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General breather solution to the Sasa–Satsuma
equation (SSE) is systematically investigated in this
paper. We firstly transform the SSE into a set of
three Hirota bilinear equations under a proper plane
wave boundary condition. Starting from a specially
arranged tau-function of the Kadomtsev–Petviashvili
hierarchy and a set of 11 bilinear equations satisfied,
we implement a series steps of reduction procedure,
i.e. C-type reduction, dimension reduction and
complex conjugate reduction, and reduce these 11
equations to three bilinear equations for the SSE.
Meanwhile, the general breather solution to the SSE
is found in determinant of even order. The one- and
two-breather solutions are calculated and analysed in
detail.

1. Introduction
Breathers are ubiquitous phenomena in many physical
systems either in continuous or discrete ones. They
are a particular type of nonlinear wave whose energy
is localized in space but oscillates over time, or vice
versa. The exactly solvable sine-Gordon equation [1]
and the focusing nonlinear Schrödinger equation [2]
are examples of one-dimensional partial differential
equations that possess breather solutions [3].

The so-called intrinsic localized modes or the discrete
breathers in Fermi–Pasta–Ulam lattices were reported
in the late 1980s [4,5]. They have been recently
observed experimentally in various physical contexts
such as coupled optical waveguides [6,7], Josephson
junction ladders [8,9], antiferromagnet crystals [10] and
micromechanical oscillator arrays [11].

2022 The Author(s) Published by the Royal Society. All rights reserved.
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Breathers have met with success in understanding the final stage of a certain nonlinear process
that is initiated from modulation instability (MI, also known as the Benjamin–Feir instability)
[12]. It is well known that MI is one of the most ubiquitous phenomena in nature and commonly
appears in many physical contexts such as water waves, plasma waves and electromagnetic
transmission lines [13]. Whereas recent theoretical developments indicated that the presence of
baseband MI supports the generation of rogue waves (RWs) [14], breathers also appear to be a
significant strategy in deriving RW solutions of many integrable equations [15,16].

The nonlinear Schrödinger equation (NLSE),

i
∂q
∂T

+ 1
2

∂2q
∂X2 ± |q|2q= 0, (1.1)

describes the evolution of weakly nonlinear and quasi-monochromatic waves in dispersive
media [17]. This equation has found applications in numerous areas of physics, ranging
from nonlinear optical fibres [18] and plasma physics [19] to Bose–Einstein condensates [20].
From the mathematical point of view, the NLSE is considered to be a fundamental model in
investigating breather and RW solutions [21–23]. In particular, the Akhmediev breather (AB)
[21] and Kuznetsov–Ma soliton (KM) [24,25], where AB (KM) is periodic in space (time) and
localized in time (space), have captured wide attention. Remarkably, when we take the large-
period limits, both of them degenerate to the Peregrine soliton [26], which is localized in both time
and space, and turns into a prototype of RWs. It turns out that this idea has been widely adopted
in constructing RW solutions of many other integrable equations and their multi-component
generalizations [15,27].

The NLSE is one of the most fundamental integrable equations in the sense that it only
incorporates the lowest-order dispersion and the lowest-order nonlinear term. However, higher-
order terms are indispensable in more complicated circumstances, such as modelling the
ultrashort pulses generated due to the MI [28] and examining the one-dimensional Heisenberg
spin chain [29]. As such, a number of integrable extensions of the NLSE have been proposed,
including the higher-order NLSE [18], the Sasa–Satsuma equation (SSE) [30,31] and the Kundu-
NLSE [32], to name a few examples. Therefore, it is natural to expand the investigations on NLSE
to these integrable models. While compared with the NLSE, it is more challenging to obtain
soliton, breather or RW solutions of these equations [33–36], the occurrence of higher-order terms
may also induce various new features to the solutions and enrich the solution dynamics [16].

As mentioned above, the SSE is a non-trivial integrable extension of the NLSE and can be
written in the form [30]

i
∂q
∂T

+ 1
2

∂2q
∂X2 + |q|2q + iε

{
∂3q
∂X3 + 6|q|2 ∂q

∂X
+ 3q

∂|q|2
∂X

}
= 0, (1.2)

where q corresponds to the complex envelope of the wave field and the real constant ε scales the
integrable perturbations of the NLSE. For ε = 0, the SSE reduces to the NLSE. As an extension of
the NLSE, the SSE consists of terms describing the third-order dispersion, the self-steepening
and the self-frequency shift that are commonly involved in nonlinear optics [37,38]. For the
convenience of analysing the SSE, according to the work of Sasa & Satsuma [30], one can introduce
the transformation

u(x, t) = q(X,T) exp
{
− i

6ε

(
X − T

18ε

)}
, (1.3)

where t= T and x=X − T/(12ε), then equation (1.2) is transformed into

ut + ε(uxxx + 6|u|2ux + 3u(|u|2)x) = 0. (1.4)

Without loss of generality, by a scaling of t→ −t/ε, the above ε will be normalized to −1
henceforth. On account of its integrability and physical implications, the SSE has attracted much
attention since it was discovered. For instance, the double hump soliton solution of the SSE
was obtained by Mihalache et al. [34] while its multisoliton solutions have been constructed in
[35,39] by the Kadomtsev–Petviashvili (KP) hierarchy reduction method. In addition to the soliton
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solutions, RW solutions [40–43] of the SSE have also been found via the method of Darboux
transformation [27], and in contrast to the NLSE, several intriguing solution structures were
reported like the so-called twisted RW pair [40]. Beyond that, the long-time asymptotic behaviour
of the SSE with decaying initial data was analysed in [44] by formulating the Riemann–Hilbert
problem. Very recently, the Penrose instability analysis of the SSE was carried out by Pradeepa
et al. and they also formulated a condition for the existence of RW solutions [45].

