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Abstract

We report the topological phase and thermoelectric properties of bialkali bismuthide
compounds (Na, K),RbBi, as yet hypothetical. The topological phase transitions of these
compounds under hydrostatic pressure are investigated. The calculated topological surface
states and Z, topological index confirm the nontrivial topological phase. The electronic
properties and transport coefficients are obtained using the density functional theory combined
with the Boltzmann transport equation. The relaxation times are determined using the
deformation potential theory to calculate the electronic thermal and electrical conductivity. The
calculated mode Griineisen parameters are substantial, indicating strong anharmonic acoustic
phonons scattering, which results in an exceptionally low lattice thermal conductivity. These
compounds also have a favorable power factor leading to a relatively flat p-type figure-of-merit
over a broad temperature range. Furthermore, the mechanical properties and phonon band
dispersions show that these structures are mechanically and dynamically stable. Therefore,
they offer excellent candidates for practical applications over a wide range of temperatures.
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1. Introduction motivated many researchers to develop energy conversion
technologies that are green and eco-friendly. With nearly two-
thirds of the world’s energy wasted as heat, thermoelectric
(TE) materials offer a practical approach to recycle some
part of it and contribute significantly to energy saving. The
energy conversion efficiency of TE materials is often deter-
mined using the dimensionless figure of merit (z7) given by
T = S*T /K, where S, o, T and k are the Seebeck coefficient
* Authors to whom any correspondence should be addressed. (thermopower), electrical conductivity, absolute temperature,

Energy crisis and environmental pollution, two critical chal-
lenges of the current century, are primarily due to high
dependence on fossil fuels. Addressing these problems has
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and thermal conductivity. Thermal conductivity « has contri-
butions from the electronic s, and lattice x; thermal conductiv-
ity, i.e., K = K + kj. Also, the power factor (PF) is defined as
PF = 5%0. High-efficiency TE materials usually require a large
Seebeck coefficient or high PF, high electrical conductivity,
and low thermal conductivity. These parameters are usually
counter-indicative and change with the carrier concentration
[1, 2]. For example, the large Seebeck coefficient usually hap-
pens at low carrier concentration, leading to low electrical con-
ductivity. Also, increasing the electrical conductivity usually
increases the thermal conductivity [3]. The interdependency
of these parameters explains why achieving a high zT is chal-
lenging. As such, new ideas have been developed over the last
two decades and based on these ideas, new materials and struc-
tures have been designed and synthesized. Some approaches
focused on improving the PF, such as carrier pocket engineer-
ing [4-6], complex structures [7, 8], carrier energy filtering
[9, 10], creation of resonant energy levels close to the band
edges [11], and low dimensional structures [12, 13]. Another
approach to enhance the zT is to reduce the lattice thermal
conductivity. Some examples in this direction are methods
to enhance phonon scattering via nano inclusions [14-16],
nanostructuring [17, 18], or using materials with large unit
cells such as clathrates [3] and skutterudites [19].

Additionally, TE materials in nano bulk forms such as
nanostructured single component bulk structures and multi-
component nanocomposites have been investigated exten-
sively due to their relatively inexpensive and simple synthesis
and compatibility with the commercial TE devices [20, 21].
However, it is worth mentioning that although the nanostruc-
turing concept improved the z7° of many material systems-
[22, 23], the excessive interfaces deteriorated the carrier mobil-
ity in some materials so strongly that nanostructuring led to
little or no improvementin z7" and, in some cases, even reduced
the zT [24-26].

Topological insulators (TIs) represent a new quantum state
of matter characterized by a peculiar and unique edge or sur-
face state [27]. These topological materials may also offer
a new direction for making high-performance TE materials
[1, 28-32]. In TIs, the spins of Dirac fermions are tightly
locked with their momentum so that the charge carriers on
the boundary states of these materials experience no backscat-
tering at impurities and defects, which is beneficial for low-
dispassion transport. Furthermore, the z7 of these materials
can be improved by optimizing the geometry size for the con-
tributions of the boundary and bulk states [3, 31]. In addition to
TIs, Weyl/Dirac semimetals form another class of topological
materials with unique properties [27, 33]. Interestingly, simi-
lar to the surface states of TIs, topological surface states (TSS)
also exist on the surface of these materials called Fermi arcs
[33]. In addition to these surface states, chiral magnetic effects
and negative magnetoresistance have been observed in the bulk
of these materials [27]. Apart from some basic features that
connect both TE and topological materials, such as heavy ele-
ments and small band gaps, the observation of some TE phe-
nomena has led to more attention on these materials [3, 31].
Recent studies have shown that the transverse thermoelec-
tricity of topological semimetals is promising for solid-state

