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Abstract
Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation
are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili
hierarchy reductionmethod. They are expressed explicitly by rational functions
with both the numerator and denominator being the determinants of even order.
Four types of intrinsic structures are recognized according to the number of
zero-amplitude points. The first- and second-order rogue wave solutions agree
with the solutions obtained so far by the Darboux transformation. In spite of
the very complicated solution form compared with the ones of many other inte-
grable equations, the third-order rogue waves exhibit two configurations: either
a triangle or a distorted pentagon. Both the types and configurations of the third-
order rogue waves are determined by different choices of free parameters. As
the nonlinear Schrödinger equation is a limiting case of the SS equation, it is
shown that the degeneration of the first-order rogue wave of the SS equation
converges to the Peregrine soliton.
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1. Introduction

The study of the nonlinear Schrödinger (NLS) equation lies at the forefront of applied mathe-
matics andmathematical physics since it has been recognized as a genericmodel for describing
the evolution of slowly varying wave packets in general nonlinear wave system [1, 2]. It arises
in a variety of physical contexts such as nonlinear optics [3–5], Bose–Einstein condensates
[6], water waves [7] and plasma physics [8].

In the context of nonlinear optics, when the width of optical pulses is less than 1 ps, higher-
order nonlinear effects have to be taken into account and the NLS equation should be modified.
As a result, a generalized NLS (gNLS) equation [4]

iqz +
1
2
qττ + |q|2q+ iε(β1qτττ + β2|q|2qτ + β3q(|q|2)τ ) = 0, (1)

is derived, where β1, β2 and β3 are the parameters related to the third-order dispersion,
self-steepening and stimulated Raman scattering, respectively. Due to the complexity of the
gNLS equation, the study is mainly numerical. However, in some special cases, the gNLS
equation becomes integrable and is available for rigorous analysis. For example, when β1 : β2 :
β3 = 1 : 6 : 3, it is an integrable equation called the Sasa–Satsuma (SS) equation [9, 10]. Under
this case, a gauge transformation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u(x, t) = q(τ , z) exp

{
−i
6ε

(
τ − z

18ε

)}
,

t = z,

x = τ − z
12ε

,

(2)

brings the SS equation into the form

ut + ε(uxxx + 6|u|2ux + 3u(|u|2)x) = 0. (3)

It is noted that when β1 : β2 : β3 = 1 : 6 : 0, equation (1) is also an integrable equation called
Hirota equation [11].

Rogue waves, which are initially used for the description of the spontaneous and mon-
strous ocean surface waves, have attracted much attention in the past two decades [12–14].
With the experimental developments, extensive theoretical studies have also been focused on
rogue waves [15–18]. The mathematical study of rogue waves originated from a rational solu-
tion of the NLS equation, which is called the Peregrine soliton [19]. Since the higher-order
rogue waves were discovered by Akhmediev et al [20], significant progress on the study of
higher-order rogue waves has been achieved including the multi-component generalizations
of some integrable equations [21–25]. Based on the Riemann–Hilbert approach [26], rogue
waves of infinite order have been revealed [27]. In addition, rogue waves on the periodic
background [28–31] have been comprehensively investigated. Very recently, Yang and Yang
[32, 33] performed an in-depth study on the universal wave patterns of many integrable
equations by connecting the explicit expressions of roguewaves with the Yablonskii–Vorob’ev
polynomial hierarchy. There are several methods available in constructing rogue wave solu-
tions such as the Darboux transformation [34, 35] and Hirota’s bilinear method [36, 37]. These
methods seem quite different, however, they have the same spirit to take the limit of breather
solutions in which the spectral parameter tends to the branch point of the spectrum [38]. In
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bilinear method [37], the action of differential operators on kernel function is equivalent to
the limiting process in Darboux transformation. The wave number in the kernel function is
basically the spectral parameter in Lax pair.

In addition to the NLS equation, Hirota’s bilinear method has been applied to find general
roguewave solutions for a variety of integrable equations such as the Ablowitz–Ladik equation
[39], theDavey–Stewartson I and II equations [40, 41], theYajima–Oikawa equation [42, 43], a
long-wave-short-wavemodel of Newell type [44], the derivative NLS equation [45], the three-
wave equation [46], the Boussinesq equation [47] and the coupled NLS equation (Manakov
system) [33]. In this method, we start with a scalar function which we call the kernel function.
Then, we construct a determinant called tau function with differential operators acting on the
kernel function. Under some dispersion relations, it can be shown that the tau function satisfies
a set of bilinear equations. Next, through a series of reductions including dimension reduction
and complex conjugate reduction, we reduce the set of bilinear equations to the bilinear form
of the underlying soliton equation. Finally, we can express the general rogue wave solutions in
terms of the tau functions satisfying reduction conditions. We remark here that the dimension
reduction is crucial among all the reductions.

In this paper, we attempt to study the rogue wave solutions of the SS equation

ut = uxxx − 6c|u|2ux − 3cu
(
|u|2

)
x
, (4)

by Hirota’s bilinear method, where c is a real constant. Despite extensive efforts on the deriva-
tion of rogue waves, the higher-order rogue wave solutions of the SS equation have not been
reported before. As far as we know, only the first- and second-order rogue wave solutions
[35, 48–50] of the SS equation have been constructed in explicit forms. Intriguingly, as shown
in [48], the first-order rogue waves of the SS equation demonstrate a distinctive feature, which
is the so-called twisted-rogue wave (TRW) pair (see figure 2).

In Sato theory developed by Kyoto school in 1980s, the original Kadomtsev–Petviashvili
hierarchy is named Kadomtsev–Petviashvili hierarchy of A-type or AKP hierarchy according
to the classification of Lie algebra, then its sub-hierarchies of B-type, C-type and D-type are
called BKP, CKP and DKP hierarchies, respectively [51]. It is known that the NLS equation
belongs to the AKP hierarchy while the SS equation belongs to the CKP hierarchy. In order to
construct rogue wave solutions of the SS equation, we have to start with a kernel function of
2× 2 matrix and a determinant of even order with differential operators acting on the matrix
kernel function. Therefore, as explained in subsequent sections, the reduction procedureand the
rogue wave solutions are much more complicated. To be specific, the tau functions associated
with the first-, second- and third-order rogue wave solutions are determinants of 2× 2, 4× 4
and 6× 6, respectively.

