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In brief

With the explosive growth of available

gene sequences, the ability to predict the

interactome of an organism from its

genome would help address the pressing

challenge of genome-to-phenome

mapping. Our method, D-SCRIPT,

leverages advances in deep language

models to map protein sequences to

implicit structure representations and

predict interaction between two proteins

based on their structural compatibility.

D-SCRIPT’s structure-aware approach

generalizes to unseen species better than

current approaches, and its efficiency

allows for rapid genome-scale

investigation of protein function.
.
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SUMMARY
We combine advances in neural language modeling and structurally motivated design to develop D-SCRIPT,
an interpretable and generalizable deep-learningmodel, which predicts interaction between two proteins us-
ing only their sequence and maintains high accuracy with limited training data and across species. We show
that a D-SCRIPT model trained on 38,345 human PPIs enables significantly improved functional character-
ization of fly proteins compared with the state-of-the-art approach. Evaluating the same D-SCRIPT model
on protein complexes with known 3D structure, we find that the inter-protein contact map output by
D-SCRIPT has significant overlap with the ground truth. We apply D-SCRIPT to screen for PPIs in cow
(Bos taurus) at a genome-wide scale and focusing on rumen physiology, identify functional gene modules
related to metabolism and immune response. The predicted interactions can then be leveraged for function
prediction at scale, addressing the genome-to-phenome challenge, especially in species where little data are
available.
INTRODUCTION

The systematic mapping of physical protein-protein interactions

(PPIs) in the cell has proven extremely valuable in deepening our

understanding of protein function and biology. In species such

as yeast and human, where a large network of experimentally

determined PPIs exists (Fields and Song, 1989; Kumar and

Snyder, 2002; Krogan et al., 2006; Taipale et al., 2014; Sahni

et al., 2015), this PPI network information has proven valuable

for downstream inference tasks in understanding functional ge-

nomics and biological pathway analysis (Sharan et al., 2007;

Navlakha and Kingsford, 2010; Cho et al., 2016; Cowen et al.,

2017; Choobdar et al., 2019). However, in most species—espe-

cially, non-model organisms—the coverage of experimental PPI

data remains very low (Figure 1A).

Computational prediction of PPIs can help mitigate the lack of

experimental data and facilitate biological discovery. Although

substantial progress has been made in PPI prediction overall,

the notable case of de novo prediction for less-studied proteins

and non-model organisms continues to be a challenge. The lack

of functional genomic data in such situations makes it difficult to

apply methods based on bootstrapping from the connectivity

patterns of known PPIs (Hosur et al., 2012; Lei and Ruan,

2013; Hulovatyy et al., 2014; Kovács et al., 2019; Devkota
Cell Systems 12, 969–982, Oc
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et al., 2020) or those that infer PPIs from other protein-protein

association modalities such as co-expression and co-localiza-

tion (Cho et al., 2016; Franz et al., 2018; Wang et al., 2018;

Szklarczyk et al., 2019). Recently, deep-learning-based

methods have offered the prospect of predicting PPIs just

from sequence data. Unfortunately, existing models (Hashemi-

far et al., 2018; Chen et al., 2019) have shown limited generaliz-

ability: they work quite well when applied to the species they

were trained on, but their performance declines in a cross-spe-

cies context.

Here, we introduce D-SCRIPT (deep sequence contact resi-

due interaction prediction transfer, see Box 1), a structure-

aware deep-learning approach to PPI prediction with a geomet-

rically interpretable neural network architecture that is able to

make meaningful PPI predictions in the cross-species setting.

Our key conceptual advance is implementing an interpretable,

structure-based model despite only having sequence-based in-

puts: a well-matched combination of input featurization and

neural network architecture allow for D-SCRIPT to be trained

solely from sequence data, supervised only with a binary inter-

action label and yet produce an intermediate representation

that substantially captures the structural mechanism of interac-

tion between the protein pair. Leveraging recent advances in

protein language modeling, we first apply Bepler and Berger’s
tober 20, 2021 ª 2021 The Authors. Published by Elsevier Inc. 969
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. D-SCRIPT motivation and workflow

We demonstrate how D-SCRIPT can be used genome-wide to predict a complete PPI network in the fly.

(A) Experimentally derived PPI data are scarce in species outside of human and yeast, even when normalized for size of the genome (sourced from BioGRID,

STAR Methods).

(B) A D-SCRIPTmodel, after being trained on a large corpus of human PPI data, can be broadly applied to a species of interest even if little PPI data are available in

that species. For each pair of proteins in the target species, D-SCRIPT converts the pair of protein sequences into a score representing probability of interaction.

Because D-SCRIPT scales to large numbers of protein pairs and maintains performance across species, it can be used to score all protein pairs genome-wide to

predict a synthetic PPI network in the species, facilitating a genome-to-phenome translation.

(C) Blowup detail of the D-SCRIPT architecture from the box in (B) (Figure 2 for more detail). D-SCRIPT generalizes due to its structurally motivated design. The

pre-trained languagemodel generates structural features for a single protein, whereas the projection and convolutionmodel the interaction between every pair of

residues in the candidate pair. In the final layer, we introduce a magnitude regularization term to ensure the prediction of an inter-protein contact map that is

structurally plausible.
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deep-learning-based language model of single proteins to

construct our features (Bepler and Berger, 2019). Using this

pre-trained model results in informative protein embeddings

(i.e., representations in a high-dimensional space) that are

implicitly endowed with structural information about each of

the proteins. D-SCRIPT’s generalizability and interpretability

then come from its ability to learn informative geometric repre-

sentations of the proteins, individually and jointly. In particular, it

learns how to transform the two protein embeddings into a 2D

contact map, encoding the intuition that a physical interaction

between two proteins requires that a subset of the residues in

each protein be in contact with the other protein (Figures 1B

and 1C).

Evaluating D-SCRIPT in the cross-species prediction setting,

where a method trained on human PPIs is used to predict PPIs

in several less-studied model organisms, we show that it sub-

stantially improves upon existing methods, including the state-

of-the-art deep-learning method PIPR (Chen et al., 2019) in a

stringent cross-validation experiment. In addition to comparing

the accuracy of PPI predictions in cross validation, we demon-

strate that the interpretability and downstream utility of D-

SCRIPT results in several ways. First, we demonstrate that on

a genome-wide scale, de novoPPIs predicted byD-SCRIPT pro-
970 Cell Systems 12, 969–982, October 20, 2021
duce a network whose modular structure produces clusters of

proteins with greater functional coherence than those produced

from PIPR predictions. Next, on assessing the physical plausibil-

ity of the intermediate contact map representation, we find that

the map partially discovers the structural mechanism of an inter-

action despite the model having been trained only on sequence

data. Specifically, we evaluate our predictions on Hwang et al.’s

benchmark database of 3D structures of docked protein pairs

and observe that our model’s predicted contact map is substan-

tially similar to the ground-truth inter-protein contact map

in cases where our model predicts an interaction (Hwang

et al., 2010).

To demonstrate the utility of D-SCRIPT as a tool to study novel

systems in less-studied organisms, we investigate the rumen in

Bos taurus (cow). We apply D-SCRIPT to predict new PPIs

across a large subset of bovine proteins and decompose the

network of D-SCRIPT predicted PPIs into functional gene mod-

ules. Starting from a seed set of genes found by Jiang et al.

(Jiang et al., 2014) to be overexpressed in the rumen, we identify

five functional gene modules involved in cellular metabolism and

growth, immune response, and transcriptional regulation, sug-

gesting links between metabolism and transcriptional regulation

through MRPL4 and H15 domain-containing proteins.



Box 1. Progress and potential

Progress: Almost all cellular processes involve proteins interacting with each other in three-dimensional space; protein-protein

interactions translate genomic information into biological function. Although availability of direct, large-scale measurements of

protein-protein interactions (PPIs) islimited, genome sequences are available at unprecedented scale. Thus, there is a need for

scalable methods that predict interactions from protein sequences, facilitating their functional characterization.

The key conceptual advance of D-SCRIPT is accurately modeling three-dimensional, physical intuition about protein structure and

function with just one-dimensional, sequence-based inputs. To do so, we leverage a deep protein language model that maps pro-

tein sequences to a high-dimensional representation that automatically captures structural features of proteins. We combine that

deep protein language model with a carefully crafted neural network that capitalizes on these features to predict protein-protein

interactions. We achieve D-SCRIPT’s generalizability by basing our prediction on structural compatibility, with the intuition that the

structural bases of protein interaction are similar across species: when two proteins interact, their structures bind in a thermody-

namically favorable way. Accordingly, D-SCRIPT substantially outperforms state-of-the-art approaches when applied to out-of-

sample species (e.g., predicting PPIs in fly after being trained on human PPI data).

Ourmodel is not a black box—for every prediction, D-SCRIPT also outputs an inter-protein contact map, identifying the likely bind-

ing residues of the two proteins. Our approach is inspired by the remarkable success of adapting pre-trained language models via

transfer learning in the domains of speech recognition, translation, and natural language processing.

