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Abstract: Using  first‐principles  calculations, we predict highly  stable  cubic bialkali bismuthides 

Cs(Na, K)2Bi with several technologically important mechanical and anisotropic elastic properties. 

We  investigate  the mechanical  and  anisotropic  elastic properties under hydrostatic  tension  and 

compression. At zero pressure, CsK2Bi is characterized by elastic anisotropy with maximum and 

minimum stiffness along the directions of [111] and [100], respectively. Unlike CsK2Bi, CsNa2Bi ex‐

hibits almost isotropic elastic behavior at zero pressure. We found that hydrostatic tension and com‐

pression change the isotropic and anisotropic mechanical responses of these compounds. Moreover, 

the auxetic nature of the CsK2Bi compound is tunable under pressure. This compound transforms 

into a material with a positive Poisson’s ratio under hydrostatic compression, while it holds a large 

negative Poisson’s ratio of about −0.45 along the [111] direction under hydrostatic tension. An aux‐

etic nature  is not observed  in CsNa2Bi, and Poisson’s  ratio shows completely  isotropic behavior 

under hydrostatic compression. A directional elastic wave velocity analysis shows that hydrostatic 

pressure effectively changes the propagation pattern of the elastic waves of both compounds and 

switches the directions of propagation. Cohesive energy, phonon dispersion, and Born–Huang con‐

ditions show that these compounds are thermodynamically, mechanically, and dynamically stable, 

confirming the practical feasibility of their synthesis. The identified mechanisms for controlling the 

auxetic and anisotropic elastic behavior of these compounds offer a vital feature for designing and 

developing high‐performance nanoscale electromechanical devices. 

Keywords: mechanical properties; elastic anisotropy; negative Poisson’s ratio; auxetic material 

 

1. Introduction 

The alkali, bialkali bismuthides, and bialkali antimonides are highly quantum‐effi‐

cient semiconductors, attracting the attention of research communities for their applica‐

tions  in photodetectors, photo‐emissive, and sensing  technologies  [1,2]. Characteristics 

such as photon absorption and practical work function make bialkali antimonides suitable 

candidates  for  electron  emission  devices  [3–5].  The  topological  phases  of  these  com‐

pounds are also studied. The cubic bialkali bismuthide of KNa2Bi can be driven  into a 
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topological  insulator or a  three‐dimensional (3D) Dirac semimetal under uniaxial com‐

pression or tensile strain, respectively [6]. The cubic bialkali antimonide KNa2Sb can also 

be turned into a topological insulator under hydrostatic pressure [7]. In addition, among 

Bi‐based alkali metal compounds, A3Bi  (A = Na, K, Rb) belongs  to a particular class of 

topological electronic states, 3D Dirac semimetals [8]. Experimentally, much attention has 

been paid to alkali antimonides to explore the critical electrical and optical properties for 

technological applications [9–12]. On the theoretical side, most bialkali antimonide com‐

pounds have been widely studied. For instance, Kalarasse et al. [13] investigated the struc‐

tural,  elastic,  electronic,  and  optical properties  of  cubic  bialkali  antimonides, Na2KSb, 

Na2RbSb, Na2CsSb, K2RbSb, K2CsSb, and Rb2CsSb, using first‐principle methods. Amador 

[14]  investigated  the electronic structure and optical properties of Na2KSb and NaK2Sb 

from  the  first‐principles many‐body  theory. Vineet Kumar et al.  [15] have  studied  the 
thermoelectric properties of the bialkali antimonide Na2KSb using the full‐potential‐line‐
arized augmented plane wave. A recent study examined the nontrivial topological prop‐

erties of CsNa2Bi and CsK2Bi compounds [16]. However, a comprehensive study of the 

stability and mechanical properties of cubic bialkali bismuthide CsNa2Bi and CsK2Bi com‐

pounds under equilibrium and hydrostatic pressure is still missing. 

Most of the theoretically suggested materials are stable; however, their synthesis was 

not possible in some cases. One of the main reasons for the contradictory theoretical pre‐

dictions is that not all the stability criteria were respected in the calculations. Generally, 

the essential stability criteria for a given structure can be divided into three categories: (1) 
A criterion arises from the total energies that must meet the conditions ET (compound) < 

ET (all elements); the difference between the two energies is called the cohesive energy (as 

a necessary condition), which must be negative; (2) the mechanical stability (as a necessary 

condition); a necessary condition for the thermodynamic stability of a crystal system  is 

that the crystals must be mechanically stable against arbitrary (but small) homogeneous 

deformations [17]; (3) the dynamical stability (as a sufficient condition); this condition is 

satisfied by the phonon dispersion. The presence of imaginary frequencies in phonon dis‐

persion leads to a violation of this criterion. 
Elastic constants provide essential information concerning the strength of materials 

and often act as stability criteria or order parameters in investigating the problem of struc‐

tural transformations [18,19]. Physical properties, such as sound velocity, hardness, Debye 

temperature, and the melting point, are related to the elastic constants [20–22]. In addition, 

phenomena  such  as  a  negative  Poisson’s  ratio  (NPR),  negative  linear  compressibility 

(NLC), and anisotropic mechanical response are characterized by these constants. These 

properties are an essential requirement for fundamental research and experimental inves‐

tigations [23,24]. The anisotropic mechanical response and NPR in auxetic materials are 

of great interest because of the generally enhanced mechanical properties. The materials 

with NPR typically possess enhanced toughness, shear resistance, and efficient sound or 

vibration  absorption, which  enable various  applications,  such  as personnel protection 

[25], automotive industries [26], biomedicine [27], aerospace and defense [28], and many 

commercial applications [29,30]. The elastic anisotropy of materials is also an important 

characteristic  that affects other material properties, such as phase  transformations  [31], 

indentation resistance [32], plastic deformation [33], and crack propagation [34]. There‐

fore, the analysis of elastic anisotropy is an essential characterization of material proper‐

ties. 

