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Abstract
Synthetic biology has been significantly shaped by modular design principles through analogies to electrical and com-
puter engineering. Although convenient, these parallels often break down in practice, and we are still largely unable to
engineer sophisticated systems that behave as predicted. As nature has achieved robust and intricate programs with-
out requiring strict modularity, we may want to revisit genetic circuit design approaches. Rather than pursuing mod-
ularity, we could aim for a robust and scalable design framework that embraces the uncertainty that context
dependence brings to engineering in a biological chassis. Systems and control theory offer a starting point, but a sub-
stantial conceptual leap will be needed to quantitatively predict system behavior and establish flexible context-aware
design processes. Only by overcoming these hurdles shall we be able to capitalize on synthetic biology in particular—
and on biotechnology in general—for medicine, environmental engineering, and energy production.

W hen the term ‘‘synthetic biology’’ was first coined in
1911, it referred more to synthetic chemistry than biol-
ogy.1,2 Today, this term represents a multidisciplinary

field of science that involves redesigning biological processes
and organisms for useful purposes. Its roots can be traced back
to 1961, when Jacob and Monod introduced the operon model
of gene regulation,3–6 which was the core process used in 2000
to create the first two synthetic genetic networks.7,8 Since then,
‘‘genetic circuit’’ has been used as a synonym for genetic network,
as in earlier systems biology studies.9,10

Shortly after the creation of these two synthetic genetic sys-
tems, some members of the engineering community advocated
that synthetic biology adopt a similar design abstraction hierar-
chy as employed in electronic circuit design.11,12 Within such an
approach, design should be performed at different levels of ab-
straction (DNA, genetic parts, modules, and systems) and should
allow one to disregard details of lower levels when designing at
any given layer.

Within any given layer, elements should then be composed
through well-characterized physical or information interfaces
to allow arbitrary combinations of elements into systems with
predictable behavior.11 These design principles have subse-
quently permeated the field as a basis for genetic circuit de-
sign.11,13–16 In fact, abstracting genetic components as input/

output (I/O) maps, often digital and static (as opposed to analog
and dynamic), has been highly convenient for performing step-
wise and systematic composition of complex circuits, as demon-
strated by design tools such as Cello and COMET.15,17

However, for this approach to be applicable, defined genetic
circuit components must be modular; that is, they must be fully
characterizable by their I/O behavior and connectivity, wherein
this behavior is maintained upon arbitrary composition (Fig. 1,
left). By contrast, there is clear evidence that biological compo-
nents, as defined and used today, do not satisfy this property
(Fig. 1, right).18–45

Whereas electronic circuit components are often designed
with internal compensation mechanisms to maintain predefined
I/O properties independent of their context, today’s genetic
components are by no means guaranteed to be modular.
Indeed, a component’s behavior is contingent on its intracellular
and extracellular context through diverse interactions, such as
DNA supercoiling,18 chromatin state,19 positional effects,20–23

off-target interactions,24,25 retroactivity,26,27 resource sharing,28–33

cell fitness and competition,34,35 microenvironmental cues,36 ran-
dom mutations,37 and growth rate feedback,38,39 to name a few.

Most of these interactions are currently not in the description
of genetic elements or their connectivity. Furthermore, the bio-
chemical reactions that drive circuit functionality are intrinsically
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stochastic,40–43 I/O responses are more often analog than digi-
tal,44 and temporal dynamics make static I/O characterization in-
sufficient to capture emergent system behavior.45

To move the field forward, we need to balance the conve-
nience and drawbacks of the assumptions implicit in a modular
and hierarchical design approach. For biological engineers,

these analogies may ultimately become an easily accessible
starting point that aids early design stages. As design is iterative,
one could initially assume that each component achieves a well-
defined subfunction with a fixed connectivity.

