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1. Introduction

The nonlinear Schrédinger equation (NLSE)
ig: = g+ 201gl’q, o = +£1 1

is a universal model for weakly nonlinear dispersive waves, both in the focusing case 0 = 1 and defocusing case o = —1. It appears in
many different physical contexts, for instance: the deep water waves, nonlinear optics, Bose-Einstein condensates [1,2]. The integrable
semi-discrete analogue for NLSE (1)

iun,t = Up41 — 2un + Un4+1 + Ulunlz(unJrl + un—l)» Up = hqns t= f/hzv (2)

was discovered by Ablowitz and Ladik in 1970s [3,4], therefore it is often called the Ablowitz-Ladik (AL) equation. Besides being used
as a difference numerical schemes for its continuous counterpart, the AL equation also possesses numerous physical applications, such
as the dynamics of anharmonic lattices [5], self-trapping on a dimer [6], Heisenberg spin chains [7,8] and so on [9].

Recently, there are quite a lot of work for the study of the AL equation (2) on the non-vanishing background using different
approaches, such as the inverse scattering method [10-13], Hirota’s bilinear method [14], Darboux transformation [15,16], algebraic
geometry method [17-19]. For the traditional scattering analysis on the rogue wave solution, it shares the same scattering data with
the background. Thus, it cannot be used to analyze the rogue wave solutions, as well as high order ones. Very recently a robust inverse
scattering method was proposed by Bilman and Miller so as to deal with the rogue wave solutions [20]. The key point is to use the
normalization method to reconstruct the meromorphic matrix function. By applying the Darboux transformation method within the
frame of robust inverse scattering method, the general high order rogue waves could be obtained without taking the limit on the
spectral parameter.
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In this work, we use the robust inverse scattering method [20-22] to analyze the focusing AL equation (2) on the non-vanishing
background:

ei[e(n+%)+2wt+0i]

lim u, =uf=p , w=1— (14 p?)cosH, (3)

n—+o0o

where parameters 6, p and 6. are real constants. Comparing with the previous studies on the non-vanishing background, the boundary
condition (3) involves the parameter 6, which can be used to regulate the modulational instability [23]. We will show the fact in the
Appendix: if & # 3 + nx (n € Z), the background is modulational unstable; otherwise, it is modulational stable. In the modulational
unstable region, there exist Akhmediev breather, Kuznetz-Ma breather, Tajiri-Watanabe breather and rogue wave solutions; whereas,
with the modulational stable background the corresponding solutions will turn to either periodic solutions or (rational) soliton solutions
of W-shape. These phenomena are different from the focusing NLSE (1), whose non-vanishing background is always modulational
unstable. With the aid of the Darboux transformation, the general soliton solutions, which include multi-breather solution, the high
order lattice rogue wave and so on, are constructed by the Bdcklund transformation. In the original work of robust inverse scattering
transform [20], the authors used a Darboux matrix with the unit determinant. Instead, we use the Darboux matrix of the loop group
version [24,25], which could provide a compact formula for soliton solutions. Some special propositions for the exact solutions could
be analyzed by the elementary Biacklund transformation.

The rest of the paper is arranged as follows: In Section 2, the robust inverse scattering transform for the AL equation (2) on the
non-vanishing background is constructed by following the method proposed in [20]. A key step to construct robust inverse scattering
transform is to seek a new Riemann-Hilbert problem to capture the solutions with spectral singularity. Comparing with the robust
inverse scattering method for NLSE (1), in which the Riemann-Hilbert problem is normalized in the neighborhood of co with the identity
matrix, here for the AL equation the Riemann-Hilbert problem of (2) is normalized with a diagonal matrix depending on n and t in the
neighborhood of co and 0. So we need more careful analysis on this procedure to obtain the robust inverse scattering transform. As a
by-product, the conservation laws are obtained by performing the expansions in the neighborhood of co and 0 respectively, which are
given in Appendix B. In Section 3, we construct the elementary Darboux matrix by the loop group method. Through the robust inverse
scattering transform, the general Darboux matrix can possess the Riemann-Hilbert representation. Then the compact solitonic formulas
are obtained. In Section 4, various exact solutions including breathers, (rational) solitons of W-shape and rogue wave solutions are
constructed and analyzed. The interaction between breathers and solitons are analyzed by performing the asymptotic analysis. The
highest peak value for the high order rogue wave solution is obtained by the Backlund transformation. Section 5 is devoted to some
conclusions and discussions.

2. The robust inverse scattering transform to the AL equation on the non-vanishing background

The Lax pair for the AL equation (2) is given by [3,4]:

z Uy
Vni1 = XpVn, Xp = |:—l_1 Z—l] , (4a)
n
L= i —132 ; ; -1
—iupllp_1 — 3(z —z —iupz + itup_q1z
Voo =Ty, Ty = el 2(._ ) . S (4b)
—iupz™" +ily_1z g1t + 5(z —277)

where v, is a two-component vector, z € C is the spectral parameter and u,(t) is the potential function, the overbar represents the
complex conjugation. The compatibility condition X, + X,T, — T,+-1X, = O gives the AL equation (2).
To study the above Cauchy problem conveniently, we set the following gauge transformation

: 1 i i
"y — wnel[e(n+§)+2wr]7 f, = e dlont2otlsy 5 _ ze= 9.
where o3 is the third Pauli matrix. It follows that Eq. (2) becomes

iwne = (14 [wpl*)wns1€” + wn_1e™) — 2cosO(1 + p?)wy, (5)

and the Lax pair (4) turns to

fo1=Lf, L, =AE, +Q, +E_17", (6a)
fn,t = Mnfn, (Gb)
where
1 0 _[o o [ o w,
S I B N A
R PO i0 ) L . : (7)
M. — —iwpwp_1e’ — J(he? —27le"2)2 —iw —iwpel? A + 1wn,1e*‘9)(1
" e AT 4 i, e?A iwp e 4 10e? — A e TR +io |
Thus the Cauchy problem for (2) is equivalent to the Cauchy problem for (5) with boundary condition
lim w, = w* = pel*. (8)
n—+oo
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Fig. 1. The two red segments denote the branch cuts. The four black points denote the branch points. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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2.1. Scattering analysis

For direct scattering problem, we merely need to analyze the spectral problem (6a). To analyze the spectral problem, we introduce
the following transformation:

i
ﬁzzexp<iﬂiaa>xﬁ, (9)
under which the spectral problem can be reduced to

X =[A+QFIxE,
where

[x » + 0 wpe % — p
A= |:_p )\1] s Qn - I:_(a)neigi _,0) 0 .

We diagonalize the matrix
A=TM;3M !, r=/1+p2, (% =diag(s.¢7")
where
M_[ls] _ 1R+ (- A2 — 4p22
g o1 20
and ¢ satisfies the following equation

’

14+ 22+ /(1 + 2272 — 4r2)2

2ri
where ¢(1) defines a two sheet Riemann surface I with genus one, which is pieced together by two pieces I'; and I"_ slit along the
line segments 2 = [—(r + p), —(r — p)] U [(r — p), (r + p)] as shown in Fig. 1. For the functions ¢(A) and £(A) on the branch cut £2,
we have the jump conditions ¢_ = ¢,¢? and &_ = £,£2, where ¢ = ¢(A £i07) and £+ = &(A £ i0™) are the nontangential limits
from the “+" side of branch cut £2 respectively (see Fig. 1). The branch cut £2 can be decomposed into two pieces 2 = £, U £2_ (see
Fig. 1), where

2y =[1,(r+p)U[-(r+p), —1]
and

2_=[(r—p), MU[-1,=(r—p)].

We can verify that |¢(A)] = 1 when A € {A : |A] = 1} U £2, and |£(A)| = 1 for A € £2. In the piece Iy, the functions £(1) and ¢())
are the meromorphic function in the whole complex plane with the first order pole at A = 0 and the removable singularity at A = oc.
In the piece I'_, the functions £(A) and ¢()) are the analytic function in the whole complex plane with the first order pole at A = oo
and the removable singularity at A = 0. In what follows, we just consider the analysis on the piece I"_ since we can apply the similar
analysis for the piece I';. Since the functions £(1) and ¢ (1) are analytic in the region A € Sj,/§2_ and the norm of them equals to 1 on
the boundary £2_, we have |§(1)| < max{1, max;; = |£(3)]} =(1+471)/p and |{(A)] < 1 by the maximum modulus principle, where
Sin := {A : |A| < 1}. Both equations £? = 1 and ¢? = 1 have the same four simple roots A =1 &+ p and A = —r %+ p.

rc+¢c H=r+271 e ¢ =

; (10)

Then we introduce the gauge transformation ;7 = ( Pliod H'r'f"‘z) M~ !x} and T, = M~ . It follows that
T =[r¢% —rMTIQ M, T, =[r + M 'Q, Mz,. (11)
Based on above equation (11) and boundary condition (8), we can rewrite them as the summation equation

+00

I—(rg°2)eh =2 ) (re°2) "M Me (12)
k=n

n—1
(r;.a;;)—nrn— 1= Z (r§63)7(k+1)M71Q‘k—MT’(—. (-13)
k=—00
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From Eq. (12), multiply M(r¢3)" from the left and (r£?3)™" from the right at both sides, we can obtain the following equation

+00
py =M=y M) M (rg ) T (1)
k=n
n—1
Wy =M+ Y M) OMIQ g (), (15)
k=—00

where pf = Mz (rgo3)™ = xE(rgo3)™
Next, we consider the analytic property for solution u,ni = [y,nij, uiz]. Then Eqs. (14)-(15) can be rewritten as the following form:

ﬂn+,1=|:i|—fzclkn)\) I"k+11’ Mm]=|:i| ZG1k+lnk)Qép,k1, (16)
f n—1 Qf
#n+,2 = |: ] Zcz(k n; )» l"k+12’ Myp= |:£| +¢ Z Gy(k+1,n; )»)T‘/L,zz, (17)
k=—
where
1 0 _ 2Ak=n) _ { [_g2
Gi(k,n;2) =M [0 gzw_n)} M =1+ Cl—iy [_‘2 'ﬂ ,
. _ gZ(n—k) 0 1 ;—2(n—k) —171 _%_
Gz(lc,n,x)_M[ 0 1 M _]H_l—iéz e el

The existence and analytic properties of solution u can be summarized as the following lemmas. The proofs of two following lemmas
are followed by the method of Ref. [26], which are given in Appendix A.