Potential: With advances in sequencing technologies, genomes for many organisms are now available (RefSeq currently lists

5,963 eukaryotic genome assemblies). However, for most non-model organisms, little is known about the functions of specific

genes, with functional genomic data being rarely available. D-SCRIPT offers one way to address the ‘‘genome-to-phenome’’ chal-

lenge in these species. Because D-SCRIPT generalizes to new out-of-sample species, it can be applied out of the box to predict

PPIs de novo from the genome of a newly sequenced organism, where it is fast enough that a genome-wide PPI prediction screen

can be performed in a few days. Standard graph-theoretic analysis of the predicted PPI network, weighted by confidence in inter-

action, can then be applied to identify functional modules and annotate gene function at scale. We demonstrate this workflow

through a study of protein function in cow (Bos taurus), with a focus on the proteins active in the cow rumen. We identified func-

tional gene modules involved in cellular metabolism and growth, immune response, and transcriptional regulation.
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RESULTS

Overview of the D-SCRIPT model
Our deep-learningmodel for predicting PPIs directly fromprotein

sequences, similar to previous deep-learning methods DPPI

(Hashemifar et al., 2018) and PIPR (Chen et al., 2019), is

composed of two stages (Figure 1C). The first stage generates

a rich feature representation for each protein separately, and

the next stage estimates an interaction probability based on

these features, with the model being trained end-to-end across

both stages. In both DPPI and PIPR, much of the model

complexity lies in the feature generation, which is learned

ab initio from the training data.

D-SCRIPT differs from these approaches in the design and

relative complexity of the two stages. First, we apply a pre-

trained model to generate rich, structurally informative feature

representations of the proteins (Figure 2). The pre-trained model

was developed by Bepler and Berger, who built upon advances

in deep-learning-based modeling of natural languages to design

a language model for protein sequences : an n-amino acid pro-

tein sequence is mapped to an n36;165 representation, with the

various dimensions capturing local and global aspects of the

protein structure (Bepler and Berger, 2019). We then learn a

lower-dimensional projection (n3 100) of this embedding as a

compact representation for downstream interaction and struc-

tural prediction tasks. The second stage of D-SCRIPT encodes

a structure-based model of protein interaction: in the contact

module, the low-dimensional embeddings are used to compute

an inter-protein contact map that corresponds to the locations of

residue contacts between protein structures, and in the interac-

tion module, this contact map is summarized into a single score
(i.e., the probability of interaction). In each layer, the mathemat-

ical operations performed are rooted in structural intuitions. For

example, to formalize the intuition that true-positive contact

maps should be sparse but have isolated regions of strong con-

tacts, we introduce a customized max-pooling operation and a

magnitude regularization term in the loss. A more detailed

description of ourmodel architecture and training process is pro-

vided in STAR Methods.

D-SCRIPT generalizes well across species
We first sought to see how D-SCRIPT performed on the task of

cross-species interaction prediction. We trained a model on hu-

man PPIs and evaluated it using PPI datasets from five other

model organisms (STAR Methods). We compared D-SCRIPT

with PIPR, shown byChen et al. to be currently the best-perform-

ing sequence-based PPI prediction method (Chen et al., 2019),

training both models on the same set of human PPIs; we

compare their model complexity in the STAR Methods. In

Table 1, we report the precision, recall, area under precision-

recall curve (AUPR), and area under ROC curve (AUROC) of

each method in each of five species. For highly unbalanced

data, as is the case here, we note that AUPR is generally consid-

ered a better metric than AUROC. D-SCRIPT outperforms PIPR

in a cross-species setting and maintains a high AUPR across all

species, even those that are extremely evolutionary distant from

human. In fact, its AUPR in these species remains comparable

with that seen in human cross validation. Additionally, we

compared with a hybrid approach (D-HYBRID) where PIPR

was used to augment D-SCRIPT’s prediction: when PIPR is

highly confident that an interaction does occur (bp>0:9), the pre-

dicted probability of D-SCRIPT is increased by 50%. D-HYBRID
Cell Systems 12, 969–982, October 20, 2021 971
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Figure 2. D-SCRIPT architecture

Left to right: the pre-trained embedding model, a deep-learning language model from Bepler and Berger, generates features for each individual protein. The

projection module reduces them to d dimensions. Each low-dimensional single-protein embedding implicitly includes, among other features, an encoding that

broadly captures the protein’s residue-contact map (Figure 5). The contact module combines these low-dimensional embeddings to compute a sparse ‘‘inter-

protein’’ contact map through a two-step process, which first computes a representation for each pair of residues, then incorporates local information using a

convolutional filter. Finally, the interaction prediction module uses a customized max-pooling operation to predict the probability of interaction between the input

proteins.
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outperforms both D-SCRIPT and PIPR alone but improves D-

SCRIPT only modestly in cross-species analysis. We also

compare with a recently released method by Richoux et al.

(2019) in Table S1.

Although our focus is on enhancing cross-species PPI pre-

diction quality, we also sought to investigate how D-SCRIPT

would perform at predicting within-species interactions in hu-

man. We performed 5-fold cross validation and report here

the average across all folds. Table 1 shows that PIPR outper-

forms D-SCRIPT on human PPIs in cross validation. However,

a hybrid approach works better in this case as well. Due to

greater PIPR accuracy on in-sample species, we adapted the

hybrid approach to use D-SCRIPT to augment PIPR’s predic-

tions (P-HYBRID): when D-SCRIPT is highly confident that an

interaction does not happen (bp<0:01), we reduce the predicted

probability from PIPR by half. Notably, P-HYBRID achieves

substantially higher precision, although at the expense of recall.

This may be a desirable trade-off in certain contexts, e.g., when

generating PPI candidates for experimental validation. We note

that, although the incremental performance of the hybrid

models is modest, the observation that D-SCRIPT performs

better on out-of-sample species, whereas PIPR performs better

on in-sample species makes possible a simple combination of

the two that does not substantially increase computation time

and yet results in more accurate predictions both across and

within species.

We further investigated the performance of D-SCRIPT and

PIPR on subsets of the human data, seeking to better under-

stand their relative strengths. Upon further analysis, we observe

that D-SCRIPT performs better on interactions involving proteins
972 Cell Systems 12, 969–982, October 20, 2021
that occur infrequently in the PPI network, whereas PIPR per-

forms better on those involving proteins that occur frequently

(STARMethods; Table S2). This suggests that PIPRmay perform

better when a large amount of training data are available, but D-

SCRIPT may generalize better to new proteins (and species)

(Figure S1).

D-SCRIPT predictions are functionally informative
The importance of PPI networks arises, in part, from the graph-

theoretic analyses on them, which enable the functional charac-

terization of un-annotated proteins. Therefore, we sought to test

if D-SCRIPT’s success at cross-species generalization would

translate to better functional inference in new species. In partic-

ular, we hypothesized that, compared with PIPR, the D-SCRIPT

model trained on human data should facilitate more accurate

inference of protein functional modules in Drosophila mela-

nogaster. Toward this, we generated a set of 10,475,595 candi-

date pairs from the set of D. melanogaster proteins in STRING.

Using D-SCRIPT and PIPR’s human-trained models, we pre-

dicted interactions over this candidate set. On the resulting PPI

networks, we performed functional module detection and quan-

tified the functional coherence of 374 (PIPR) and 384 (D-SCRIPT)

modules using available GO (gene ontology) annotations from

FlyBase (Thurmond et al., 2019) (STAR Methods). Functional

coherence of a module quantifies the extent to which proteins

in the module are likely to participate in the same biological func-

tions. A higher average within-cluster similarity is desirable

because it enables more accurate functional characterization

of novel proteins by associativity and discovery of protein func-

tional modules. We find that the average within-cluster similarity



Table 1. Evaluation of models trained on human PPIs

Species Model AUPR Precision Recall AUROC

M. musculus PIPR 0.526 0.734 0.331 0.839

D-SCRIPT 0.580 0.818 0.346 0.833

D-HYBRID 0.609 0.820 0.355 0.838

D. melanogaster PIPR 0.278 0.521 0.121 0.728

D-SCRIPT 0.552 0.798 0.359 0.824

D-HYBRID 0.562 0.798 0.361 0.824

C. elegans PIPR 0.346 0.673 0.142 0.757

D-SCRIPT 0.548 0.840 0.306 0.813

D-HYBRID 0.559 0.841 0.308 0.814

S. cerevisiae PIPR 0.230 0.398 0.085 0.718

D-SCRIPT 0.405 0.706 0.223 0.789

D-HYBRID 0.417 0.708 0.225 0.789

E. coli PIPR 0.308 0.629 0.131 0.675

D-SCRIPT 0.571 0.791 0.520 0.863

D-HYBRID 0.588 0.793 0.394 0.863

H. sapiens (5-fold cross validation) PIPR 0.835 0.838 0.701 0.960

D-SCRIPT 0.516 0.728 0.278 0.833

P-HYBRID 0.844 0.949 0.400 0.962

We show performance of D-SCRIPT, PIPR (currently the best-performing sequence-based deep-learning PPI prediction method), and two hybrid ap-

proaches: D-HYBRID refers to D-SCRIPT predictions augmented with PIPR predictions, and P-HYBRID refers to PIPR predictions augmented with

D-SCRIPT predictions (STAR Methods). H. sapiens results are average performance over 5-fold cross validation, using 38,345 positive (and ten times

asmany negative) PPIs for training for each fold. All other species were evaluated using amodel trained on human data and evaluated on 5,000 positive

and 50,000 negative PPIs (2,000/20,000 for E. coli due to limited data). D-SCRIPT outperforms PIPR cross-species, although PIPR performs better on

in-sample species (i.e., human cross validation). The best-performingmethod for each species andmetric is bolded. AUPR, area under precision-recall

curve; AUROC, area under receiver operating characteristic curve. See also Table S1.
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when interactions are predicted using D-SCRIPT is significantly

higher than when using PIPR (p = 0:000723, one-tailed t test).

