interaction law for the multi-solitonic solutions with the parameters λi and ci, (|λi| > 1),
e(ln(ζi)) > 0, i = 1, 2, . . . ,N . The velocity parameters are arranged with the order s1 < s2 < · · · < sN , where si = −

Re(βiγi)
Re(ln(ζi))

.
e analyze the asymptotic behavior of the kth localized lattice wave solution. To this end, we decompose the N-fold Darboux matrix

nto two Darboux matrices:

TN (n, t; λ) = T[k](n, t; λ)T(k)(n, t; λ) (92)

here

T[k](n, t; λ) =

[
1 0
0 |λk|

2

1+2|ϕ̂k|
2β−1

k

][
I −

(
λ∗

kK
−1

|ŷk⟩⟨ŷk|
λ− λ∗

k
−
λ∗

kσσσ333K−1
|ŷk⟩⟨ŷk|σσσ333

λ+ λ∗

k

)]
(93)

with K = diag (αk, βk), αk =
⟨ŷk|ŷk⟩
|λk|

2−1
−

⟨ŷk|σσσ333|ŷk⟩
|λk|

2+1
, βk =

⟨ŷk|ŷk⟩
|λk|

2−1
+

⟨ŷk|σσσ333|ŷk⟩
|λk|

2+1
, |ŷk⟩ = (ψ̂k, ϕ̂k)T = T(k)(n, t; λk)|yk⟩

T(k)(n, t; λ) =

[
1 0
0 a(k)(n, t)

]⎡⎣I +

N∑ (
|x(k)i ⟩⟨yi|
λ− λ∗

i
−
σσσ333|x

(k)
i ⟩⟨yi|σσσ333

λ+ λ∗

i

)⎤⎦ (94)

i=1,i̸=k
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a

A
t

w

I

a

F

nd

X(k)
1 = −Y(k)

1 A−1
(k) , X(k)

2 = −Y(k)
2 B−1

(k) ,[
X(k)

1

X(k)
2

]
=

[
|x(k)1 ⟩, |x(k)2 ⟩, . . . , |x(k)k−1⟩, |x

(k)
k+1⟩, . . . , |x

(k)
N ⟩

]
,[

Y(k)
1

Y(k)
2

]
= [|y1⟩, |y2⟩, . . . , |yk−1⟩, |yk+1⟩, . . . , |yN⟩] ,

A(k) =

(
⟨yi|yj⟩
λj − λ∗

i
−

⟨yi|σσσ333|yj⟩
λj + λ∗

i

)
1≤i,j≤N;i,j̸=k

, B(k) =

(
⟨yi|yj⟩
λj − λ∗

i
+

⟨yi|σσσ333|yj⟩
λj + λ∗

i

)
1≤i,j≤N;i,j̸=k

a(k)(n, t) =

∏N
i=1;i̸=k |λi|

2

1 + 2Y(k)
2 B−1

(k)D(k)(Y
(k)
2 )†

, D(k) = diag
(
λ̄1, λ̄2, . . . , λ̄k−1, λ̄k+1, . . . , λ̄N

)
.

long the line Re(ln(ζk))(n − skt) = const, and Re(αi) = Re(ln(ζi))[n − skt + (sk − si)t], if i > k, Re(αi) → ∓∞ as t → ±∞; if i < k,
hen Re(αi) → ±∞ as t → ±∞. Up to a scalar function1, we obtain the asymptotic expression for |yi⟩ (i ̸= k) as t → +∞

|yi⟩ ∝|y+

i ⟩ =

[
1
ξi

]
+ O(e−c(k)i |t|), i < k,

|yi⟩ ∝|y+

i ⟩ =

[
ξi
1

]
+ O(e−c(k)i |t|), i > k,

(95)

here c(k)i = 4Re(ln(ζi))|si − sk|; as t → −∞

|yi⟩ ∝|y−

i ⟩ =

[
ξi
1

]
+ O(e−c(k)i |t|), i < k,

|yi⟩ ∝|y−

i ⟩ =

[
1
ξi

]
+ O(e−c(k)i |t|), i > k.