Despite extensive investigations on the SSE, its breather solutions have not been systematically
examined, to the best of our knowledge. Consequently, the main objective of this paper is to derive
multi-breather solutions to the SSE

ut = uxxx − 6c|u|2ux − 3cu (|u|2)x, (1.5)

where c is a real constant. The rest of this paper is organized as follows. In §2, general multi-
breather solutions of equation (1.5) are presented in theorem 2.1. The detailed derivations of these
solutions are provided in §3. In this process, we firstly transform equation (1.5) into bilinear forms.
Then multi-breather solutions of equation (1.5) can be obtained by relating the bilinear forms of
(1.5) with a set of eleven bilinear equations in the KP hierarchy. Although the idea seems to be
straightforward, the intermediate computations are extremely complicated due to the complexity
of the SSE and multiple corresponding bilinear equations from the KP hierarchy. In addition to the
dimension reduction and the complex conjugate reduction, which are the common obstructions in
applying the KP hierarchy reduction method [22,46–50], a new obstacle is to tackle the symmetry
reduction (3.35). As pointed out in [35], when applying the direct method [51] to find soliton
solutions, one only needs to truncate at power two of the formal expansion for NLSE whereas one
has to go to power four for SSE, thereby resulting in more sophisticated analysis. It turns out that
this also appears in our consideration, namely the structure of breather solutions of SSE is more
intricate than that of NLSE (see theorem 2.1). In §4, the solution dynamics are discussed in detail.
Six types of first-order breathers were found totally and various configurations of second- and
third-order breathers have been illustrated. The main results of this paper are summarized in §5.

2. Multi-breather solutions to the Sasa–Satsuma equation
In this section, we present the multi-breather solutions to the SSE (1.5).

Theorem 2.1. The SSE (1.5) admits the multi-breather solution

u= g
f

ei(κ(x−6ct)−κ3t), (2.1)

where κ is real,
f (x, t) = τ0(x − 6ct, t) and g(x, t) = τ1(x − 6ct, t)

and τk (k= 0, 1) is defined as

τk =
∣∣∣∣∣∣

2∑
m,n=1

1
pim + pjn

(
−pim − a
pjn + a

)k

eξim+ξjn

∣∣∣∣∣∣
2N×2N

. (2.2)

Here, a= iκ is purely imaginary, ξim = pimx + p3
imt + ξim,0, N is a positive integer and the parameters

ξim,0, pim (i= 1, . . . , 2N,m= 1, 2) satisfy the constraints

(p2
i1 + κ2) (p2

i2 + κ2) = −2c (pi1pi2 − κ2) (2.3)

and
pN+l,m = p∗

lm, ξN+l,m,0 = ξ∗
lm,0, l= 1, . . . ,N, (2.4)

where ∗ denotes complex conjugation.

Remark 2.2. We note that the parameter relations (2.3) and (2.4) presented in theorem 2.1 give
rise to 6N + 1 free real parameters which include κ , the real parts and imaginary parts of pi1, pi2
and ξim,0, i= 1, . . . ,N,m= 1, 2.
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Remark 2.3. For c= −4κ2, we can solve equation (2.3) for pi2 as

pi2 = 4κ2pi1 ± iκ(p2
i1 − 3κ2)

κ2 + p2
i1

.

When c �= −4κ2, the expression of pi2 is more complicated. If we set pi1 = PR + iPI, where PR and
PI represent the real and imaginary parts of pi1, respectively, then pi2 can be expressed as

pi2 = G + iH
K

,

where

G= −P2
I (±α + 2cPR) + (κ2 + P2

R)(±α − 2cPR),

H = (κ2 − P2
I ) (±β − 2cPI) + P2

R (±β + 2cPI) ∓ 2αPIPR

and K = 2 [2P2
I (P2

R − κ2) + P4
I + (κ2 + P2

R)2]

with

α = 4
√
X2 + Y2 cos θ , β = 4

√
X2 + Y2 sin θ ,

X= −4 [P2
I (c2 + 2cκ2 + κ2P2

I − 2κ4)

− P2
R (c2 + 2cκ2 + 6κ2P2

I − 2κ4) − 2cκ4 + κ6 + κ2P4
R],

Y= 8PIPR [c2 + 2cκ2 + 2κ2 (P2
I − P2

R) − 2κ4]

and θ = arctan
(Y/X)

2
.

3. Derivation of the multi-breather solutions
This section is devoted to the construction of multi-breather solutions to the SSE (1.5). It consists
of two main steps. First, we transform the SSE (1.5) into bilinear forms. Then multi-breather
solutions are derived by showing that such bilinear equations can be obtained from reductions of
the KP hierarchy.

(a) Bilinear forms of the Sasa–Satsuma equation
The bilinearization of the SSE (1.5) is established by the proposition below.

Proposition 3.1. The SSE

ut = uxxx − 6c|u|2ux − 3cu(|u|2)x

can be transformed into the system of bilinear equations

(D2
x − 4c) f · f = −4cgg∗

(D3
x − Dt + 3iκD2

x − 3 (κ2 + 4c) Dx − 6iκc) g · f + 6iκcqg= 0

(Dx + 2iκ) g · g∗ = 2iκqf

⎫⎪⎪⎬⎪⎪⎭ (3.1)

by the variable transformation

u= g
f

ei(κ(x−6ct)−κ3t), (3.2)

where κ is real, f is a real-valued function, g is a complex-valued function, q is an auxiliary function and
D is Hirota’s bilinear operator [51] defined by

Dm
x D

n
t f · g=

(
∂

∂x
− ∂

∂x′

)m (
∂

∂t
− ∂

∂t′

)n
[f (x, t)g(x′, t′)]

∣∣∣∣
x′=x,t′=t

.
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Proof. By substituting (3.2) into equation (1.5) and rewriting the resulting equation in bilinear
forms, we obtain

− f 2 Dtg · f + f 2 D3
xg · f − 3 (Dxg · f ) (D2

xf · f ) + 3iκf 2 (D2
xg · f )

− 3iκfg (D2
xf · f ) − 3κ2f 2 (Dxg · f ) − c (9gg∗Dxg · f + 3g2Dxg∗ · f )

− c (−6iκgf 3 + 6iκfg2g∗) = 0.