Lemma 1. If Zn "o lwpe %+ — p| < oo for any finite ny € Z and take arbitrary 0 < € < min(r — p, 1—(r — p)), then the solution un L s
analytlc in the set Sm\.Q and uniformly bounded to Si, \(§2_UB(—(r—p))UB(r—p)), where B.(zo) = {z € C : |z — z9| < €/2}; the solution
y,n , is analytic in the set Soy \ £24 and uniformly bounded for Soy: \ (£24 UBc(—(r 4 p))UBc(r + p)), where Soue :={A : 1 < |A| < 00}. Ina
similar way, if anﬂo lwpe™- — p| < oo for any finite ny € Z, then solution M,y is analytic in the set Sout \ £2+ and uniformly bounded for
Sout \($2+ UB(—(r+p))UBc(r+p)); solution p., is analytic in the set Sin\ £2— and uniformly bounded for Sin\ (£2-UB(—(r — p))UB.(r — p)).
Moreover, the solutions of above summation equations are unique in the set Sy \ £24 or Siy \ §2_ under the space of bounded functions.

Lemma 2. IfZ (14 |k]) ||Qk || < 400, there exists a posztlve constant € > 0, such that solution ,u.n , can be umformly bounded to the
region (Bae(r — p) U BzE( (r — p)) \ £2_; the solution u.n , can be uniformly bounded to the region (By(r 4+ p) U Bae(—(r + p))) \ £24.

If Zk -l (1+ [kDIQ, I < +oo, there exists a positive constant € > 0, such that solution p, , can be uniformly bounded to the region
(Bae(r + p) U Bae(—(r + p))) \ §24; the solution p, can be uniformly bounded to the region (Bae(r — p) U Bae(—(r — p))) \ £2_.

Together with the above two lemmas on the Jost functions, we conclude that

Theorem 1. If Y°;° (1 + [k|)jwxe ™ — p| < oo for any finite ny € Z, then the solution p,, is analytic in the region Si, \ £2_ and is
continuous to its boundary; the solution /LIZ is analytic in the region Soy \ §21 and is continuous to its boundary.

If Z 1+ |kD)|wre - — p| < oo for any finite ng € Z, then solution K, is analytic in the region Sout \ £24 and is continuous to
its boundary, solutlon M, , is analytic in the region Sip \ §2_ and is continuous to its boundary.

2.2. Scattering matrix

The Jost solutions Ju(n; ) = £5(A)(E(A))™" are linear dependent, which can be related by
Jo(ns A) = Ji(n; MEQA)"S(AE(A) ™", A € {A:[A] =1}, (18)

where S(1) is the scattering matrix,

smz[a(” C(”],m):r[““ 01].

b(x) d(A) 0 ¢
By above substitution and Egs. (6), we have
Ja(n+ 15 4) = La(2)e(m; 2)EG) (19)

Furthermore, we can obtain that
T L% =191 7t (45, 1 \p 17 * 1 F o A\ T *
Je(n+ 15 47%) = [E(A") 1)L (n; AFL(A") = ﬁE(k)Ji(n,A L"),

4
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here A* = A1, and T represents the Hermite conjugate. Together with the symmetry property of L (1), i.e. L;E(A*)Ln()h) = (14 |wn|*),

we arrive at
Jin+ 1, 25 (n + 15 2) = paEOUNL(n; A% (n; A)E(V) Y,

where p; = 5(1+ |wg]?).
On the other hand, boundary conditions for J.(n; A) are

Cay i 1 p~l(re —A)
Ji(£o00; A) = exp (20i03) [pl(rg ~3) 1 ] .
It follows that
oo 1) — 1 prgTt =07 i
Ji(£oo; 1) = [p‘l(r;“‘l _a 1 exp —59163 .

Then we can obtain the following proposition:

Proposition 1. The Jost solutions J.. possesses the following symmetry relation:

+00
Vim0 (n ) =01 - 448, af=[]o ",
I=n

n—1
g2y =(1-€%14,, A, =[] o

I=—00

On the other hand, we have the following relation for determinants J.,

—+00
det(J (m: 1)) =11 = &1 [ o "

I=n

n—1
det(_(m: 1)) =[1-&°1 [] o

I=—00

It follows that

+o0
det(S(A)) = ]_[ oL = .

I=—00

Through above relations, we can obtain that
JE(n; 27) = E(L)'STG B L (s 4%)
and
3 (s ) = EQY"STT(OE() ) (s ).

With the aid of Proposition 1, we can obtain that the following proposition.

Proposition 2. The scattering matrix S(A) possesses the following symmetry properties:

ST = vS(A) .

Based on Proposition 2, we can rewrite S()) as

_ [a) —b(x7)
S(”—[b(x) a(m]'

There exists another symmetry relation for Jost solution J.(n; A):
Ji(n; 1) = 03)+(n; —A)os.
It follows that the scattering matrix possesses the following symmetry relation:

S(}\) = 0'3S(—)n)0'3.

Based on the analytic properties of Jost functions, we define the following analytic matrices:

®t(n; A) = [Joam ). Je2(m V)], @7 (5 A) = [Jaa(n; &), J—2(n; A)]
which are analytic in the region Si,/$2_ and S,/ $2 respectively.

5

(20)

(21)

(22)

(23)

(24)
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Proposition 3. The analytic matrices ®*(n; 1) possess the following asymptotic behavior:

lo_
(p+(n; )\) — {ez 0

; +0o07Y, asr— o
0 e‘z"+An+i| ¢

i (25)
ez rA; 0

0 _i9]+o(k), asi—0
e 27"

D (n; A) = |:
Proof. When A — oo, the matrices E(A) and @' (n; A) have the asymptotic expansion
E(V) =E A +EA T+ 0073, (26)

®H(n; 2) = o () + & (WA + O(72),

where

1—-r2 0
E([)OO]Z[ 0 r2i|.

Inserting the above expansions into (19) and comparing the coefficients, we have
& (n+ 1)E; =E @/ (n),
& (n+ 1E; = Q@7 (n) + EL & (n),

which implies that

(27)

tey €T 0] ey | BT —a wy
¢0 (n) - [0 (X;’ s (p] (n) - |:_wn1 yn+ ’

where ¢, 87 are constants which are independent of n. On the other hand, we know the boundary conditions

i

J_1(n; 2) = e2%-3 ;] , asn— —oo,
and

Lo,0 [

Yoo 2) = 2473 |

], as n — 400,

which deduce that c* = ez’-, g+ = 0 and of — e~ 2% as n — +oo. Meanwhile, the determinant has the following relation

]+|wn|2

det(@t(n+ 1; 1)) = 2 det(@™(n; 1))

. 2 . - . i
which infers that of, | = H‘r%"‘a,j . Together with the boundary condition, we obtain o = e~ 2% A,,.

While A — 0, the matrices E(A) and @_(n) have the asymptotic expansion
E(L) =E_A"" + EJ'A + 0(33), (28)
& (n; 1) = &y (n) + @7 (A + O(A?),

where

2
-7\
Inserting the above expansions into (19) and comparing the coefficients of A, we have
@, (n+ 1)E_ =E_&; (n),
@ (n+ 1)E_ = Q, P, (n) +E_@ (n),
which implies that

cpo—(n)=[°‘n_ CO] qb;(r;):[ayi)n “};—1]
Io_

Similar as above, by the boundary conditions, we have c™ =e™2°-, 7 =0and o, = An‘e%gﬁ This completes the proof. O

(29)

Through the definition of scattering matrix S(A) (18) and (22), we know that
_ der(@(mia) det ([J4.1(m: A), J—1(m: )]) ,,
Co(-g)ay - (1-82)A7

do < det@ma) g det (ot Ao V) o,

(30)
(1-&2ay B (1-&2)A]
In virtue of Proposition 3, the a(X) function has the following asymptotic expression:

a(h) = ez 4 o(A71), as A — oo. (31)
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The function a(X) can be analytically extended to the region A € So./$2,. For convenience, assuming that it only has finitely many
zeros and has no zeros on the boundary 9(Sou/$2+), then a()) can be represented in the form

R k )\‘2 _ )\‘2 mj
i=1 t

where a(1) is an analytic function without zeros in the region A € Sou/$2., and m; € Z™ is the order of zeros. Denote ®@.(n; ) =
®*(n; 1)¢"3. The kernel of @, (n; ) and high order information at A = A; are determined by

%(n; 1) 0 % 0 Yo(hi)
oMmn) oV - 0 Y1)
. ) _ ) ) =0, (33)
" N n) o) o @l(ns A ] Lym-a(di)

where @ (n; 1) = Zjﬁo @H](n; i) (A — A, It is easy to verify the symmetry relation:

@ (m2)=020_(n; 1), 03 = [? Bl] ; (34)
which infers that
O(n; 2% 0 . 0 o270(M)
om; 2y Py - 0 o2y1(A)
. ) . =0, (35)
o™ Ny o™ Hmiar) - @9m )] Loaym-1(A)
where @_(n; ) = 325 @U(n; 17) (3 — A7)
From the symmetry relation (23), we know that Ker(®(n; 1)) and high order information at A = —A; are
[ o%(n; —a) 0 0 o3yo(Ai)
@L”(n; ) oPm—n) 0 o3y1(0)
. . =0, (36)
_(piml 1]( Y ) @J[rml 2](n _ ) . @f](n; _)\i) 0’3)/,"1.71()»1')
where @ (n; A) = Zj:() QDR](n; —Ai) (0 + A;Y, and Ker(®_(n; 1)) at A = —Ajis
B cDE)J(n; —}L;k) 0 .. 0 0’30’2)/0()\.1‘)
ol —2) Py - 0 o3021(M)
. . . =0, (37)
d)[ml 1]( )\*) d)[imifz](n. _)\’*) . @[0]( )x*) 0»30»2)/"'"7 ()\4)
where @_(n; Z] —0 (Dm (n; —Af) (A + A*) These kernels and high order information conditions (33), (35), (36), (37) completely

determine the degenerate property of meromorphic function ®*(n; 1) in the neighborhood of +; and £}, which can be used to
construct the solitonic solutions.

The conservation laws for AL-equation (5) on the non-vanishing background can be established based on the expansion of above
analytic Jost functions, which is shown in Appendix B.