The remainder of this paper is organized as follows. In section 2, the procedure in deriving
roguewave solutions of the SS equation (4) by applyingHirota’s bilinear method and Kadomt-
sev–Petviashvili hierarchy reduction technique is outlined. Then we present the explicit
expression of first-order rogue waves of the SS equation and analyze their dynamics in
section 3. In addition, the degeneration of the first-order rogue wave to the Peregrine soli-
ton is discussed as well. In sections 4 and 5, we provide the explicit expressions of second- and
third-order rogue waves of the SS equation respectively. In particular, the third-order solutions
are expressed in terms of 6× 6 determinants, where the associated τ -functions are polyno-
mials of degree 24 in x and t, and to the best of our knowledge, this is the first time that the
third-order rogue waves are provided in explicit form. Finally, we summarize the main results
of this paper in section 6.
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2. Outline of the derivation for rogue waves

In this section, we use Hirota’s bilinear method to derive the rogue wave solutions of the SS
equation (4) based on the KP reduction technique. Themain idea is given briefly below. Similar
to the cases of dark soliton and breather solutions [52, 53], the SS equation (4) is transformed
into a set of three bilinear equations (see proposition 3.1 in [52])(

D2
x − 4c

)
f · f = −4cgg∗(

D3
x − Dt + 3iκD2

x − 3
(
κ2 + 4c

)
Dx − 6iκc

)
g · f + 6iκcqg = 0

(Dx + 2iκ) g · g∗ = 2iκq f

, (5)

under the non-zero boundary condition at ±∞ by the variable transformation

u =
g
f
ei(κ(x−6ct)−κ3t), (6)

where κ is real, f is a real-valued function, g is a complex-valued function, q is an auxiliary
tau function and D is the Hirota’s bilinear operator [36] defined by

Dm
x D

n
t f · g =

(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n

[ f (x, t)g(x′, t′)]

∣∣∣∣
x′=x,t′=t

. (7)

We start with a specially designed tau function of the extended KP hierarchy that has two
discrete indices k and l. We introduce a kernel, which is a 2× 2 matrix

Mkl =

(
mkl

11 mkl
12

mkl
21 mkl

22

)
, (8)

with entries

mkl
αβ =

1
pα + qβ

(
− pα − a
qβ + a

)k(
− pα − b
qβ + b

)l

eξα+ηβ , (9)

ξα = pαx + p2αy+ p3αt +
1

pα − a
r +

1
pα − b

s+ ξα0, (10)

ηβ = qβx − q2βy+ q3β t +
1

qβ + a
r +

1
qβ + b

s+ ηβ0, (11)

for 1 � α, β � 2, where pα, qβ , ξα0, ηβ0, a, b are complex constants. Let Ai and Bj be differen-
tial operators of order i and j, respectively, defined by

Ai(p) =
i∑

n=0

ai−n(p)
n!

(p∂p)n, Bj(q) =
j∑

n=0

b j−n(q)
n!

(q∂q)n, (12)

where ak(p) (1 � k � i) and bl(q) (1 � l � j) are complex constants. Then, we define a 2N ×
2N determinant

τkl = det (Mkl
iν jμ)1�ν,μ�N , (13)
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whereMkl
iν jμ is a 2× 2 matrix defined by

Mkl
iν jμ =

(
Aiν (p1)Bjμ(q1)m

kl
11 Aiν (p1)Bjμ(q2)m

kl
12

Aiν (p2)Bjμ(q1)m
kl
21 Aiν (p2)Bjμ(q2)m

kl
22

)
, (14)

and (i1, i2, . . . , iN), ( j1, j2, . . . , jN) are arbitrary sequence of indices. A remarkable property
of the function τ kl is that it satisfies eleven bilinear equations (the details are provided in
appendix A).

Next, we perform a type C-reduction by requiring

q j = pj, b = −a, ξ j0 = η j0, (15)

and a dimension reduction by requiring(
∂r + ∂s −

1
c
∂x

)
τkl = Cτkl, (16)

where C is a constant. By doing so, one obtains the following bilinear equations(
D2
x−4c

)
τkl · τkl = −2c

(
τk+1,lτk−1,l + τk,l+1τk,l−1

)
, (17)

(
D3
x−Dt+3aD2

x+3
(
a2−2c

)
Dx−6ac

)
τk+1,l ·τkl+6acτk+1,l+1τk,l−1 = 0 , (18)

(
D3
x−Dt−3aD2

x+3
(
a2−2c

)
Dx+6ac

)
τk,l+1 ·τkl−6acτk+1,l+1τk−1,l = 0 , (19)

(Dx+2a)τk+1,l · τk,l+1 = 2aτk+1,l+1τkl. (20)

Thirdly, we can realize the complex conjugate condition

τ ∗k0 = τ0k, τ ∗kk = τkk, (21)

by requiring

p1 = p∗2, ξ10 = ξ∗20. (22)

Notice that the C-reduction also implies that

τkl = τ−l,−k. (23)

Thus, if we define

f (x, t) = τ00(x − 6ct, t),

q(x, t) = τ11(x − 6ct, t),

g(x, t) = τ10(x − 6ct, t) = τ0,−1(x − 6ct, t),

(24)

then according to the complex conjugate condition, we have

g∗(x, t) = τ−1,0(x − 6ct, t) = τ01(x − 6ct, t). (25)

Consequently, by taking k = l = 0 and a = iκ, the bilinear equations (17), (18) and (20) are
reduced to exactly (5) while (19) is merely the complex conjugate of (18).