(3.3)

Applying the following identity to the equation above:

9gg∗Dxg · f + 3g2Dxg∗ · f = −3gf (Dxg · g∗) + 12gg∗ (Dxg · f ), (3.4)

then (3.3) can be rearranged as

f 2[(D3
x − Dt + 3iκD2

x − 3(κ2 + 4c)Dx + 6icκ)g · f ] + 3cgf [(Dx − 2iκ)g · g∗]

− 3(Dxg · f )[(D2
x − 4c)f · f + 4cgg∗] − 3iκfg(D2

xf · f ) = 0. (3.5)

If we require
(D2

x − 4c)f · f + 4cgg∗ = 0, (3.6)

which yields
D2

xf · f = 4cf 2 − 4cgg∗,

then equation (3.5) is reduced to

f 2[(D3
x − Dt + 3iκD2

x − 3(κ2 + 4c)Dx − 6icκ)g · f ] + 3cgf [(Dx + 2iκ)g · g∗] = 0, (3.7)

which can be decomposed as

(D3
x − Dt + 3iκD2

x − 3(κ2 + 4c)Dx − 6icκ)g · f = −6iκcqg

and (Dx + 2iκ)g · g∗ = 2iκqf ,

}
(3.8)

where q is an auxiliary function. As a consequence, combining equations (3.6) and (3.8) shows
that the SSE (1.5) can be transformed into the system of bilinear equations (3.1) via the
transformation (3.2). �

(b) Derivation of multi-breather solutions
In order to derive multi-breather solutions of the SSE (1.5), we first present a crucial lemma.

Lemma 3.2. The bilinear equations in the KP hierarchy

(DrDx − 2)τkl · τkl = −2τk+1,lτk−1,l, (3.9)

(DsDx − 2)τkl · τkl = −2τk,l+1τk,l−1, (3.10)

(D2
x − Dy + 2aDx)τk+1,l · τkl = 0, (3.11)

(D2
x − Dy + 2bDx)τk,l+1 · τkl = 0, (3.12)

(D3
x + 3DxDy − 4Dt + 3a (D2

x + Dy) + 6a2Dx) τk+1,l · τkl = 0, (3.13)

(D3
x + 3DxDy − 4Dt + 3b (D2

x + Dy) + 6b2Dx) τk,l+1 · τkl = 0, (3.14)

(Dr (D2
x − Dy + 2aDx) − 4Dx) τk+1,l · τkl = 0, (3.15)

(Ds (D2
x − Dy + 2bDx) − 4Dx) τk,l+1 · τkl = 0, (3.16)

(Ds (D2
x − Dy + 2aDx) − 4(Dx + a − b)) τk+1,l · τkl + 4(a − b)τk+1,l+1τk,l−1 = 0, (3.17)

(Dr (D2
x − Dy + 2bDx) − 4(Dx + b − a)) τk,l+1 · τkl + 4(b − a)τk+1,l+1τk−1,l = 0 (3.18)

and (Dx + a − b) τk+1,l · τk,l+1 = (a − b)τk+1,l+1τkl, (3.19)
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admit the M × M Gram-type determinant solutions

τkl =
∣∣∣mkl

ij

∣∣∣
M×M

, (3.20)

where

mkl
ij =

∫ ( 2∑
m=1

φ
k,l
im

) ( 2∑
n=1

φ̄
k,l
jn

)
dx (3.21)

=
2∑

m,n=1

1
pim + qjn

(
a − pim
a + qjn

)k (
b − pim
b + qjn

)l

eξim+ξ̄jn , (3.22)

φ
k,l
im = (pim − a)k(pim − b)l eξim (3.23)

and φ̄
k,l
jn = (−1)k(qjn + a)−k(−1)l(qjn + b)−l eξ̄jn (3.24)

with

ξim = pimx + p2
imy + p3

imt + 1
pim − a

r + 1
pim − b

s + ξim,0 (3.25)

and

ξ̄jn = qjnx − q2
jny + q3

jnt + 1
qjn + a

r + 1
qjn + b

s + ηjn,0. (3.26)

Here, pim, qjn, ξim,0, ηjn,0 (i, j= 1, . . .M,m, n= 1, 2), a and b are complex constants while k and l are
integers.

In what follows, we will establish the reductions from the bilinear equations (3.9)–(3.19)
in the KP hierarchy to the bilinear equations (3.1), which consist of several steps. Once this
is accomplished, multi-breather solutions of the SSE (1.5) will be derived. We start with the
reduction from AKP to CKP [52]. To this end, we take

qj1 = pj1, qj2 = pj2, b= −a, ξjn,0 = ηjn,0,

where j= 1, . . .M and n= 1, 2, then we obtain

ξjn(x, y, t, r, s) = ξ̄jn(x, −y, t, s, r).