The present report introduces so‐far hypothetical cubic bialkali bismuthides Cs(Na, 

K)2Bi and investigates all the stability criteria as well as the mechanical and anisotropic 

elastic properties under hydrostatic tension and compression. First, we study the struc‐

tural properties and stability conditions of these compounds, including the formation en‐

ergy and mechanical and dynamical stability. Then, the effect of hydrostatic pressures on 

the mechanical behaviors, such as the anisotropic elastic property, NPR, and elastic wave 

velocities,  is  investigated.  Furthermore,  several  polycrystalline modules  involving  the 
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bulk modulus, Young’s modulus, shear modulus, Pugh ratio, and brittle/ductile charac‐

teristics will be presented. 

2. Computational Details 

Our calculations are carried out in the framework of DFT by using the WIEN2k pack‐

age  (v19.1,  Vienna,  Austria)  [35].  The  generalized  gradient  approximation  (GGA)  of 

Perdew–Burke Ernzerhof (PBE) formalism is adopted for the exchange–correlation poten‐

tial [36]. The bulk BZ of these compounds is calculated using a 12 × 12 × 12 k‐point mesh. 

Furthermore, the wave function inside the muffin‐tin sphere is extended in terms of spher‐

ical harmonics up to lmax = 10 and the plane wave cut off RMT/Kmax = 9.5. The energy con‐

vergence criterion is set to 10−5 Ry, and the charge convergence is less than a 10−3 electronic 

charge in these materials. The phonon dispersion of the Cs(Na, K)2Bi material is computed 

using the all‐electron FHI‐aims code (v200112, Volker Blum, Berlin, Germany) [37] with 

the Phonopy package  (v2.9.0, Kyoto,  Japan)  [38] within  the GGA approach. For elastic 

constants calculations, we used the IRELAST code [39]. In addition, the ELATOOLS code [40] 

was performed for the analysis of elastic constants and visualization of mechanical prop‐

erties. 

3. Results and Discussion 

3.1. Structural Properties and Stability Conditions 

Bialkali bismuthide Cs(Na, K)2Bi has a cubic crystal structure with space group Fm‐

3m (No. 225) (similar to full Heusler compounds [41,42]), as shown in Figure 1. In these 

structures, the Cs atoms are sited at the 4a (0, 0, 0) Wyckoff position, Na/K atoms are sited 

at the 8c (0.25, 0.25, 0.25) and (0.25, 0.25, 0.25) Wyckoff positions, and Bi atoms are sited at 

4b (0.5, 0, 0) leading to a primitive cell involving four formula units, namely two K/Na 

atoms and two Bi and Cs atoms. The optimized values of the primitive lattice constants 

(a0) of these compounds are 5.86 Å (CsNa2Bi) and 6.32 Å (CsK2Bi). In the following, we 

will  investigate all  the essential  stability criteria, namely,  thermodynamic, mechanical, 

and dynamic stability of these compounds. 

 

Figure 1. The crystal structures of Cs(Na, K)2Bi compounds (a) under hydrostatic tension, (b) equi‐

librium states, and (c) hydrostatic compression. The Cs atoms are sited at 4a (0, 0, 0) Wyckoff posi‐

tion, Na/K atoms are sited at 8c  (0.25, 0.25, 0.25) and  (0.25, 0.25, 0.25) Wyckoff positions, and Bi 

atoms are sited at 4b (0.5, 0.0, 0.0) leading to a primitive cell involving four formula units, namely 

two K/Na atoms and two Bi and Cs atoms. 

The cohesive energy (𝐸஼) is calculated to determine the thermodynamic stability of 

the structures. The  𝐸஼, which is the necessary energy to separate the solids in atoms at 

stable states, was calculated using the following equation [43,44], 

/ /

/

,
Tot Tot Tot Tot
Bulk Cs Cs Bi Bi Na K Na K

C
Cs Bi Na K

E N E N E N E
E

N N N

  


 
  (1)
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where  𝐸஻௨௟௞
்௢௧   is the total energy of the bulk, and  𝐸஼௦

்௢௧,  𝐸஻௜
்௢௧, and  𝐸ே௔/௄

்௢௧   are the total en‐

ergy of each element. Furthermore, NCs, NBi, and NNa/K are the number of atoms of each 

element in the unit cell. 
The calculated cohesive energies for CsNa2Bi and CsK2Bi compounds are −1.70 and 

−1.62 eV/atom, respectively. According to the negative values of cohesive energy [44–46], 

these structures are thermodynamically stable. In addition to the cohesive energy, the en‐

thalpy of formation (∆FH) (or formation energy (Ef)) of these compounds has been calcu‐

lated. The ∆FH can be defined as the difference in total energy of the compound and the 

energies of its constituent elements in their stable states [47]: 