It is commented here the key point in deriving the rogue wave solutions to the SS equation
is to realize the dimension reduction (16).
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3. First-order rogue wave

In this section, we present the first-order rogue wave of the SS equation (4)

u =
g
f
ei(κ(x−6ct)−κ3t), (26)

where

f (x, t) = τ00(x − 6ct, t), g(x, t) = τ10(x − 6ct, t), (27)

and τ kl is defined as

τkl = |M11|p1=q1=ξ
p2=q2=ξ∗

, (28)

with

A1(p) = a(0)0 (p∂p)+ a(0)1 , B1(q) = b(0)0 (q∂q)+ b(0)1 , (29)

ξ and ξ∗ being a pair of complex conjugate roots of the quartic equation

1
(p− iκ)2

+
1

(p+ iκ)2
+

1
c
= 0. (30)

Here, the parameters pj, q j, ξ j0, η j0, a(0)n , b(0)n , ( j = 1, 2, n = 0, 1) satisfy the constraints

pj = q j, pj = p∗3− j, ξ j0 = η j0, ξ j0 = ξ∗3− j,0,

a(0)n = b(0)n , a(0)n (pj) = [a(0)n (p3− j)]
∗,

(31)

where ∗ denotes complex conjugation. Let us provide a brief proof. First, we introduce a notion

D̃r,s,x = ∂r + ∂s −
1
c
∂x , (32)

then since

D̃r,s,xe
ξi =

(
1

pi − a
+

1
pi + a

− pi
c

)
eξi , (33)

D̃r,s,xe
η j =

(
1

q j − a
+

1
q j + a

− q j
c

)
eη j , (34)

we define

F(p) =
1

p− a
+

1
p+ a

− p
c
, Fm(p) = (p∂p)mF(p), (35)

and denote a pair of complex conjugate roots for

F1(p) = − p
(p− a)2

− p
(p+ a)2

− p
c
, (36)

with a = iκ, which is equivalent to (30), by ξ and ξ∗. Since

6
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D̃r,s,xA1(pα)B1(qβ)mkl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)
]
A1(pα)B1(qβ)mkl

αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

,

(37)

where α, β = 1, 2, it then follows

D̃r,s,x |M11|p1=q1=ξ
p2=q2=ξ∗

= 2[F(ξ)+ F(ξ∗)]|M11|p1=q1=ξ
p2=q2=ξ∗

, (38)

which realizes the dimension reduction. Thus, the first-order rogue wave solution is approved.
We note that the algebraic equation (30) can be rewritten as

p4 + 2
(
c+ κ2

)
p2 + κ2(κ2 − 2c) = 0. (39)

When c
(
c+ 4κ2

)
< 0, equation (39) has at least one pair of complex conjugate roots with

nonzero real part and nonzero imaginary part. Hence, the rogue wave solution (26) exists if
and only if c and κ satisfy the conditions

c < 0, c+ 4κ2 > 0. (40)

On the other hand, as (39) is a quartic equation in ξ, it has four roots (counting multiplicity).
Due to the fact that all coefficients of (39) are real, these roots demonstrate a symmetric struc-
ture, that is, if ξ is a root of (39), then the other three roots are −ξ and ±ξ∗. As a result, they
can be explicitly expressed as

± 1√
2

[(
|κ|(κ2 − 2c)1/2 − c− κ2

)1/2
± i

(
|κ|(κ2 − 2c)1/2 + c+ κ2

)1/2
]
.

(41)

Specifically, the tau functions related to the first-order rogue wave can be simplified into the
form

f (x, t) =
∣∣A11

(
χ2
11 +Δ11

)∣∣2 − A2
12(χ12χ21 +Δ12)2,

g(x, t) = B11B22[(χ11 − C1)(χ11 − D1)+Δ11]

× [(χ22 − C2)(χ22 − D2)+Δ22]− B12B21 [(χ12 − C1)(χ21 − D2)

+Δ12] [(χ21 − C2)(χ12 − D1)+Δ21],

(42)

where (1 � i, j � 2)

χi j = x − 6ct+ 3p2i t + θi j, Δi j =
1

(pi + pj)2
, Ai j =

1
pi + pj

,

Bi j = Ai j
a− pi
a+ pj

, Ci =
1

a− pi
, Dj =

1
a+ pj

,

θi j = − 1
pi + pj

+
a(0)1 (pi)

a(0)0 (pi)

1
pi
.

(43)
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Figure 1. The first-order rouge wave solution with parameter values a =
√
2i/ 4

√
3,

c = −2/
√
3, a(0)0 = 1, a(0)1 = 0.

We note that both of f and g are polynomials of degree 4 in x and t, which aremore complicated
than the first-order rogue wave solutions of the NLS equation where the corresponding tau
functions are polynomials of degree 2 in x and t. For simplicity, we set

a(0)0 = b(0)0 = 1, a(0)1 = b(0)1 = 0. (44)

In particular, if we take

a =
√
2i/ 4

√
3, c = −2/

√
3, p1 = q1 = 1+ i, p2 = q2 = 1− i, (45)

then we can obtain a particular solution which is plotted in figure 1

u(x, t) = H

(
1+

G+ iF
E

)
, (46)

where

H =
−i33/4

√
2+

√
3− 3

33/4i
√
2+

√
3− 3

e
i
√
2(10t+

√
3x)

33/4 ,

G = 2
(
144

√
3t2 + 144tx + 12

√
3x2+ 12

(√
3− 9

)
t +

(
6− 18

√
3
)
x + 7

√
3
)
,

F =
√
2 4
√
3
(
2688

√
3t3 − 16x3− 144

(
3
√
3− 3

)
t2 − 4

(√
3− 9

)
x2

− 576t2x − 96
√
3tx2 − 8

(
6− 18

√
3
)
tx − 8

(
5
(√

3− 3
))

t

+ 4
(
3
√
3− 7

)
x − 7

√
3+ 7

)
,

E = −2
(
16x4 + 112 896t4 + 5760t2x2 + 21 504

√
3t3x+ 256

√
3tx3 − 48x3

− 2688
(
6
√
3+ 3

)
t3 −

(
768

√
3+ 8640

)
t2x −

(
576

√
3+ 96

)
tx2 + 56x2

+
(
384

√
3+ 3552

)
t2 +

(
448

√
3+ 96

)
tx −

(
112

√
3+ 24

)
t − 28x + 7

)
.