Compared with PIPR, D-SCRIPT also results in 24%more highly

coherent clusters (Jaccard similarity R 0.468, 90th percentile)

(Figures 3 and S2). In addition to this cluster-based test, we

directly compared the functional similarities between protein

pairs (measured as the overlap of GO functional annotations)

with their graph-theoretic similarities implied by the D-SCRIPT

and PIPR networks (STARMethods). We find that D-SCRIPT ad-

mits a significantly stronger correlation between the two mea-

sures than PIPR (Spearman r, 0:123 versus 0:005, p = 0:00,

Fisher r-to-z).

We additionally applied D-SCRIPT and PIPR to computation-

ally screen all SARS-Cov-2 proteins against 19,777 human pro-

teins, predicting approximately 3,000 viral-host PPIs from each

method and characterized each viral protein’s function by the

GO annotations of its human interactors (STAR Methods). We

find that compared with the corresponding annotations derived

from 332 experimentally determined PPIs (Gordon et al., 2020),

D-SCRIPT-based annotations overlap more with the experi-

mental results than those from PIPR (p = 0:059, paired one-

tailed t test).

Case study: Protein function and interaction in the
bovine rumen
Because D-SCRIPT generalizes well to species with limited

available PPI data, it enables the study of protein functional path-
ways through de novo prediction of protein interaction networks.

Following this, we undertook a study of protein interaction in the

bovine rumen to investigate the biological processes involved in

rumination. In a comprehensive study of the sheep (Ovis aries)

genome, Jiang et al. identify several genes that are preferentially

expressed in rumen tissue, including PRD-SPRRII, S100-A2,

S100-A12, and TCHHL2 (Jiang et al., 2014). Using BLAST (Alt-

schul et al., 1990), we identified 12 putative homologous proteins

in the ARS-UCD1.2 cow (Bos taurus) genome assembly (Table

S3) to focus on in our analysis. Including these rumen-specific

homologs, we selected 24,195 bovine proteins and used the hu-

man-trained D-SCRIPT model to predict the probability of inter-

action for fifty million candidate pairs. We predicted a network of

476,399 positive interactions between 17,811 proteins and per-

formed functional module detection and gene set enrichment

analysis (STAR Methods). To quantitatively assess the accuracy

of our predicted edges and clusters, we computed the co-

expression of each pair of genes (Figure 4F) in 93 tissue samples.

We find that pairs of genes for which we predict an edge with D-

SCRIPT are significantly more likely to be coexpressed than a

random pair of genes (p< 1e-84, one-sided t test). Further, the

correlation between expression vectors is even stronger for pairs

that appear in the same functional module, even in cases where

D-SCRIPT does not predict an interaction between the proteins.

The largest cluster we identify (cluster A, Figure 4A) comprises

65 proteins, including two homologs of PRD-SPRRII. 34 of the

genes in cluster A are homologous to various human protein
Cell Systems 12, 969–982, October 20, 2021 973



Figure 3. Improved protein functional char-

acterization using D-SCRIPT modules

D-SCRIPT recovers more functionally coherent

clusters than PIPR (p = 0:000723, one-tailed t

test). 384 (374) protein clusters were generated by

evaluating 10,475,595 candidate protein pairs

with D-SCRIPT (PIPR). We computed the diffu-

sion-state distance (DSD) between all proteins,

clustered the DSD matrix using spectral clus-

tering, filtered out small (< 3) clusters, and recur-

sively split large (> 100) clusters. Within-cluster

similarity was calculated as the average Jaccard

similarity between GO Slim annotations of all pairs

of proteins in the cluster. See also Figure S2.
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tyrosine phosphatases, across multiple classes of protein tyro-

sine phosphatases categorized in earlier work (Alonso et al.,

2004; Alonso and Pulido, 2016). Other genes in the cluster are

TXNL1, known to buffer response to oxidative stress (Yu et al.,

2019; Zhao and Qi, 2021), and serine/threonine protein kinases,

including VRK3 (Lee et al., 2017) and STK33 (Brauksiepe et al.,

2008). Two genes in cluster A have previously been associated

with disease in cattle, TUBD1 (Schwarzenbacher et al., 2016),

where missense mutations were associated with increase

juvenile mortality in cattle, and NUAK1 (Sasaki et al., 2014),

which was found to be differentially expressed in cows with

milk fever.

This cluster is connected through PTPMT1 and TARS to a

cluster of 53 proteins (cluster B, Figure 4B), which are active

in metabolism within the mitochondria, and participate in oxido-

reductase and transaminase catalytic activity. This cluster also

contains one homolog of PRD-SPRRII. Ruminants, such as

the cow, exhibit patterns of energy metabolism that are quite

different from non-ruminants such as humans or rodents (Dod-

son et al., 2010). Because ingested carbohydrates are fer-

mented to short chain fatty acids in the rumen, glucose

demand is met by gluconeogenesis, controlled by transcrip-

tional regulation, and the associated genes and pathways are

implicated in metabolic disorders that affect dairy cows such

as fatty liver and ketosis (Aschenbach et al., 2010). Many of

the human homologs of genes in cluster B are known to localize

to the mitochondria, including ACSS1 (Castro et al., 2012),

AGXT2 (Rodionov et al., 2014), COA6 (Soma et al., 2019),

DECR1 (Kami�nski et al., 2009), MTHFD2 (Zhu and Leung,

2020), OAT (Ginguay et al., 2017), plus LHPP, which was pre-

dicted by Gohla (2019) to be involved in mitochondrial oxidative

phosphorylation. Other genes in the cluster have been impli-

cated in mitochondrial tRNA modification, including CDK5RAP1

(Reiter et al., 2012), MTO1 (Ghezzi et al., 2012), TARS
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(Chen et al., 2018), and TFAM (Poh-

joism€aki et al., 2006). Still others, such

as ABAT (Besse et al., 2015), FOXRED1

(Fassone et al., 2010), and NDUFV1 (Sri-

vastava et al., 2018), have human homo-

logs whose role in mitochondrial rare dis-

eases has been documented. Several of

the genes in this cluster have been impli-

cated as important trait or disease

markers in dairy cows, pigs, and sheep,
making the predicted interactors of these genes of particular in-

terest. For example, BDH1, involved in ketogenesis (Gao and

Oba, 2016) has been linked by multiple studies to health of

lactating dairy cows (Zarrin et al., 2014; Gao and Oba, 2016).

High expression of BDH1 was positively correlated with milk

yield and negatively correlated with fat yield in buffalo (Yadav

et al., 2015). Polymorphisms of the DECR1 gene have been con-

nected to meat quality (Jing et al., 2009; Kami�nski et al., 2009),

and AHCYL2 was one of ten candidate disease genes sug-

gested to be involved in susceptibility to DA (Huang et al., 2019).