cooling applications [34, 35]. For example, by investigating
the Nernst effect in the Dirac semimetal Cd;As,, a transverse
zT can be defined for this compound that amounts to 0.5 at
2 T at room temperature [36]. Furthermore, a large, nonsat-
urating Seebeck effect in quantizing magnetic fields has been
obtained for topological Dirac/Weyl semimetals [37]. Interest-
ingly, it has been found that such a transverse TE effect (i.e.,
transverse zT) is easily optimized by adjusting the Fermi
level toward the Dirac/Weyl nodes. Also, topological semimet-
als can have an additional transverse TE effect, known as
the anomalous Nernst effect, which results from the Berry
curvature near the Fermi level [38].

Consequently, topological materials, along with many other
purposes, have taken much attention for TE applications. So
far, broad varieties of TE materials have been investigated
for various temperature regimes. Compounds containing alkali
metals with antimony and bismuth yield a group of exciting
semiconductors. In recent years, bismuthides and bialkali anti-
monides structures have had various functional applications in
photodetectors and emitters materials, TE energy conversion,
linear optical properties, sensing devices, and even topological
phases [39-47]. However, to date, mostly alkali antimonide
compounds have been studied theoretically primarily. In con-
trast, no comprehensive study has been devoted to examining
the structural, elastic, topological phase, and TE properties of
bialkali bismuthide compounds (Na, K),RbBi regardless of
their prospective technological applications.

In the present study, the first-principles calculations are
applied to estimate the TE performance and topological phase
evolution of bialkali bismuthides compounds (Na, K),RbBi
under hydrostatic pressures. The electronic transport prop-
erties of these compounds are investigated by calculating
the electronic band structures and solving Boltzmann trans-
port equations. Furthermore, the electronic relaxation time is
obtained using the deformation potential theory (DPT).

The maximum figure of merit z7' of p-type Na,RbBi
(K;RbBi) compound can reach 0.80 (0.87) at 300 K (1000 K).
Therefore, it is predicted that Na,RbBi (K;RbBi) compound
should be a promising room (high) temperature TE mate-
rial. Our calculations of the mechanical properties and phonon
band dispersions show that these structures are mechani-
cally and dynamically stable. The topological phase transition
(TPT) point, within TB-mBJ and PBE-GGA approaches, has
also been evaluated under hydrostatic pressures. Hence, band
inversion, Z, topological index, and TSS are investigated.

2. Computational details

All calculations are performed using the full-potential lin-
earized augmented plane wave [48] method based on den-
sity functional theory using the WIEN2K package [49]. For
the structural optimization and electronic properties, we used
the exchange—correlation potential within the PBE-GGA
approach [50]. More precisely, to calculate the electronic band
structure, specifically the bandgaps, we used an enhanced ver-
sion of Becke—Johnson (mBJ) potential, suggested by Tran
and Blaha [51]. The 17 x 17 x 17 Monkhorst—Pack k-mesh
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Figure 1. (a) The crystal structure of (Na, K),RbBi within Fm-3m (No. 225) space group, where the structural co-ordinates of Na/K are 8
(C) (1/4, 1/4, 1/4), Rb are 4(a) (0, 0,0) and Bi are 4(b) (1/2, 1/2, 1/2), respectively. (b) The first 3D/2D BZ and the high-symmetry points.

sampling in the Brillouin zone (BZ) is used for the geometri-
cal optimization and self-consistent calculations, while a large
k-mesh of 47 x 47 x 47 is used to obtain an adequately
accurate band structure for the calculations of transport coef-
ficients. The spin—orbit coupling is considered in the cal-
culations of the electronic, TE, and mechanical properties.
The Phonopy code [52] is used for phonon dispersion and
Griineisen parameter calculations. The TE transport proper-
ties and coefficients are calculated from the electronic struc-
ture using semiclassical Boltzmann theory, implemented in
the BoltzTraP package [53]. The lattice thermal conductivity
was obtained by the modified Debye—Callaway model [54].
The elastic properties were calculated using IRELAST [55] and
ELATOOLS [56] packages.