(47)

It can be seen that, compared with previous studies on first-order rogue wave solutions of the
SS equation [35, 48, 54, 55], the solution obtained here is presented in a more compact form.
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Figure 2. The TRW pair with parameter values a = 0.45i, c = −0.5, a(0)0 = 1, a(0)1 = 0.
(b) is the corresponding density plot and (c) corresponds to the time evolution of (a).

If we select another set of parameters

c = −1
2
, a =

9
20

i, p1 = q1 = α+ iβ, p2 = q2 = α− iβ, (48)

where

α =
3
20

4
√
481

√
1
2
+

119

18
√
481

,

β =
3
20

4
√
481

√
1
2
− 119

18
√
481

,

(49)

then we may express the corresponding solution in the same form as (46). As depicted in
figure 2, this solution demonstrates a structure called TRW pair which was first reported in
[48] and is a distinctive characteristic of the SS equation in contrast with many other inte-
grable equations. It bears the name TRW pair due to the feature that it comprises two extended
rogue-wave components bending toward each other and displaying an identical but antisym-
metric structure. Further analysis indicates that this TRW pair possesses four zero-amplitude
points P1,P2,Q1,Q2, which are located at (−0.540049, 0.026462), (−5.033412, 2.141300),
(−0.230825, 0.363748) and (−5.342638, 1.804014) respectively, and has the maximum
amplitude 2.758 536, which is attained at the points M1 and M2 that are located at
(0.471 911, 0.009464) and (−6.044867, 2.158196) respectively.

Interestingly, by tuning the values of the free parameter a = iκ, the first-order rogue wave
solutions display four types of intrinsic structures. To illustrate this, we set c = −1/2.Thewave
profiles are shown in figure 3 at three values of a = 0.5i, 1.04i and 1.84i respectively. Specif-
ically, starting from the TRW pair depicted in figure 2 (a = 0.45i), the two zero-amplitude
pointsQ1,Q2 first move toward each other and thenmerge into the same pointQ as κ increases,
whereas the other two zero-amplitude points P1,P2 remain, thereby giving rise to a rogue wave
solution with three zero-amplitude points (see figures 3(a) and (d)). Furthermore, increasing
κ will cause the zero-amplitude point Q disappears but remains to be a local minimum before
becoming a saddle point (see figures 3(b) and (e)). Afterward, the rogue wave solution exhibits
a relatively simpler structure, which consists of two different types. Both types contain two
zero-amplitude points while as the increase of κ, the two maximum points move toward each
other and eventually merge into a single point, generating a rogue wave resembling the Pere-
grine soliton (see figures 3(c) and (f)). In addition, figure 3 also indicates that the value of κ
influences the duration of rogue wave, which decreases as κ (> 0) increases.
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Figure 3. First-order rouge waves under parameter values c = −0.5, a(0)0 = 1, a(0)1 = 0
(a) a = 0.5i, (c) a = 1.04i and (e) a = 1.84i. (d), (e) and (f) are the corresponding
density plots of (a), (b) and (c) respectively.

Finally, we discuss the reduction of first-order rogue wave solutions of the SS equation. Let
c = −1 and apply the transformation

u(x, t) = q(τ , z) exp

{
− i
6ε

(
τ − z

18ε

)}
, (50)

where x = τ − z/(12ε), t = −εz, then the SS equation (equation (1) with β1 = 1, β2 = 6,
β3 = 3) reduces to the NLS equation

i
∂q
∂z

+
1
2
∂2q
∂τ 2

+ |q|2q = 0, (51)

by taking the limit ε→ 0. Furthermore, we take κ = −1/(6ε). As ε→ 0, the solution (26)
reduces to the following solution of the NLS equation

q(τ , z) = eiz
(
−1+

2+ 4iz
2τ 2 + 2z2 − 2τ + 1

)
, (52)

which is the so-called Peregrine soliton [19] with maximum amplitude 3 that is attained at
(τ , z) = (1/2, 0) and two zero-amplitude points located at (τ , z) = ((1±

√
3)/2, 0). Clearly

this indicates that the Peregrine soliton is the limiting case of rogue wave solutions of the SS
equation.

4. Second-order rogue wave and its dynamics

The tau function for second-order rogue wave is a 4× 4 determinant

τkl =

∣∣∣∣Mkl
11 Mkl

12

Mkl
21 Mkl

22

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

, (53)
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Figure 4. Second-order rouge waves under parameter values a(0)0 = 6, a(0)1 = 0, a(0)2 = 0
and (a) a = 0.45i, c = −0.5, a(0)3 = 500, (c) a = 0.6i, c = −0.5, a(0)3 = 1200,
(e) a = 1.5i, c = −0.75, a(0)3 = 10 000i and (g) a = 2i, c = −0.5, a(0)3 = 12 000. (b),
(d), (f) and (h) are the corresponding density plots of (a), (c), (e) and (h) respectively.
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Figure 5. Second-order rouge waves under parameter values a(0)0 = 6, a(0)1 = 0, a(0)2 = 0
and (a) a = 1.04i, c = −0.5, a(0)3 = 31.569+ 10.197i and (c) a = 1.84i, c = −0.5,
a(0)3 = 37.429+ 50.852i. (b) and (d) are the corresponding density plots of (a) and (c)
respectively.

with

Mkl
i j =

(
A(N−i)
2i−1 (p1)B

(N− j)
2 j−1 (q1)m

kl
11 A(N−i)

2i−1 (p1)B
(N− j)
2 j−1 (q2)m

kl
12

A(N−i)
2i−1 (p2)B

(N− j)
2 j−1 (q1)m

kl
21 A(N−i)

2i−1 (p2)B
(N− j)
2 j−1 (q2)m

kl
22

)
, (54)

where

A(1)
1 (p) = a(1)0 p∂p + a(1)1 , B(1)

1 (q) = b(1)0 q∂q + b(1)1 ,

A(0)
3 (p) =

3∑
n=0

a(0)n
(3− n)!