(96)

t follows that

T(k)(n, t; λ) = T±

(k)(λ) + O(e−c(k)|t|),

T±

(k)(λ) =

[
1 0
0 a±

(k)

]⎡⎣I +

N∑
i=1,i̸=k

(
|x(k)±i ⟩⟨y±

i |

λ− λ∗

i
−
σσσ333|x

(k)±
i ⟩⟨y±

i |σσσ333

λ+ λ∗

i

)⎤⎦ (97)

as t → ±∞, where c(k) = 4min
i̸=k

(Re(ln(ζi))|si − sk|),

X(k)±
1 = −Y(k)±

1 (A(k)
± )−1, X(k)±

2 = −Y(k)±
2 (B(k)

± )−1,[
X(k)±

1

X(k)±
2

]
=

[
|x(k)±1 ⟩, |x(k)±2 ⟩, . . . , |x(k)±k−1 ⟩, |x(k)±k+1 ⟩, . . . , |x(k)±N ⟩

]
,[

Y(k)±
1

Y(k)±
2

]
=
[
|y±

1 ⟩, |y±

2 ⟩, . . . , |y±

k−1⟩, |y
±

k+1⟩, . . . , |y
±

N ⟩
]
,

nd

A(k)
± =

(
⟨y±

i |y±

j ⟩

λj − λ∗

i
−

⟨y±

i |σσσ333|y±

j ⟩

λj + λ∗

i

)
1≤i,j≤N;i,j̸=k

, B(k)
± =

(
⟨y±

i |y±

j ⟩

λj − λ∗

i
+

⟨y±

i |σσσ333|y±

j ⟩

λj + λ∗

i

)
1≤i,j≤N;i,j̸=k

a±

(k) =

∏N
i=1,i̸=k |λi|

2

1 + 2Y(k)±
2

(
B(k)

±

)−1
D(k)(Y

(k)±
2 )†

.

urthermore, we have the following asymptotic behavior for |ŷk⟩:

|ŷk⟩ = T(k)(n, t; λk)|yk⟩ = T±

(k)(λk)|yk⟩ + O(e−c(k)|t|). (98)

1 The Darboux matrices are invariant under the rescaling of the vector |y ⟩ ↦→ d |y ⟩, d ∈ C.
i i i i
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Fig. 5. ρ =
5
12 , θ = 0 (a): The interaction between Akhmediev breather and Kuznetsov–Ma breather. λ1 =

5
4 , λ2 =

7
4 , max |wn| = 3.52, (b): The interaction of two

ajiri–Watanabe breather. λ1 = 1 − i, λ2 = 1 + i, max |wn| = 2.92. The constants c1 , c2 are given by Proposition 5.

To give the asymptotic behavior of the kth soliton solution, we calculate the exact form of T±

(k)(λk)|yk⟩:

T±

(k)(λk)|yk⟩ = T±

(k)(λk)
[
1 ξk
ξk 1

][
e[n ln(ζk)+βkγkt+ck]

e−[n ln(ζk)+βkγkt+ck]

]
=

[
γ±

k δ±

k ξke
i∆±

k

γ±

k ξke
−i∆±

k δ±

k

][
e[n ln(ζk)+βkγkt+ck]

e−[n ln(ζk)+βkγkt+ck]

] (99)

where

γ±

k =1 − Y(k)±
1 (A(k)

± )−1C(k)±
1 , δ±

k = a±

(k)

(
1 − Y(k)±

2 (B(k)
± )−1C(k)±

2

)
,

C(k)±
1 =

[
⟨y±

i |y(1)k ⟩

λk − λ∗

i
−

⟨y±

i |σσσ333|y
(1)
k ⟩

λk + λ∗

i

]T

1≤i≤N;i̸=k

, C(k)±
2 =

[
⟨y±

i |y(2)k ⟩

λk − λ∗

i
−

⟨y±

i |σσσ333|y
(2)
k ⟩

λk + λ∗

i

]T

1≤i≤N;i̸=k

,

∆±

k = ± 2

(
k−1∑
i=1

Re(ωi) −

N∑
i=k+1

Re(ωi)

)
, |y(1)k ⟩ =

[
1
ξk

]
, |y(2)k ⟩ =

[
ξk
1

]
.