Therefore, we have

m−l,−k
ji (x, −y, t, s, r) =

2∑
m,n=1

1
pjm + qin

(a − pjm
a + qin

)−l (b − pjm
b + qin

)−k

e(ξjm+ξ̄in)(x,−y,t,s,r)

=
2∑

m,n=1

1
pjm + pin

(a − pjm
a + pin

)−l (a + pjm
a − pin

)−k
eξin+ξ̄jm

=
2∑

m,n=1

1
pjm + pin

(
a − pin
a + pjm

)k (
a + pin
a − pjm

)l

eξin+ξ̄jm

=
2∑

m,n=1

1
pim + pjn

(
a − pim
a + pjn

)k (
a + pim
a − pjn

)l

eξim+ξ̄jn

=mkl
ij (x, y, t, r, s)

and
τkl(x, y, t, r, s) = τ−l,−k(x, −y, t, s, r). (3.27)

Next, we perform the dimension reduction. First, we rewrite τkl as

τkl =
M∏
i=1

eξi2+ξ̄i2 τ̃kl,
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where

τ̃kl =
∣∣∣m̃kl

ij

∣∣∣
and

m̃kl
ij = Fkl(pi1, pj1) eξi1−ξi2+ξ̄j1−ξ̄j2 + Fkl(pi1, pj2) eξi1−ξi2 (3.28)

+ Fkl(pi2, pj1) eξ̄j1−ξ̄j2 + Fkl(pi2, pj2) (3.29)

with

Fkl(p, q) = 1
p + q

(
a − p
a + q

)k (
a + p
a − q

)l
,

ξi1 − ξi2 = (pi1 − pi2) x + (p2
i1 − p2

i2) y + (p3
i1 − p3

i2) t +
(

1
pi1 − a

− 1
pi2 − a

)
r

+
(

1
pi1 + a

− 1
pi2 + a

)
s + ξi1,0 − ξi2,0

and ξ̄i1 − ξ̄i2 = (pi1 − pi2) x − (p2
i1 − p2

i2) y + (p3
i1 − p3

i2) t +
(

1
pi1 + a

− 1
pi2 + a

)
r

+
(

1
pi1 − a

− 1
pi2 − a

)
s + ξi1,0 − ξi2,0.

Note that(
∂r + ∂s − 1

c
∂x

)
m̃kl

ij = [G(pi1, pi2) + G(pj1, pj2)]F(pi1, qj1) eξi1−ξi2+ξ̄j1−ξ̄j2

+ G(pi1, pi2)F(pi1, qj2) eξi1−ξi2 + G(pj1, pj2)F(pi2, qj1) eξ̄j1−ξ̄j2 ,

where

G(p, q) = 1
p − a

+ 1
p + a

− 1
q − a

− 1
q + a

− 1
c

(p − q)

= (q − p)
[

1
(p − a)(q − a)

+ 1
(p + a)(q + a)

+ 1
c

]
.

Therefore, by taking

1
(pi1 − a)(pi2 − a)

+ 1
(pi1 + a)(pi2 + a)

+ 1
c

= 0,

which is equivalent to

(p2
i1 − a2) (p2

i2 − a2) + 2c (pi1pi2 + a2) = 0,

we have

(∂r + ∂s )̃τkl =
M∑

i,j=1


ij (∂r + ∂s) m̃kl
ij

= 1
c

M∑
i,j=1


ij∂xm̃
kl
ij

= 1
c
∂xτ̃kl, (3.30)
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where 
ij denotes the (i, j)-cofactor of the matrix (m̃kl
ij ). Thus, with (3.30), we can replace the

derivatives in r and s by derivatives in x in the bilinear equations (3.9)–(3.19) and obtain

(D2
x − 4c)̃τkl · τ̃kl = −2c (̃τk+1,lτ̃k−1,l + τ̃k,l+1τ̃k,l−1), (3.31)

(D3
x − Dt + 3aD2

x + 3 (a2 − 2c) Dx − 6ac) τ̃k+1,l · τ̃kl + 6ac̃τk+1,l+1τ̃k,l−1 = 0, (3.32)

(D3
x − Dt − 3aD2

x + 3 (a2 − 2c) Dx + 6ac)̃τk,l+1 · τ̃kl − 6ac̃τk+1,l+1τ̃k−1,l = 0 (3.33)

and (Dx + 2a)̃τk+1,l · τ̃k,l+1 = 2aτ̃k+1,l+1τ̃kl. (3.34)

Among the above bilinear equations, equation (3.31) is derived from bilinear equations (3.9)–
(3.10) and (3.30) while the bilinear equation (3.34) is obtained from the bilinear equation (3.19)
with b= −a. In view of (3.30) and b= −a, the bilinear equations (3.32) and (3.33) can be derived,
respectively, as follows:

1
c

[3a × (3.11) + (3.13)] + 3 × ((3.15) + (3.17)) = 4 × (3.32)

and
1
c

[3a × (3.12) + (3.14)] + 3 × ((3.16) + (3.18)) = 4 × (3.33).

Since the bilinear equations (3.31)–(3.34) do not involve derivatives with respect to y, r and s, we
may take y= r= s= 0. Then according to (3.27), we have

τ̃kl(x, t) = τ̃−l,−k(x, t). (3.35)

Finally, we consider the complex conjugate reduction. Let the size of the matrix (m̃kl
ij ) be even,

i.e. M= 2N, and a= iκ be purely imaginary. Furthermore, by imposing the parameter relations

pN+j,1 = p∗
j1, pN+j,2 = p∗

j2, ξN+j,1,0 = ξ∗
j1,0, ξN+j,2,0 = ξ∗

j2,0, j= 1, . . . ,N, (3.36)

we obtain

ξ∗
jn = ξN+j,n, ξ̄∗

jn = ξ̄N+j,n, n= 1, 2

and

F∗
0k(p, q) = Fk0(p∗, q∗).

Then, it yields that

(m̃0k
ij )∗ = F∗

0k(pi1, pj1) eξ∗
i1−ξ∗

i2+ξ̄∗
j1−ξ̄∗

j2 + F∗
0k(pi1, pj2) eξ∗

i1−ξ∗
i2

+ F∗
0k(pi2, pj1) eξ̄∗

j1−ξ̄∗
j2 + F∗

0k(pi2, pj2)

= Fk0(pN+i,1, pN+j,1) eξN+i,1−ξN+i,2+ξ̄N+j,1−ξ̄N+j,2 + Fk0(pN+i,1, pN+j,2) eξN+i,1−ξN+i,2

+ Fk0(pN+i,2, pN+j,1) eξ̄N+j,1−ξ̄N+j,2 + Fk0(pN+i,2, pN+j,2)

= m̃k0
N+i,N+j.