(p∂p)
3−n, B(0)

3 (q) =
3∑

n=0

b(0)n
(3− n)!

(q∂q)
3−n,

a(1)1 =
2∑

n=0

F3−n(p)
(3− n)!

a(0)n , b(1)1 =
2∑

n=0

F3−n(q)
(3− n)!

b(0)n ,

a(1)0 =
1∑

n=0

F2−n(p)
(2− n)!

a(0)n , b(1)0 =
1∑

n=0

F2−n(q)
(2− n)!

b(0)n ,

(55)
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Figure 6. Third-order rouge waves with parameter values a = 0.45i, c = −0.5,
a(0)0 = 120, a(0)1 = a(0)2 = a(0)4 = 0 and (a) a(0)3 = 50 000, a(0)5 = 0, (b) a(0)3 = 0,
a(0)5 = 1000 000.

Figure 7. Third-order rouge waves with parameter values a = 0.6i, c = −0.5,
a(0)0 = 120, a(0)1 = a(0)2 = a(0)4 = 0 and (a) a(0)3 = 50 000, a(0)5 = 0, (b) a(0)3 = 0,
a(0)5 = 1000 000.

and pi, q j, ξi0, η j0, a(0)n , b(0)n are constants that satisfy the same constraints as the first-order rogue
waves. It is easily shown that the following relations hold

D̃r,s,xA
(1)
1 (pα)B

(1)
1 (qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)]A
(1)
1 (pα)B

(1)
1 (qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

,

D̃r,s,xA
(1)
1 (pα)B

(0)
3 (qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)]A
(1)
1 (pα)B

(0)
3 (qβ)m

kl
αβ

+ A(1)
1 (pα)B

(1)
1 (qβ)mkl

αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

,

D̃r,s,xA
(0)
3 (pα)B

(1)
1 (qβ)mkl

αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)]A
(0)
3 (pα)B

(1)
1 (qβ)mkl

αβ

+ A(1)
1 (pα)B

(1)
1 (qβ)mkl

αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

,
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Figure 8. Third-order rouge waves with parameter values a = 1.04i, c = −0.5,
a(0)0 = 120, a(0)1 = a(0)2 = a(0)4 = 0 and (a) a(0)3 = 50 000, a(0)5 = 0 and (c) a(0)3 = 0,
a(0)5 = 1000 000. (b) and (d) are the corresponding density plots of (a) and (c) respec-
tively.

D̃r,s,xA
(0)
3 (pα)B

(0)
3 (qβ)mkl

αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)]A
(0)
3 (pα)B

(0)
3 (qβ)mkl

αβ

+ A(1)
1 (pα)B

(0)
3 (qβ)mkl

αβ + A(0)
3 (pα)B

(1)
1 (qβ)mkl

αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

,

(56)

which lead to

D̃r,s,x τkl

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= 4
[
F(ξ)+ F(ξ∗)

]
τkl

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

. (57)

Thus, the second-order rogue waves are approved. Let us show their dynamics. For simplicity,
we may set

a(0)1 = b(0)1 = a(0)2 = b(0)2 = 0. (58)
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Figure 9. Third-order rouge waves with parameter values a(0)0 = 120, a(0)1 = a(0)2 =
a(0)4 = 0 and (a) a = 2.03i, c = −0.65, a(0)3 = 50 000, a(0)5 = 0 and (c) a = 1.84i,
c = −0.5, a(0)3 = 0, a(0)5 = 1000 000. (b) and (d) are the corresponding density plots
of (a) and (c) respectively.

Recently Yang andYang [32, 33] have systematically studied the roguewave patterns of several
integrable equations such as the NLS equation, the Bossinesq equation and the Manakov sys-
tem. To be more precise, they have shown that when one of the internal parameters in the rogue
wave solutions is large enough, by studying the asymptotic behaviors of solutions, the rogue
wave patterns can be described by the root structure of the Yablonskii–Vorob’ev polynomial
hierarchy via certain linear transformation. In particular, they have shown that the second-order
rogue wave may consist of three separating fundamental rogue waves which are far away from
the origin. It turns out that this also occurs in the second-order rogue wave solutions of the
SS equation. As shown in figure 4, the second-order rogue waves contain three fundamental
rogue waves which separate from each other when a(0)3 is large enough. As there are four types
of fundamental rogue waves, we have totally four types of second-order rogue waves that con-
tain three separating fundamental rogue waves. On the other hand, when a(0)3 is small, the three
fundamental rogue waves may merge together (see figure 5). In addition, the argument of a(0)3
strongly affects the orientation of these rogue waves while the values of a and c determine the
type and duration of rogue waves.

Similar to the first-order rogue wave solutions, with κ = −1/(6ε), the second-order rogue
wave solutions of the SS equation degenerate to the second-order rogue wave solutions of the
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NLS equation as ε→ 0. It is also noted that the corresponding tau functions of these rogue
wave solutions are polynomials of degree 12 in x and t whereas the second-order rogue wave
solutions of the NLS equation have a much simpler structure as their τ -functions are of degree
6 in x and t [37].

5. Third-order rogue wave and its dynamics

The tau function associated to the third-order rogue wave solution of the SS equation (4) is a
6× 6 determinant

τkl =

∣∣∣∣∣∣∣
Mkl

11 Mkl
12 Mkl

13

Mkl
21 Mkl

22 Mkl
23

Mkl
31 Mkl

32 Mkl
33

∣∣∣∣∣∣∣
p1=q1=ξ
p2=q2=ξ∗

, (59)

with

Mkl
i j =

(
A(N−i)
2i−1 (p1)B

(N− j)
2 j−1 (q1)m

kl
11 A(N−i)

2i−1 (p1)B
(N− j)
2 j−1 (q2)m

kl
12

A(N−i)
2i−1 (p2)B

(N− j)
2 j−1 (q1)m

kl
21 A(N−i)

2i−1 (p2)B
(N− j)
2 j−1 (q2)m

kl
22

)
. (60)

The corresponding differential operators are defined as follows

A(2)
1 = a(2)0 p∂p + a(2)1 , B(2)

1 = b(2)0 q∂q + b(2)1 ,

A(1)
3 =

3∑
n=0

a(1)n
(3− n)!