(100)

hus, through the above analysis we obtain the following proposition:

roposition 6. The N-soliton solution with N distinct velocities, sk, k = 1, 2, . . . ,N, has the following asymptotic behavior along the line
− skt = const as t → ±∞:

w[N]

n = ρ

[
cosh(χ±

k + i(ωk + ω̄k)) − Gk cosh(ϖ±

k + i(ωk − ω̄k))
cosh(χ±

k ) − Gk cosh(ϖ±

k )

]
ei∆

±

k + O(e−c(k)|t|), (101)

here χ±

k = 2Re
(
α±

k

)
+ θ

(k)
1 , ϖ±

k = 2i Im
(
α±

k

)
+ θ

(k)
2 , Gk =

r(k)2

r(k)1
, α±

k = n ln(ζk) + βkγkt + ck +
1
2 ln(γ±

k /δ
±

k ),

θ
(k)
1 =

1
2
ln

(
|λk|

2e
i
2 (ωk−ω̄k) + e−

i
2 (ωk−ω̄k)

|λk|
2e−

i
2 (ωk−ω̄k) + e

i
2 (ωk−ω̄k)

)
, θ

(k)
2 =

1
2
ln

(
|λk|

2e
i
2 (ωk+ω̄k) + e−

i
2 (ωk+ω̄k)

|λk|
2e−

i
2 (ωk+ω̄k) + e

i
2 (ωk+ω̄k)

)
,

r (k)1 =

[(
|λk|

2e
i
2 (ωk−ω̄k) + e−

i
2 (ωk−ω̄k)

)(
|λk|

2e−
i
2 (ωk−ω̄k) + e

i
2 (ωk−ω̄k)

)]1/2
,

r (k)2 =

[(
|λk|

2e
i
2 (ωk+ω̄k) + e−

i
2 (ωk+ω̄k)

)(
|λk|

2e−
i
2 (ωk+ω̄k) + e

i
2 (ωk+ω̄k)

)]1/2
.

Through the above proposition, we know that the interaction between different types of localized lattice waves is elastic. To visualize
the result of the above proposition, we will exhibit some numeric examples to illustrate their dynamic behaviors.

We give some examples to exhibit interactions between breathers or solitons. In the modulational unstable background, we show
the interaction between Akhmediev lattice breather and Kuznetsov–Ma lattice breather in Fig. 5(a). It is seen that two breathers are
perpendicular to each other. Fig. 5(b) shows the interaction of two Tajiri–Watanabe lattice breathers.

For the modulational stable background, the types of soliton solutions are richer than the modulational unstable one. Fig. 6(a)
illustrates the interaction between a Tajiri–Watanabe lattice breather and a lattice soliton of W-shape which is elastic. Fig. 6(b) shows
the interaction of two solitons of W-shape which is also elastic. Fig. 7(a) shows the interaction of periodic lattice solution and a
Tajiri–Watanabe lattice breather.
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Fig. 6. ρ =
5
12 , θ =

π
2 (a): The interaction between a Tajiri–Watanabe breather and a soliton of W-shape. λ1 =

7
4 , λ2 =

7
4 + i, max |wn| = 9.3, (b): The interaction

or two solitons of W-shape. λ1 =
7
4 , λ2 =

9
4 , max |wn| = 11.6. The constants c1 , c2 are given by Proposition 5.

Fig. 7. ρ =
5
12 , θ =

π
2 (a): The interaction between a Tajiri–Watanabe breather and a periodic wave. λ1 =

5
4 , λ2 =

9
4 , max |wn| = 5.89, (b): Rogue wave solution.

= 0, ρ =
9
40 , λ1 =

5
4 , n0 = t0 = 0, max |wn| =

11529
16000 . The constants c1 , c2 are given by Proposition 5.

4.3. Rational and rogue wave solutions

To obtain the rational solution for the AL equation (5), we normalize the fundamental matrix solution of the Lax pair (6)

Φ(n, t; λ) = rn−n0esin(θ )ρ
2(t−t0)Veησσσ333V−1

= rn−n0esin(θ )ρ
2(t−t0)

(
cosh(η)I2 −

ρ sinh(η)
γ

[
1−λ2
2ρλ −1

1 −
1−λ2
2ρλ

])
(102)

ith Φ(n0, t0; λ) = I2, where η = (n − n0) ln(ζ ) + βγ (t − t0) + c , which is analytic in the region C \ {0,∞} and has the removable
ingularity at the branch points λ = r ± ρ or −r ± ρ. Now we choose the vector solutions[

ψ(n, t; λ)
ϕ(n, t; λ)