We used the DPT for the relaxation time to evaluate the
electronic transport performance. Based on this theory, one can
calculate the relaxation time (7) along the i-direction [57, 58]

by:
227 Ci
T= 5>
3(kpTm, )32 E?

where C; is the elastic constant, E; is the DP constant, and m™* o
is the density-of-state (DOS) effective mass (calculated using
perturbation approach in MSTAR code [59]). C; is the elastic
constant from C;;(=C=C33), which is calculated using the
IRelast package. The DP constant E; is calculated by

ey

8Eedge

Ei= AAD /1y’ @
where Ecqq. is the energy of the valence or conduction band
edge in relation to the lattice deformation quantity along the
i-direction of external strain [57, 60], and [ is the equilibrium
lattice constant. By applying strains of —6 x 1074, =3 x 1074,
0.00, +3 x 107*, and +6 x 10~* percentage of Al/ly, we
obtain E; by fitting the curve of E¢4q. according to equation (2).
The details are collected in figures S1 and S2 of support-
ing information file (https://stacks.iop.org/JPCM/34/105702/
mmedia). The TSS and Wannier charge centers (WCCs) are
obtained by constructing the maximally localized Wannier

functions (WANNIER90 code [61]) and using the iterative
Green function method [62] and Wilson-loop method [63,
64], respectively. The Wilson-loop for the insulator systems is
defined in terms of the projector (P;°°) onto the N occupied
(occ) states, uj, as [65, 66],

Noce

P = Z | jc) (e
j=1

L-1

Wioop(O) = [[ P2, (3)
i=0

where C is a closed curve in k-space, discretized in L points
ki,1=0,...,L — 1, and the Wioop(C) is @ Noce X Noee matrix.
Based on this, by taking the log of the eigenvalues of the
Wioop(C) at an arbitrary point on the loop C and normalizing by
27, we arrive at a special gauge-invariant set of hybrid WCCs,
which exactly coincide with those obtained from the maxi-
mally localized WCC (more details can be found in references
[66—69]).

3. Results and discussion

3.1. Structural, phonon, and mechanical properties

Bialkali bismuthides compounds of (Na, K),RbBi kind crys-
tallize in fcc structure within Fm-3m (No. 225) space group,
where the structural coordinates of Na/K are 8(c) (1/4,
1/4, 1/4), Rb are 4(a) (0.0, 0.0, 0.0) and Bi are 4(b) (1/2,
172, 1/2), respectively (see figure 1(a)). The calculated lattice
constants of Na,RbBi and K,RbBi are 8.17 and 8.90 A.

The dynamical stability is the crucial criterion for a mate-
rial to be synthesized practically [70]. These criteria for
(Na, K),RbBi compounds can be predicted from the phonon
dispersion curves. The calculated phonon dispersion curves
along with the high-symmetry points (see figure 1(b))
and the partial phonon density of states (PDOSs) are shown
in figure 2.

The positive phonon frequency of these compounds over
the whole BZ indicates that these compounds are thermo-
dynamically stable and can be potentially synthesized in the
laboratory. According to the phonon dispersion curves, three
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Figure 2. Phonon dispersion relations and partial PDOSs of (a) Na,RbBi and (b) K;RbBi along with high-symmetry points. From PDOS, it
can be seen that Bi, Rb, and K/Na induce three acoustic phonons, where Rb has dominant contributions. There is no gap between acoustic
and optical phonon modes, which is non-conducive for heat conduction by phonons, indicating relatively moderate phonon scattering in
these compounds. Computed phonon mode of Griineisen parameter of (c) Na,RbBi and (d) K;RbBi. The mode Griineisen parameter for
each mode are shown by different colors. The acoustic phonons have huge Griineisen parameters suggesting the existence of strong

anharmonic scattering between acoustic phonons.