2( , ) /2 ,tot Bulk Bulk Bulk
F Cs Na K Bi Cs Na K BiH E E E E       (2)

where  𝐸େୱሺ୒ୟ,୏ሻమ஻௜
௧௢௧   is the total energy per formula unit of Cs(Na, K)2Bi, and  𝐸஼௦

஻௨௟௞,  𝐸ே௔/௄
஻௨௟௞ , 

and  𝐸஻௜
஻௨௟௞  are the total energies per atom of pure elements in their stable structures. If we 

ignore the influence of pressure on the condensed phases and calculate the energies at 0 

K without any entropic contributions, the formation energy can be taken as ∆FH [47]. The 

calculated enthalpy formation of CsNa2Bi and CsK2Bi compounds  is −44.73 kJ/mol and 

−26.28 kJ/mol, respectively. The results of the EC and ∆FH show that CsNa2Bi is more stable 

than CsK2Bi. On  the other hand,  it was predicted  (in Materials Project  (MP) with mp‐

1096426 ID [48]) that the compound CsNa2Bi can be decomposed into Cs3Bi (cubic phase) 

and Na3Bi (hexagonal phase): 

FΔ H= -17.47 kJ/mol
2 3 33CsNa Bi Cs Bi + 2Na Bi.   (3)

Based on this balanced chemical equation, the sum of product enthalpy of the for‐

mations (∆FH products) and reactions (∆FH  reactions) is −231.81 kJ/mol and −214.34 kJ/mol, re‐

spectively. Therefore, the reaction enthalpy of the formation (∆FH reaction = ∆FH products − ∆FH 

reactions)  is −17.47 kJ/mol (exothermic reaction),  indicating that this compound can be de‐

composed into Cs3Bi and Na3Bi compounds. For the CsK2Bi compound, such a balanced 

equation is also examined: 

FΔ H= +2.05 kJ/mol
2 3 33CsK Bi Cs Bi + 2K Bi.   (4)

In this balanced chemical equation, the sum of ∆FH products and ∆FH  reactions is −469.45 

kJ/mol and −471.50 kJ/mol, respectively. Although the difference in enthalpy energy be‐

tween products and reactants is small, it is an exothermic reaction (∆FH reaction ≈ 2 kJ/mol). 

It should be noted that these results were calculated at the standard temperature and pres‐

sure  (STP) conditions. Thus,  though  the energies suggest  that  these materials could be 

found at normal conditions, other stabilities may still be required to synthesize the mate‐

rial. 

The elastic tensor was calculated to evaluate the mechanical stability by evaluating 

the elastic constants, which are listed in Table 1. As listed in Table 1, the elastic constants 

of CsK2Bi are in good agreement with the elastic constants in MP. In general, the Born–

Huang criterion is used to illustrate the mechanical stability of the crystal structure [49]. 

In the case of cubic crystals, the Born–Huang conditions of stability is a simple form: 

11 12 11 12 440 ; 2 0 ; 0 .C C C C C       (5)
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Table 1. Calculated elastic constants  (Cij), bulk modulus  (B), shear modulus  (G), Young’s modulus  (E), and Kleinman 

parameter (ξ) of Cs(Na, K)2Bi compounds under hydrostatic compression (V/V0 = 0.97), tension (V/V0 = 1.03), and equilib‐

rium state (V/V0 = 1.0). Voigt, Reuss, and Voigt–Reuss–Hill were utilized to calculate these moduli. 

Properties 

CsNa2Bi  CsK2Bi 

V/V0 = 1.03 

(~0.76 GPa) 
V/V0 = 1.0 

V/V0 = 0.97 

(~1.0 GPa) 

V/V0 = 1.03 

(~0.72 GPa) 
V/V0 = 1.0 

V/V0 = 0.97 

(~1.0 GPa) 

C11 (GPa)  19.82  29.58  38.81  8.80  14.05, 14 *  25.88 

C12 (GPa)  4.73  7.24  7.71  5.83  7.85, 6 *  10.14 

C44 (GPa)  10.26  12.38  15.23  9.09  10.25, 9 *  12.73 

BV/BR/BVRH (GPa)  9.7/9.7/9.7  14.7/14.7/14.7  18.1/18.1/18.1  6.8/6.8/6.8  9.9/9.9/9.9  15.4/15.4/15.4 

GV/GR/GVRH 

(GPa) 
9.1/8.9/9.0  11.9/11.9/11.9  38.6/38.6/38.6  6.0/2.9/4.5  7.39/5.32/6.36  10.9/10.2/10.5 

EV/ER/EVRH (GPa)  20.9/20.6/20.7  28.1/28.1/28.1  35.9/35.9/35.9  14.0/7.8/10.9  17.7/13.5/15.6  26.2/25.1/25.6 

νv/νR/νVRH  0.142/0.148/0.145 0.181/0.181/0.1810.169/0.169/0.169 0.158/0.309/0.2330.201/0.272/0.236 0.215/0.228/0.222

B/GV/B/GR/B/GVR

H 
1.06/1.08/1.07  1.23/1.23/1.23  1.17/1.17/1.17  1.12/2.29/1.51  1.34/1.86/1.55  1.42/1.50/1.46 

ξ  0.446  0.454  0.392  1.111  0.930  0.665 

* Taken from Materials Project with mp‐867339 ID. 