This cluster is further connected throughMRPL4 and two H15

domain-containing proteins to amodule of 55 proteins (cluster E,

Figure 4E) involved in transcriptional regulation, with significant

enrichment for nucleosome and chromatin assembly and organi-

zation. In Wei et al. (Wei et al., 2013), MRPL4 was identified as

being involved in immune and inflammatory pathways, where

the human homolog was suggested as a disease gene for

allergic rhinitis. Of the set of highly expressed sheep rumen

protein homologs, this cluster contains all four homologs of

S100-A12 and one of S100A-2. It also contains homologs to

other human S100 proteins, S100-A4, S100-A7, S100-A8,

S100-G, S100-A11, and S100-A16. Many of these S100 proteins

have been implicated in progression of human epithelial tumor

progression, cell differentiation, and chronic inflammation (Heiz-

mann, 2019). A sub-cluster of three of these proteins, S100-A12,

S100-A7, and S100-A8, has been implicated in the innate im-

mune response to pathogens, including parasites E. coli and

H. pylori (Hsu et al., 2009), where some have been shown to

function in the nutritional immunity mechanism by out-

competing bacterial metal ion transporters (Kozlyuk et al.,

2019). However, for the S100 family of proteins, there should

be some caution in assuming specificity of function translates

across species: for example, the bovine S100-G most likely

buffers calcium but is not likely to be a calcium sensor such as
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Figure 4. Protein interaction network in bovine rumen
We applied D-SCRIPT to predict a de novo PPI network in cow (B. taurus) and investigated specifically the functional modules likely to be active in the cow rumen

(A–D). After evaluating 50 million candidate protein pairs, we generated a network of 476,399 predicted PPIs between 17,811 proteins and performed spectral

clustering on the diffusion-state distance (DSD) matrix of the network to identify functional modules, shortlisting five modules related to rumen physiology. A

recent RNA-seq study validates several proteins in these modules as being strongly overexpressed in rumen tissue. For each module, we report gene ontology

molecular function (GO:MF), biological process (GO:BP), and cellular compartment (GO:CC) annotations, which are significantly enriched for the proteins in each

cluster and computed using g:profiler. We also show the log(fold change) for genes in the cluster, which are more expressed in rumen tissue than on average

across all tissues. For each module, nodes have been added in gray (proteins not in this cluster) if necessary to fully connect all nodes.

(A–C) We find 3 modules containing members of the PRD-SPRRII family, which are enriched for phosphate and mitochondrial metabolism (A and B) and

regulation of cell growthmechanisms (C). We also find amodule with TCHH-like two proteins enriched for immune response (D) and with S100-A2 and S100-A12

proteins enriched for transcriptional regulation and chromatin organization (E). The modules in (A), (B), and (E) are directly connected through TARS andMRPL4,

which suggest a link between these functions in bovine rumen.

(F) We demonstrate that protein pairs with a predicted D-SCRIPT edge correspond to a significantly higher co-expression between their respective genes (one-

sided Welch’s t test). This co-expression signal gets even stronger when evaluated only on protein pairs in a functional module, suggesting that both the protein

network and functional modules are biologically meaningful. See also Figures S4 and S5.
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mouse S100-G, despite over an 81% sequence identity (Per-

myakov et al., 2020). Still, we hypothesize a connection to anti-

microbial activity and innate immunity for proteins in cluster E.

We further identify two additional, smaller clusters. In one, a

PRD-SPRRII homolog occurs in a module of 16 genes (cluster

C, Figure 4C) that also contains HOXC6 and HOXA7 and is en-

riched for multicellular organism development, skeletal system

development, and organ morphogenesis, suggesting a role for

PRD-SPRRII in cell growth in the rumen. Other genes in this clus-

ter include SNIP, with anti-inflammatory function (Shi et al.,

2018), and several genes whose human homologs FAP,

PRRX1, and TP73 have been implicated in extracellular matrix
remodeling and cancer metastasis (Guo et al., 2015; Yang

et al., 2016; Rodrı́guez et al., 2018). Both of the TCHHL2 homo-

logs are part of the other small module (cluster D, Figure 4D),

which has 10 genes and is enriched for B cell selection and pro-

liferation of CD4-positive alpha-beta T cells, lymphocytes, and

leukocytes, suggesting that TCHHL2 plays a role in the immune

response within the bovine rumen. The TCHHL2 protein may be

involved in cross-linking keratins at the ruminal surface (Garcia

et al., 2017). The link between metabolism, cell growth, and

the immune system is documented in Turner et al., and our anal-

ysis further suggests that these processes are involved in the

modulation of immune response (Turner et al., 2016).
Cell Systems 12, 969–982, October 20, 2021 975
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The earlier mentioned clusters contain many genes involved

in rumen physiology and cow health, with some of their homo-

logs implicated in human diseases, demonstrating the ability of

D-SCRIPT to go directly from genome to functionally meaningful

gene associations. However, similar to PPIs determined by

in vitro assays, the predictions of D-SCRIPT should be cross-

referenced with tissue-specific information when interpreting

them in a particular tissue type. Consider cluster B, which con-

sists predominantly of mitochondrial genes. Since D-SCRIPT

has no knowledge of cellular compartments, this grouping has

emerged naturally from the data, suggesting a biological signal.

Indeed, we find many of these genes are highly expressed in the

rumen (Figure 4B). On the other hand, 34 genes in cluster A are

protein tyrosine phosphatases (PTPs), all with similar but not

identical functions (Figure S4). It is possible that only some of

these genes are involved in rumen biology, with the rest active

in other tissues. RNA-seq data support this, identifying only a

few PTPs as highly expressed in the rumen (Figure 4A). In gen-

eral, the structure/function specificity of a protein family would

help determine each member’s tissue-specific selectivity. Inter-

estingly, the large set of PTPs provides a natural setting to

investigate D-SCRIPT’s sensitivity to small sequence variations.

PTP binding specificity is largely determined by the PTP cata-

lytic signature motif (HCX5R) (Kim and Ryu, 2012). We find

that D-SCRIPT-predicted interaction probabilities (between

SPRR-II and 29 PTP proteins) drop substantially when the entire

eight residue motif is perturbed but remains high when only the

less-conserved sites are randomized, indicating that D-SCRIPT

is sensitive to residues that determine binding specificity (STAR

Methods; Figure S5A). Further, we find that a systematic pertur-

bation of each residue of the CDC14 subfamily of PTPs iden-

tifies the location of the catalytic signature motif completely

de novo, which suggests that such an in silico mutagenesis

experiment could be used to form hypotheses about binding

mechanisms of uncharacterized proteins (STAR Methods; Fig-

ures S5B and S5C).

D-SCRIPT embeddings capture structure and
interaction
One of our aims when designing D-SCRIPT was to capture the

structural aspects of interaction—the per-protein embedding

produced by the trained projection module should encode

structural information. To examine this aspect, we randomly

selected 300 proteins from the Protein Data Bank (PDB) and

used (n3 100)-dimensional D-SCRIPT embeddings of these

proteins to predict protein structure. We randomly split the 300

PDB structures into a training set of 100 and a test set of 200,

evaluating howwell a logistic regression that uses the D-SCRIPT

embeddings as the input predicts contacts between residues

(STAR Methods). We show that a linear combination of features

in the projection module output is able to recapitulate a signifi-

cant subset of the ground-truth contacts, achieving a median

per-structure AUPR of 0.19 over the test dataset (Figure 5).

These results strongly suggest that the end-to-end training of

D-SCRIPT—using only sequence data—results in an intermedi-

ate representation that captures structural information at the

level of each protein.

We also sought to directly assess the utility of D-SCRIPT’s em-

beddings for predicting PPIs by a nearest-neighbor search. We
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hypothesized that proteins that have similar embeddings are

likely to interact in the same way; therefore, it is possible to

find new interacting pairs by searching for proteins that are

similar to known interacting pairs. We compared D-SCRIPT em-

beddings with several other protein sequence representations: a

one-hot embedding categorizing each amino acid into one of

seven classes based on biochemical properties (‘‘AAClass,’’

Shen et al., 2007), a 5-residue-context Skip-Gram embedding

(‘‘Vec5,’’ Mikolov et al., 2013), a concatenation of Vec5 and

AAClass (used in the input for PIPR), and a randomly generated

fifty-dimensional embedding with values drawn uniformly from

the range ½0; 1�. Additionally, we used BLAST (Altschul et al.,

1990) to search for neighbors of interacting proteins. We then

evaluated the number of interacting pairs we found in the neigh-

borhood of a small set of ‘‘seed pairs’’ and found that D-SCRIPT

findsmore interactions in the nearest neighbors of the seed pairs

than all other embeddings in H. sapiens (Figure 5F), S. cerevisiae

(Figure 5G), and C. elegans (Figure 5H).

D-SCRIPT contact maps recapitulate protein binding
mechanisms
We investigated whether the interpretability of our model could

aid in predicting inter-protein docking contacts. As an intermedi-

ate representation, the D-SCRIPT Contact Module (Figure 2)

produces an inter-protein contact map, which predicts the prob-

ability of interaction between all pairs of residues in the candi-

date protein pair. We first sought to verify that the contact

maps produced after training were consistent with our design

goal: the maps corresponding to negative predictions should

have uniformly near-zero contact probabilities, whereas those

for positive predictions should be sparse but with isolated re-

gions of high-probability contact prediction. We found that this

was indeed the case generally and show some examples in Fig-

ure 6: themaximum predicted residue-contact probability is high

for positive examples and low for negative examples.

Next, we assessed if the predicted contact map is physically

representative of the actual docking mechanism of the interac-

tion.We emphasize that this is a high bar givenwe do not provide

any 3D information to the model nor any guidance on docking

and, in principle, the model could perform well on the classifica-

tion task without a physically accurate contact map. We per-

formed this test using Hwang et al.’s benchmark dataset of

docked protein structures (Hwang et al., 2010). For every pair

of chains in each PDB complex in the benchmark set, we gener-

ated a candidate PPI.We applied our human-data-trainedmodel

on 295 candidate PPIs and evaluated the predicted contact

maps against the ground-truth contacts (assessed at 8 Å).