acoustic and nine optical phonon branches are observed due to
four atoms per unit cell. From PDOS, we see that Bi, Rb, and
K/Na induce three acoustic phonons, with Rb having the dom-
inant contributions. The lack of energy gap between the optical
and acoustic phonon modes indicates a moderate phonon scat-
tering in these compounds. The first four optical modes of
frequency ~1-1.8 cm~! arise from Rb and Bi, with a small
contribution of K/Na. Six higher energy optical phonon modes
come from Na/K, suggesting that Na/K has a negligible contri-
bution in the lattice thermal conductivity. A larger Griineisen
parameter indicates a more anharmonic behavior of the sys-
tem. Therefore, the Griineisen parameters inversely affect the
lattice thermal conductivity. Figures 2(c) and (d) illustrate the
mode Griineisen parameters. It can be seen that the acoustic
phonons have large Griineisen parameters evidencing a strong
anharmonic scattering among acoustic phonons.

Elastic constants (Cj;) have been calculated to investigate
the mechanical stability conditions and to calculate the relax-
ation time (7). The calculated elastic constants C;; and other
elastic parameters of these compounds are given in table S1.
These compounds strictly followed the mechanical stability
conditions derived by Born et al [70-72]. Interestingly, the
calculation results on the spatial dependence of the Poisson’s
ratio show that K,RbBi has a negative Poisson’s ratio (NPR)

and Na,RbBi has a positive Poisson’s ratio. The spatial depen-
dence (2D heat maps) and 2D projection in the xy-plane of
Poisson’s ratio are illustrated in (figure S3) figure S4. Figure
S4(b) shows that K,RbBi has a significant NPR in the [110],
[101], and [011] directions, making this compound a 3D
auxetic material.

3.2. Electronic structure and TPT

The calculation of the electronic band structure is essential
to understand the electronic properties of materials, which
almost completely explain the band inversion for the topolog-
ical phase and transport properties. The PBE-GGA approach
usually underestimates the experimental bandgaps [71]; how-
ever, the TB-mBJ approach can predict bandgaps compara-
ble with experimental values [72]. Therefore, in this work,
we have obtained the electronic band structures using two
different exchange—correlation approaches PBE-GGA and
TB-mBJ. The electronic band structures of (Na, K),RbBi
along with high-symmetry points (see figure 1(b)) within the
PBE-GGA and TB-mBJ approaches are displayed in figure
S5. As shown in figures S5(a) and (b), these compounds are
zero-gap semimetals within PBE-GGA approach, while in the
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Figure 3. Calculated TDOSs and PDOS (a) Na,RbBi and (b) K;RbBi computed using PBE-GGA functional. The Fermi energy is set to
zero. The valence band in PDOS near the Fermi level is mainly attributed to the Bi-p orbital and partly to the Rb-p and Na/K-s orbitals of
these compounds. The conduction band of Na,RbBi (K;RbBi) is composed mainly of the Bi-s/p, Rb-d and Na-s (Bi-s/p, K-d, and Rb-s)

orbitals.

TB-mBJ approach, these compounds are predicted to be semi-
conductors with direct bandgaps at the Gamma (G) point. The
direct bandgaps of Na,RbBi and K,RbBi are 0.30 and 0.61 eV,
respectively. To our best knowledge, no experimental or com-
putational work has been done to determine the bandgap of
these compounds. To understand the contribution of different
orbitals to the electronic states and the hybridization distribu-
tion, we calculated the PDOSs and the total density of states
(TDOSs) within the PBE-GGA approach, as shown in figure 3.
The valence band in PDOS near the Fermi level is mainly
attributable to the Bi-p orbital and partly from the Rb-p and
Na/K-s orbitals of these compounds. The conduction band of
Na,RbBi (K,;RbBi) is composed mainly of the Bi-s/p, Rb-d,
and Na-s (Bi-s/p, K-d, and Rb-s) orbitals. In the Na,RbBi,
there is a strong hybridization between Rb-p and Na-s states
below the Eg, while above the Ef, there is a hybridization
between Bi-p and Rb-d. There is a similar behavior in TB-mBJ
approach, as shown in figure S6.