The mechanical stability of the CsNa2Bi and CsK2Bi compounds show that the elastic 

constants of the compounds satisfy the Born–Huang criterion, i.e., they are mechanically 

stable. 

As a determination of the last stability condition, the dynamic response of these com‐

pounds  is  investigated  by  phonon  calculation.  The  calculated  phonon  dispersions  of 

CsNa2Bi and CsK2Bi along the high symmetry points in the Brillouin zone are shown in 

Figure 2a,b, respectively. No imaginary phonon frequency is found for these compounds. 

An imaginary phonon frequency, if it existed, would indicate that the structure is dynam‐

ically unstable (or has a phase transition) and vice versa [50]. Therefore, it is concluded 

that Cs(Na, K)2Bi materials are thermodynamically, mechanically, and dynamically stable. 

This proves that both compounds have a high degree of stability. 

 

Figure 2. Phonon dispersion curves of the (a) CsNa2Bi and (b) CsK2Bi compounds along with high symmetry points in the 

Brillouin zone. It can be clearly seen that the phonon dispersion exhibits no imaginary frequency (soft phonon modes), 

confirming the dynamic stability of these compounds. 

3.2. Basic Mechanical Properties 

At the beginning of this section, we discuss the elastic constants (Cij) under hydro‐

static pressures and define their relationship with the macroscopically measurable quan‐

tities that give us information about the elastic and mechanical properties of the system. 

In the present work, the hydrostatic pressures (i.e., hydrostatic tension and compression) 



Nanomaterials 2021, 11, 2739  6  of  18 
 

 

are investigated according to the volume ratio V/V0, which is between small values of V/V0 

= 1 ± 0.03. The corresponding hydrostatic pressures of these volume ratios for each of these 

compounds are presented in Table 1. The Young’s modulus (E), bulk modulus (B), shear 

modulus (G), and Poisson’s ratio (ν) are known as the fundamental elastic properties and 

are macroscopically measurable quantities that give a measure of the elasticity of the ma‐

terial. Voigt–Reuss–Hill (VRH) approximation [44,51,52] was utilized to calculate the four 

moduli (E, B, G, and ν). Table 1 shows the calculated elastic constants under pressures 
with V/V0 = 1.03 (hydrostatic tension), V/V0 = 1.0 (equilibrium state/zero pressure), and 

V/V0 = 0.97 (hydrostatic compression) volume ratios. It is well known that C11 indicates 

the [100] directional linear compression resistance [53], and C44 represents the magnitude 

of  the  [001] directional  resistance on  the  (100) plane under  the monoclinic shear stress 

[53,54]. This  table  shows  that between  two  compounds,  the C11 values of CsNa2Bi are 

larger than C12 and C44 in all three pressure cases, indicating that it is difficult to compress 

CsNa2Bi along the [100] direction. However, under V/V0 = 1.03, the C44 value of CsK2Bi is 

larger than C12 and C11, which indicates that this material shows higher [001] directional 

resistance on the (100) plane under shear deformation. 

Generally, the bulk modulus (B) shows the compressibility of solids under hydro‐

static pressure [53]. So, a larger B value indicates that the material is more difficult to be 

compressed. It can also be used as a measure of the average bond strength of atoms for 

given crystals. From Table 1, the CsNa2Bi and CsK2Bi have the largest and smallest bulk 

moduli (under V/V0 = 1.0 and 1.0 ± 0.03), respectively, indicating that CsNa2Bi and CsK2Bi 

are the most incompressible and the most compressible, respectively. Therefore, the bond 

strength of CsK2Bi should be the weakest, while that of CsNa2Bi should be the strongest. 

The  shear modulus  (G)  is  an  important  characteristic  for  resisting deformation under 

shear stress, and a  larger G corresponds to a higher shear resistance [54]. On the other 

hand, G is also related to hardness, and a large shear modulus corresponds to high hard‐

ness. The CsNa2Bi and CsK2Bi compounds have the  largest and smallest shear moduli, 

respectively, indicating that CsNa2Bi and CsK2Bi have the highest hardness and they are 

the highest shear resistance under shear stress, respectively. Furthermore, Young’s mod‐

ulus (E) defined as the ratio of the stress to strain, is used to measure the stiffness of the 

solid, and when the value of E is large, the material is stiff. In this case, Young’s modulus 

of CsNa2Bi is the largest, which indicates that it has the highest stiffness. Poisson’s ratio 

(ν) and Pugh’s ratio (B/G) can be used to describe the ductility and brittleness of solids. 

According to Pugh’s criterion (Poisson’s criterion), if a material shows B/G > 1.75 (ν > 0.26), 

it means that this solid is ductile [51,55]. On the contrary, the solid is brittle. Table 1 shows 

that, at equilibrium states, CsNa2Bi and CsK2Bi are brittle (in VRH approximation). It is 

noteworthy that under hydrostatic compression (V/V0 = 0.97) and tension (V/V0 = 1.03), 

these compounds remain in the brittle regime. The degree of directionality of the covalent 

bonds can be estimated from the value of Poisson’s ratio. The value of Poisson’s ratio is 

small (ν = 0.1) for covalent materials, while for ionic materials, a typical value of ν is 0.25. 