In cases where our model predicted an interaction, we found

the predicted contacts to indeed recapitulate the ground-truth

contacts substantially (Figures 6A and 6B). Even in some of the

cases where D-SCRIPT did not predict an interaction, the distri-

bution of predicted contacts was nevertheless consistent with

the ground truth (Figure 6C). To systematically evaluate the ac-

curacy of the D-SCRIPT contact map, we evaluated the distance

between the predicted and true contacts using an optimal trans-

port metric and compared with a baseline established by

randomly reshuffling the predicted matrix. We chose to measure

similarity between regions of the two contact maps rather than

measuring per-residue matches (with a metric such as binary
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Figure 5. D-SCRIPT embeddings represent structure and interaction

After a full model has been trained to predict interaction, the low-dimensional embeddings learned by the projection module of D-SCRIPT can be used as

meaningful representations of the protein in other applications.

(A–E) The PDB identifier 1GNG corresponds to a protein with 356 residues where the accuracy of using the D-SCRIPT embedding to predict self-contacts is near

the median of cases we studied (AUPR = 0.19), whereas 1CGI corresponds to a short protein (54 residues) in which the embedding achieves a higher accuracy

(AUPR = 0.38). On a set of 300 PDB structures, we assessed contacts at 8 Å (A and C) and, using a training set of 100 structures, trained a logistic regression to

predict contacts (B and D) for the remaining structures. The binarization thresholds for (E) were chosen so as to result in the same number of contacts as in the

original maps.

(F–H) D-SCRIPT embeddings also enable the accurate recovery of true interacting protein pairs in the neighborhood of known PPIs in human (F), yeast (G), and

roundworm (H). D-SCRIPT embeddings recover more interacting proteins than any other embedding, regardless of species or number of neighbors checked.

AAClass also performs well, likely because it characterizes biochemistry, which is preserved at longer evolutionary distances. BLAST performs well at low values

of k but has difficulty recovering interactions for larger values—likely due to network rewiring over longer evolutionary distances.
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cross-entropy) because the convolutional and max-pooling

layers in our model aggregate over neighboring residues, thus

diffusing the signal. We estimated the p value of the predicted

contacts against 500 random trials, finding that in cases where

D-SCRIPT predicted an interaction, the contact maps were sub-

stantially similar to the ground truth (median FDR-corrected q =

0.08, one-sided t test). Even in cases where D-SCRIPT did not

predict an interaction, the similarity to the ground truth was

higher than that of the random baselines (Figure 6E).
Performance
D-SCRIPT took approximately 3 days to train for 10 epochs on

843,602 training pairs and fits within a single 32GB GPU (i.e.,

graphics processing unit). Running time andGPUmemory usage

scales roughly quadratically, O(nm), with the protein lengths n;m,

sinceD-SCRIPTmodels the full n3m contactmap as an interme-

diate step. Prediction of new candidate pairs with a trained

model is very fast, requiring on average 0.02 s/pair and less

than 5GB of GPU memory. Since D-SCRIPT generalizes well

across species, it needs to be trained only once on a large

corpus of data and can be used to make predictions in a variety

of settings.
DISCUSSION

We have introduced D-SCRIPT, an interpretable method for PPI

prediction from sequence. D-SCRIPT pursues a structure-based

approach, with the prediction score for a protein pair computed

as the binding compatibility of their respective structures. Since

structure is more conserved than sequence over evolutionary

time (Ingles-Prieto et al., 2013), this physical model of interaction

generalizes well across species. The intermediate contact map

representation in the model is directly interpretable and can be

used to validate the prediction or study the proteins’ binding re-

gions on a residue scale. D-SCRIPT thus joins the small but

growing set of advances in interpretable deep-learning methods

in computational biology (Hie et al., 2020; Luo et al., 2020a,

2020b). Our modular design additionally enables the investiga-

tion of model output at various stages, and we demonstrate

that each layer captures incremental structural information.

The advantage of a sequence-based approach, such as D-

SCRIPT, is that the input sequence data are almost always avail-

able, due to the enormous advances in low-cost genome

sequencing. Compared with PIPR (Chen et al., 2019), the

state-of-the-art deep-learning method that also takes se-

quences as inputs, D-SCRIPT generalizes better across species
Cell Systems 12, 969–982, October 20, 2021 977
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We show inter-protein contact maps of protein structures known to dock together (Hwang et al., 2010).

(A–D) (A and B) correspond to pairs where D-SCRIPT correctly predicted an interaction, whereas (C and D) are cases where it incorrectly predicted no interaction.

The black-and-white matrices correspond to the PDB ground truth, whereas the colored matrices correspond to D-SCRIPT’s predicted contact map bC; for the

latter, the color scales of (A and B) differ from (C and D). As designed, bC is sparse but contains some large values in the case of positive predictions while its

maximum Cmax is very low for negative pairs.

(E) Shows a violin plot of a systematic evaluation (295 protein pairs, each with 500 bootstrap samples to generate the p value) of the 2D earth mover’s distance-

based similarity between bC and the ground truth. Not only are the bCs of correctly predicted pairs substantially similar to the ground truth (median FDR-corrected

q = 0.08, one-sided t test), even when D-SCRIPT incorrectly predicts that two proteins do not interact, its contact maps are still similar to ground truth. PDB

identifiers: (A) 2J7P (A/D), (B) 1NW9 (B/A), (C) 3H2V (A/E), and (D) 1F51 (A/E).
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and can, thus, bemore effective for accurate de novoPPI predic-

tions in non-model organisms or less-studied proteins in organ-

isms such as the fly. We suspect that D-SCRIPT’s relative

success across species but under-performance on awithin-spe-

cies evaluation is due to the simplicity of the model and the

extent to which it is regularized. These design choices enhance

D-SCRIPT’s generalizability, directing it to learn general struc-

tural aspects of the interaction rather than using network struc-

ture or the frequency of any individual protein as an interaction

partner. However, for certain tasks, a balance between the

cross-species generalizability of D-SCRIPT and the within-spe-

cies specificity of other state-of-the-art methods may be desir-

able. A future research direction might be transfer learning to

tune a pre-trained D-SCRIPT model to a target species, whereas

another approach could be to integrate it with guilt-by-associa-

tion graph-theoretic PPI predictions (Devkota et al., 2020).

Notably, D-SCRIPT does not require a multiple sequence

alignment (MSA). However, the pre-trained language model

used in D-SCRIPT was co-trained on MSAs over the entire pro-

tein corpus (Bepler and Berger, 2019, 2021), allowing its input

featurization to implicitly capture some aspects of evolutionary

conservation. Previously, co-evolution-based approaches that

explicitly use MSAs have proven remarkably effective in recon-

structing single-protein contact maps and 3D structures (Marks

et al., 2011; Kamisetty et al., 2013; Liu et al., 2018).When extend-

ing them to PPI prediction, an additional challenge is to identify

the correct correspondence order between the rows of the two

MSAs. In prokaryotic genomes where synteny conservation

can be very informative, methods such as ComplexContact

(Zeng et al., 2018), EV Complex (Hopf et al., 2014; Green et al.,

2021), and Gremlin (Cong et al., 2019) have been shown to

perform well and provide residue-level interaction detail. How-

ever, there has been less success in extending these
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approaches to more complex, eukaryotic genomes. We found

the need to compute MSAs to be a performance bottleneck

(Dey et al., 2017), making it infeasible to perform eukaryotic

genome-scale predictions with them and, therefore, limiting

the applicability of an EV complex-like approach in our setting.

Nonetheless, explicitly incorporating co-evolutionary insights

could improve D-SCRIPT’s accuracy, and future work might

explore ways to do so without sacrificing speed. Insights

from related advances in the prediction of contact maps and

structures of individual proteins could also be incorporated

into our model architecture (see STAR Methods for additional

discussion).

D-SCRIPT illustrates that learning the language of individual

proteins, a remarkably successful deep-learning effort, also

helps decode the language of protein interactions. We leverage

Bepler and Berger’s pre-trained language model, allowing us to

indirectly benefit from the rich data on 3D structures of individual

proteins (Bepler and Berger, 2019). In contrast, a PPI prediction

method that was directly supervised with 3D structures of pro-

tein complexes, in order to learn the physical mechanism of

interaction, would need to contend with the relatively small size

of that corpus (Singh et al., 2006; Singh et al., 2010; Hosur

et al., 2011).