To investigate the TPT, we calculated the projected band
structures of (Na, K),RbBi under different hydrostatic pres-
sures within the PBE-GGA and TB-mBJ approaches, which
are shown in figure 4. It can be seen that these compounds
within GGA approach (see figures 4(a) and (c)) have no
bandgap at ambient pressure (V/Vy = 1.0). From the structure
of the band provided in this case, it can be seen that the s—p
band inversion does occur, i.e., the p-liked is above the s-liked
bands. A hydrostatic lattice compression (HLC) (V/Vy = 0.88

for Na;RbBi and V/V = 0.80 for K,RbBi) is applied to deter-
mine the critical point of topological phase transition (CPTPT)
(from nontrivial to trivial phase). This case is indicated by the
black arrow in figure 4. To describe the CPTPT, the three-
dimensional band structure and two-dimensional counter iso-
lines of these compounds are shown in figure S7. As can be
seen in this figure, the 3D band structure around the Dirac
point consists of three band branches, the upper branch band
of the Dirac cone (tagged with 1), the lower branch band
of the Dirac cone (tagged with 3), and the band crossing
through the Dirac point (tagged with 2). The energy isolines
in the k,—k, plane indicate that the upper and lower branches
band near the Dirac point are isotropic. Also, the band that
crosses through the Dirac point is flat near the Fermi energy.
As the HLC increases (e.g., V/Vy = 0.87 for Na,RbBi and
VIVy = 0.77 for K;RbBi) and passes this critical pressure,
these compounds are transferred to the topologically trivial
phase. In this case, the s-liked is above the p-liked bands, and
a trivial bandgap is opened. Contrary to the GGA approach,
these compounds within the TB-mBJ approach have a bandgap
at ambient pressure. In this case, the order of the energy
band is not reversed at the G point (the s-liked is above the
p-liked bands). Therefore, by applying hydrostatic lattice ten-
sion (HLT), the TPT point can be achieved (see figures 4(b)
and (d)). When V/Vy is 1.11 for NayRbBi (1.22 for K,RbBi),
the trivial bandgap closes, and we reach the CPTPT (from triv-
ial to nontrivial phase). At pressures above this critical pressure
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Figure 4. Projected band structures calculated with (a) and (¢) PBE-GGA and (b) and (d) TB-mBJ functional including spin-orbit coupling
for (a) and (b) Na,RbBi and (¢) and (d) K,RbBi under HLC and HLT. These compounds within GGA approach have no band gap at ambient
pressure (V/Vy = 1.0). In this case, the s—p band inversion does occur; the p-liked is above the s-liked bands. Contrary to PBE-GGA
approach, these compounds within TB-mBj approach have a bandgap at ambient pressure. In this case the order of the energy band is not
reversed at the G point (the s-liked is above the p-liked bands). The CPTPT point is indicated by a black arrow. At pressures above the
critical pressure, these compounds within mBJ (GGA) functional are transferred to the nontrivial (trivial) topological phase.

(e.g., VIVy = 1.15 for NayRbBi and V/V, = 1.30 for K,RbBi),
s—p band inversion occurs, and these compounds are trans-
ferred to the nontrivial topological phase. The mechanism is
similar to the KNa,Bi [46] and KNa,Sb [47] compounds under
hydrostatic pressure which also have the so-called s—p type
band inversion. To better understand the topological nature, we
study the atomic orbitals and consider the effect of HLC, HLT,
and SOC on the energy levels at the G point for these com-
pounds. This is schematically illustrated in figure 5. It should
be noted that the energy levels near the Fermi level in this
figure are mainly composed of Bi-6s and Bi-6p orbitals. There-
fore, we focus on s and p orbitals of Bi and neglect the effect of
other atomic orbitals. These orbitals are labeled as s* and p*,
where the superscript (4, —) denotes the parity. In the PBE-
GGA approach, before turning on the SOC, the sT orbital is
above p~ orbital. When the SOC effect is taken into account
in the equilibrium state (V/Vy = 1), the degeneracy of the
p~ level is lifted and split, and p, ) State is located above
sT state. It is clear that in this case, the parity exchange. This
introduces a nontrivial phase with inverted order of s™ and
Pis » (i.e., s—p band inversion). Therefore, the SOC effect has
led to the TPT from the trivial to the nontrivial phase (see blue