(p∂p)3−n, B(1)
3 =

3∑
n=0

b(1)n
(3− n)!

(q∂q)3−n,

A(0)
5 =

5∑
n=0

a(0)n
(5− n)!

(p∂p)
5−n, B(0)

5 =

5∑
n=0

b(0)n
(5− n)!

(q∂q)
5−n,

a(2)1 =
1∑

n=0

F3−n(p)
(3− n)!

a(1)n , b(2)1 =
1∑

n=0

F3−n(q)
(3− n)!

b(1)n ,

a(2)0 =
a(1)n

(2− n)!
F2−n(p), b(2)0 =

0∑
n=0

b(1)n
(2− n)!

F2−n(q),

a(1)0 =

2∑
n=2

1
n!
a(0)2−nFn(p), b(1)0 =

2∑
n=2

1
n!
b(0)2−nFn(q),

a(1)1 =

3∑
n=2

1
n!
a(0)3−nFn(p), b(1)1 =

3∑
n=2

1
n!
b(0)3−nFn(q),

a(1)2 =
4∑

n=2

1
n!
a(0)4−nFn(p), b(1)2 =

4∑
n=2

1
n!
b(0)4−nFn(q),

a(1)3 =

5∑
n=2

1
n!
a(0)5−nFn(p), b(1)3 =

5∑
n=2

1
n!
b(0)5−nFn(q).

(61)
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It can be shown that (i, j = 2, 3, μ, ν = 0, 1)

D̃r,s,xA
(2)
1 (pα)B

(2)
1 (qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)]A
(2)
1 (pα)B

(2)
1 (qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

,

D̃r,s,xA
(2)
1 (pα)B

(ν)
2 j−1(qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)]A
(2)
1 (pα)B

(ν)
2 j−1(qβ)m

kl
αβ

+ A(2)
1 (pα)B

(ν+1)
2 j−3 (qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

,

D̃r,s,xA
(μ)
2i−1(pα)B

(2)
1 (qβ)mkl

αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)]A
(μ)
2i−1(pα)B

(2)
1 (qβ)mkl

αβ

+ A(μ+1)
2i−3 (pα)B

(2)
1 (qβ)mkl

αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

,

D̃r,s,xA
(μ)
2i−1(pα)B

(ν)
2 j−1(qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= [F(pα)+ F(qβ)]A
(μ)
2i−1(pα)B

(ν)
2 j−1(qβ)m

kl
αβ

+ A(μ+1)
2i−3 (pα)B

(ν)
2 j−1(qβ)m

kl
αβ

+ A(μ)
2i−1(pα)B

(ν+1)
2 j−3 (qβ)m

kl
αβ

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

. (62)

Based on above relations, we can verify

D̃r,s,x τkl

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

= 6
[
F(ξ)+ F(ξ∗)

]
τkl

∣∣∣∣p1=q1=ξ
p2=q2=ξ∗

, (63)

which completes the proof. With the explicit third-order rogue wave solutions, we can explore
their dynamics in detail. For the NLS equation, it has been shown graphically by Ohta and
Yang [37] that its third-order rogue waves may be comprised of six individual first-order rogue
waves. In this case, there are two possible configurations: one is a symmetric triangle while
the other is like a pentagon. The analytic proof of these patterns is given by Yang and Yang
[32] by connecting rogue wave solutions of the NLS equation with the root structure of the
Yablonskii–Vorob’ev polynomial hierarchy and assuming certain parameter is large enough.
Surprisingly, these patterns also appear in the third-order rogue wave solutions of many other
integrable systems [33]. Since the NLS equation is a limiting case of the SS equation, we may
expect that the SS equation shares analogous features. As depicted in figures 6–9, this is indeed
the case.

Our computation indicates that the corresponding tau functions of third-order rogue wave
solutions are polynomials of degree 24 in x and t, which are much more complicated than the
tau functions (degree 12 in x and t) of third-order rogue waves of the NLS equation. Therefore,
in addition to the two configurations, four types of intrinsic structures occur in the third-order
rogue waves of the SS equation as shown in figures 6–9. When a(0)0 = 120, a(0)3 is large enough
and other parameters are zero, the third-order roguewave consists of six first-order roguewaves
that feature a triangle. In contrast, when a(0)0 = 120, a(0)5 is large enough and other parameters
are zero, the third-order rogue waves are comprised of six first-order rogue waves which con-
stitute a distorted pentagon. It can also be seen from figures 6–9 that the degree of distortion
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depends on the values of the parameter a which also affects the type and duration of rogue
waves.

6. Conclusions

In the present paper, the rogue wave solutions are shown to exist for the SS equation (4) when
c < 0 and are constructed by means of Hirota’s bilinear method. We have presented the first-,
second- and third-order rogue wave solutions of the SS equation in explicit forms. In particu-
lar, we have confirmed that the TRW and four types of intrinsic structures exist in all orders of
rogue wave solutions of the SS equation.While the explicit first- and second-order rogue wave
solutions have been reported previously, to the best of our knowledge, the explicit expressions
of the third-order rogue wave solutions are relatively new. We have shown that the degree of
the tau functions corresponding to the third-order rogue wave solutions is 24, which is much
higher than that of the NLS equation (degree 12). We have also shown that there are totally
four types of third-order rogue waves consisting of six individual first-order rogue waves, and
each type can be classified into two patterns. One pattern is a triangle whereas the other is a
distorted pentagon. The types of rogue waves and the degree of distortion of the pentagons are
determined by the choices of free parameters in the solutions. In addition, the degeneration of
first-order rogue wave solutions of the SS equation to its limiting case, the NLS equation, was
discussed in detail. This indicates that the rogue wave solutions of the SS equation are gener-
alizations of rogue wave solutions of the NLS equation. We expect that the results obtained in
this work could deepen our understanding on rogue waves in the deep ocean or optical fibers.
As a further topic, we will explore the Nth-order rogue wave solutions of the SS equation and
their universal patterns.
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Appendix A