]
= Φ(n, t; λ)

[
1

(r + ρ)λ

]
(103)

hich can be expanded in the deleted neighborhood of λ = λ1 ≡ r + ρ:

ψ(n, t; λ) =

∞∑
i=0

ψ
[i]
1 (λ− λ1)i,

ϕ(n, t; λ) =

∞∑
i=0

ϕ
[i]
1 (λ− λ1)i

(104)

or the fixed n and t , where ψ [i]
1 = ψ

[i]
1 (n, t), ϕ[i]

1 = ϕ
[i]
1 (n, t) and the constant c can be choosing as the form c =

∑
∞

i=1 ci(λ− λ1)i. The
onstant vector (1, (r + ρ)λ)T in Eq. (103) is chosen by the fixed form to obtain the solutions with maximum peak by Proposition 5.
ven though Proposition 5 just shows the maximum occurs at (n, t) = (0, 0) for the single soliton solutions, actually it still work for
he high order soliton or multi-solitons due to the Darboux–Bäcklund transformation can be iterated recursively.

Combining Theorems 3 and 4, the Nth order rational solution for (5) can be represented by the following determinant:

w[N]

n = ρ
det(H)
det(M)

, (105)

where

M = K†CK + J†CJ , H = K†CK + J†CJ + F†K† J ,
1 1 2 2 2 2 1 1 1,1 1,1
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Fig. 8. Parameters N = 5, λ1 =
5
4 , ρ =

9
40 , θ = 0, n0 = t0 = 0. (a): 5th order fundamental rogue wave. c = 0, max |wn| = 5.78, (b): 5th order rogue wave with

riangle shape. c = −300iϵ ln(ζ1(ϵ)).

ith

C =

(
1

(i − 1)!(j − 1)!
di+j−2

dxi−1dyj−1

(
1

x2y2 − 1

) ⏐⏐⏐
x=λ1,y=λ̄1

)
1≤i,j≤N

(106)

F =
IN
λ̄1

−
E

(λ̄1)2
+

E2

(λ̄1)3
+ · · · +

(−1)N−1EN−1

(λ̄1)N
, E =

(
δi,j+1

)
1≤i,j≤N , (107)

J1 = ψ
[0]
1 IN + ψ

[1]
1 E + ψ

[2]
1 E2

+ · · · + ψ
[N−1]
1 EN−1, J2 = λ1J1 + J1E,

K1 = ϕ
[0]
1 IN + ϕ

[1]
1 E + ϕ

[2]
1 E2

+ · · · + ϕ
[N−1]
1 EN−1, K2 = λ1K1 + K1E,

(108)

nd K1,1 and J1,1 represents the first row of matrices K1 and J1 respectively. Then we discuss the dynamic behavior for the
olutions (105).

.3.1. The first order rational solution
Based on the formula (105), we have the first order rational lattice solution for the AL equation (5) by setting N = 1. We

ake ρ =
1
2

(
p −

1
p

)
, r =

1
2

(
p +

1
p

)
and c0 = 0, where t0 and n0 are real constants, p is a real constant. With the aid of

q. (102), we can obtain the special vector functions

ψ
[0]
1 =(p2 − 1)(n − n0) +

i
2p2

(p4 − 1)(e−iθ
− p2eiθ )(t − t0) + 1,

ϕ
[0]
1 = −

(
(p2 − 1)(n − n0) +

i
2p2

(p4 − 1)(e−iθ
− p2eiθ )(t − t0) − p2

)
.

(109)

t follows that the first order rational lattice solution is

w[1]
n = ρ

[
−1 +

4p2(p2 + 1)2[p2 − i(t − t0)(p2 − 1)2 cos(θ )]
4p6 + [(2p2(n − n0) + (p2 + 1)2 sin(θ )(t − t0))2 + (t − t0)2 cos2(θ )(p4 − 1)2](p2 − 1)2

]
. (110)

here are two kinds of different dynamical behavior for the first order rational lattice solution:

ational lattice soliton of W-shape If θ =
π
2 +kπ , k ∈ Z, i.e. the modulational stable background, the rational solution (110) is soliton

of W-shape (see Fig. 9(a)).

ogue wave If θ ̸=
π
2 + kπ , k ∈ Z, i.e. the modulational unstable background, the rational solution (110) is the rogue wave solution

(see Fig. 7(b)).