2.3. Riemann-Hilbert Problem

In this subsection, we construct the corresponding Riemann-Hilbert problem. Firstly, we define the following sectional meromorphic
functions:

M 3) = @ (ms A)diag (35 1), 4 € Soue \ 24,

M(n; 1) = (38)
M~ (n; ) = &~ (n; A)diag (1, m) . AeESn\ 2.
Rewriting the matrix function M*(n; A) in a uniform form:
b(A
M (n; 1) = J(n; 25" [ ] %
. oq | 1 (A o
M (n; 2) = J+(nk)”3[0 1)]4“3
we deduce the jump condition between M™(n; ) and M~ (n; A)on S = {A : |A| = 1}
M+(n; }\') — M—(n; A)V‘l, v] — §n03 I:l + ;((A)'L))r()\- ) r(;L )} C—na3’ )\' c S (39)

7
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Then we consider the jump condition on the cut £2. We know the following boundary conditions for J.(n; A)

Ji(Foo; i) =exp <%9163> |:;i Eli] ,

where AL = A £ i€, e — 07, and &1 = &(A4). It follows that
Ji(Foo; Ay) =Ji(Fo00; A_)Sy, A € £2,
where
Sy = [; %} :
Therefore, by the uniqueness of solutions to difference equations, we obtain that
Je(n; Ay) =Jae(n; A-)Sp, A € £2. (40)

Then we know that

det ([J-1(n; 1), J12(n; 24)])

a(ry) =

An(l - S—%—)
_EI(1—g2)det ([J-2(n; Ao), Dy (s 22)]) (41)
(1-&2) An(1-£2)
=a(rr)
and
b = det ([Joa(m; As ) J-a(m: 24)])
o An(1—€2) !
_ 8201 —g2)det ([J; o(m; ), J-a(ns 2 )]) o (42)
(1-83) An(1-€2) i
= —b(3*)
which deduces that r(A,) = —r(A* ). Furthermore, we obtain the jump condition on £2.. If > € £, then we have
no 1 —no
M*(n; Ay) =J4.(n; e |: r(hs) :| I
1 1 0
—M*(n- -
=M (n7 )"—)E_ I:r()\‘i);.:Zn i| |:1 i| |:r()n+ §.+—2n -l:| (43)
F(Ax )2 1
=M"(n; A_WV5 4, V. " “on
(4 Waws Vor =7 [1 FrGOFAS) —r)? }
Similarly, if A € £2_, we have
1 [F()E2" 14 (A )F(Ar)
+(p- — Mt (- _
M (A ) =M"(m AWy, V,_ = i [ 1 FO )2 . (44)
In summary, we can define the following Riemann-Hilbert problem:
Riemann-Hilbert Problem 1.
e The sectionally analytic matrix-valued function M(n; 1) in C/{S U 2};
e The jump conditions:
M*t(n; A) =M~ (n; A)Vy, A €S,
(m; 1) (n; A)Vy (45)

M (n; 1) =M~ (n; AWVp1, A€ 2%,

where Vy and V, 1 are given by (39), (43) and (44).
e The principal part of M(n; )) is given by

i [l] n) M[ 1] n i [1] Tl) Zi](”)
- | S L () S (o a) | a0

i=1 j=1

where the M[SJ s are the column vectors of the principal part, which will be determined by the analytic part of M(n; 1) by the conditions
(33), (35), (36) and (37).
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e The normalization condition:

6%97 0 1
M(n; 1) = in +0(A7"), A— o0,
0 e 2%Af
_ (47)
L9+ —
M(n; 1) = [ez 4 0 }Jro(x), as A — 0.
0 e 2"~

Following the way in [20], the existence and uniqueness of solutions of the above Riemann-Hilbert Problem 1 for all n € Z follows
by means of Zhou'’s vanishing lemma argument [27] after replacing the poles by jumps along small circular contours and the Schwartz
reflection about the unit circle {A : |A| = 1}.

2.4. Evolution of scattering data

Lemma 3. Let wy(t) be a solution of Eq. (5) which decays to pel®* as n — oo, and £(t; 1) be the Jost solutions for each t € [0, +00).
Then W (n, t; 1) = £(¢; A)CE(t; 1) solves the Lax pair simultaneously, where

VA + 2202 — 422

C:k(t; )L) — ep2 sin(9)t+i()fle’m—)\efm)yery7 o

(48)

Proof. Since the function ff(t; M) solves the n-part of Lax pair for the fixed t, by the fundamental solution theory of difference
equation there exists a solution W.(n, t; 1) = £5(¢; 1)CE(t; 1) solves the Lax pair (5) simultaneously. Inserting the ansatz W (n, t; 1) =
f£(¢; 1)C(t; 1) into the t-part of Lax pair, we have

% (F2(; 2) €8 2) + F5(1 A)% (C*(t; 1)) = Mu£ (85 2)CE(85 ). (49)
Through the boundary conditions (8), we know that

£5(t; 1) — exp (%ﬂﬁ) |:; ﬂ rhgnes (50)
and

M, — ME = e%:73 (i()ﬁ]e’i@ — xe') [_Ap k’ﬂ] + 8]12> e 50x03 (51)

where § = 1(e2% —e77172)+i(r? cos(9)— e p2 —e~ ). Solving the differential equation for C*(t; 1) with the initial data C*(0; 1) = I,
we obtain the solution (48), which completes the proof.

Through the evolution of Jost solutions, the evolution of scattering data and kernel Ker(®..(n; A)) can be stated as

W, (1, £ 1) = W_(n, £ A)S(A), W, 3 1) = Do (n, t; A)e?” SO e e yost (52)
and
wil(n, t; ;) 0 e 0 Yo(h)
W[+” n, t; A) W[f](n, t: i) 0 y1(Ai)
. =0, (53)
W ) W ) W, )] Lym-a(A)
wherei=1,2,....k,
o .
Wo(n 6 2) =Y W n, t; 4)0 — Ai).
j=0

The evolution of kernel Ker(®(n; 1)) at the other points —A;, A} can be stated as above by the symmetric relations (23), (34).
Then the evolution of jump matrices Vy(t) and V, .(t) are given by

‘,]()\'7 t) — ei()»71efigf)»ew)ya:.;tv]()‘)efi(lflefief)neie)ya:;[’ (54)
and

Vo i £) = el e ety | et e oA ineat -y — gy, (55)
The evolution of kernel and high order information at A = A; can be represented as

g —T1a—if g a6
el(A e re')yost 0

)/0()\1'; t) Lo 1.6 i0 . . 7/0()»:)
X d (A" e —re)yos3t iy —1,—10 _ 5 4i0
y1(Ai; £) e el e i —elyost . 0 y1(Ai) (56)
= . . . . s 56
. : : : a=hi :
Ymi—1(Ai; t) ami-166Te 0 ae)yot  gmi—2,iG= e el st Qi e —2ei o3t Y m;—1(Ai)
d),mi71 d)»mi72

andi=1,2,...,k
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2.5. Robust inverse scattering method

The above procedure is the classical inverse scattering method. However, under the classical one, the rogue waves and high order
rogue wave cannot be captured. To solve this problem, we apply the robust inverse scattering method [20]. The key point of the
robust inverse scattering method is to construct a new analytic function instead of original Jost function. The new analytic function
is constructed by the following proposition:

Proposition 4. Suppose that w,(t) is a bounded classic solution for Eq. (5). For arbitrary n € Z and t € R, there exists a unique analytic
solution U(n, t; 1) on the torus region I' = {A : R™! < |A| < R,R > r + p} which solves the Lax pair (6) simultaneously with the initial
condition U(0, 0; A) = I.

Proof. Firstly, we define the shift operator Ef, = f,,, 1. Since wy(t) satisfies Eq. (5), the compatibility condition %(Efn(t)) = E(%fn(t)),
ie

%Ln(r; 1)+ La(t: AMy(£: 1) — (EMo(E: 2))Ln(t: 2) = 0 (57)

is valid automatically. The compatibility condition guarantees that the value of f,(t) from the origin point (n,t) = (0, 0) by the
difference-differential equation (6) is independent of the path. Actually, we can show the iteration on the basic path from (n, 0) to
(n+1,¢):

£ (6 A) =E(E,(0: 1)) + f 4 e
| dr

t
=E (fn(o; /\)+/ if,,(t/;x)dt/)
o dt’

where the first equation is along the path (n,0) — (n+1,0) — (n+ 1, t) and the second equation is along the path (n, 0) — (n,t) —
(n + 1,t). The equivalence between the first and second equality is from the compatibility condition (57). Fixed a path, the solution
U(n, t; A) with the initial data U(0, 0; 1) = I, can be represented as the following integral form:

(58)

t
U(n, t; 4) = Ly_1(0; A)Ly2(0; 1) - - - Lo(0; k)+/ M, (t"; MU(n, t'; A)dt’, neZ®,
0
t (59)
u(n, £52) = (La(0; A) ™" (Lna (05 )" -+ (L (05 ) 7' + / M, (t'; U(n, ¢ 2)dt', nez”,
0
The standard Picard iteration and the assumption that w,(t) is a bounded classical solution of (5) guarantee uniform convergence of
iterating series. Then, the first expression at the right hand side of Eq. (59) and M,(t; A) are analytic in the region I", so is U(n, t; 1).

In view of above proposition, the existence and uniqueness theorem of ordinary differential equation, the analytic solution on the
region I" can be constructed:

U(n, t; 1) = Up(n, t; A)[Up(0, 0; 1)~

— Mi(n, t: )L)rnesin(e)pzte[nln({)+i(A’1e’i9—AeiH)yt]o'3 [Mi(O, 0; )L)]—1’ (60)
where the matrix function Ug(n, t; A) is the fundamental solutions for the Lax pair (6).
We now define the sectionally analytic matrix function:
U(n, t; )\)rfne—sin(H)pztef[nln(§)+i()ﬁ1e*i€7Aei6)yt]a3 rerl
M(n, t; A) = o ’ ’ 61
( ) { M*(n, t; 1), re Ty, (61)

where the regions Iy and I" are shown in Fig. 2, which solves the following Riemann-Hilbert problem:

Riemann-Hilbert Problem 2. The 2 x 2 matrix function M(n, t; A) that has the following properties:
Analyticity M(n, t; A) is analyticin A € C\ {0" U 2}.
Jump condition M(n, t; A) takes continuous boundary values My(n, t; A) on dI" U £2, and they are related by the jump conditions of the
form My (n, t; 1) = M_(n, t; A)V(n, t; A) on dI" U £2, where
V(n, t; 1) :elenlnm>+i(r‘e*“’fxe“’w+r1a3’ Ae R,
—i0

V(n, t: ) —elnIn(O)+i( e —re)stlog [M*(0, 0; )\)]e—[nln(g)+i(x‘1e —re)ytles 5 o ar, (62)

V(n, t: ) :e[n1n(c)+i(r1e*i‘t;\eiﬁ)maa M~ (0, 0: A)]—lef[nll‘l({)Jri()f]e*wf)hew)yt]og’ Aeal .