There is a pressing need for scalable computational methods

to infer a gene’s function from its sequence in non-model organ-

isms. Although the sequencing revolution has helped make ge-

nomes more widely available, there remains a dearth of func-

tional data. PPI prediction with D-SCRIPT is fast, making

genome-scale screening feasible. For instance, we were able

to evaluate 50 million candidate PPIs in B. taurus in 8 days on

a single GPU. With D-SCRIPT, a workflow consisting of

genome-scale PPI prediction, followed by graph-theoretic anal-

ysis of the PPI network to identify functional modules, can
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generate high-confidence predictions of gene function at scale;

we demonstrated this in our cow rumen case study. Such de

novo PPI prediction can be useful even in model organisms,

such as C. elegans, for which the known portion of the PPI

network is still quite sparse. In other organisms (e.g.,

D. melanogaster) where some PPI data do exist, future work

could productively combine those data with D-SCRIPT predic-

tions. We hope that its combination of broad applicability,

cross-species accuracy, and speed will make D-SCRIPT a use-

ful community resource for addressing the ‘‘genome-to-phe-

nome’’ challenge.
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SARS-CoV-2 sequences and interactions Gordon et al., 2020 https://www.ebi.ac.uk/pride/archive/projects/

PXD018117

ARS-UCD1.2 Bos taurus genome assembly NCBI Assembly https://www.ncbi.nlm.nih.gov/assembly/GCF_

002263795.1/

Bos taurus RNA-seq Halstead et al. 2021 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE160028; GEO: GSE160028

Processed data, trained models, and new predictions This study https://doi.org/10.5281/zenodo.5140612

Software and Algorithms

D-SCRIPT This study http://dscript.csail.mit.edu/ (https://doi.org/10.5281/

zenodo.5140508)

Protein sequence embeddings Bepler and Berger, 2019 https://github.com/tbepler/protein-sequence-

embedding-iclr2019

PIPR Chen et al., 2019 https://github.com/muhaochen/seq_ppi

DeepPPI Richoux et al., 2019 https://gitlab.univ-nantes.fr/richoux-f/DeepPPI

DSD Cao et al. 2014 https://dsd.cs.tufts.edu/capdsd

CD-HIT Fu et al., 2012 http://weizhongli-lab.org/cd-hit/

GOGO Zhao and Wang, 2018 http://dna.cs.miami.edu/GOGO/

POT Python Optimal Transport Flamary and Courty, 2017 https://pythonot.github.io/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for materials and code should be directed to andwill be fulfilled by the Lead Contact, Bonnie Berger

(bab@mit.edu).

Materials availability
This study did not generate new materials.

Data and code availability
d Sequence data, PPI training data, predicted edges, and trained models have been deposited at Zenodo at https://doi.org/10.

5281/zenodo.5140612 and are publicly available as of the date of publication. This paper analyzes existing, publicly available

data fromSzklarczyk et al., 2019, Hwang et al., 2010, Gordon et al., 2020, and the NCBI. The accession numbers for all datasets

are listed in the key resources table.

d All original code is publicly available at http://dscript.csail.mit.edu, has been deposited at Zenodo at https://doi.org/10.5281/

zenodo.5140508, and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Data sources
PPI data set

To evaluate the performance of D-SCRIPT in predicting protein-protein interactions, we use data from the STRING database (version

11) (Szklarczyk et al., 2019). STRING contains protein pairs corresponding to a variety of primary sources and interaction modalities
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(e.g., binding vs co-expression). In order to select only high-confidence physical protein interactions, we limited our positive exam-

ples to binding interactions associated with a positive experimental-evidence score. From this set, we removed PPIs involving very

short proteins (shorter than 50 amino acids) and, due to GPU memory constraints, also excluded proteins longer than 800 amino

acids. Next, we removed PPIs with high sequence redundancy to other PPIs, following the precedent of previous approaches (Ha-

shemifar et al., 2018; Chen et al., 2019). Specifically, we clustered proteins at the 40% similarity threshold using CD-HIT (Li and God-

zik, 2006; Fu et al., 2012), and a PPI (A-B) was considered sequence redundant (and excluded) if we had already selected another PPI

(C-D) such that the protein pairs (A, C) and (B, D) each shared aCD-HIT cluster. Removing sequence redundant PPIs from the data set

prevents the model from memorizing interactions based on sequence similarity alone. To generate negative examples of PPI, we

followed (Hashemifar et al., 2018) and randomly paired proteins from the non-redundant set, choosing a 10:1 negative-to-positive

ratio to reflect the intuition that true positive PPIs are likely rare. Our human PPI data set contained 47,932 positive and 479,320 nega-

tive protein interactions, of which we set apart 80% (i.e. 38,345 positive examples) for training and 20% (i.e. 9,587 positive examples)

for validation. For each of 5model organisms (Table 1) we selected 5,000 positive interactions and 50,000 negative interactions using

this procedure, with the exception of E:coli (2,000/20,000) where the available set of positive examples in STRING was limited.

BioGRID interaction data

We sourced the PPI data in Figure 1 from BioGRID. While we have sourced PPI data from the STRING database everywhere else in

this paper, here we chose to use BioGRID because the publication date of a PPI is easily accessible in BioGRID, allowing us to es-

timate the number of PPIs assayed in the last five years. While the BioGRID selection may not precisely match the STRING selection

due to curation differences between the two databases, our primary aim here is conveying the relative data availability across spe-

cies; this estimate should not be substantially impacted by differences in curation.

Model architecture
Input & structure-aware embedding

The input to D-SCRIPT is a pair of protein sequences S1;S2 with lengths ðn;mÞ and it outputs an interaction probability bp˛ ½0; 1� and a

predicted-contact matrix bC˛½0;1�n3m. We first generate embeddings E1˛Rn3d0 ;E2˛Rm3d0 by embedding S1 and S2 with a pre-

trained model from Bepler and Berger. Their model is a Bi-LSTM (bidirectional long short-term memory) neural network trained on

three independent pieces of information: 1) the protein’s SCOP classification, indicating its general structure, 2) self-contact map

of a protein’s 3-D structure, and 3) sequence alignment of similar proteins. These embeddings capture both local and global struc-

tural features of the protein sequences: the d0-dimensional encoding of each amino acid contains information not just about the

amino acid and its immediate context, but also the global structure of the protein. This is a key distinction from other approaches

(e.g. Chen et al.’s in PIPR), where each amino acid’s embedding represents just its biochemical properties or a short-range context

(e.g., 5-7 residues) around it. We note that alternative embeddings (Rives et al., 2019; Luo et al., 2020a, 2020b) can potentially be

substituted here.

Projection module

In the projection module, we reduce E1 and E2 to d-dimensional representations using a fully-connected linear layer (multi-layer per-

ceptron) with d0 input and d output nodes. Specifically, given an input embedding E˛Rn3d0 , we compute the embedding projection

Z˛Rn3d
R0 as

Zi = DropðReLUðEiW1 + b1ÞÞ ci˛1.n (Equation 1)

with W1˛Rd03d;b1˛Rd as learned weights and biases. The rectified linear unit (ReLU) is a non-linear operation which applies the

transformation ReLUðxÞ = maxð0;xÞ. The dropout layer (Drop) randomly sets 50% of the weights to zero, helping prevent over-fitting

in W1.

Residue contact module

The residue contact model takes the d-dimensional embeddings Z1;Z2 andmodels the interaction between the residues of each pro-

tein. First, for each pair of residue embeddings Z1i ;Z2j˛Rd;i˛1;.;n;j˛1;.;m, we compute a broadcast matrix with hidden dimension

h, Bz0 ;z1˛Rn3m3h
R0

diffi;j =
��Z0i.Z1j

�� (Equation 2)
muli;j = Z0i1Z1j (Equation 3)
Bi;j = ReLUðBatchð½diffi;j; muli;j�W2 + b2ÞÞ (Equation 4)

where. indicates the element-wise difference and1 indicates the Hadamard product. This featurization is symmetric and has been

previously used in natural language processing (NLP) and protein sequence modeling tasks (Tai et al., 2015; Bepler and

Berger, 2019).

W2˛R2d3h; b2˛Rh are the learnedweights and biases. The batch normalization operation normalizes themean and variance of the

input features, thus stabilizing the learning process. Each element Bi;j captures the direct interaction between residues S1i and S2j .

The broadcast matrix B is used to compute the contact prediction matrix bC˛½0;1�n3m, where
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bCi;j = sðBatchðConvðBði�w:i +wÞ;ðj�w:j +wÞÞÞÞ (Equation 5)

The two-dimensional convolution (Conv) operation with width 2w+ 1 and h channels uses the h-dimensional representation of all

residues within w of Bi;j to compute bCi;j, and thus detects local patterns in two-dimensional residue contact space. The broadcast

matrix is zero-padded to allow for the convolution operation to be performed at all indices. We again apply a batch normalization to

stabilize learning. We apply the sigmoid operation s, which restricts the output values of bC to be in the range [0,1], and thus they can

be interpreted as the predicted probability that two residues are in contact.