Poisson’s ratio values of CsNa2Bi and CsK2Bi are about ν < 0.18 and ν > 0.23, respectively. 

Therefore, the bonds in CsNa2Bi and CsK2Bi compounds are dominated by the covalent 

and ionic contributions, respectively, and the covalent contribution increases with hydro‐

static tension. 

To explain the nature of chemical bonding in the different atoms, the valence elec‐

tronic charge density distribution was computed in (100) and (110) crystallographic planes 

at equilibrium states of the CsNa2Bi and CsK2Bi compounds (see Figure 3). It is evident 

from the valence charge density contours of Figure 3a,b that the Bi charge density overlaps 

Na and Cs alkali metals in the CsNa2Bi compound, pointing to a covalent bond. In addi‐

tion, it can be seen from Figure 3c that Cs in the CsK2Bi compound, in the (001) and (110) 

planes, have a spherical electron charge density distribution with no overlap with the Bi 

and K atoms, pointing to an ionic bond. However, in this compound, some overlap exists 

between K and Bi atoms in the (110)‐plane, which points to a covalent bond (Figure 3d). 
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Thus,  the covalent nature of  the atomic bonds  in  the CsNa2Bi compound  is more pro‐

nounced than in the CsK2Bi compound. On the other hand, the presence of s‐p hybridiza‐

tion between alkali metals and bismuth could be further confirmation of the presence of a 

covalent bond between these atoms, which can also be seen in the electron density map. 

These results are consistent with Poisson’s ratio analysis. 

 

Figure 3. Electronic charge densities  in (100) and  (110) planes  for  (a,b) CsNa2Bi and  (c,d) CsK2Bi 

compounds. It is evident from the valence charge density contour of the CsNa2Bi compound that 

the Bi charge density overlaps with Na and Cs, pointing to a covalent bond. In addition, the Cs‐

atom of CsK2Bi compound  in the (001)‐plane has a spherical electron charge density distribution 

with overlap with Bi and K, pointing to an ionic bond. 

Another important mechanical parameter is the Kleinman parameter (ξ), which de‐

scribes the relative positions of the cation and anion sublattices under volume‐conserving 

strain distortions for which positions are not fixed by symmetry [56]. The internal strain 

can be quantified by ξ. This parameter describes the relative ease of bond bending versus 

bond stretching. In general, minimizing bond bending leads to ξ = 0, while minimizing 

bond stretching leads to ξ = 1. The Kleinman parameter is defined as the elastic constants 

by the following equation: 

11 12

11 12

8
.

7 2

C C

C C
 



  (6)

The Kleinman parameter under V/V0 = 1.03, V/V0 = 1.0, and V/V0 = 0.97 are found to 

be  0.446,  0.454,  and  0.392  (1.111,  0.930,  and  0.665)  for CsNa2Bi  (CsK2Bi),  respectively. 

Therefore, the value of ξ for CsNa2Bi (CsK2Bi) indicates that bond bending (bond stretch‐

ing) is dominated in this compound. 

Due to the small values of the elastic constants of these structures, other properties 

such as the group wave velocities (Vg) and the phase wave velocities (Vp) may be interest‐

ing. Using the elastic constants and the density of these compounds, we can further deter‐

mine the direction dependence of these properties. We calculated the Vg and Vp from elas‐

tic constants using the Christoffel equation [57] for both the longitudinal (L) wave velocity 

and the two transverse (T) modes. The two secondary modes, namely, the fast secondary 



Nanomaterials 2021, 11, 2739  8  of  18 
 

 

mode (FS) and slow secondary mode (SS), correspond to the T‐wave, and the single pri‐

mary mode (P) is the L‐wave [57]. Comparing these properties provides a measure of how 

the acoustic properties deviate from isotropy and allows for a direct comparison of the 

anisotropy  among different materials. Figures  4–7  show  the  calculated directional‐de‐

pendent group and phase velocities of Cs(Na, K)2Bi for the primary and secondary modes 

at different pressures. It is observed that both compounds in the equilibrium state have 

approximately similar patterns in primary modes of phase velocity (Figures 4a and 5a). 

This pattern has not changed in either compound after applying hydrostatic tension (V/V0 

= 1.03), and only the maximum and minimum values of the P mode have been reduced. 

Under V/V0 = 1.0 and V/V0 = 1.03, Vp has maximum (minimum) values in the P mode along 

the [111] ([100], [010], and [001]) direction(s). In addition, Vp has maximum (minimum) 

values  in  the  FS  and  SS modes  along  the  (110)/(011)/(101) plane  ([111] direction)  and 

[100]/[010]/[001] direction ([110]/[101]/[011] direction), respectively (Figure 4b,c). For the 
two secondary modes (i.e., FS and SS modes) in an equilibrium state and under hydro‐

static tension, the patterns have not changed, and the minimum and maximum values are 

in the [111] and [100] ([001] or [010]) directions, respectively. Although under hydrostatic 

tension, the change is not observed in the propagation patterns of the Vp, under hydro‐

static compression, these patterns change significantly. For the CsNa2Bi under hydrostatic 

compression (V/V0 = 0.97), the propagation patterns of P, FS, and SS modes of Vp are re‐

versed so that the direction of the minimum and maximum values are switched, as shown 

in Figure 4. As shown in Figure 5, such behavior does not exist in the phase velocity prop‐

agation pattern of CsK2Bi. 
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Figure 4. The calculated 2D directional dependence of the phase wave velocity (Vp) in (xy)/(001)‐plane for CsNa2Bi. There 

are two types of acoustic wave velocities, i.e., the longitudinal wave velocity and the transverse wave velocities in two 

directions. The single primary mode (a)  is the  longitudinal wave velocity, and the two secondary modes, namely, fast 

secondary (b) and slow secondary (c), correspond to the transverse wave velocities. Although under hydrostatic tension 

no changes are observed in the propagation patterns of Vp, in hydrostatic compression, these patterns change significantly. 