Normalization

To_

M(n, t; 1) = | € 0 + oY), as k- oo,
0 e 2% AF(1)
) (63)
L9+ —

M(n, ;1) = | & An () O |+00). asi—o.

0 e 27~

10
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Fig. 2. The two red segments denote the branch cuts. The four black points denote the branch points. Definition of the regions I, I'.. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Remark 1. In the assumption of function a(A): (32), it only has finitely many zeros. Then we can choose the radii of annulus I" to
include all zeros of a(1) and a*()).

The existence and uniqueness of Riemann-Hilbert Problem 2 can be proved by mimicking the proof of Theorem 2.4 in Ref. [20] but
replacing the Schwartz symmetry on the line with that on the contour {A : |*| = 1}. Finally, the potential function w, can be recovered
from the following formula:

My x(n, t; )

=— lim A ——. 64
n r—oo My (n, t; A) (64)

3. Darboux transformation in the frame of robust inverse scattering

In this section, we firstly construct the Darboux matrix by the loop group method [28]. Then by the robust inverse scattering
transform, the Darboux matrix can be inserted into a proper Riemann-Hilbert problem, which can be used to reconstruct the potential
functions.

3.1. Darboux transformation

In this subsection, we construct the elementary Darboux matrix T{(n, t; A) for the spectral problem of AL equation (5). Assume that
we have an analytic solution @(n, t; 1) in the region C \ {0, co} that solves the Lax pair (6). The loop group construction infers that
the Darboux matrix Ty(n, t; A) is linear fractional transformation of matrix. The conditions of Darboux matrix can be summarized as

(1) The ansatz of Darboux matrix

1 0 [X:1(n, ) (ya(n, )] o3lx:(n, ) {y1(n, t)los
Ti(n, t; 1) = I — 65
il ) [0 al(n,t)]< + A— At A+ AT (83)
(2) The kernel conditions and residue conditions
Ker(Ty(n, t; A1) = @(n, t; A1)cq, Ker(Ty(n, t; —1q)) = 03P(n, t; A1)cy,
and
Res (Ty(n, t; A))o2®(n, t; A1)¢; =0, Res (Ty(n, t; A))or03P(n, t; 11)¢; =0,
A:)»’f A:*AT
where ¢; is a column vector.
(3) The normalization conditions
Ti(n, t; 1) — [t”(g’ 2 fﬂ +0O(A), asi— 0,
’ 0 (66)
. -1
Ti(n, t; A) —> |:0 o, t)] +0O(L7"), as A — oo,
where $; is an undetermined constant independent with n and t, by(n, t) and c;(n, t) are the undetermined functions.
(4) The symmetry for the potential functions
L(6) = AEy +27'E- + Q) = Th(n + 1, 5 ALy(O[Ta(n, £5 )], (67)

11
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where
0 w[ll
M= — " . (68)

& [_w,g” 0

These above four conditions determine the elementary Darboux matrix with the form:
1 0 MK Aio3K™! o
Tn )= e []I— ( 1 |J’110/1| _ Ajo3 |J’1i<Y1| 3>] (69)
1211 257 h=h A

where K = diag (e, ), o« = 2130 — SUBN, g = 2k 4 U0 and Jyi) = (Y1, @1)" = (0t Ar)er, and (1] = (1)) uses
the Dirac bra-ket notation. Note that Ty c]lepends only on span(|y;)), i.e. it is invariant under any rescaling |y;) — kl|y1), k € C. The
corresponding Backlund transformation can be obtained by performing the expansion of Eq. (67) in the neighborhood of co together

with Eq. (69):

o Wl £ 12 Plgr ) wa + 2301241 — 19
n - .

(70)
AP ¥ 1 + lga]?
The new analytic matrix solution can be constructed with the form:
Ppyy(n, t; 1) = Ty(n, t; 1)@(n, t; 2)(T1(0, 0; 1)), 71

which satisfies the Lax pair (6) with the new potential function (70).
The Darboux transformation can be iterated to yield the multi ones or high order ones. To represent the solution by the determinant
form, we rewrite the multi-fold Darboux matrices with the following theorems:

Theorem 2. Suppose we have N different solutions |y;) for (6) at A = A;, then the Darboux matrix for analytic solution matrix ®(n, t; 1) is

1 [xi) (il o3]xi)(yilos
TN(n,t,A)_|:O aN(ntHHJFZ(A Tt )} (72)

where (x;| = |x;)T, (yil = |yi)T, |x;) can be determined by the following linear equations:

X;=-YA"", X = —Y,B7",
X Y,
[X;i| = [Ix1), [x2), ..., [xn)] 5 |: ] = [ly1), ly2), .-+, lyw 1,

here

A ( ilyp) O/iltfaly]‘)> B— ( ily;) " O/ilﬁaly]‘)>
Aj— )“;k A+ )‘;k 1<i,j<N 7 Aj— )“;k A+ }‘;k 1<i,j<N

and

[T, a2

1+ 2Y,B-'DY}’

aN(n, f)= D=diag(i1,5\2,...,AN).

Based on the Darboux matrix (72), we obtain the Bdcklund transformation between new potential functions and old ones:

[N] wy — by
wy = —
an

’

where
by =2 (X {yiD2 = —2Y1AT'Y].
i=1

It follows that

(wn + 2Y1A-1Y§> (1 + 2YZB—1DY§>

[N] —

wy = . (73)
' [T 1w

We take the seed solution with w, = p, then the general solution formula can be represented by the following theorem:
Theorem 3. The general solitonic solution formula (73) with w,, = p can be represented as
det(H)

IN] _ 74
" =P der )’ (74)

12
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where

M— DV + iy
- A2x2—1 '
i%j 1<i,j<N

H— |:‘Li1/?2+2iilj¢i¢j n @i‘_ﬁj:| .
A kj -1 PA; A=if=N
Proof. Firstly, from the Darboux matrix, we know that
N
(1 + 2Y1A—1DYI) (1 + 2YZB—1DY§) =TTt
i=1

Then the solution formula becomes

N —1yt
wiN! — l_[|)»i|2 o +2Y1ATY, .
" 1 1+ 2Y,A-'DY]

Denote
Vi S
lyj) = [%’_] L wl=[v @]
It can be easily shown that

|4 2Y, A DY = det(A + 2DY'Y;)
P Ml R L

’

det(A)
and
p+2Y1ATY) = p <1 -+ %W\”w*>
det(A + 2¢'y)
= PTW,
where
v =[v1. V2. -, Un].
<P=[§0h Y2, s </7N]-

Moreover, the solution formula can be represented as
N det <1A Lot )
(N] _ 12 At
wi' = p [ 1P = :
LT det(JA+ Dy ty)

In what follows, we calculate the explicit elements for matrices

<1A+%W> :1< wily) wi|a3|yj>)+%¢i%

2 o 2\N—A AHAS

= Ai Uil 4 Mihi@ s 1‘A .
= W (Vv + 2iri@igy) + ;w/f,,

and

1 10 ily)  Wilosly) - -

<2 b w)i,j 2 <}Lj—)vf Aj+Af + v

m (Viv + )_»ikﬂﬁiwj) + A
i

A - - _
= ———— (LiM¥iV + Gigy) hidj-
A —1

Finally, we obtain the solution formula (74). O
3.2, High order darboux matrix

In Theorem 2, we assume that the spectral parameters A;’s are different. It is natural to ask what happens if we have the same
spectral parameter. Actually, this case corresponds exactly the generalized Darboux transformation. As presented in the literature, the
generalized Darboux transformation comes from the elementary Darboux transformation. The key step to yield the generalized Darboux

13
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matrix is to construct the fundamental solution at A = A;. However, it will fail if we apply the Darboux matrix directly. In this work,
the normalization method [20] (Eq. (71)) is used to deal with this problem.
Following the construction from the appendix of [22], we have the following theorem:

Theorem 4. Suppose we have the vector functions |y%”) = @ll(n, t; A1)c; at A = 4, where
o0
o, t;2) =Y @Un, £ 2) 1 — 1), (75)
j=1
then the high order Darboux matrix for solution matrix ®(n, t; 1) is

1 0

Tn(n, t; 1) = [0 an(n. t)} [T+ XL, 21)Y' + 0 3XL(—2, 41)Yio5] (76)

where X can be determined by the following linear equations:

X;=-YA!, X, =-Y,B!, X= [ } Y= zl} “”
2
- N_l .
- )\,1]1 1d X
L)\.,)\. = = ey
(A1) Axl—l+;1!dx’<xk—l)

and 8; j_4 is the standard Christoffel symbols §;; = {

[1]>

_ (LO) LO ( ij— l)1<1]<N ’

y%”‘”)] :

1, i=j,
0, i#]j,

= (e +Ke K ) — (e —Kie.k ).

B= (JIC,Jl + Kic,K]) + (JIC+J1 - Kicgq)

here

and
1 di+j72 X
(i (75 o)
(i—1IG — 1! dx'—1dy xy £ 1) Ix=ky.y=r 1<ij<N
N-1
Jh = 1/,{0]]1,\, + Z wl[l]EJ, E= (Si,j+1)1§i,j§,\, ) (77)
j—l
]HNJFZ(/)UJEJ m> = 1[;1,#] ’
and

|Aq 2N
14 20,Y,B-1Y)

The Bicklund transformation between old potential functions and new ones is

aN(nv t) =

(wn n 2Y]A*1Y£) (1 " leszﬂYg)
[Aq]2N .