With similar argument, we can obtain

(m̃0k
i,N+j)

∗ = m̃k0
N+i,j,

(m̃0k
N+i,j)

∗ = m̃k0
i,N+j

and (m̃0k
N+i,N+j)

∗ = m̃k0
i,j
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and hence

τ̃∗
0k =

∣∣∣∣∣ (m̃0k
ij )∗ (m̃0k

i,N+j)
∗

(m̃0k
N+i,j)

∗ (m̃0k
N+i,N+j)

∗

∣∣∣∣∣
=

∣∣∣∣∣ m̃k0
N+i,N+j m̃k0

N+i,j
m̃k0

i,N+j m̃k0
i,j

∣∣∣∣∣
=

∣∣∣∣∣ m̃k0
i,j m̃k0

i,N+j
m̃k0

N+i,j m̃k0
N+i,N+j

∣∣∣∣∣
= τ̃k0.

On the other hand, using a similar method to that above, we can prove that

τ̃∗
kk = τ̃kk,

which implies that τ̃kk is real. Defining

f̃ = τ̃00, g̃= τ̃10, h̃= τ̃01, q̃= τ̃11,

then we find that f̃ and q̃ are real-valued functions and g̃∗ = h̃. According to (3.35), we have

τ̃−1,0 = g̃∗ and τ̃0,−1 = g̃.

Therefore, the bilinear equations (3.31)–(3.34) become

(D2
x − 4c) f̃ · f̃ = −4c̃g g̃∗,

(D3
x − Dt + 3iκD2

x − 3(κ2 + 2c) Dx − 6iκc) g̃ · f̃ + 6iκc q̃ g̃= 0

and (Dx + 2iκ) g̃ · g̃∗ = 2iκ q̃̃f .

⎫⎪⎪⎬⎪⎪⎭ (3.37)

Let
f̂ (x, t) = f̃ (x − 6ct, t), ĝ(x, t) = g̃(x − 6ct, t), q̂(x, t) = q̃(x − 6ct, t),

then the system of bilinear equations (3.37) reduces to (3.1), and thus we can obtain the following
solution to the SSE (1.5):

u= ĝ

f̂
ei(κ(x−6ct)−κ3t), (3.38)

where
f̂ (x, t) = τ̃00(x − 6ct, t) and ĝ= τ̃10(x − 6ct, t).

In addition, let

f (x, t) =
2N∏
i=1

e(ξi2+ξ̄i2)(x−6ct,t) f̂ (x, t) = τ00(x − 6ct, t)

and

g(x, t) =
2N∏
i=1

e(ξi2+ξ̄i2)(x−6ct,t) ĝ(x, t) = τ10(x − 6ct, t).

Then it is found that
u= g

f
ei(κ(x−6ct)−κ3t), (3.39)

where
f (x, t) = τ0(x − 6ct, t), g(x, t) = τ1(x − 6ct, t)

and
τk = τk0, k= 0, 1

also solves the SSE (1.5). Thus the proof is complete.
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4. Dynamics of breather solutions
In this section, we discuss the dynamics of the breather solutions of the SSE derived in
theorem 2.1.

(a) First-order breather solutions
To obtain the first-order breather solutions to equation (1.5), we set N = 1 in theorem 2.1. In this
case, we have

τ0 =
∣∣∣∣∣ m(0)

11 m(0)
12

m(0)
21 m(0)

22

∣∣∣∣∣ and τ1 =
∣∣∣∣∣ m(1)

11 m(1)
12

m(1)
21 m(1)

22

∣∣∣∣∣ ,

where

m(k)
ij =

2∑
m,n=1

1
pim + pjn

(
a − p1m

a + p1n

)k
eξim+ξjn , i, j= 1, 2, k= 0, 1,

a= iκ is purely imaginary, ξim = pimx + p3
imt + ξim,0 (m= 1, 2), and the complex parameters ξim,0,

pim satisfy the constraints

(p2
i1 + κ2) (p2

i2 + κ2) = −2c (pi1pi2 − κ2)

and
p2m = p∗

1m, ξ2m,0 = ξ∗
1m,0.

After some tedious algebra, we can express solutions (2.1) in terms of trigonometric functions
and hyperbolic functions:

u= g(x, t)
f (x, t)

ei(κ(x−6ct)−κ3t), (4.1)

with

f (x, t) = α1 + M1 cosh(2W1 − θ1) + α2 cos(V1) cosh(W1) + α3 cos(V1) sinh(W1)

+ α4 sin(V1) cosh(W1) + α5 sin(V1) sinh(W1) + α6 cos(2V1 − θ2),

g(x, t) = β1 + M2 cosh(2W1 − θ3) + β2 cos(V1) cosh(W1) + β3 cos(V1) sinh(W1)

+ β4 sin(V1) cosh(W1) + β5 sin(V1) sinh(W1) + β6 cos(2V1 − θ4)

+ i[γ1 + M3 cosh(2W1 − θ5) + γ2 cos(V1) cosh(W1) + γ3 cos(V1) sinh(W1)

+ γ4 sin(V1) cosh(W1) + γ5 sin(V1) sinh(W1) + γ6 cos(2V1 − θ6)],

where V1,W1 are linear functions in x and t with real coefficients and Mj, αk, βk, γk, θk (k= 1 . . . , 6)
are real constants (see appendix A for their explicit expressions). The above representations for f
and g reveal that (4.1) is a breather solution to the SSE (1.5).