In this appendix, we show that the function τ kl defined in (13) satisfies eleven bilinear
equations. To this end, we first introduce a crucial lemma.
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Lemma 1. Supposemkl
i j,ϕ

kl
i ,ψ

kl
j , which are functions of x, y, t, r, s, satisfy the differential and

difference relations

∂xm
kl
i j = ϕkli ψ

k,l
j , (64)

∂xϕ
k,l
i = ϕk+1,l

i + aϕk,li = ϕk,l+1
i + bϕk,li , (65)

∂xψ
k,l
j = −ψk−1,l

j − aψk,l
j = −ψk,l−1

j − bψk,l
j , (66)

∂yϕ
k,l
i = ∂2

xϕ
k,l
i , ∂yψ

k,l
j = −∂2

xψ
k,l
j , (67)

∂tϕ
k,l
i = ∂3

xϕ
k,l
i , ∂tψ

k,l
j = ∂3

xψ
k,l
j , (68)

∂rϕ
k,l
i = ϕk−1,l

i , ∂rψ
k,l
j = −ψk+1,l

j , (69)

∂sϕ
k,l
i = ϕk,l−1

i , ∂sψ
k,l
j = −ψk,l+1

j , (70)

which imply the relations

∂ym
kl
i j = ϕk+1,l

i ψkl
j + ϕkli ψ

k−1,l
j + 2aϕkli ψ

kl
j

= ϕk,l+1
i ψkl

j + ϕkli ψ
k,l−1
j + 2bϕkli ψ

kl
j , (71)

∂tm
kl
i j = ϕk+2,l

i ψkl
j + 3aϕk+1,l

i ψk,l
j + ϕk+1,l

i ψk−1,l
j

+ 3a2ϕkli ψ
kl
j + 3aϕkli ψ

k−1,l
j + ϕkli ψ

k−2,l
j , (72)

= ϕk,l+2
i ψkl

j + 3bϕk,l+1
i ψkl

j + ϕk,l+1
i ψk,l−1

j

+ 3b2ϕkli ψ
kl
j + 3bϕkli ψ

k,l−1
j + ϕkli ψ

k,l−2
j , (73)

∂rm
kl
i j = −ϕk−1,l

i ψk+1,l
j , ∂sm

kl
i j = −ϕk,l−1

i ψk,l+1
j , (74)

mk+1,l
i j = mkl

i j + ϕkli ψ
k+1,l
j , mk,l+1

i j = mkl
i j + ϕkli ψ

k,l+1
j , (75)

then the determinant

τkl = det
1�i, j�N

(
mkl
i j

)
, (76)

satisfies the following bilinear equations in the KP hierarchy

(DrDx − 2) τkl · τkl = −2τk+1,lτk−1,l, (77)

(DsDx − 2) τkl · τkl = −2τk,l+1τk,l−1, (78)
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(
D2
x − Dy + 2aDx

)
τk+1,l · τkl = 0, (79)

(
D2
x − Dy + 2bDx

)
τk,l+1 · τkl = 0, (80)

(
D3
x + 3DxDy − 4Dt + 3a

(
D2
x + Dy

)
+ 6a2Dx

)
τk+1,l · τkl = 0, (81)

(
D3
x + 3DxDy − 4Dt + 3b

(
D2
x + Dy

)
+ 6b2Dx

)
τk,l+1 · τkl = 0, (82)

(
Dr

(
D2
x − Dy + 2aDx

)
− 4Dx

)
τk+1,l · τkl = 0, (83)

(
Ds

(
D2
x − Dy + 2bDx

)
− 4Dx

)
τk,l+1 · τkl = 0, (84)

(
Ds

(
D2
x − Dy + 2aDx

)
− 4 (Dx + a− b)

)
τk+1,l · τkl + 4(a− b)τk+1,l+1τk,l−1 = 0, (85)

(
Dr

(
D2
x − Dy + 2bDx

)
− 4 (Dx + b− a)

)
τk,l+1 · τkl + 4(b− a)τk+1,l+1τk−1,l = 0, (86)

(Dx + a− b) τk+1,l · τk,l+1 = (a− b)τk+1,l+1τkl. (87)

Proof. The proof of this lemma is based on properties of the Gram-type determinant [56].
For convenience, we only prove the τ kl defined in (13) satisfies the bilinear equation (87) as
other cases can be treated by using similar techniques.

We first recall two properties of determinants, i.e.,

∂x det
1�i, j�N

(
ai j

)
=

N∑
i, j=1

Δi j∂xai j, (88)

and

det

(
ai j bi
c j d

)
= −

∑
i, j

Δi jbic j + d det
(
ai j

)
, (89)

where Δi j is the (i, j)-cofactor of the matrix (ai j). By using these properties, we may rewrite
the derivatives and shifts of the τ function as below

τk+1,l =

∣∣∣∣ mkl
i j ϕkli

−ψk+1,l
j 1

∣∣∣∣ , (90)

τk,l+1 =

∣∣∣∣ mkl
i j ϕkli

−ψk,l+1
j 1

∣∣∣∣ = ∣∣∣∣ mkl
i j ϕkli

−ψk,l+1
j 0

∣∣∣∣+ τkl, (91)

∂xτk+1,l =

∣∣∣∣ mkl
i j ϕk+1,l

i

−ψk+1,l
j 0

∣∣∣∣ = ∣∣∣∣ mk+1,l
i j ϕk+1,l

i

−ψk+1,l
j 0

∣∣∣∣ , (92)

∂xτk,l+1 =

∣∣∣∣ mkl
i j ϕk+1,l

i

−ψk,l+1
j 0

∣∣∣∣+ ∣∣∣∣ mkl
i j ϕkli

−ψkl
j 0

∣∣∣∣+ ∣∣∣∣ mkl
i j ϕkli

−ψk−1,l+1
j 0

∣∣∣∣ , (93)

20



J. Phys. A: Math. Theor. 55 (2022) 235701 B-F Feng et al

τk+1,l+1 =

∣∣∣∣ mk+1,l
i j ϕk+1,l

i

−ψk+1,l+1
j 0

∣∣∣∣+ τk+1,l. (94)