The above Darboux matrix has one higher order pole, it can extend to the general case with lots of different higher order poles. By a
similar calculation, we get the similar formula for high order solutions as in Theorem 3, which will be given in the subsequent section.

wrllNJ _ (78)

3.3. Riemann-Hilbert Problem for the Darboux matrix

We reconsider the Darboux matrix in the frame of robust inverse scattering transform. Following the steps in [22], we define the
following sectional analytic matrix function:

N*(n, t; 1) = Tn(n, t; A), A€ (AMIAl > RYU (Al < R7T)

N(n, £ 4) = { N=(n, t; &) = Tn(n, t; 1)@(n, t; AT, '(0,0; 1)@~ (n, t; 1), A e {A[R™! < [A] <R}, (79)

where R > max |A;|, which solves the following Riemann-Hilbert problem:

Riemann-Hilbert Problem 3.
Analyticity N(n, t; 1) is analyticin A € C\ ({|{A| = R"'} U {|»| = R}).

Jump condition N(n, t; 1) takes continuous boundary values N¥(n, t; A) on {XA||Ax| = R} U {A||A| = R™'}, and they are related by the jump
conditions of the form N*(n, t; A) = N~(n, t; A)V(n, t; A) on {A||A| = R} U {A||A| = R™'}, where

V(n, t; 1) = &(n, t; A)Ty(0,0; 1)@ (n, t; 1) (80)

14
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Normalization
1 0
N(n,t; A) —> |:0 an(n t)] , A — 00, (81)
and
i Hrtoo
N(n, t:2) — [ ] 1207 [[“N(”(’) ) J, A= 0. (82)

i=1
Through the recovering formula (64) and above Riemann-Hilbert Problem 3, the potential function is given by

— ANp(n, t; A
wiN(t) = lim p = MNip(n. 6 1) (83)
A—00 sz(n, t, )\.)
The jump matrix V(n, t; A) of Riemann-Hilbert Problem 3 depends on the Darboux matrix at (x, t) = (0, 0) and a fundamental matrix
solution of Lax pair @(n, t; A) with a trivial seed solution wy(t). As has been shown elsewhere [22], this Riemann-Hilbert representation
of the Darboux matrix is an effective method for analyzing the large order rogue waves or solitons for the integrable equations.

4. Soliton, breather and rogue wave solution
Through the formulas of Backlund transformation (70) or (83), we can construct various exact solutions. To this end, we first solve

the linear system with w, = p and A = A;.
If \j # 1 &+ p, —r £ p, inserting the seed solution w, = p into Lax pair (6), we have

f. 1 =Uf,,
n+1 iln (84)
£ =[BiUi + 8T £y,
where
Ai L ,
U = [_:O )f‘]’ §i=08), Bi=i(r"e™ —ne).
Then we diagonalize the matrix U;:
U =rVig 2Vl 6= ¢(),
where
1 .
= [&, ’ﬁ] L &= E).
By the above diagonalization, the fundamental solution for linear system (84) can be solved simultaneously:
£,(; 2) = eSOty eMINGHANOTS g (), (85)
Inserting into formulas (74) the special vector solutions
. £.(t: 4 1 acitiw; /2 ; T Ai— A0
Vil _ 7'1(‘ 1)2 21e—c-+iw-/2 _ | sinh (e + 2?)') . o = arccos | ———— (86)
oi presin@)p2t | —Le~Gitio — sinh (o; — $) 2p
where
iy M= A=A
ai=nlng+pyt+c, e =—-f=————-i|1-(——"],
2p 2p

and ¢; is a complex constant, we can obtain various solitonic solutions.
If \; = r &+ p, —r £ p, we will use the normalization method to obtain the fundamental solution for the Lax pair (84), which will be
shown later. With these fundamental solutions, we will obtain the lattice rational solutions of AL equation (5).

4.1. Single soliton solution

In this subsection, we construct a single soliton solution and analyze its dynamic behaviors. Plugging the solution (86) into the
solution formula, we obtain

a [P+ 1 Plen? 4 (ea) " (]t = Deryn
Wy =P 21 12 2 ’
(A% + o1l
To analyze the properties of soliton solution, we need to simplify the expression (87). By the following identities

(87)

sinh(X)sinh(Y) = % (cosh(X +Y) — cosh(X —Y)),

Aq cosh(X + Y1) + A; cosh(X + Y;) + A3 cosh(X + Y3)

=[(A1e" + Aze™ + Asze"3)(Are™" + Aze2 + Aze™ ™ )]1/2 cosh(X + w),
15
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where

1 1 < A1€Y1 +A2€Y2 +A3eY3 )

w=—In
2 Ale‘Yl +A26_Y2 + A3e_Y3
we can obtain the following relations:

|19 l? + @11 = i cosh(e + @1 + 61) — 12 cosh(ay — @7 + 62),

- ~ _ ~ (88)
(V112 + 1Pl 4+ (pA1) " (1a]* = @1y = 13 cosh(ay + &1 + 63) — ra cosh(e — @1 + 6a)
where
‘1 .
bi=5In <§) ri=(pa)'? i=1.2,3.4,
1
and
D1 =|Aq[Pe3 @181 L em3@1=0) g |3, 2e5(@1-01) L e5ler—dn),
pa =|)»1|2e%(“’1+5)‘) _'_e*%(anﬂ?)l)7 Q= |A1|2e*%(w1+5)1) + e%(wﬁr&n)7
_ |)\.1|Zeiw1 +ei&)1 _ |}L]|2e—iw1 +e—i&)1
p3 = PO p— P, 3= 7 Peior + eion a1,
B |)\l|2e—iw1 +eid)1 B |)\1|2eiw1 +e—i(b1
P e p e T T e e
Then it is easy to verify that r{ = r3, 1, =14, and
03 =61 +i(w1 + 1), 04 =06, +i(w1 — 1)
Finally, we obtain a compact expression for w,l]”:
Wl = o cosh(y + i(wq + @1)) — Gecosh(w + (w1 — @1)) (89)
L cosh(x) — G cosh(w) ’

Re(B1y1)
Re(In(¢1))”

exhibit the breather behavior, it will oscillate along lines which are perpendicular to the line 2Im(In(¢)) (n + Ilrfnﬂ((lligb)) t) = const.
Moreover, we can obtain the asymptotic behavior for the single soliton solution:

[1
n

where x = a1 +&1+61, @ = oy — a1+ 62, G =ry/r1. From (89), we can see that the velocity of soliton is — If soliton solutions

wlll — pel@r @1y 5 4oo,

—i(w1+c?)1), (90)

wi! — pe X — —00.

Thus, if 2(w; + @;) mod (27) # 0, there is a non-trivial phase difference. Through the reduced formula (89), we obtain the phase
difference and the velocity of the localized lattice wave solution. However it is hard to analyze its maximum value. To answer this
problem, we give the following proposition:

Proposition 5. If ;] > 1and ¢; = 11In (%) then the modulus of solution (87) attains the maximum 1 ((r + p)|A1]*—
1
(r — p)IM172) at (n, t) = (0, 0).

Proof. Rewriting the formula (87) as the following form:

Wil = 5 [1 + 12 Pler /v + (pa) (21" — 1)¢1/¢1]
" IM1l? + lo1 /¥ 2 ’
for arbitrary values on ¢ /v, we can find by choosing ¥y = 1 and ¢; = (r + p)A; the maximum value of |le]| for the solution (87) is

13 ((r 4+ P)IAa1? = (r = p)I21172). So if (¥41(0, 0), ¢1(0, 0)) = k(1, (r + p)r1), where k € C is a complex constant, the modulus of solution

|w,[1”(t)| will attain the maximum value at (n, t) = (0, 0). Actually, by choosing ¢; = % In (%
1

(91)

) we can achieve this aim. O

Consequently, the parameter c; in Proposition 5 can be used to generate the solutions with the maximum value at (n, t) = (0, 0).

Remark 2. Similar as the proof of Proposition 5, we can establish the maximum value between both old and new functions. Rewriting
the formula of elementary Bdcklund transformation (70):

Wl — (1+ 2Pl /¥ l?) 4+ (wak) 7 (A1 1* = Do /¥
" " A ? + o1/ ¥ ’

the maximum value of |w,[,”|: max|w,[1”| = % ((vl +m24+mrP? - W1+m?2— m)|k1|’2) will attain by choosing v(0,0) = 1,

¢1(0,0) = (m++/14+m?)A; and m = max |wy| = |w(t)l(.11=(0.0)- The high order or multi-fold Darboux transformation is the recursive
iteration of elementary one. Thus the above proposition can be considered as the general rule for the solution generating by the Darboux
transformations.
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Fig. 3. p = 157 6 = 0, (a): Akhmediev lattice breathers: A, = %. max |wy,| = 0.96. (b): Kuznetsov-Ma lattice breather: A; = %' max |w,| = 2.19. The constant c; is
given by Proposition 5.

o / )

= ’m i, =

X y ////?////

|| e,

0 //////////// -5 /// 10

'/ /' 4 5
no 40 (// 0 /%
20 5 t t

Fig. 4. p = % 0 = /2, (a): periodic lattice solution: A; = %, max |w,| = 0.96, (b): lattice soliton of W-shape: A1 = %, max |w,| = 2.19. The constant c; is given

by Proposition 5.

Now we turn to analyze the dynamic behavior of above soliton solution, which is closely related with the properties of modulational
instability to the background solution. The modulational instability analysis is given in Appendix A. We find that the modulational
instability for the focusing AL equation (5) is different from the focusing NLSE (1). The plane wave solution of focusing NLSE (1) is
always modulational unstable. However, for the focusing AL equation (5), if  # 7 +km (k € Z), the plane wave solution is modulational
unstable; while if & = 7 + kz (k € Z), it is modulational stable.

For the modulational unstable background 6 # % + kr (k € Z), the Akhmediev lattice breather (localized in time and periodic in n,
see Fig. 3(a)) is obtained by taking the parameters A; € (1,7 + p)U(—r —p, —1). If 6 = 0, the Kuznetsov-Ma lattice breather (localized
in n and periodic in time, see Fig. 3(b)) can be obtained by taking the parameters A, € (r + p, 0c0) U (—o0, —r — p). For other choices
of parameters, we obtain the Tajiri-Watanabe lattice breather [29].