 

Figure 5. The calculated 2D directional dependence of the phase wave velocity (Vp) in (xy)/(001)‐plane for CsK2Bi. There 

are two types of acoustic wave velocities, i.e., the longitudinal wave velocity and the transverse wave velocities in two 

directions. The single primary mode  (a)  is  the  longitudinal wave velocity and  the  two secondary modes, namely,  fast 

secondary (b) and slow secondary (c), correspond to the transverse wave velocities. 

Similar to the phase velocity, the group velocity behavior is shown in Figures 6 and 

7. However,  a  few  points  are worth mentioning.  Under  hydrostatic  compression  of 

CsK2Bi, the maximum value for the P mode of Vg in the [001] (or [010] and [100]) direction 

is sharpened, while in the equilibrium state (or hydrostatic tension) in the [001] direction, 

it covers a large area (see Figure 6a compared to Figure 7a). Under this pressure (V/V0 = 

1.03) for the FS mode of Vg, the distribution pattern is much more complex in CsK2Bi than 

in the case of the FS mode at hydrostatic tension (V/V0 = 0.97) (see Figure 6a compared to 

Figure 7b). According to these results, it can be seen that the group and phase velocities 

of CsNa2Bi are sensitive to hydrostatic compression, while those of CsK2Bi are not. The 

minimum and maximum values of phase and group velocities for the three propagation 
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modes (P, FS, and SS) decrease and increase under hydrostatic tension and hydrostatic 

compression, respectively. These values are listed in Table 2. 

 

Figure 6. The calculated 2D directional dependence of the group wave velocity (Vg) in (xy)/(001)‐plane for the CsNa2Bi 

compound. There are two types of acoustic wave velocities, i.e., the longitudinal wave velocity and the two transverse 

wave velocities in two directions. The single primary mode (a) is the longitudinal wave velocity and the two secondary 

modes, namely, fast secondary (b) and slow secondary (c), correspond to the transverse wave velocities. Although under 

hydrostatic tension no change is observed in the propagation patterns of the Vg, in hydrostatic compression, these patterns 

change significantly. 
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Figure 7. The calculated 2D directional dependence of the group wave velocity (Vg) in (xy)/(001‐plane for CsK2Bi. There 

are two types of acoustic wave velocities, i.e., the longitudinal wave velocity and the transverse wave velocities in two 

directions. The single primary mode  (a)  is  the  longitudinal wave velocity and  the  two secondary modes, namely,  fast 

secondary (b) and slow secondary (c), correspond to the transverse wave velocities. 

Table 2. The minimum (max) and the maximum (min) values of primary mode (P), fast secondary (FS), and slow second‐

ary (SS) of the phase and group velocity, Young’s modulus (E), Poisson’s ratio (ν), and anisotropic indexes AU and AZ of 

Cs(Na, K)2Bi under hydrostatic compression (V/V0 = 0.97), hydrostatic tension (V/V0 = 1.03), and equilibrium state (V/V0 = 

1.0). 

Proprieties 
CsNa2Bi  CsK2Bi 

V/V0 = 1.03  V/V0 = 1.0  V/V0 = 0.97  V/V0 = 1.03  V/V0 = 1.0  V/V0 = 0.97 

𝑷𝒎𝒂𝒙
𝒑  (m/s)  2307.4  2661.1  2968.6  2213.9  2470.7  2894.1 

𝑷𝒎𝒊𝒏
𝒑  (m/s)  2121.3  2591.6  2952.7  1533.5  1906.5  2587.8 

𝑭𝑺𝒎𝒂𝒙
𝒑  (m/s)  1526.6  1676.3  1878.8  1533.5  1628.8  1815.2 

𝑭𝑺𝒎𝒊𝒏
𝒑  (m/s)  1386.0  1621.3  1859.9  1023.4  1194.0  1568.6 

𝑺𝑺𝒎𝒂𝒙
𝒑  (m/s)  1526.6  1676.3  1872.5  1509.2  1628.8  1815.2 

𝑺𝑺𝒎𝒊𝒏
𝒑  (m/s)  1308.7  1592.6  1859.9  619.4  895.0  1426.8 

𝑷𝒎𝒂𝒙
𝒈  (m/s)  2307.4  2661.1  2968.6  2213.9  2470.7  2894.1 

𝑷𝒎𝒊𝒏
𝒈  (m/s)  2121.3  2591.6  2952.7  1533.5  1906.5  2587.8 

𝑭𝑺𝒎𝒂𝒙
𝒈  (m/s)  1526.6  1676.3  1878.8  1686.4  1717.5  1818.4 
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𝑭𝑺𝒎𝒊𝒏
𝒈  (m/s)  1401.9  1623.2  1859.9  1368.8  1401.2  1613.8 