The rational solution (110) for the AL equation (5) is derived by bilinear method [14] and Darboux transformation [16], and their
dynamics behavior is also studied. Thus we omit the details to discuss the dynamics behavior.

4.3.2. The high order rational soliton and rogue wave solutions
If we take N > 1, we can obtain the high order rational solution. Under the modulational unstable background, it is rogue wave

solution. While under the modulational stable background, it is soliton of W-shape. By choosing special parameters, we exhibit different
dynamics in Figs. 8 and 9(b).

The high order rational solutions are found in [14] by Hirota’s bilinear method and the highest peak value is obtained from the
solution formula directly. We use Remark 2 of Proposition 5 to determine the rational solutions with the highest peak value:

Proposition 7. The maximum peak value mi of the fundamental ith order rational solution (105) with c = 0 and n0 = t0 = 0 has the
following recursion relationship:

m1 =
1
2

(
(r + ρ)3 − (r − ρ)3

)
,

mi =
1
2

[
(r + ρ)2(

√
1 + m2

i−1 + mi−1) − (r − ρ)2(
√
1 + m2

i−1 − mi−1)
]
, i ∈ Z, i ≥ 2.

(111)

he functions |w
[i]

| attain the maximum value at point (n, t) = (0, 0).
n
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Fig. 9. Parameters λ1 =
5
4 , ρ =

9
40 , θ =

π
2 , n0 = t0 = 0. (a): Rational lattice soliton of W-shape. N = 1, max |wn| = 1.78, (b) Third order lattice soliton of W-shape.

= 3, max |wn| = 2.28.

Through Proposition 7, we find that the peak value of rogue wave to the AL equation (5) is different from the NLSE (1) with
i = 2i + 1. The increasing rate of the peak value to the AL equation (5) with the order mi/mi−1 ≈ (r + ρ)2 is much faster than
he NLSE (1).

The left panel of Fig. 8 shows the profile of the fifth order fundamental rogue waves. By Proposition 7, we find that the maximum
alue of lattice rogue wave is 5.78. Meanwhile, this proposition is also satisfied for the high order lattice soliton of W-shape. The right
anel in Fig. 9 is the third order lattice soliton of W-shape with the maximum value 2.28 at (n, t) = (0, 0) by Proposition 7.

. Conclusion and discussion

In this paper, we perform the robust inverse scattering analysis for the AL equation (5) on the non-vanishing background. Based
n the loop group method, the Darboux transformation is constructed within the framework of robust inverse scattering method. The
ulti-solitonic solution and high order rogue waves solution are derived by the Bäcklund transformation. Their dynamic behaviors are
larified by the asymptotic analysis.
The classical inverse scattering method for the AL equation, along with exact solutions, (5) are constructed several years ago.

omparing with the previous studies, the formulas of exact solutions obtained in this work are more compact. The interaction between
ifferent solitonic solutions are analyzed by asymptotic analysis. The maximum amplitude for peak of solitonic solutions are derived
y the Bäcklund transformation. What is more important, under the frame of robust inverse scattering method, we can analyze the
nfinite order rogue waves for the AL equation similar to the NLSE [22]. We expect to report the results in the near future.
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ppendix A. Proof of Lemmas 1 and 2

roof of Lemma 1. Actually, we merely need to prove the solution µµµ+

n,1 is analytic in Sin \Ω−, since other solutions can be proved in
similar manner. Firstly, we introduce the matrix norm

∥A∥ = max(|ai,j|), A = (ai,j)1≤i≤m,1≤j≤n.

sing the standard iteration method, a solution for the first equation of summation equation (16) can be written in the form of Neumann
eries

µµµ+

n,1 =

∞∑
g(k)
n ,
k=0

22
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here

g(0)
n =

[
1
ξ

]
, g(k)

n = −ζ

+∞∑
l=n

G1(k, n; λ)
Q+

k

r
g(k−1)
l+1 .

We then consider the convergence of above series. We can establish the following estimation:

∥G1(k, n; λ)∥ ≤ C(ϵ), C(ϵ) ≡
(1 + r)2

ρ2

⏐⏐⏐⏐ 1
1 − ξ 2

⏐⏐⏐⏐ .
y the lemma A.2 in Ref. [2], we can obtain the following estimation

∥g(m)
n ∥ ≤

1 + r
ρ

1
m!