On the other hand, for the modulational stable background 6 = 7 + kr (k € Z), if A1 € (1,7 + p) U (—r — p, —1), a periodic lattice
solution occurs instead of Akhmediev lattice breather (see Fig. 4(a)). If A1 € (r + p, c0)U(—o00, —r — p), the soliton solution of W-shape
appears (see Fig. 4(b)). For other choices of parameters 1; € Sy, /R, we also obtain the Tajiri-Watanabe lattice breather solution.

4.2. Multi-solitonic solution

In this subsection, we consider the interaction law for the multi-solitonic solutions with the parameters A; and ¢;, (|A;] > 1),
Re(In(¢;)) > 0,1 = 1,2,...,N. The velocity parameters are arranged with the order s; < s, < --- < sy, where s; = —lf:((lggf))).
We analyze the asymptotic behavior of the kth localized lattice wave solution. To this end, we decompose the N-fold Darboux matrix

into two Darboux matrices:

Tu(n, t: 1) = T(n, t; A)Tgy(n, t; 1) (92)
where
1 0 MK P 5 oK) (klo
(0, ; 3) = 0 al? |:]I _ < k |J/ki(yk| _ MO3 |}’I<?k(y1<| 3)] (93)
12002y A=A A+ A
; T _ Oklik) _ Gkloslik) _ Okl Gkloslie) 15y — (3 AT _ .
with K = diag (o, B, e = 577 — =5 205 Be= a2 D = (W " = T, £ A1y
N (k) (k)
1 0 [ )Y yil  o3lx ) (vilos
Too(n, t; A) = I ! — ! 94
to(n. £52) [0 a(n, t)} * HZ,-# ( A At ar (94)
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and

W = YA XY = YIB!,
X[ = —¥{'A]. X)) = —vy'B,

X ®) RN k)

1

(k) =[|X )|X >s- |Xc >|X,( )7---7|XN>]»
X!

Y(]k)
Y(k) = [|yl>s |y2>7 ey |yk—1>a |yk+l>s ey |J/N)] i

Ay = ( ilyi) wilaalyﬂ) By = ( wily) <yi|a3|y,~>>
Aj = A{ A+ A 1<i,j<N;ij#k Aj— Af A+ A7 1<ij<N;ij#k
N
Hi:l;i#k |22
[5 - K
14 2Y,B ) Dy (V)1

Along the line Re(In(&y))(n — sgt) = const, and Re(w;) = Re(In(g;))[n — st + (i — si)t], if i > k, Re(e;) > Foo ast — +oo; ifi <k,
then Re(a;) — +00 as t — +o0. Up to a scalar function!, we obtain the asymptotic expression for |y;) (i #k)ast — +oo

ag(n, t) = Dy = diag (A1, A2, ..o Aoty Akg - -0 AN) -

1 ENCIR
lyi) olyi) = [Ef] +o(e™% M, i<k,

(k) (95)
lyi) ocly) = [El'] +oe™ 1), i>k,
where c(k) = 4Re(In(¢;))|si — Skl; as t > —oo
_ . _ k) .
yi) oxly;) = [E{] +oe™i ), i<k,
96
- 1 W@y (96)
lyi) ly;) = Ef +0(e™ ), i>k
It follows that
Tuy(n. £: 4) = Tg(A) + 0(e ™),
N k k
Tim_[l g} s <|”*><y1| o3l 0 |a> (97)
WM =10 q T X
&) i=1,izk A=A At A
as t — +oo, where ¢® = 4H"£]£1(R6(ln(§i))|5i — skl),
1
X(lk):t _ _Y(lk)j:( ARy, X(zk)i _ _Y(Zk):t(Bi))71
k)&
X(ld ()£ | (k)E (k)£ (k) (k)%
X(k)i IX > |x2 >7 R |xk_1)v |Xk+]>v ceey |XN > )
2
(k)%
1 + + + + +
|:Y(I<)ii| = [|y1 VY W) Wiads e |yN>] s
2
and
A _ (wﬁyﬁ <y,-*|a3|yf>) g0 (wﬁyﬁ . i |aaly,~*>>
+ = T ’ T\ Y
A=A A A 1<ij<N:ijk A= A A 1<i,j<N:ijtk
ai _ Hl 1,i#k |)“ |2
(k) — 1 :
14297 (BY) D™y
Furthermore, we have the following asymptotic behavior for |):
Sy . ot —cBye|
[Vk) = Tao(n, & Aedlye) = T(k)()‘k)b’k) + O(e ). (98)

1 The Darboux matrices are invariant under the rescaling of the vector |y;) — dily;), di € C.
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Fig. 5. p = % 6 = 0 (a): The interaction between Akhmediev breather and Kuznetsov-Ma breather. 1; = %, Ay = %, max |wy,| = 3.52, (b): The interaction of two
Tajiri-Watanabe breather. A1 = 1 —1i, A, = 1+ i, max |w,| = 2.92. The constants c;, ¢, are given by Proposition 5.

To give the asymptotic behavior of the kth soliton solution, we calculate the exact form of Ti)(kk)|y,<):

4 . 1 & | [ elrm@+Bertteed
T(k)(kk)|yk) = T(k)()»k) [& 1:| |:e[n1n(€k)+/3kykt+ck]

= Vk:E N Slzctfl(eiAki |: el" In(&)+Brevt+eckl ] (99)
J/kifke_mk 8’?: e~ [nIn(Gi)+ Byt +cil
where
k K)y—1 (K k K)y—1(k
v =1 - VORI o = (1 YY) ).
T T
ok _ {wﬁyﬁj)) ~ O/,-i|03|yg<”)i| o _ [(yﬁy% - (y,-*|a3|y§3)>}
L ¥ * IR — A * ’
A — A Ak + A IieNik Ak — A Ak + A IieNizk (100)
k—1 N 1 %_
+ (1) (2) k
Af =42 (ZRe(wi)— > Re(w,-)), i) = [SJ’ i) = [1}
i=1 i=k+1
Thus, through the above analysis we obtain the following proposition:
Proposition 6. The N-soliton solution with N distinct velocities, si, k = 1,2, ..., N, has the following asymptotic behavior along the line
n — syt = const as t — 4o00:
cosh(x= +i k) — Gy cosh(w ™ + i(wy — & '
w,LN] —p (Xk + (wk+wki)) k (wki + (wk wk)) elAki +O(eic{k)|”), (_10_1)
cosh(x; ) — Gy cosh(z")

)
where x© = 2Re (ozki) + 9?()' @ =2ilm ((xki) + Qék), Gy = % o = nlIn(&) + Bt + cx + 3 In(y=/8;),
1

I L i W B B 7 e
= —1In - - N = —1n - n
1 2 |)\,k|267%(wk75)k) + e%(&)k*ﬂ)k) 2 |)\k|2e7%(0)k+6)k) + e%(wk+(])k)

. _ . _ . _ . _ 1/2
rgk) — (l)\’k|2e%(wk—wk) + e—%(wk—wk)) <|}\k|2e—%(wk—wk) + e%(wk—wk)>:| / i

. . : . 1/2
ré") — I:(|)\k|2€£(wk+5>k) + e—%(wk%)k)) (|)\k| e 2 (@t | e%(wk%)k))] / )

Through the above proposition, we know that the interaction between different types of localized lattice waves is elastic. To visualize
the result of the above proposition, we will exhibit some numeric examples to illustrate their dynamic behaviors.

We give some examples to exhibit interactions between breathers or solitons. In the modulational unstable background, we show
the interaction between Akhmediev lattice breather and Kuznetsov-Ma lattice breather in Fig. 5(a). It is seen that two breathers are
perpendicular to each other. Fig. 5(b) shows the interaction of two Tajiri—-Watanabe lattice breathers.

For the modulational stable background, the types of soliton solutions are richer than the modulational unstable one. Fig. 6(a)
illustrates the interaction between a Tajiri-Watanabe lattice breather and a lattice soliton of W-shape which is elastic. Fig. 6(b) shows
the interaction of two solitons of W-shape which is also elastic. Fig. 7(a) shows the interaction of periodic lattice solution and a
Tajiri-Watanabe lattice breather.
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Fig. 6. p = % 6= % (a): The interaction between a Tajiri-Watanabe breather and a soliton of W-shape. A1 = %, Ay = % + i, max |wp| = 9.3, (b): The interaction

for two solitons of W-shape. A1 = %, Ay = %, max |w,| = 11.6. The constants ¢y, c; are given by Proposition 5.
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Fig.7. p= 3.0 =
0=0p=g5 0=

(a): The interaction between a Tajiri-Watanabe breather and a periodic wave. 1; = %. Ay = %, max |w,| = 5.89, (b): Rogue wave solution.

, Mg = to = 0, max |w,| = 152 The constants c;, ¢, are given by Proposition 5.

ENIGINTE]

4.3. Rational and rogue wave solutions

To obtain the rational solution for the AL equation (5), we normalize the fundamental matrix solution of the Lax pair (6)

@(n, t: )L) — rn—ngesin(é))pz(t—to)vena3v—l

: 1-22
— prn0gsin®)2—10) [ cosh(y)l, — psinh(n) | 55+ -1 . (102)
1=
4 1 T 2px

with @(ny, tg; A) = I, where n = (n — np)In(¢) + By (t — to) + ¢, which is analytic in the region C \ {0, co} and has the removable
singularity at the branch points A = r &+ p or —r & p. Now we choose the vector solutions
Yn, t; 1) _ : 1
[w(n, )] =P ED 4 o (103
which can be expanded in the deleted neighborhood of A = A1 =1 + p:

Y(n, t;2) =Y Y- ),
> (104)
on, ;1) =Y o' — A1)

i=0

for the fixed n and ¢, where ! = y!(n, t), ! = ¢{(n, t) and the constant ¢ can be choosing as the form ¢ = Y2 cih — Aq). The
constant vector (1, (r + p)A)" in Eq. (103) is chosen by the fixed form to obtain the solutions with maximum peak by Proposition 5.
Even though Proposition 5 just shows the maximum occurs at (n, t) = (0, 0) for the single soliton solutions, actually it still work for
the high order soliton or multi-solitons due to the Darboux-Backlund transformation can be iterated recursively.