o

rectangle). By applying HLT at a volume rate V/Vy = enic 1,
as an external effect, the CPTPT can be achieved (see pur-
ple rectangle). As the HLT increases (or the volumetric rate
increases by V/Vy = egrc 2), another TPT from the nontrivial
phase to the trivial phase occurs (see blue rectangle). In this
case, sT state is above P, State, and a nontrivial band gap
is created. In the TB-mBJ approach, there is a similar mecha-
nism, and only one TPT from the trivial phase to the nontrivial
phase occurs due to HLC (see blue rectangle).

To confirm the topological phase before (after) the TPT
point within the GGA (mBJ) approach, we calculated TSS and
Z, topological index. Z, = 1(0) indicates topological nontriv-
ial (trivial) phase. The calculated projected surface DOSs at
(001) surface (see figure 1(b)) and Wilson-loops around the
WCCs along ky are displayed in figure 6. Z, topological index
can be determined using the number of crossings between any
arbitrary horizontal reference line (green line) and the evolu-
tion of the WCCs. As shown in figures 6(a) and (b), the WCC
lines cross the reference line an old (even) number of times for
k. = 0 and k, = 27 plane, respectively. Therefore, this result
shows that Z, = 1. The calculated TSS at the semi-infinite
(001) surface of these compounds are shown in figures 6(c)
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Figure 5. Schematic diagram of the evolution from the atomic s and p orbitals of Bi into the conduction and valence bands at the Gamma
(G) point for (Na, K),RbBi compounds in the PBE-GGA and TB-mBJ approaches. The blue (red) and purple rectangles represent the TPT
from trivial to nontrivial phase (from nontrivial to trivial phase) and the CPTPT, respectively.

and (d) (due to the similarity of the results, only the TSS within
the PBE-GGA approach are shown in the figure). Since the
band inversion occurs below the Fermi energy, the TSS appears
below the Er. Moreover, the TSS with a Dirac-type cross-
ing is inside the projected valence bands due to the mixing
of bulk electronic states. The black arrow shows the Dirac
point.

3.3. Electrical transport properties and figure of merit

Boltzmann transport equation applied in BoltzTraP uses con-
stant relaxation time approximation that can result in inac-
curate transport coefficients. In order to accurately determine
the TE properties, we calculate the carrier relaxation time
using the DP theory described in section 2. The relaxation
time is calculated by substituting E;, C;, m* 405 in equation (1)
(see section 2). The results of E;, C;, m* 4,5, and 7 at 300 K for
(Na, K),RbBi compounds within the PBE-GGA and TB-mBJ
approaches at 300 K are listed in table 1. The results show that
7 of the p-type Na,RbBi/K,RbBi within the TB-mBJ approach
is larger than the corresponding value of the n-type one. In
addition, the maximum 7 of 792 fs is attributed to the p-type
Na,RbBi compound. The detailed results of relaxation time in
both approaches are illustrated in figure S2.

The lattice thermal conductivity x; and the electronic ther-
mal conductivity k. can be calculated separately. The x. can
be obtained independently using the relaxation time. Further-
more, £ is calculated based on the modified Debye—Callaway
model. The detailed results of ko (=ke. + K1), K, and ke
as a function of the absolute temperature are shown in
figure S8. It is noteworthy that the TE parameters considering
TB-mBJ functional as the PBE-GGA functional underestimate

the bandgap. However, all TE parameters within PBE-GGA
are attached in the supporting information file.