𝑺𝑺𝒎𝒂𝒙
𝒈  (m/s)  1530.4  1676.3  1872.6  1949.9  1932.2  1853.8 

𝑺𝑺𝒎𝒊𝒏
𝒈  (m/s)  1308.7  1592.6  1859.9  619.4  895.0  1426.8 

Emax (GPa)  22.80  28.99  36.26  29.95  22.87  18.87 

Emin (GPa)  18.00  26.74  35.69  20.17  8.41  4.15 

νmax  0.230  0.209  0.176  0.373  0.682  0.961 

νmin  0.040  0.147  0.164  0.049  −0.220  −0.449 

AU  0.1148  0.0126  0.0005  5.1503  1.9368  0.2837 

AZ  1.36  1.11  0.98  6.12  3.30  1.61 

3.3. Elastic Anisotropy 

For practical applications of solid materials, like mechanical properties, knowledge 

about the anisotropic nature of these elastic properties is vital. As mentioned in the previ‐

ous sections, the elastic anisotropy of materials is responsible for certain essential physical 

phenomena,  such  as  crack  behavior,  phase  transformations,  anisotropic  plastic  defor‐

mation, etc. The extent of anisotropy can be determined from the different values of elastic 

parameters in different crystallographic directions and anisotropy indices. Therefore, in 

the  continuation  of  this  section, we will  focus  on  the  anisotropic  elastic properties  of 

Cs(Na, K)2Bi and the effect of hydrostatic pressure on them. For this purpose, the illustra‐

tions of Young’s modulus and Poisson’s ratio  in  the different crystal planes and  three‐

dimensional closed surfaces are computed using the ElATools code. The behavior of ani‐

sotropy is understood from the shape of the three‐dimensional (3D) plots. For isotropic 

materials, the 3D diagrams of these elastic parameters are expected to be perfectly spher‐

ical and their projections on different planes to be circular. Thus, the deviation from spher‐

ical and circular shapes represents the anisotropic nature. In addition to this method, some 

anisotropy indices are explored due to their scientific interest. The universal anisotropy 

index (AU) and the Zener anisotropy factor (AZ) are the most critical anisotropy indices to 

describe elastic anisotropy. The following equations (Equations (7) and (8)) were used to 

calculate these anisotropic indexes, and the outcomes are listed in Table 2. 
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If a solid presents AU = 0 and AZ = 1, the solid exhibits an isotropic nature; otherwise, 

the solid is anisotropic. In addition, the larger values of AU and AZ indicate a higher degree 

of elastic anisotropy. The orientation dependence and two‐dimensional (2D) representa‐

tion in the xy‐plane of Young’s modulus of Cs(Na, K)2Bi under V/V0 = 1.03, 1.0, and 0.97 

are plotted in Figure 8. As shown in Figure 8a, CsNa2Bi in the equilibrium state exhibits a 

relatively isotropic nature with AU = 0.0126 and AZ = 1.11. Under hydrostatic compression 

(V/V0 = 0.97), this compound is completely isotropic. This is because its planar contours 

are more spherical than the equilibrium state. Anisotropy indices AU ≈ 0 and AZ = 0.98 also 

confirm  this. Hydrostatic  compression  increases  the anisotropy of  this  compound and 

takes  the  anisotropy  indices  out  of  the  isotropic  criteria. The degree  of  anisotropy  of 

CsK2Bi is higher than CsNa2Bi, as shown in Figure 8b. This is due to the difference between 

the minimum (Emin) and maximum (Emax) values of Young’s modulus (E) (see Table 2), and 

the 3D graphs (2D projections) close to the sphere (circular). It should be noted that the 

Emax (Emin) is on in (110) ((100)) and [111] ([100]) directions. These results have also been 

proven by the elastic anisotropy indices AU and AZ in Table 2. Similar to CsNa2Bi, hydro‐

static compression (tension) reduces (increases) the degree of anisotropy. 
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Figure 8. 3D representation and 2D projection (in xy‐plane) of Young’s modulus of CsNa2Bi (a) and CsK2Bi (b) in equilib‐

rium state (V/V0 = 1.0), under hydrostatic compression (V/V0 = 0.97), and tension (V/V0 = 1.03). The behavior of anisotropy 

is understood from the shape of the three‐dimensional (3D) plots. For isotropic materials, the 3D diagrams of Young’s 

modulus are expected to be perfectly spherical and its projections on different planes to be circular. The deviation from 

the spherical and circular shapes indicates anisotropy. 