Combining Theorems 3 and 4, the Nth order rational solution for (5) can be represented by the following determinant:
v det(H)

"= P det(M)’ (105)

where
M = KICK; +JiCh, H =K{CK; +]JiC) + F'K] Ji1,
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Fig. 8. Parameters N =5, A; = 2, p = %, 6 =0, ng =ty = 0. (a): 5th order fundamental rogue wave. ¢ = 0, max |w,| = 5.78, (b): 5th order rogue wave with
triangle shape. ¢ = —300ie In(¢q(€)).

with
1 diti—2 1

C= - . 106
((i — 1) — 1)! dxi-1dyi—1 <x2y2 — 1) X=M,y=;1>lsi,j§,v (106)
I[N E EZ (_])N—IEN—l

F=—— — +—=—+4+--+———, E=(6; U 107
RN VAE ()" Gtz (o)

=9 I+ Y B g B ey TR g = A+ JE, (108)

Ki = oIy + 0 'E+ @B + - + oV UEN T Ky = LK + KGE,

and K;; and J;; represents the first row of matrices K; and J; respectively. Then we discuss the dynamic behavior for the
solutions (105).

4.3.1. The first order rational solution
Based on the formula (105), we have the first order rational lattice solution for the AL equation (5) by setting N = 1. We

take p = %(p — %) r = % p+ 11)) and ¢g = 0, where t; and ng are real constants, p is a real constant. With the aid of
Eq. (102), we can obtain the special vector functions

1 ; .
=" = = o) + 250t — e —pe)(E — to) + 1,

0 i . ) (109)
o) = - (<p2 = = no) 55 (" = 1e ™ = plet)e — ) - pz) :
It follows that the first order rational lattice solution is
Wl = [_1 N 4p*(P* + 1[p* — i(t — to)(p® — 1)* cos(6)] ] . (110)
! 4p8 + [(2p?(n — no) + (p? + 1)?sin(0)(t — £0))? + (t — to)? cos(8)(p* — 1)21(p? — 1)?

There are two kinds of different dynamical behavior for the first order rational lattice solution:

Rational lattice soliton of W-shape If§ = 7 +kr, k € Z, i.e. the modulational stable background, the rational solution (110) is soliton
of W-shape (see Fig. 9(a)).

Rogue wave If 6 # % + kr, k € Z, i.e. the modulational unstable background, the rational solution (110) is the rogue wave solution
(see Fig. 7(b)).

The rational solution (110) for the AL equation (5) is derived by bilinear method [14] and Darboux transformation [16], and their
dynamics behavior is also studied. Thus we omit the details to discuss the dynamics behavior.

4.3.2. The high order rational soliton and rogue wave solutions

If we take N > 1, we can obtain the high order rational solution. Under the modulational unstable background, it is rogue wave
solution. While under the modulational stable background, it is soliton of W-shape. By choosing special parameters, we exhibit different
dynamics in Figs. 8 and 9(b).

The high order rational solutions are found in [14] by Hirota’s bilinear method and the highest peak value is obtained from the
solution formula directly. We use Remark 2 of Proposition 5 to determine the rational solutions with the highest peak value:

Proposition 7. The maximum peak value m; of the fundamental ith order rational solution (105) with ¢ = 0 and ng = to = 0 has the
following recursion relationship:

1
my =2 ((r+p)’ = (r=p)),

1
mj =2 [(r+p)z(,/1 +m? +mig) = (r—p)PJ/1+m? —m,-l)], iez, i>2.

The functions |w,[1i]| attain the maximum value at point (n, t) = (0, 0).

(111)
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Fig. 9. Parameters A; = 2, p =

N = 3, max |w,| = 2.28.

%, 6 = %, no = to = 0. (a): Rational lattice soliton of W-shape. N = 1, max |w,| = 1.78, (b) Third order lattice soliton of W-shape.

Through Proposition 7, we find that the peak value of rogue wave to the AL equation (5) is different from the NLSE (1) with
m; = 2i + 1. The increasing rate of the peak value to the AL equation (5) with the order m;/m;_y ~ (r + p)? is much faster than
the NLSE (1).

The left panel of Fig. 8 shows the profile of the fifth order fundamental rogue waves. By Proposition 7, we find that the maximum
value of lattice rogue wave is 5.78. Meanwhile, this proposition is also satisfied for the high order lattice soliton of W-shape. The right
panel in Fig. 9 is the third order lattice soliton of W-shape with the maximum value 2.28 at (n, t) = (0, 0) by Proposition 7.

5. Conclusion and discussion

In this paper, we perform the robust inverse scattering analysis for the AL equation (5) on the non-vanishing background. Based
on the loop group method, the Darboux transformation is constructed within the framework of robust inverse scattering method. The
multi-solitonic solution and high order rogue waves solution are derived by the Backlund transformation. Their dynamic behaviors are
clarified by the asymptotic analysis.

The classical inverse scattering method for the AL equation, along with exact solutions, (5) are constructed several years ago.
Comparing with the previous studies, the formulas of exact solutions obtained in this work are more compact. The interaction between
different solitonic solutions are analyzed by asymptotic analysis. The maximum amplitude for peak of solitonic solutions are derived
by the Backlund transformation. What is more important, under the frame of robust inverse scattering method, we can analyze the
infinite order rogue waves for the AL equation similar to the NLSE [22]. We expect to report the results in the near future.
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Appendix A. Proof of Lemmas 1 and 2

Proof of Lemma 1. Actually, we merely need to prove the solution y.nﬂ is analytic in Sj, \ §2_, since other solutions can be proved in
a similar manner. Firstly, we introduce the matrix norm

Al = max(|ai;|), A= (aij)1<i<m,1<j<n-

Using the standard iteration method, a solution for the first equation of summation equation (16) can be written in the form of Neumann
series

o0
+ K
pio=Y g,
k=0
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where

1
gf)_[s]’ = Z‘h e )& gl

We then consider the convergence of above series. We can establish the following estimation:

(I+r2] 1
pz 1-— 52 :
By the lemma A.2 in Ref. [2], we can obtain the following estimation

I < ( Zann) - ( 3 [ — p\)

Gi(k, n; )|l < C(e), Cle)=

k=n k=n

By above estimation, we deduce that the series is uniformly bounded in Si, \ (£2_ U B.(—(r — p)) U B(r — p)) and internally closed
uniformly convergent in the region S, \ §2_. It follows that the solution un‘; is analytic in the region Si, \ £2_.

We proceed to the proof for the uniqueness property of solution unf] . Suppose we have another solution ﬂL, then

ot ot
piy = =—¢ ch (k. n; 1) % (l‘l‘k+1 y = Bia)-
It follows that

N 1G1(k, n; }»)Qk I .
Ity = Bgall < Z It 1 — gl
k=n

Iterating above inequality as above, we establish the following estimate

m
”l‘l'n] /'l'n1”<( Z| 19+_,0|> .

When m — +o00, we can deduce that ||/1.n+,1 - Iln+.l | = 0. Thus the uniqueness property is proved. O

Proof of Lemma 2. Here we merely need to obtain the sharp estimation for un‘fl, the other Jost solutions can be proved in a similar
way. Firstly, by the following limit

;-2(/(—11) -1 o

lim = ——(k —n).
r

z—>r—p 1 — 52

It follows that there exists a positive €, such that in the region B,.(r — p)/$2_ the following estimates hold

2Ak=n) _ q 2Ak=n) _ q 2Ak=n) _ q
2(7 <k-—n, Eci <k-—n, Ci <k-—n.
1-—&2 1-—§&2 1-—§&2
Then we can obtain the following estimation
(1+ (k
HCGl(k n; )»)Q' 7||Qk Il

It follows from the iteration of standard Neumann series that

+o0
1
bt = T4 2 D7 k= ) Q]

k=n
If n > 0, we obtain the estimation

+o00

1
bl = 142 0+ IR -

k=n
Iterating the above inequality, by the estimation

+o00

D (1 + KDIQY I < o0,

k=n

we obtain that

1 +0oo
s 11| < exp(R()) < +oo, R(n) =~ (1+K)IQ{ ]l (112)
k=n
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If n < 0, then

+00 k 1 +00
ol < 14 IQE Ml 4~ >0 (=) QY a5

k=n k=n

o 1Ix
<143 10 Ml + 1 Y (= m Qg

k=1 k=n

On the other hand, through the estimate (112) in above case n > 0, we have

11l < exp(R(k)).

Thus
+o00
(1—-n)
ol < Kyt =3 QL Ny
k=n
where
Ky=1+ 2220 Zkqu I.
Furthermore, we have
gl 1 +§(1+|’<+]|)IIQ;<II lefonall §(1+|1<+1|)”Qk+” et 1
Ki(T+nl) = (1+1nf) & r Ki(1 + [k + 1) o Ki(1+ [k +1])

Finally, we obtain

oIl < Ka(1+ In)) exp[ Z(1+|k+1|) I @ < +o0.

k=n

Thus the uniformly bounded property for unf] in the region B,.(r — p)/$§2_ is proved. Since in the region B,.(—r+ p)\ §2_ the functions
&(1) and ¢(X) have the similar structure as B,.(r — p) \ §2_, the similar estimate can be established. O

Appendix B. Conservation laws

We use the difference Riccati equation to derive the conservation laws. The conserved quantities for the defocusing AL equation
under non-vanishing background was derived by Ablowitz et al. [11] by expanding the analytic function in the neighborhood of co.
Here we expand the analytic function both in the neighborhood of co and 0, then the whole list of conserved quantities are obtained.

Firstly, we rewrite the linear spectral problem in the form:

o)=L (2]
Pnt1 —w, A7 | en]’
then we have
$nt1 — Wy ¥y + )L_l(ﬂn
Yni1 B A + woen '
Introducing the notation A, = ¢,/v,, then we obtain the difference Riccati equation:

Anp1(A + wiAp) = —wy + )\_lAn-

Moreover, denote IT, = w,A;, it follows that

Wl (A + 1) = _wnJr1|wn|2 +)L71wn+lnn~ (113)
Assuming
Yn(A) | _ i n, -
|:§0n()\):| = exp (29—U3> (r;) Mnj()‘) (114)

together with Proposition 3 implies the ansatz

+00
My = (M=, (115)

Plugging the above ansatz (115) into Eq. (113), comparing the coefficient of A, we have

L(n+1)= —wpy1Wh,
12(n + ]) = —wn+1ﬁ1n 1( + |wn| )7

"+11k1(n Zgn+1)1k, k=3,4,.