(
C(ϵ)
r

+∞∑
k=n

∥Q+

k ∥

)m

=
1 + r
ρ

1
m!

(
C(ϵ)
r

+∞∑
k=n

⏐⏐wne−iθ+ − ρ
⏐⏐)m

.

y above estimation, we deduce that the series is uniformly bounded in Sin \ (Ω− ∪ Bϵ(−(r − ρ)) ∪ Bϵ(r − ρ)) and internally closed
niformly convergent in the region Sin \Ω−. It follows that the solution µµµ+

n,1 is analytic in the region Sin \Ω−.
We proceed to the proof for the uniqueness property of solution µµµ+

n,1 . Suppose we have another solution µ̂µµ+

n,1, then

µµµ+

n,1 − µ̂µµ
+

n,1 = −ζ

+∞∑
k=n

G1(k, n; λ)
Q+

k

r
(µµµ+

k+1,1 − µ̂µµ
+

k+1,1).

t follows that

∥µµµ+

n,1 − µ̂µµ
+

n,1∥ ≤

+∞∑
k=n

∥G1(k, n; λ)Q+

k ∥

r
∥µµµ+

k+1,1 − µ̂µµ
+

k+1,1∥.

terating above inequality as above, we establish the following estimate

∥µµµ+

n,1 − µ̂µµ
+

n,1∥ ≤
1
m!

(
C(ϵ)
r

+∞∑
k=n

⏐⏐wne−iθ+ − ρ
⏐⏐)m

.

hen m → +∞, we can deduce that ∥µµµ+

n,1 − µ̂µµ
+

n,1∥ = 0. Thus the uniqueness property is proved. □

roof of Lemma 2. Here we merely need to obtain the sharp estimation for µµµ+

n,1, the other Jost solutions can be proved in a similar
ay. Firstly, by the following limit

lim
z→r−ρ

ζ 2(k−n)
− 1

1 − ξ 2
= −

ρ

r
(k − n).

t follows that there exists a positive ϵ, such that in the region B2ϵ(r − ρ)/Ω− the following estimates hold⏐⏐⏐⏐ξ 2 ζ 2(k−n)
− 1

1 − ξ 2

⏐⏐⏐⏐ ≤ k − n,
⏐⏐⏐⏐ξ ζ 2(k−n)

− 1
1 − ξ 2

⏐⏐⏐⏐ ≤ k − n,
⏐⏐⏐⏐ζ 2(k−n)

− 1
1 − ξ 2

⏐⏐⏐⏐ ≤ k − n.

hen we can obtain the following estimationζG1(k, n; λ)
Q+

k

r

 ≤
(1 + (k − n))

r
∥Q+

k ∥.

It follows from the iteration of standard Neumann series that

∥µµµ+

n,1∥ ≤ 1 +
1
r

+∞∑
k=n

(1 + (k − n)) ∥Q+

k ∥∥µµµ+

k+1,1∥.

If n ≥ 0, we obtain the estimation

∥µµµ+

n,1∥ ≤ 1 +
1
r

+∞∑
k=n

(1 + k)∥Q+

k ∥∥µµµ+

k+1,1∥.

terating the above inequality, by the estimation
+∞∑
k=n

(1 + |k|)∥Q+

k ∥ < +∞,

e obtain that

∥µµµ+

n,1∥ ≤ exp(R(n)) < +∞, R(n) =
1
r

+∞∑
(1 + k)∥Q+

k ∥. (112)

k=n
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If n < 0, then

∥µµµ+

n,1∥ ≤ 1 +

+∞∑
k=n

k
r
∥Q+

k ∥∥µµµ+

k+1,1∥ +
1
r

+∞∑
k=n

(1 − n) ∥Q+

k ∥∥µµµ+

k+1,1∥

≤ 1 +

+∞∑
k=1

k
r
∥Q+

k ∥∥µµµ+

k+1,1∥ +
1
r

+∞∑
k=n

(1 − n) ∥Q+

k ∥∥µµµ+

k+1,1∥.

n the other hand, through the estimate (112) in above case n ≥ 0, we have

∥µµµ+

k,1∥ ≤ exp(R(k)).