The thermopower (or Seebeck coefficient) S, electrical con-
ductivity, and PF of both the p-type and n-type (Na, K),RbBi
compounds as a function of carrier concentration (n) at dif-
ferent temperatures, 300-900 K, are shown in figure 7. Due
to the similarity in the electronic structure and band disper-
sion of the two compounds, a similar trend is observed in the
thermopower of both compounds (see figures 7(a) and (b)).
The slightly larger thermopower of K,RbBi can be attributed
to its larger bandgap. In these compounds, due to the high band
degeneracy and large DOS, the thermopower of p-type is much
larger than that of n-type. In the Na,RbBi (K;RbBi) com-
pound, a high p-type thermopower (>450 uV K~ ') is obtained
at 400 K (300 K) with a low doping concentration. The nonlin-
ear behavior of the thermopower arises from the bipolar con-
duction effect resulting from the thermal excitation of minority
carriers [73]. From figures 7(c) and (d), the maximum electri-
cal conductivity for Na;RbBi (K;RbBi) is ~5.9 x 107 1/Qm
(~0.35 x 107 1/dm) in the p-type region at room temperature.
When the carrier concentration changes, the electrical conduc-
tivity and the absolute value of the thermopower of the com-
pounds show opposite trends, as shown in figures 7(a)—(d).
Therefore, the PF has a peak at an optimum carrier concentra-
tion. This peak, as shown, happens at a carrier concentration
where both the thermopower and the electrical conductivity
do not reach their maximum. Hence, the maximum n-type PF
decreases for both compounds, while the maximum p-type PF
increases with increasing temperature. The maximum PF of
Na,RbBi for p-type (n-type) doping at room temperature is
about 36 (100) xW m~2 K2, nearly two (40) times that of
K,RbBi. The TE performance is directly related to electronic
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Table 1. Elastic constant C; (eV A~3), the DP constant E; (eV), the DOSs effective mass m* o5, and the relaxation time 7 (fs) of the
(Na, K),RbBi compounds with PBE-GGA and TB-mBJ functionals at 300 K.

PBE-GGA TB-mBJ
Hole Electron Hole Electron
Compound
Ci Ei m* dos T Ei m* dos T Ci Ei m*dos T Ei m*dos T
Na,RbBi 0.22 6.73 0.22 270 6.73 0.41 100 0.22 10.5 0.06 792 6.29 0.12 775
K,RbBi 0.77 5.93 0.12 305 5.93 0.17 175 0.77 9.5 0.13 98 5.42 0.36 66

transport [74—77]. So, to investigate the effect of this property,
the total DOS as a function of carrier concentration at different
temperatures of these compounds are calculated and displayed
in figure S9. The results indicate that the total DOS in the
p-type (total DOS of conduction bands) is more than that of
the total DOS n-type (total DOS of valence bands) of these
compounds. This result can lead to a larger Seebeck coeffi-
cient, and consequently, larger PF of the compounds in p-type
than in n-type, as shown in figures 7(e) and (f). To calculate
the total thermal conductivity, we have multiplied electronic
thermal conductivity by 7 and added it with lattice thermal
conductivity. The results are shown in figures S2 and S8 as a
function of absolute temperature. For the Na,RbBi (K,RbBi),

k1 is about 0.61 (1.17) W m~! K~! at 300 K. It decreases
to about 0.17 (0.33) W m~! K~! with temperature increas-
ing up to 1000 K. The Na,RbBi and K,RbBi compounds are
expected to exhibit high TE performance. Such high TE per-
formance arises primarily from a decent PF but ultralow lattice
thermal conductivity near room temperature (high tempera-
tures) in Nap,RbBi (K,RbBi) compound. Figures 8(a) and (b)
shows the total thermal conductivity (ki) of these compounds,
scaled by the relaxation time as a function of carrier concen-
tration at different temperatures. It can be seen that, due to
the ultralow lattice thermal conductivity, the electronic ther-
mal conductivity significantly affects the total thermal con-
ductivity. In both compounds, the electronic contribution to
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Figure 7. The calculated (a) and (b) Seebeck coefficient, (c) and (d) electrical conductivity, and (e) and (f) PF of p-type and n-type Na,RbBi
(left side of the page) and K,RbBi (right side of the page) as a function of carrier concentration at different temperatures. The nonlinearity
behavior of Seebeck coefficient arises from the bipolar conduction effect resulting from the thermal excitation of minority carriers. The
absolute value of the thermopower and the electrical conductivity of these compounds follow opposite trends when the carrier concentration
changes. Therefore, such behavior leads to a maximum PF at an optimum carrier concentration. For both compounds the maximum PF of
n-type decreases, while the maximum PF of p-type increases with increasing the temperature.