Ik(n + 1)
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Through Eq. (114), we have

VRil _ o aHB500) 4 T,, gy = e300, lim g(ns 2) =0,
‘//n n——o0
which induces that
A+ 1T
g(n+1;x)—g(n;x)=1n( + )
rg
Notice that the parameter ¢ can be expanded at infinity:
24 022 _q
cTl=ra 4 %k‘3 +0(7%), L —> o0
r

which deduces that

- (A Lm) = (L(m)+ p* 72 + <Iz(n) - %1%(:1) + %pz (2r* + pz)) A+ O(), A o0

As a result, we obtain the conversation laws:

+00
lim g(n;a)= )" [g(n+1;2) —g(n; )]

n—-+oo
n=—o00
+00
=Y Ga* A > o0
k=1
where
o0
G = Z (pz_wna)n—l)a
n=—o00
- 1 1 2 2 2
G = —WpWn—2(1 + |wp_1|?) — =w2w2_, + =p? (2r* +
2 ";OO[ nWn—2( [wn-117) anwn71 2,0 ( /O)

Similarly, the assumption
i
Ul —exp (56403 (o (),
¥n 2

implies the ansatz
+00
My =" Jina.
i=1

Inserting the ansatz (119) into Eq. (113), comparing the coefficient of 1, it follows that

Ji(n) = |wn|27
Jo(n) = waini1(1+ |wyl?),
k—1

I = = | Jealn+ D4+ Y Jn+ Wiy | k=3.4.....

n+1

i=1

In view of Eq. (118), we arrive at

Ynr _ PR ) Ly @O e fim R(n: £) = 0,
Yn n—-+oo

which induces that

h(n+1;k)—h(n;)\):ln(x+nn>.

Together with the expansion at origin

-1 2
=t P ond, Ao,
T r
we have
A+I\ _  (1+)h0) L) 5),2 4
ln(r; >_ln< o >+<1+J1(n) p)k + Oo(A%), »—0.
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(116)

(117)

(118)

(119)

(120)

(121)
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Thus we obtain another sequence of conservation laws

“+00
lim h(n;A) = — Z [h(n + 1; A) — h(n; 1)

n——oo
+oo
- ZD,{A”‘, A — 0.
k=0
Here
o0 2 o0
Dop=— > 1n(1+r'2w”|), Di= Y (p*— waibnt1), ... (122)

n=—00 n=—0oo

The conservation laws are derived by expanding the Jost function in the neighborhood of 0 instead of taking determinant as [11].
Appendix C. Modulation instability analysis

The AL equation (5) is linearized about the plane wave solution by the substitution of

wyp = p+Qn
where Q, is small perturbations which nonlinear effect can be neglected. The linearized equation is
iQue = (14 p*)Qur1e"” + Quo1e™") = 2(1+ p?) cos(6)Qn + 2° cos(6)(Q + Qn)- (123)

The stability of the plane wave solution can be determined by the complete basis for the solutions of the linearized equation (123).
Solutions to linear equation (123) can be decomposed into a summation of various normal Fourier modes of the form

Q, :fei(,sn—n) _i_ge—i(ﬂn—):t)'

Substituting the Fourier modes into linearized equation (123), the following linear system is obtained:

24 20%cos(O)] | f —0
—2p%cos(9) 2, gl

where

21 =2(1+ p*)cos(0 + B) — 2cos(8) — A,
25 =2 cos(8) — 2(1 + p?)cos(d — B) — A.

The linearized dispersion relation is obtained by setting the determinant of above matrix to zero:
[h + 21+ p?)sin(8) sin(B)? + 4 cos?(6) [p4 —[(1 + p?) cos(B) — 1]2] —o.

Unstable Fourier modes occur if and only if A is nonreal. Indeed, we merely need to analyze the discriminant of above quadratic
equation:

A = —16 cos?(6) [p4 —[(1+ p?) cos(B) — 1]2] .

There are two cases: For the first case: 6 # % + km, k € Z, we know that

2 pr—1
1-— = <cosB <1,
pPP+1 p241
which infers the modulational instability for arbitrary p.
For the second case: § = 7 + km, k € Z, since A = 0, the background is modulational stable.
On the other hand, we consider the case of 8 = 0 with the limit A = S when 8 — 0. It follows that A = —16p(1+ p?) cos?(8) < 0,
thus the background is modulational unstable for the case 6 # % + krm, k € Z.

References

[1] MJ. Ablowitz, D. Kaup, A. Newell, H. Segur, The inverse scattering transform-fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974) 249-315.

[2] M. Ablowitz, B. Prinari, A. Trubatch, Discrete and Continuous Nonlinear Schrédinger Systems, Cambridge University Press, UK, 2004.

[3] MJ. Ablowitz, J.F. Ladik, Nonlinear differential-difference equations, J. Math. Phys. 16 (1975) 598-603.

[4] MJ. Ablowitz, ].F. Ladik, Nonlinear differential-difference equations and fourier analysis, ]J. Math. Phys. 17 (1975) 1011-1018.

[5] S. Takeno, K. Hori, A propagating self-localized mode in a one-dimensional lattice with quartic anharmonicity, J. Phys. Soc. Japan 59 (1990) 3037-3040.

[6] V.M. Kenkre, D.K. Campbell, Self-trapping on a dimer: Time-dependent solutions of a discrete nonlinear Schrodinger equation, Phys. Rev. B 34 (1986) 4959-4961.

[7] Y. Ishimori, An integrable classical spin chain, J. Phys. Soc. Japan 51 (1982) 3417-3418.

[8] N. Papanicoulau, Complete integrability for a discrete heisenberg chain, ]. Phys. A: Math. Gen. 20 (1987) 3637-3652.

[9] Yu V. Bludov, V.V. Konotop, N. Akhmediev, Rogue waves as spatial energy concentrators in arrays of nonlinear waveguides, Opt. Lett. 34 (2009) 3015-3017.
[10] V.E. Vekslerchik, V.V. Konotop, Discrete nonlinear Schrodinger equation under non-vanishing boundary conditions, Inverse Problems 8 (1992) 889-909.
[11] MJ. Ablowitz, G. Biondini, B. Prinari, Inverse scattering transform for the integrable discrete nonlinear Schrédinger equation with nonvanishing boundary

conditions, Inverse Problems 23 (2007) 1711-1758.

[12] B. Prinari, Discrete solitons of the focusing Ablowitz-Ladik equation with nonzero boundary conditions via inverse scattering, J. Math. Phys. 57 (2016) 083510.
[13] B. Prinari, F. Vitale, Inverse scattering transform for the focusing Ablowitz-Ladik system with nonzero boundary conditions, Stud. Appl. Math. 137 (2016) 28-52.
[14] Y. Onhta, ]J. Yang, General rogue waves in the focusing and defocusing Ablowitz-Ladik equations, J. Phys. A: Math. Theor. 47 (2014) 255201.

26


http://refhub.elsevier.com/S0167-2789(21)00112-3/sb1
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb2
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb3
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb4
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb5
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb6
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb7
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb8
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb9
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb10
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb11
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb11
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb11
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb12
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb13
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb14

Y. Chen, B.-F. Feng and L. Ling Physica D 424 (2021) 132954

[15]
[16]

[17]
[18]
[19]
[20]
[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

A. Ankiewicz, N. Akhmediev, ].M. Soto-Crespo, Discrete rogue waves of the Ablowitz-Ladik and Hirota equations, Phys. Rev. E 82 (2010) 026602.

X.-Y. Wen, Z. Yan, B.A. Malomed, Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability, Chaos
26 (2016) 123110.

X. Geng, H.H. Dai, J. Zhu, Decomposition of the discrete Ablowitz-Ladik hierarchy, Stud. Appl. Math. 118 (2007) 281-312.

P.D. Miller, N.M. Ercolani, LM. Krichever, C.D. Levermore, Finite genus solutions to the Ablowitz-Ladik equations, Comm. Pure Appl. Math. 48 (1995) 1369-1440.
L.-C. Li, I. Nenciu, The periodic defocusing Ablowitz-Ladik equation and the geometry of Floquet CMV matrices, Adv. Math. 231 (2012) 3330-3388.

D. Bilman, P.D. Miller, A robust inverse scattering transform for the focusing nonlinear Schrodinger equation, Comm. Pure Appl. Math. 72 (2019) 1722-1805.
D. Bilman, RJ. Buckingham, Large-order asymptotics of multiple-pole solitons of the focusing nonlinear Schrodinger equation, J. Nonlinear Sci. 29 (2019)
2185-2229.

D. Bilman, L. Ling, P.D. Miller, Extreme superposition: Rogue waves of infinite order and the Painlevé-IIl hierarchy, Duke Math. ]J. 169 (2020) 671-760.

T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water, J. Fluid Mech. 27 (1967) 417-430.

L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, in: Springer Series in Soviet Mathematics, Springer, Berlin, 1987.

J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM, 2010.

P. Deift, E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979) 121-251.

X. Zhou, The Riemann-Hilbert problem and inverse scattering, SIAM ]. Math. Anal. 20 (1989) 966-986.

C.-L. Terng, K. Uhlenbeck, Backlund transformations and loop group actions, Comm. Pure Appl. Math. 53 (2000) 1-75.

M. Tajiri, Y. Watanabe, Breather solutions to the focusing nonlinear Schrodinger equation, Phys. Rev. E 57 (1998) 3510-3519.

27


http://refhub.elsevier.com/S0167-2789(21)00112-3/sb15
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb16
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb16
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb16
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb17
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb18
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb19
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb20
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb21
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb21
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb21
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb22
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb23
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb24
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb25
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb26
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb27
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb28
http://refhub.elsevier.com/S0167-2789(21)00112-3/sb29

	The robust inverse scattering method for focusing Ablowitz–Ladik equation on the non-vanishing background
	Introduction
	The robust inverse scattering transform to the AL equation on the non-vanishing background
	Scattering analysis
	Scattering matrix
	Riemann–Hilbert Problem
	Evolution of scattering data
	Robust inverse scattering method

	Darboux transformation in the frame of robust inverse scattering
	Darboux transformation
	High order darboux matrix
	Riemann–Hilbert Problem for the Darboux matrix

	 Soliton, breather and rogue wave solution 
	 Single soliton solution 
	Multi-solitonic solution
	Rational and rogue wave solutions
	The first order rational solution
	The high order rational soliton and rogue wave solutions


	Conclusion and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proof of ??
	Appendix B. Conservation Laws
	Appendix C. Modulation instability analysis
	References