Thus

∥µµµ+

n,1∥ ≤ K1 +
(1 − n)

r

+∞∑
k=n

∥Q+

k ∥∥µµµ+

k+1,1∥

here

K1 = 1 +
exp(R(1))

r

+∞∑
k=1

k∥Q+

k ∥.

Furthermore, we have

∥µµµ+

n,1∥

K1(1 + |n|)
≤

1
(1 + |n|)

+

+∞∑
k=n

(1 + |k + 1|)
r

∥Q+

k ∥
∥µµµ+

k+1,1∥

K1(1 + |k + 1|)
≤ 1 +

+∞∑
k=n

(1 + |k + 1|)
r

∥Q+

k ∥
∥µµµ+

k+1,1∥

K1(1 + |k + 1|)
.

inally, we obtain

∥µµµ+

n,1∥ ≤ K1(1 + |n|) exp

[
1
r

+∞∑
k=n

(1 + |k + 1|) ∥Q+

k ∥

]
< +∞.

hus the uniformly bounded property forµµµ+

n,1 in the region B2ϵ(r−ρ)/Ω− is proved. Since in the region B2ϵ(−r+ρ)\Ω− the functions
(λ) and ζ (λ) have the similar structure as B2ϵ(r − ρ) \Ω−, the similar estimate can be established. □

ppendix B. Conservation laws

We use the difference Riccati equation to derive the conservation laws. The conserved quantities for the defocusing AL equation
nder non-vanishing background was derived by Ablowitz et al. [11] by expanding the analytic function in the neighborhood of ∞.
ere we expand the analytic function both in the neighborhood of ∞ and 0, then the whole list of conserved quantities are obtained.
Firstly, we rewrite the linear spectral problem in the form:[

ψn+1
ϕn+1

]
=

[
λ wn

−w̄n λ−1

][
ψn
ϕn

]
,

then we have
ϕn+1

ψn+1
=

−w̄nψn + λ−1ϕn

λψn + wnϕn
.

ntroducing the notation An = ϕn/ψn, then we obtain the difference Riccati equation:

An+1(λ+ wnAn) = −w̄n + λ−1An.

oreover, denote Πn = wnAn, it follows that

wnΠn+1(λ+Πn) = −wn+1|wn|
2
+ λ−1wn+1Πn. (113)

Assuming[
ψn(λ)
ϕn(λ)

]
= exp

(
i
2
θ−σσσ333

)
(rζ )nµµµ−

n,1(λ) (114)

ogether with Proposition 3 implies the ansatz

Πn =

+∞∑
i=1

Ii(n)λ−2i+1. (115)

lugging the above ansatz (115) into Eq. (113), comparing the coefficient of λ, we have

I1(n + 1) = −wn+1w̄n,

I2(n + 1) = −wn+1w̄n−1(1 + |wn|
2),

Ik(n + 1) =
wn+1

wn
Ik−1(n) −

k−1∑
Ij(n + 1)Ik−j(n), k = 3, 4, . . . .
j=1
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hrough Eq. (114), we have

ψn+1

ψn
= rζeg(n+1;λ)−g(n;λ)

= λ+Πn, ψn = e
i
2 θ−+g(n;λ)(rζ )n, lim

n→−∞
g(n; λ) = 0,

hich induces that

g(n + 1; λ) − g(n; λ) = ln
(
λ+Πn

rζ

)
.

Notice that the parameter ζ can be expanded at infinity:

ζ−1
= rλ−1

+
(ρ2

+ r2)2 − 1
4r

λ−3
+ O(λ−5), λ → ∞ (116)

hich deduces that

ln
(
λ+Πn

rζ

)
= (I1(n) + ρ2)λ−2

+

(
I2(n) −

1
2
I21 (n) +

1
2
ρ2 (2r2 + ρ2)) λ−4

+ O(λ−6), λ → ∞ . (117)

As a result, we obtain the conversation laws:

lim
n→+∞

g(n; λ) =

+∞∑
n=−∞

[g(n + 1; λ) − g(n; λ)]

=

+∞∑
k=1

Ckλ
−2k, λ → ∞

here

C1 =

∞∑
n=−∞

(
ρ2

− wnw̄n−1
)
,

C2 =

∞∑
n=−∞

[
−wnw̄n−2(1 + |wn−1|

2) −
1
2
w2

nw̄
2
n−1 +

1
2
ρ2 (2r2 + ρ2)] , . . . .