Materials  that have NPR are known as auxetic materials. These materials have at‐

tracted special attention due to their exceptional advantages in sensing technologies. Pois‐

son’s ratio  is the ratio of the transverse contraction strain to the  longitudinal extension 

strain  in the direction of the stretching force (see Figure 9a). Therefore, a material with 

NPR expands in the transverse direction (TD) when stretched in the longitudinal direction 

(LD) (see Figure 9b). Interestingly, in addition to the anisotropic nature of CsNa2Bi and 

CsK2Bi, CsK2Bi exhibits an auxetic property, although  this property has only been ob‐

served in cubic elemental metals so far [58]. Using the elastic constants, we have analyzed 

the spatial variation of Poisson’s ratio for each of the studied compounds. In this analysis, 

the spherical coordinates of Poisson’s ratio, ν(θ; φ; χ), require an extra dimension in addi‐

tion to the θ(0; π) and φ(0; 2π) coordinates. This additional dimension can be character‐

ized by the angle χ(0; 2π). 
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Figure 9. Schematic representation of (a) positive and (b) negative Poisson’s ratios of materials. Green arrows represent 

the direction of the tension. 3D representation and 2D projection (in xy‐plane) of calculated Poisson’s ratios of (c) CsNa2Bi 

and (d) CsK2Bi. Green (red) color corresponds to the positive (negative) values of Poisson’s ratio. 

The results in the equilibrium state and under hydrostatic pressure are shown in Fig‐

ure 9c,d. The blue color in these figures represents the (001) surface obtained at the maxi‐

mum of χ(0; 2π), while the red and green lines correspond to the negative and positive 

values of ν obtained at the minimum of χ, respectively. As can be seen, in the equilibrium 
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state (V/V0 =1.0), CsNa2Bi and CsK2Bi have positive and negative Poisson’s ratios, respec‐

tively. It is noteworthy that CsNa2Bi is not an auxetic material, and as stated, this com‐

pound is almost isotropic. At the equilibrium state, when the TD is parallel to the [110] 

direction  in CsNa2Bi,  the maximum  (minimum) positive Poisson’s ratio  is close  to 0.16 

(0.11). In CsK2Bi, when the TD is parallel to the [100] (or [010]) direction, a maximum or 

minimum positive Poisson’s ratio of 0.36 (see 2D projection in xy‐plane in Figure 9d) can 

be  reached  (blue  and green  colors), while  the maximum negative Poisson’s  ratio  (red 

color) is −0.22 when the TD is along the [111] direction (45). Hydrostatic pressures have 

attractive effects on the auxetic and anisotropic nature of these compounds. At hydrostatic 

tension,  the anisotropy of Poisson’s ratio  is  illustrated  in Figure 9c, where  the positive 

maximum (0.23) and minimum (0.04) values are observed along [110] for CsNa2Bi. Con‐

sidering the 3D representation and 2D projection of Poisson’s ratio and the increase in the 

difference between the minimum (νmin) and maximum (νmax) values (see Table 2), it can be 

concluded that the degree of anisotropy of Poisson’s ratio increased. Since the νmin is close 

to zero,  it is predicted that  increasing the hydrostatic tension (V/V0 > 1.03) in this com‐

pound will lead to the appearance of a negative Poisson’s ratio. Like CsNa2Bi, for the case 

of CsK2Bi, under hydrostatic tension, anisotropy of the Poisson’s ratio increases and ex‐

hibits a large negative Poisson’s ratio with a maximum value of −0.45 in the [111] direction 

(Figure 9d). In contrast to the hydrostatic tension, CsNa2Bi is almost isotropic (3D repre‐

sentation of ν is relatively spherical) at hydrostatic compression, so the νmin (= 0.176) and 

νmax (= 0.164) are close to each other. The isotropic Poisson’s ratio of this material shows 

an interesting concept: When the transverse contraction is parallel to a particular direc‐

tion, the vertical response is the same in all directions. The effect of this pressure in CsK2Bi 

also causes the transition from an auxetic material to a non‐auxetic material. This is be‐

cause the NPR is almost zero (Figure 9d). It can be predicted that with increasing hydro‐

static compression (V/V0 < 0.97), this value will be completely zero. 

4. Conclusions 

We investigated the stability, elastic, and anisotropic elastic properties of the so‐far 

hypothetical Cs(Na, K)2Bi compounds under hydrostatic compression and tension using 

first‐principles calculations. The stability checks meet the three critical conditions for ther‐

modynamic, mechanical, and dynamic stability, evidencing highly stable compounds for 

practical  applications.  The  hydrostatic  compression  and  tension  based  on  volumetric 

change of V/V0 = 1.0 ± 0.03 were used to investigate the mechanical properties and elastic 

wave velocities of these compounds. The results show that these compounds are brittle in 

an equilibrium state (V/V0 = 1.0) and under  the studied pressures. The compounds are 

sensitive to the type of hydrostatic pressure, with interesting behaviors appearing in their 

mechanical properties. In CsNa2Bi, the direction (propagation pattern) of the elastic wave 

velocity is switched (changed) under hydrostatic compression (V/V0 = 0.97), whereas un‐

der hydrostatic tension (V/V0 = 1.03), such behavior is not observed. On the other hand, in 

CsK2Bi, there is no significant change in the propagation pattern of elastic waves, and only 

the minimum and maximum values change. Hydrostatic compression and tension in both 

compounds reduce and increase the mechanical anisotropy, respectively. The anisotropy 

index and the spatial shape of Young’s modulus show that CsNa2Bi has complete isotropic 

behavior under hydrostatic compression with good approximation. The results obtained 

for CsK2Bi show that it has a high anisotropic nature and is an auxetic material at equilib‐

rium. Hydrostatic compression eliminates the NPR in this compound. These compounds 

offer  promising  candidates  for  the  design  and  development  of  high‐performance  na‐

noscale electromechanical devices. 
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