In contrast with many integrable equations, a remarkable feature displayed by the SSE (1.5) is
that it possesses double-hump one soliton solutions [30]. Interestingly, this property can also be
discovered in the breather solutions. This type of breather solution for parameters

c= −1, κ = −1
2

, p11 = 1 + 2i, p12 = 4
29

+ 9
58

i, ξ11,0 = 0, ξ12,0 = 0

is depicted in figure 1a. It is clear that this first-order breather contains two local maxima and
three local minima in each period, where one local minimum is much bigger than the other
two and located between two local maxima while the other two local minima are located on
the same side of the local maxima. To be more precise, this breather reaches its peaks at (x, t) ≈
(1.6100, 0.0700), (2.2000, 0.1850), and a trough at (x, t) ≈ (1.9150, 0.1250). Numerical computations
indicate that its period is approximately 2.00112 and the local minima between two local maxima
are located on the line L : x≈ 6.819t + 1.0618 (figure 1b). As displayed in figure 1d, taking the
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(b)(a)
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Figure 1. A first-order breather solution with parameter values c = −1, κ = −1/2, ξ11,0 = ξ12,0 = 0, p11 = 1 + 2i, p12 =
4/29 − 9i/58. (b) The corresponding density plot of (a). (c) The time evolution of (a). (d) The intersection between the plane
x − 6.819t − 1.0618= 0 and the breather. (Online version in colour.)

intersection of the line, the breather produces a double-hump periodic wave. Therefore, this
breather may serve as a counterpart of the double-hump one soliton of the SSE.

According to remark 2.2, solutions (4.1) contain seven free real parameters. Varying these
parameters will excite various interesting wave profiles of the breather solutions. To illustrate
this, we fix the parameter values

c= −1, κ = −1
2

, �p11 = 2, ξ11,0 = 0, ξ12,0 = 0,

and let p= 	p11 be free. In addition, we choose (see remark 2.3)

p12 = 4κ2pi1 − iκ(p2
i1 − 3κ2)

κ2 + p2
i1

. (4.2)

Then the wave profiles of the breather solutions can exhibit an intriguing sequence of transitions
by altering the values of p. Geometrically, these wave profiles can be defined as (m,n)-type, where
m and n represent the numbers of local maxima and minima in one period, respectively. If we start
from p= 1, then previous discussions imply that it corresponds to a (2, 3)-type breather (figure 1).
Subsequently, the two smaller local minima will approach each other and merge into a single
minimum by changing p and hence the wave profile becomes (2, 2)-type (figure 2a,b). On further
changing p, the local minimum located between two local maxima is converted to a saddle point
and the breather turns into (2, 1)-type (figure 2c). This is followed by (1, 1)-type breather (figure 2d)
with the decrease of p after two local maxima coalesce into a single maximum.

In the above process, the sign of p is positive. Interestingly, similar behaviours can be observed
as well for negative p. In this case, the wave profiles will traverse the three types of (1, 2), (2, 2)
and (3, 2) by varying p (figure 3).
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(b)
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Figure 2. First-order breather solutions with parameter values c = −1, κ = −1/2, ξ11,0 = ξ12,0 = 0 and (a) p11 =
0.87 + 2i, (b) p11 = 0.8 + 2i, (c) p11 = 0.2 + 2i, (d) p11 = 0.1 + 2i, where p12 is given by (4.2). (Online version in colour.)

(a) (b) (c)

t

x

0

1.5

0 3–3

t

x

0

1.2

0 2–2

t

x

0

0.5

0 2–2

Figure 3. First-order breather solutionswith parameter values c = −1, κ = −1/2, ξ11,0 = ξ12,0 = 0 and (a) p11 = −0.6 +
2i, (b) p11 = −1.6 + 2i, (c) p11 = −3.5 + 2i, where p12 is given by (4.2). (Online version in colour.)

Note that when we fix the parameter values of c, κ and p11, equation (2.3) yields two choices for
p12. Thus, distinct configurations of breather profiles for the same input parameters are possible.
The first possible configuration is depicted in figure 1a, while the second complex root of equation
(2.3) gives p12 = 4/13 − 25/26i, leading to a completely different wave profile (figure 4).

(b) Higher-order breather solutions
Second-order breather solutions to equation (1.5) correspond to N = 2 in (2.2). In this
circumstance, the functions τk (k= 0, 1) could be obtained from (2.2) as

τ0 =

∣∣∣∣∣∣∣∣∣∣∣

m(0)
11 m(0)

12 m(0)
13 m(0)

14

m(0)
21 m(0)

22 m(0)
23 m(0)

24

m(0)
31 m(0)

32 m(0)
33 m(0)

34

m(0)
41 m(0)

42 m(0)
43 m(0)

44

∣∣∣∣∣∣∣∣∣∣∣
and τ1 =

∣∣∣∣∣∣∣∣∣∣∣

m(1)
11 m(1)

12 m(1)
13 m(1)

14

m(1)
21 m(1)

22 m(1)
23 m(1)

24

m(1)
31 m(1)

32 m(1)
33 m(1)

34

m(1)
41 m(1)

42 m(1)
43 m(1)

44

∣∣∣∣∣∣∣∣∣∣∣
,
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Figure 4. First-order breather solutions with parameter values c = −1, κ = −1/2, ξ11,0 = ξ12,0 = 0 and (a) p11 = 1 +
2i, p12 = 4/13 − 25/26i. (b) The corresponding density plots of (a). (Online version in colour.)

t = –3.62
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|u|
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0 0

2

20 4010
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2
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0 –40 –20 0–10

Figure 5. (a) Second-order breather solutions with parameter values c = −1, κ = −1/2, p11 = 0.95 + 1.65i, p21 = 0.8 +
2i, ξ11,0 = ξ12,0 = 0, where p12 and p22 are given by (4.2). (b) The corresponding density plot of (a). (c) The time evolution of
(a). (Online version in colour.)

with matrix entries

m(k)
ij =

2∑
m,n=1

1
pim + pjn

(
a − p1m

a + p1n

)k
eξim+ξjn , i, j= 1, . . . , 4,

where a= iκ is purely imaginary, ξim = pimx + p3
imt + ξim,0 (m= 1, 2), and the complex parameters