Interaction prediction module

The interaction prediction module computes a single probability of interaction bp from the n3m contact map bC. To do so, we perform

two pooling operations. The first is a standardmax-pool: an l-dimensional max-pool divides bC into
l
n
l

m
3
l
m
l

m
non-overlapping regions

and takes the maximum value of each region, with zero-padding applied where necessary. This max-pooled matrix P represents the

probability of interaction in local regions of the proteins andmaintains only the highest-probability residue contacts in each region for

global prediction. The second pooling operation is a global pooling operation, calculated as

Qi;j = ReLU
�
Pi;j �m� �

g � s2
��

(Equation 6)
bpraw =

P
i;jQi;jP

i;jðsignðQi;jÞÞ+ 1
(Equation 7)

where m; s2 are themean and variance of the Pij values and g is a learned parameter. ThematrixQ sparsifies P, maintaining only those

contacts which are gs2 greater than the mean, and setting all others to zero. We then predict that the proteins will interact with the

average probability of interaction among these high-probability contacts. Together with the regularization that the contact matrix be

sparse, this global pooling operation captures the intuition that a pair of interacting proteins will be characterized by a relatively small

number of high-probability interacting residues or regions.

The final step of interaction prediction is designed to enhance the bimodality of the output distribution, so that the choice of a cutoff

becomes less important in distinguishing positive and negative predictions. We apply the logistic activation function to compute the

output probability bp = sðx0 ;hÞðbprawÞ where

sðx0 ;hÞðxÞ =
1

1+ e�hðx�x0Þ (Equation 8)

This activation function, with x0 = 0:5, takes our raw probability predictions and makes them more ‘‘extreme’’, depressing values

below x0 towards 0 and inflating values above x0 towards 1, with h controlling the rate at which this occurs. We return bp and bC as the

model prediction, from which we calculate the loss and optimize the gradient.

Training
Training objective

Given the true labels, the predicted probabilities bp, and the contact maps bC, we compute the loss as lLBCE + ð1 � lÞLMAG; here l is a

hyper-parameter that balances between LBCE , the binary cross-entropy (BCE) loss, and LMAG, the contact-map magnitude loss

(MAG). While the BCE loss is standard in a classification context, we introduce LMAG as a regularization term that enables us to learn

realistically sparse contact maps. LMAG for a single training example is calculated as the arithmetic mean value of the contact map bC.

Jointly minimizing the total magnitude of contact maps with the BCE captures the intuition that interacting proteins are characterized

by just a few high probability inter-protein contacts, while most residues will not be in contact. There has been substantial work on

predicting single-protein, and, in some cases, protein-complex contact maps. Future work could explore incorporating some of

these approaches into D-SCRIPT. Single-protein contact maps should be reasonably amenable to the D-SCRIPT model: one would

simply augment the featurization to include the per-residue contacts. However, integrating pre-built protein-complex contactmaps is

trickier. The contact maps learned by D-SCRIPT not only capture where an interaction might happen, but also if an interaction might

happen. We induce this behavior by our regularization term that incentivizes an empty contact map, all else being equal. This impor-

tant aspect would be need to be accounted for (possibly with an appropriate transfer learning or regularization step) when using off-

the-shelf contact-map predictions as inputs.

Implementation details

We implemented D-SCRIPT in PyTorch 1.2.0 and trained with a NVIDIA Tesla V100 with 32GB of memory. Embeddings from the pre-

trained Bepler and Berger model were produced by concatenating the final values of the output and all hidden layers, so that d0 =

6165. We used a projection dimension of d = 100, a hidden dimension of h = 50, a convolutional filter with width 2w+ 1 = 7, and a

local max-pooling width of l = 9. We used x0 = 0:5; h= 20 for the custom logistic activation, and l= 0:35 for calculating the training

loss. Weights were initialized using PyTorch defaults. We used a batch size of 25, the Adam optimizer with a learning rate of

0.001, and trained all models for 10 epochs.

Comparison of model complexity

The version of PIPR that we compare to has 72,500 trainable parameters. The full D-SCRIPT model has 629,207 trainable parame-

ters, but the vast majority of those (616,600) are in the projection module, which is a simple linear combination of all concatenated
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hidden states of the Bepler & Berger language model (which are themselves already redundant). The remaining stages of the model

together have 12,707 trainable parameters. Practically, we prevent over-fitting through a high rate of dropout (50%) in the Projection

module, combined with a very simple but structurally informed architecture in the Contact and Interaction prediction modules. Addi-

tionally, the contact mapmagnitude loss acts as a regularization by requiring that the predicted contact maps be sparse. Empirically,

D-SCRIPT generalizes much better than PIPR, and does not seem to overfit to the training data.

Analysis
Assessing functional module coherence

Detection of protein functional modules was performed by spectral clustering, with pairwise distances between proteins assessed

using Cao et al.’s diffusion state distance (DSD) metric (Cao et al., 2013, 2014). We generated 500 clusters, removed clusters with

fewer than 3 nodes, and recursively split clusters with greater than 100 nodes. This module detection approach performed well in a

recent DREAM challenge on functional module detection (Choobdar et al., 2019). Proteins were annotated with functions using Gene

Ontology (GO) terms from FlyBase (Thurmond et al., 2019), filtering out electronically-inferred and homology-based annotations. All

GO terms were mapped to a limited set of GO Slim terms using the D. melanogaster species-specific list (Adams et al., 2000). For

each cluster, we computed the within-cluster functional similarity, calculated as the mean Jaccard similarity of the sets of GO

Slim annotations for all pairs of proteins within the cluster. We also used a different, graph-theoretic measure of protein similarity

based on GO terms (Zhao andWang, 2018); it produced similar results (Figure S2). The distribution of within-cluster similarity scores

were compared using a one-tailed t-test, with the null hypothesis that the 384 modules in the D-SCRIPT network and 374 modules in

the PIPR network have the same average within-cluster similarity.

Predicting PPIs in cow

We selected 24,195 bovine proteins by selecting the longest isoform of each gene and, using HMMER (Eddy, 2009) and GODomain-

Miner (Alborzi et al., 2018), limited ourselves to proteins that had at least one Pfam (Sonnhammer et al., 1997; Finn et al., 2014) domain

with some associated GO annotation. In general, this filtering step is unnecessary but here it allowed us to focus our computational

resources on proteins likely to be interest. Of the set of 292.7million possible pairwise combinations, we generated a list of fifty million

candidate interactions by randomly sampling protein pairs; we included a special check to ensure that the 12 pre-identified rumen

related genes were fully covered. We predicted the probability of interaction using the human-trained D-SCRIPTmodel, and selected

edges with a predicted value greater than or equal to 0.5 as positive edges. This resulted in a predicted network of 476,399 positive

interactions between 17,811 proteins with an average node degree of 53.5. We created functional protein modules by performing

spectral clustering on the proteins, using the diffusion state distance (DSD, Cao et al., 2013) metric. For each module, we applied

gene set enrichment analysis using the g:GOSt tool on the g:Profiler web server (Raudvere et al., 2019) to identify functions over-rep-

resented among the proteins in each cluster.

We analysed bovine gene expression using bulk RNA-seq data from 93 tissue-specific bovine samples (Halstead et al. 2021; GEO

Accession GSE160028) and normalized each sample to counts per million (CPM). For each cluster, we identified genes which are

expressedmore highly in rumen tissue than on average across all tissues, and compute and report the log fold increase in expression

in the rumen. The gene expression data was also used to verify the quality of our predicted network and modules. We computed the

Spearman rank correlation between the CPM normalized expression profiles for each pair of genes, then evaluated the average cor-

relation between protein pairs with no interaction predicted, pairs with a predicted positive edge, pairs which are predicted to interact

and share a cluster, and pairs of proteins which appear in the same module, regardless of whether or not an edge appears. We

perform a one-sided Welch’s t-test to compare sample means without assuming equal variance.

Identifying the catalytic signature motif of bovine protein tyrosine phosphates from D-SCRIPT predictions

Our analysis of functional modules in the bovine rumen found a single cluster containing 34 proteins homologous to human protein

tyrosine phosphatases (PTPs). PTPs are known to comprise several families with similar sequence but diverse binding specificity,

determined in part by a short catalytic signature motif (Alonso et al., 2004; Alonso and Pulido, 2016). In Figure S4, we show Cluster

A from Figure 4A, recolored based on the PTP sub-type. All but one of the neighbors of PRD-SPRRII in Cluster A are PTP proteins (the

exception being MARK2, a serine/threonine-protein kinase). We find that D-SCRIPT does not limit its predictions to one family,

instead predicting interactions in all sub-types.