Similarly, the assumption[
ψn
ϕn

]
= exp

(
i
2
θ+σσσ333

)
(rζ )nµµµ+

n,1(λ), (118)

mplies the ansatz

Πn =

+∞∑
i=1

Ji(n)λ2i−1. (119)

nserting the ansatz (119) into Eq. (113), comparing the coefficient of λ, it follows that

J1(n) = |wn|
2,

J2(n) = wnw̄n+1(1 + |wn|
2),

Jk(n) =
wn

wn+1

⎛⎝Jk−1(n + 1) +

k−1∑
j=1

Jj(n + 1)Jk−j(n)

⎞⎠ , k = 3, 4, . . . .

In view of Eq. (118), we arrive at

ψn+1

ψn
= rζeh(n+1;λ)−h(n;λ)

= λ+Πn, ψn = e
i
2 θ++h(n;λ)(rζ )n, lim

n→+∞
h(n; ζ ) = 0,

hich induces that

h(n + 1; λ) − h(n; λ) = ln
(
λ+Πn

rζ

)
.

Together with the expansion at origin

ζ−1
=
λ−1

r
−
ρ2

r
λ+ O(λ3), λ → 0, (120)

e have

ln
(
λ+Πn

)
= ln

(
1 + J1(n)

2

)
+

(
J2(n)

− ρ2
)
λ2 + O(λ4), λ → 0. (121)
rζ r 1 + J1(n)
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T
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w

hus we obtain another sequence of conservation laws

lim
n→−∞

h(n; λ) = −

+∞∑
n=−∞

[h(n + 1; λ) − h(n; λ)]

=

+∞∑
k=0

Dkλ
2k, λ → 0.

Here

D0 = −

∞∑
n=−∞

ln
(
1 + |wn|

2

r2

)
, D1 =

∞∑
n=−∞

(
ρ2

− wnw̄n+1
)
, . . . . (122)

The conservation laws are derived by expanding the Jost function in the neighborhood of 0 instead of taking determinant as [11].

ppendix C. Modulation instability analysis

The AL equation (5) is linearized about the plane wave solution by the substitution of

wn = ρ + Qn

here Qn is small perturbations which nonlinear effect can be neglected. The linearized equation is

iQn,t = (1 + ρ2)(Qn+1eiθ + Qn−1e−iθ ) − 2(1 + ρ2) cos(θ )Qn + 2ρ2 cos(θ )(Qn + Q̄n). (123)

The stability of the plane wave solution can be determined by the complete basis for the solutions of the linearized equation (123).
Solutions to linear equation (123) can be decomposed into a summation of various normal Fourier modes of the form

Qn = f ei(βn−λt) + ḡe−i(βn−λ̄t).

Substituting the Fourier modes into linearized equation (123), the following linear system is obtained:[
Ω1 2ρ2 cos(θ )

−2ρ2 cos(θ ) Ω2

][
f
g

]
= 0,

where

Ω1 =2(1 + ρ2) cos(θ + β) − 2 cos(θ ) − λ,

Ω2 =2 cos(θ ) − 2(1 + ρ2) cos(θ − β) − λ.

The linearized dispersion relation is obtained by setting the determinant of above matrix to zero:

[λ+ 2(1 + ρ2) sin(θ ) sin(β)]2 + 4 cos2(θ )
[
ρ4

−
[(
1 + ρ2) cos(β) − 1

]2]
= 0.

Unstable Fourier modes occur if and only if λ is nonreal. Indeed, we merely need to analyze the discriminant of above quadratic
equation:

∆ = −16 cos2(θ )
[
ρ4

−
[(
1 + ρ2) cos(β) − 1

]2]
.

There are two cases: For the first case: θ ̸=
π
2 + kπ , k ∈ Z, we know that

1 −
2

ρ2 + 1
=
ρ2

− 1
ρ2 + 1

≤ cosβ ≤ 1,

hich infers the modulational instability for arbitrary ρ.
For the second case: θ =

π
2 + kπ , k ∈ Z, since ∆ = 0, the background is modulational stable.

On the other hand, we consider the case of β = 0 with the limit λ = βµ when β → 0. It follows that ∆ = −16ρ(1+ρ2) cos2(θ ) < 0,
thus the background is modulational unstable for the case θ ̸=

π
2 + kπ , k ∈ Z.
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