ξim,0, pim satisfy the relations (2.3) and (2.4). Similar to the first-order breather solutions, the
second-order breather solutions can also be expressed in terms of trigonometric functions and
hyperbolic functions. Since the expressions are very complicated, we omit their explicit forms.
As pointed out in remark 2.2, second-order breather solutions contain the free parameters κ , pi1
and ξim,0 (i,m= 1, 2), where κ is real and pi1, ξim,0 are complex. A variety of fascinating wave
profiles can be depicted for different choices of parameter values. Since second-order breathers
describe the interactions between two first-order breathers, each of them can be classified into
(m1, n1)-(m2, n2)-type if it comprises two first-order breathers that are (m1, n1)-type and (m2, n2)-
type, respectively. In §4a, six types of first-order breathers have been illustrated, and hence they
give rise to 21 types of second-order breathers. To demonstrate this, we take the parameters

c= −1, κ = −1/2, p11 = 0.95 + 1.65i, p12 = 0.8 + 2i, p21 = 38
221

+ 49
442

i,

p22 = 80
689

+ 189
1378

i, ξ11,0 = 0, ξ12,0 = 0, ξ21,0 = 0, ξ22,0 = 0.

As shown in figure 5, this corresponds to a (2, 2)-(2, 3)-type second-order breather. It can also
be seen clearly that two breathers pass through each other without any change of shape or
velocity except for a phase shift, and thus the collision between them is elastic. If we choose
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Figure6. Second-order breather solutionswith parameter values c = −1,κ = −1/2,ξ11,0 = ξ12,0 = 0 and (a) p11 = 0.8 +
3.2i, p21 = 0.95 + 1.65i, (b) p11 = 1 + 1.7i, p21 = −0.65 + 2.5i, where p12 and p22 are given by (4.2). (c,d) The corresponding
density plots of (a,b), respectively. (Online version in colour.)
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Figure 7. Second-order breather solutions with parameter values c = −1, κ = −1/2, ξ11,0 = 0.1, ξ12,0 = 0, ξ21,0 =
ξ22,0 = 0 and (a) p11 = 0.8 + 2.5i, p21 = 0.8001 + 2.5i, (b) p11 = 1.3 + 2.3i, p21 = 1.3001 + 2.3i, (c) p11 = 0.8 + 2i, p21 =
0.8001 + 2i, where p12 and p22 are given by (4.2). (d–f ) The corresponding density plots of (a–c), respectively. (Online version
in colour.)
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Figure 8. Third-order breather solutions with parameter values c = −1, κ = −1/2, ξ11,0 = ξ12,0 = 0, ξ21,0 = ξ22,0 = 0,
ξ32,0 = 0 and (a) p11 = 1 + 1.7i, p21 = −0.65 + 2.5i, p31 = 0.95 + 1.65i, ξ31,0 = 2, (b) p11 = 0.95 + 1.65i, p21 = 0.8 + 2i,
p31 = 0.8 + 3.2i, ξ31,0 = 2, (c) p11 = 0.8 + 1.6i, p21 = −0.65 + 2i, p31 = 1.3 + 1.3i, ξ31,0 = 4, where p12, p22 and p32 are
given by (4.2). (d–f ) The corresponding density plots of (a–c), , respectively. (Online version in colour.)

other parameter values, then we may obtain second-order breathers consisting of two first-order
breathers that belong to distinct types (figure 6) or the same type (figure 7).

Finally, we can obtain Nth-order breather solutions to equation (1.5) from (2.2) by taking N ≥ 3.
In general, such solutions describe the superposition of N first-order breathers. However, their
explicit expressions are more complicated, so they will not be provided here. Instead, we only
focus on the dynamical structures of third-order breather solutions (N = 3), which consist of three
first-order breathers. On the one hand, it is obvious that there are many more types of third-order
breathers than second-order ones. On the other hand, third-order breathers exhibit more diverse
collisions. As illustrated in figure 8, the three first-order breathers may interact with each other in
pairs or collide simultaneously.

5. Conclusion
In summary, we have derived general breather solutions to the SSE via the KP hierarchy reduction
method. These solutions are expressed in terms of Gram-type determinants through transforming
a set of bilinear equations in the KP hierarchy into the bilinear forms of the SSE. Owing to
the complexity of the SSE and multiple corresponding bilinear equations in the KP hierarchy,
the intermediate computations are much more involved compared with most of the integrable
equations that can be solved by the same method. Furthermore, in addition to the common
obstructions that appear in the KP hierarchy reduction method, i.e. the dimension reduction
and the complex conjugate reduction, another obstacle that we have dealt with is the symmetry
reduction.

The dynamics of breathers have been investigated. For first-order breathers, six types were
found totally and some of them were shown to possess a double-hump structure. Interestingly,
transitions among these first-order breathers can be achieved by changing the value of just one
free real parameter in the solutions. In addition, various configurations of second- and third-
order breathers have been illustrated. In particular, elastic collisions of second-order breathers
were observed.
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Appendix A
In this appendix, we show that the first-order breather solutions presented in theorem 2.1 can be
expressed in terms of trigonometric functions and hyperbolic functions. Let N = 1, then theorem
2.1 yields that

τ0 =

∣∣∣∣∣∣∣∣∣
2∑

m=1

2∑
n=1

1
p1m + p1n

eξ1m+ξ1n
∑2

m=1
∑2

n=1
1

p1m+p∗
1n

eξ1m+ξ∗
1n

∑2
m=1

∑2
n=1

1
p∗

1m+p1n
eξ∗

1m+ξ1n
∑2

m=1
∑2

n=1
1

p∗
1m+p∗

1n
eξ∗

1m+ξ∗
1n

∣∣∣∣∣∣∣∣∣ (A 1)

= |m1|2 − m2
2, (A 2)

where

m1 =
2∑

m=1

2∑
n=1

1
p1m + p1n

eξ1m+ξ1n and m2 =
2∑

m=1

2∑
n=1

1
p1m + p∗

1n
eξ1m+ξ∗

1n .