heat conduction shows similar trends as electrical conductiv-
ity. Moreover, like electrical conductivity, the electronic part
of the thermal conductivity for the n-type carrier in Na,RbBi
is also much higher than that of K,RbBi and other carriers.
Using the above-calculated transport coefficients, we estimate
the zT of these compounds. Figures 8(c) and (d) shows zT as
a function of temperature and carrier concentration. The lower
Kior» 11.81 W m~! K~!, and high PF of Na,RbBi at room
temperature result in high z7 values under p-type doping. For
K;RbBi compound, the PF is low at room temperature. £
(11.57 W m~! K~!) is almost similar to Na,RbBi compound
at room temperature. Hence, the z7 of this compound is lower

than Na,RbBi. However, at high temperatures, the x further
decreases, leading to a high z7'. A maximum z7 of ~0.80 (0.4)
and ~0.85 (0.52) were achieved under p-type (n-type) dop-
ing for Na,RbBi and K,RbBi at room and high temperature,
respectively. For p-type doping, the 2D heat-maps of z7(n, T)
as a function of temperature (7') and carrier concentration (n)
are shown in figures 8(e) and (f). While the z7 of Na,RbBi
(K,RbBi) is quite high over most of the region, a large
zT ~ 0.78 (~0.85) is obtained at the optimal condition,
n~957 x 107 cm 3 and T ~ 400 K (n ~ 4.39 x 10%° cm~3
and T = 1000 K). Another interesting observation is that the
ZT of p-type (Na, K),RbBi is a weak function of temperature.
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Figure 8. The calculated (a) and (b) total thermal conductivity (k), and (c) and (d) figure of merit z7 of p-type and n-type Na,RbBi (left
side of the page) and K,RbBi (right side of the page) as a function of carrier concentration at different temperatures. The 2D heat-maps of
zT'(n, T) as a function of temperature (7') and carrier concentration (n) is plotted in (e) and (f). A maximum z7 of ~0.80 (0.4) and ~0.85
(0.52) were achieved under p-type (n-type) doping for Na,RbBi and K,RbBi at room and high temperature, respectively. While the z7" of
Na,RbBi (K;RbBi) is quite high over most of the region, a large z7 ~ 0.78 (~0.85) is obtained at the optimal condition, n ~ 9.57 X

1017 cm™3 and 7 ~ 400 K (n ~ 4.39 x 1020 cm 3 and 7 = 1000 K).

For example, the z7 of p-type Na,RbBi (K;RbBi) remains in
the range of 0.52-0.73 (0.58-0.8) at a fixed doping concen-
tration of 3.5 x 10" cm™ (1.22 x 10% cm™) in the entire
temperature range of 300-900 K. This is especially interest-
ing as it expands over the temperature range of many energy
harvesting applications.

4. Conclusion

We presented a transition from semiconductor trivial topo-
logical phase to semimetallic nontrivial topological phase via
external hydrostatic pressure on (Na, K),RbBi compounds
based on first-principles calculations. The band inversion,
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hence the TSS, occurs below the Fermi energy. Moreover,
the TSS with a Dirac-type crossing is ~280 meV inside
the projected valence bands due to mixing bulk electronic
states. The electronic and thermal transport properties of both
compounds, including the lattice thermal conductivity, elec-
tronic thermal conductivity, and the charge carrier relaxation
time, were further investigated using the first principles, the
Boltzmann transport equation, and the DPT. The lattice
dynamic calculations indicate strong anharmonic scattering
between acoustic phonons in Na,RbBi and K;RbBi, leading
to an exceptionally low lattice thermal conductivity at room
temperature (~0.6—1 W m~! K~!). Furthermore, the analyses
of the elastic constants indicate that K,RbBi has a NPR. Like-
wise, we find both compounds are dynamically and mechan-
ically stable from elastic constants and phonon dispersion,
indicating their synthesis feasibility. Therefore, these topolog-
ical compounds offer good candidates for TE device applica-
tions operated over a broad temperature range.
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