Then it follows from the identities above and equation (66) that

(a− b)(τk+1,l+1 · τkl − τk+1,l · τk,l+1)

=

∣∣∣∣mk+1,l
i j ϕk+1,l

i

ψk,l+1
j 0

∣∣∣∣ · τkl + ∣∣∣∣ mk+1,l
i j ϕk+1,l

i

−ψk+1,l
j 0

∣∣∣∣ · τkl
−
∣∣∣∣ mkl

i j ϕkli
−ψkl

j 0

∣∣∣∣ · τk+1,l −
∣∣∣∣ mkl

i j ϕkli
ψk−1,l+1
j 0

∣∣∣∣ · τk+1,l

=

∣∣∣∣∣∣
mkl
i j ϕkli ϕk+1,l

i

−ψk,l+1
j 0 0

−ψk+1,l
j 1 0

∣∣∣∣∣∣ · τkl +
∣∣∣∣ mk+1,l

i j ϕk+1,l
i

−ψk+1,l
j 0

∣∣∣∣ · τkl
−
∣∣∣∣ mkl

i j ϕkli
−ψkl

j 0

∣∣∣∣ · τk+1,l −
∣∣∣∣ mkl

i j ϕkli
ψk−1,l+1
j 0

∣∣∣∣ · τk+1,l, (95)

and

∂xτk+1,l · τk,l+1 − τk+1,l · ∂xτk,l+1

=

∣∣∣∣ mkl
i j ϕk+1,l

i

−ψk+1,l
j 0

∣∣∣∣ · ∣∣∣∣ mkl
i j ϕkli

ψk,l+1
j 0

∣∣∣∣+ ∣∣∣∣ mk+1,l
i j ϕk+1,l

i

−ψk+1,l
j 0

∣∣∣∣ · τkl
−
∣∣∣∣ mkl

i j ϕk+1,l
i

−ψk,l+1
j 0

∣∣∣∣ · τk+1,l −
∣∣∣∣ mkl

i j ϕkli
−ψkl

j 0

∣∣∣∣ · τk+1,l

−
∣∣∣∣ mkl

i j ϕkli
ψk−1,l+1
j 0

∣∣∣∣ · τk+1,l. (96)

Thus, by applying the Jacobi formula of determinants∣∣∣∣∣∣
ai j bi ci
d j e f
g j h k

∣∣∣∣∣∣× |ai j| =
∣∣∣∣ai j ci
g j k

∣∣∣∣× ∣∣∣∣ai j bi
d j e

∣∣∣∣− ∣∣∣∣ai j bi
g j h

∣∣∣∣× ∣∣∣∣ai j ci
d j f

∣∣∣∣ , (97)

we may deduce that

(a− b)(τk+1,l+1 · τkl − τk+1,l · τk,l+1)− (∂xτk+1,l · τk,l+1 − τk+1,l · ∂xτk,l+1)

=

∣∣∣∣∣∣
mkl
i j ϕkli ϕk+1,l

i

−ψk,l+1
j 0 0

−ψk+1,l
j 1 0

∣∣∣∣∣∣ ∣∣mkl
i j

∣∣
−
∣∣∣∣ mkl

i j ϕk+1,l
i

−ψk+1,l
j 0

∣∣∣∣ ∣∣∣∣ mkl
i j ϕkli

ψk,l+1
j 0

∣∣∣∣
+

∣∣∣∣ mkl
i j ϕkli

−ψk+1,l
j 1

∣∣∣∣ ∣∣∣∣ mkl
i j ϕk+1,l

i

−ψk,l+1
j 0

∣∣∣∣
= 0. (98)
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This completes the proof. �
Denote by

mkl
αβ =

1
pα + qβ

(
− pα − a
qβ + a

)k(
− pα − b
qβ + b

)l

eξα+ηβ , (99)

ϕklα = (pα − a)k(pα − b)leξα , (100)

ψkl
β = [−(qβ + a)]−k[−(qβ + b)]−leηβ , (101)

ξα = pαx + p2αy+ p3αt +
1

pα − a
r +

1
pα − b

s+ ξα0, (102)

ηβ = qβx − q2βy+ q3β t +
1

qβ + a
r +

1
qβ + b

s+ ηβ0, (103)

where α, β = 1, 2, and pα, qβ , ξα0, ηβ0 are constants, then direct computations indicate that
mkl

αβ ,ϕ
kl
α ,ψ

kl
β satisfy the differential and difference relations (64)–(70).

Next, we define

Mkl
i j =

(
m̃kl

2i−1,2 j−1 m̃kl
2i−1,2 j

m̃kl
2i,2 j−1 m̃kl

2i,2 j

)

=

(
Ai(p1)Bj(q1)m

kl
11 Ai(p1)Bj(q2)m

kl
12

Ai(p2)Bj(q1)mkl
21 Aj(p2)Bj(q2)mkl

22

)
,

and (
ϕ̃kl2i−1

ϕ̃kl2i

)
=

(
Ai(p1)ϕ

kl
1

Ai(p2)ϕkl2

)
,

(
ψ̃kl
2 j−1, ψ̃

kl
2 j

)
=

(
Bj(q1)ψkl

1 ,Bj(q2)ψkl
2

)
,

where i, j = 1, 2, . . . ,N and

Ai(p) =
i∑

n=0

ai−n(p)
n!

(p∂p)n, Bj(q) =
j∑

n=0

b j−n(q)
n!

(q∂q)n,

then the functions m̃kl
i j, ϕ̃

kl
i , ψ̃

kl
j would satisfy the differential and difference relations (64)–(70)

as the operators Ai and Bj commute with the partial differentials with respect to x, y, t, r, s.
Hence, using lemma 1, we conclude that the determinant

τkl = det
1�μ,ν�N

(
Mkl
iμ jν

)
, (104)

satisfies the bilinear equations (77)–(87) for any sequence of indices
(i1, i2, . . . , iN ; j1, j2, . . . , jN).
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