Denote by p11 =A + iB, p12 =R + iS, ξ11,0 = α1 + iβ1, ξ12,0 = α2 + iβ2, where p11 and p12 satisfy
(2.3), then we have

ξ11 =X + iY=Ax + (A3 − 3AB2)t + α1 + i [Bx + (3A2B − B3)t + β1]

and

ξ12 =W + iV =Rx + (R3 − 3RS2)t + α2 + i [Sx + (3R2S − S3)t + β2].

After some tedious algebra, we can rewrite τ0 in the form

τ0 = e2W+2X{c0 + M1 cosh(2W − 2X − θ1)

+ (c1 + c2) cos(V − Y) cosh(W − X) + (c1 − c2) cos(V − Y) sinh(W − X)

+ (d1 + d2) sin(V − Y) cosh(W − X) + (d1 − d2) sin(V − Y) sinh(W − X)

+ (c3 + d3)1/2 cos(2V − 2Y − θ2)}, (A 3)
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where

c1 = 2(R(A + R) + S(B + S))
(R2 + S2)K

− 2(A + R)
RL

, d1 = 2(AS − BR)
(R2 + S2)K

− 2(S − B)
RL

,

c2 = 2(A(A + R) + B(B + S))
(A2 + B2)K

− 2(A + R)
AL

, d2 = 2(AS − BR)
(A2 + B2)K

− 2(S − B)
AL

,

c3 = AR + BS
2(A2 + B2)(R2 + S2)

− 2(A + R)2 − 2(B − S)2

L2 ,

d3 = AS − BR
2(A2 + B2)(R2 + S2)

+ 4(A + R)(B − S)
L2 ,

c0 = 4
K

− 2
L

− 1
2AR

, K = (A + R)2 + (B + S)2, L= (A + R)2 + (B − S)2,

M1 = 2
√

σ1σ2, θ1 = ln
(σ2/σ1)

2
, θ2 = arctan

(
d3

c3

)
and σ1 = S2

4R2(R2 + S2)
, σ2 = B2

4A2(A2 + B2)
.

Similarly, we have

τ1 = e2W+2X{e0 + M2 cosh(2W − 2X − θ3)

+ (e1 + e2) cos(V − Y) cosh(W − X) + (e1 − e2) cos(V − Y) sinh(W − X)

+ (f1 + f2) sin(V − Y) cosh(W − X) + (f1 − f2) sin(V − Y) sinh(W − X)

+ (e3 + f3)1/2 cos(2V − 2Y − θ4)

+ i[ê0 + M̂2 cosh(2W − 2X − θ̂3)

+ (ê1 + ê2) cos(V − Y) cosh(W − X) + (ê1 − ê2) cos(V − Y) sinh(W − X)

+ (f̂1 + f̂2) sin(V − Y) cosh(W − X) + (f̂1 − f̂2) sin(V − Y) sinh(W − X)

+ (ê3 + f̂3)1/2 cos(2V − 2Y − θ̂4)]}, (A 4)

where

e0 = 	(K22 + K23 + K32 + K33 − L14 − L22 − L33 − L41),

e1 = 	(K24 + K34 + K42 + K43 − L24 − L43 − L42 − L34),

f1 = �(−K24 − K34 + K42 + K43 + L24 + L43 − L42 − L34),

e2 = 	(K12 + K13 + K21 + K31 − L13 − L21 − L31 − L12),

f2 = �(−K12 − K13 + K21 + K31 + L13 + L21 − L31 − L12),

e3 = 	(K14 + K41 − L23 − L32),

f3 = �(−K14 + K41 − L23 + L32),

ê0 = �(K22 + K23 + K32 + K33 − L14 − L22 − L33 − L41),

ê1 = �(K24 + K34 + K42 + K43 − L24 − L43 − L42 − L34),

f̂1 = 	(K24 + K34 − K42 − K43 − L24 − L43 + L42 + L34),

ê2 = �(K12 + K13 + K21 + K31 − L13 − L21 − L31 − L12),

f̂2 = 	(K12 + K13 − K21 − K31 − L13 − L21 + L31 + L12),
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ê3 = �(K14 + K41 − L23 − L32),

f̂3 = 	(K14 − K41 + L23 − L32),

M2 = 2
√

	((K11 − L11) (K44 − L44)), M̂2 = 2
√

�((K11 − L11) (K44 − L44)),

θ3 = ln 	 ((K11 − L11)/(K44 − L44))
2

, θ̂3 = ln � ((K11 − L11)/(K44 − L44))
2

,

θ4 = arctan
(
f3
e3

)
, θ̂4 = arctan

(
f̂3
ê3

)
,

and Kkl, Lkl (k, l= 1, 2, 3, 4) are given by

Kkl = n(k)
11 × n(l)

22 and Lkl = n(k)
12 × n(l)

21, (A 5)

with (i, j= 1, 2)

n(1)
ij = (iκ − pi,1)

(pj,1 + a) (pi,1 + pj,1)
, n(2)

ij = (iκ − pi,1)
(pj,2 + a) (pi,1 + pj,2)

(A 6)

n(3)
ij = (iκ − pi,2)

(pj,1 + a) (pi,2 + pj,1)
, n(4)

ij = (iκ − pi,2)
(pj,2 + a) (pi,2 + pj,2)

. (A 7)

As a consequence, the first-order breather solutions of the SSE (1.5) can be rewritten as

u= τ1(x − 6ct, t)
τ0(x − 6ct, t)

ei(κ(x−6ct)−κ3t),

where τ0 and τ1 are given by (A 3) and (A 4), respectively.
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