To further investigate how D-SCRIPT determines binding specificity, we undertook an in silico mutagenesis experiment. The ca-

nonical catalytic signature motif for the PTP family is HCX5R (Kim and Ryu, 2012) or HCXXGXXR (Alonso and Pulido, 2016), a motif

which we identified in 28 PTP proteins from Cluster A. We also included ENSBTAP00000067545 (CDC25C), which has the motif

HCX5A in our analysis. For each protein, we used D-SCRIPT to predict the probability of interaction with ENSBTAP00000070493

(PRD-SPRRII). Then for 50 replicates, we randomly perturbed the catalytic motif in that protein, either by randomly selecting amino

acids for all 8 positions of themotif, or only the 5 flexible positions (X). We find that for 24 of the 29 proteins, perturbing only the flexible

positions does not reduce the D-SCRIPT predicted probability, while perturbing the entire motif drastically decreases the predicted

probability. For 2 of the remaining 5, D-SCRIPT already did not predict an interaction with the original protein, for another one per-

turbing even the flexible positions decreased the probability of interaction substantially, and for the final 2 even perturbing the entire

motif did not substantially decrease the predicted probability of interaction. Figure S5A shows the original prediction (red), the dis-

tribution of 50 replicates where only flexible sites were mutated (blue), and the distribution of 50 replicates where the entire catalytic

motif was mutated (orange) for each PTP protein.
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Finally, we sought to identify which residues were most important in determining the D-SCRIPT model’s prediction. To do so, we

selected 5 CDC14 proteins (ENSBTAP00000058782, ENSBTAP00000073534, ENSBTAP00000054725, ENSBTAP00000069880,

ENSBTAP00000070948) and aligned them using MUSCLE (Edgar, 2004). Then, for each position in the alignment, for all sequences

which didn’t have a gap in that position, we randomly perturbed the amino acid at that position 50 times and used D-SCRIPT to pre-

dict interaction between the perturbed sequence and PRD-SPRRII. For each sequence location, we computed the difference be-

tween the original predicted probability of interaction and the average probability of interaction predicted for the samples perturbed

at that location, averaged across all 5 sequences (Figure S5B). We found the largest decreases around the catalytic signature motif,

indicating that D-SCRIPT is in fact basing its predictions on the residues involved in binding specificity. Further, when we zoom in to

the 8-residue motif region, it is clear that D-SCRIPT is identifying the conserved ‘‘C’’ and ‘‘R’’ in the second and eighth position, and

the flexible ‘‘A’’ in the fourth position of the motif as the most important residues for determining interaction. Figure S5C shows the

WebLogo for this region in the PTP domain, where the y-axis is the change in predicted probability when each position is perturbed

(Schneider and Stephens, 1990; Crooks et al., 2004).

Predicting PPIs in SARS-CoV-2

Weperformed a preliminary study to predict viral-host interactions between SARS-CoV-2 and human proteins wherein we compared

the sets of over-represented GO terms for human interactors of SARS-CoV-2 proteins, as predicted byD-SCRIPT or PIPR, with those

over-represented in the experimentally-determined human interactors (Gordon et al., 2020). Figure S3 shows the relative similarity of

computationally predicted annotations to the experimentally-determined annotations for each SARS-CoV-2 protein. Overall, we

found that sets of enriched terms computed using the D-SCRIPT network overlap slightly more with the true network than those

computed using the PIPR network (p = 0:059). Among the putative accessory factors (ORF* and Protein 14), D-SCRIPT performs

significantly better (mean Jaccard similarity 0:029 vs. 0:118, p = 0:022, paired one-tailed t-test). Visually, PIPR seems to be some-

what better at predicting interaction partners for the non-structural proteins (NSP*), although D-SCRIPT still has a slightly larger mean

similarity (0:183 vs. 0:222, p = 0:221). While D-SCRIPT performs better on the intensively studied spike (S) protein, PIPR shows a

higher overlap for the nucleocapsid (N). Neither method predicts enriched terms for the other structural proteins encoding the enve-

lope (E) and membrane (M) (0:149 vs. 0:121, p= 0:672 across the four proteins).

Methods

Candidate pairs were generated using the viral sequences from Gordon et al. and 19,777 human sequences from the STRING data-

base, and predicted edges using D-SCRIPT and PIPR. We predicted 3,273 edges using D-SCRIPT and 2,922 edges using PIPR. 332

putative true viral-host interactions were taken from Gordon et al. Human sequences were mapped to UniProt sequences identifiers

from Gordon et al. with sequence similarityR95% using BLAST (Altschul et al., 1990), and UniProt identifiers were used to identify a

set of Gene Ontology terms for the human interactors of each viral protein. Following Gordon et al., we identified over-represented

GO terms using the clusterProfiler R package (version 3.14.3) (Yu et al., 2012) with a 1% false discovery rate (FDR). Over-represented

GO terms were mapped to a common set of terms taken from the ChEMBL Drug Target GO Slim Subset (Mutowo et al., 2016). For

each viral protein, we computed the Jaccard similarity between the set of GO Slim terms enriched in the putative true network and

each of the computationally predicted methods. We computed a paired one-tailed t-test to statistically compare the relative similar-

ities of D-SCRIPT and PIPR. Virus-host edges predicted using D-SCRIPT or PIPR are available for use by the community (key re-

sources table).

Logistic regression for prediction of protein structure

We selected 300 proteins with structural coordinates from the Protein Data Bank (PDB), and randomly split them into a training set of

100 and test set of 200 proteins.We assessed intra-protein contacts at 8 Å in the PDB structure and converted each protein’s contact

map to a binary classification data set: a protein sequence of length n corresponded to nðn�1Þ
2 observations, with the observation ij

corresponding to a putative contact between residues i and j. Features were generated using the human pre-trained D-SCRIPT

model, where we evaluate the model up through the first stage (projection module). This generates d = 100 dimensional vector rep-

resentations Zi and Zj output by the projection module for each pair of amino acids in the protein which capture both local and global

structural features. The regression was L2-regularized and class balanced, with its input for observation ij being the concatenation of

the 100-dimensional embeddings as well as their combinations diffij, mulij as defined in Equations 2 and 3.

Predicting interactions by nearest neighbor search

To compare our sequence embedding method with other potential ones, we evaluated various protein sequence embeddings under

the following framework: the Euclidean distance in an embedding space was used to define a distance measure between proteins.

Given a true positive PPI ðA;BÞ, we applied this distance measure to identify the k-nearest neighbors of A and B each, and computed

how many of the k2 possible combinations of these neighbors corresponded to a positive PPI. For D-SCRIPT, we used the Rn3d
R0

output of the projection module and averaged the features across the length of the protein to obtain a d-dimensional embedding.

For AAClass, Vec5, and the random embedding, we directly compute the Euclidean distance between those vectors. To identify

k nearest neighbors using BLAST, we create a database of all other proteins in the species, perform a search using blastp with

the default values, and return the top k hits by e-value.

Predicting inter-protein contact maps

The output of the residue Contact Module of D-SCRIPT is an inter-protein contact map bC where bCij˛½0; 1� can be interpreted as the

probability of residue i from proteinS1 being in contact with residue j of protein S2.We interpreted ground truth and predicted contact

maps as probability distributions over the n3m matrix and measured the 2-D Earth mover’s distance between these distributions,

computed by solving an optimal transport problem under the Euclidean metric (Flamary and Courty, 2017). For each candidate
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PPI, we established random baselines by shuffling bC 500 times and recomputing the Earth mover’s distance between the random

shuffle and the true contacts. We assign a p-value to each candidate PPI based on this permutation test and the probability of seeing

an Earth mover’s distance at least as small as the observed distance. We compute an overall p-value for positive-predicted pairs by

computing a one-tailed t-test with the null hypothesis that the average candidate PPI p-value is 0.5, i.e. that the D-SCRIPT predictions

are as accurate as a random shuffling.

Deconstructing model performance by protein frequency in training data

To further investigate the relative performance of each model on out-of-species classification, we evaluated each model on subsets

of proteins ranked by their frequency in the training set. For a set of quantiles q˛f0:5;0:6;0:7;0:8;0:9;1:0g, we evaluated out-of-sam-

ple D-SCRIPT and PIPR predictions on the human PPI sub-network consisting only of proteins of quantile q or lower; here, lower q

corresponds to a lower frequency of occurrence. In absolute terms, as Table S2 indicates, both D-SCRIPT and PIPR become more

accurate at higher q. However, D-SCRIPT has a relative advantage at lower q (i.e., infrequently occuring proteins) while PIPR

performs better at higher q. In other words, PIPR’s better within-species performance can be traced to it being more accurate on

proteins that occur frequently. This also suggests an explanation for PIPR’s lower cross-species generalizability than D-SCRIPT:

when making predictions on an entirely new set of proteins in a different species, knowing the relative frequencies of proteins in

the training data might not be particularly useful.

The difference between D-SCRIPT and PIPRmight stem from their respective architectures. The protein representation learned by

D-SCRIPT is constrained to be a linear projection of the Bepler & Berger pre-trained embedding, albeit with ReLU and dropout layers.

This regularizes howmuch frequency information can be incorporated into the model; we note that the Bepler and Berger model was

trained with data on individual proteins and would not reflect PPI frequency information. In contrast, PIPR’s design allows for a lot

more leeway in training each protein’s representation. This flexibilitymay allow PIPR to better incorporate the occurrence frequencies

into its representation, helping its within-species performance but potentially hurting its cross-species generalizability.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were conducted using version 1.3.1 of the SciPy Python package.
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