For instance, one could assume that modules have strictly
unidirectional interactions and that genetic parts, such as

FIG. 1. Auditing the analogies to electrical and computer engineering.
(Left) The appeal of applying principles from traditional circuit engineering disciplines is in its simplicity. Use of these principles rests on
assumptions inherent in modular and hierarchical design, which simplify the design and optimization of genetic circuits.
(Right) In practice, these assumptions often fail given the complexity of biological systems. For simplicity, many interactions among the factors
illustrated here are only drawn indirectly through their role in modulating cell state. In this way, these factors become coupled and are difficult to
disentangle. For instance, high transgene expression places a load on cellular resources, which causes endogenous gene expression to change,
thereby potentially affecting growth rate (encapsulated here in cell state). For cases in which there are multiple engineered cell types or strains in
a shared culture, the cells in which growth rate is higher will tend to dominate the population. The dashed arrows highlight some of the
interactions among factors that are often not accounted for in design and, depending on the application, may be undesirable. The set of solid
arrows from ‘‘Shared cellular resources’’ to ‘‘Host DNA encoding endogenous genes’’ and ‘‘DNA encoding synthetic genetic circuit’’ indicate that
cellular resources are required to produce both endogenous and synthetic gene products. At the same time, endogenous genes encode many
cellular resources, such as the ribosome, polymerase, and proteosome depicted here, as illustrated by the solid arrow from ‘‘Host DNA encoding
endogenous genes’’ to ‘‘Shared cellular resources.’’ The dashed arrow from ‘‘DNA encoding synthetic genetic circuit’’ to the ‘‘Shared cellular
resources’’ indicates that cellular resources are loaded (temporarily sequestered) by the process of transgene expression. Note that chromatin state
is primarily relevant in eukaryotic cell engineering, and RBSs are mainly used in bacterial synthetic biology. The term ‘‘positional effects’’ refers to
any sequence dependence of a part’s performance, as can be the case for promoters and RBSs. Stochasticity includes processes that occur at low
molecular counts and factors such as copy/integration number variation. See main text for relevant references. RBSs, ribosome binding sites.
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promoters, have the same activity independent of the surround-
ing DNA sequences. In subsequent design iterations, one could
then model bidirectional flow of information among modules
and additional physical interactions among parts, such as with
retroactivity,26 resource loading,31 and DNA supercoiling.18 In
this framework, retroactivity, loading, parts sharing, and interfer-
ence may even become useful features, as opposed to bugs to
be stamped out.

Unique Challenges of Building Genetic Circuits
The lack of strict modularity of engineered genetic components
emanates, in part, from the poor robustness of a component’s
defined I/O behavior to context. In fact, lack of robustness to
context is a major barrier to modular and scalable design, be-
cause existing elements in a system change properties once
new components are added and these elements consequently
need to be redesigned. This way, design complexity increases

combinatorially, rather than linearly, with the number of compo-
nents in the system, thus rendering the design process mono-
lithic and unscalable.

Lack of robustness also curtails the practical impact of syn-
thetic biology: most genetic circuits built today usually function
as intended only in tightly controlled laboratory and cellular
conditions (in general, reproducibility of research in biological
sciences and systems biology modeling is low, as a result of a
variety of factors, including lack of information reported on
the experimental setup or modeling workflow).46–49 With this
fragility, it is difficult to envision a future where engineered or-
ganisms will be deployed in the field, whether for environmen-
tal biosensing or as therapeutic agents.

Our current inability to efficiently and predictably design robust
circuits stems from our limited understanding of how the proper-
ties of genetic parts, modules, and systems vary with genetic
context,18,50 intracellular conditions and connectivity,28–30,33,38,51

and extracellular environment.52,53 How can we tackle this

FIG. 2. Rising to the unique challenges of building genetic circuits. To be able to design robust genetic circuits reliably and
predictably, we will likely need a combination of two approaches: engineering insulated genetic modules and developing more sophisticated
modeling and design frameworks that handle biological uncertainty (e.g., in connectivity among parts, simple physical process behavior, and
parameters) and noise. Representative questions corresponding to engineering insulated circuit modules are shown in the yellow rectangle
on the left, and those corresponding to embracing uncertainty in biophysical modeling and design are shown in the pink rectangle on the
right. Emergent system behaviors to be made robust and predictable, tools, and challenges associated with these tools are common to both
approaches.
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formidable challenge? At the most basic level, we have two
options: (1) insulating circuit components from their context
so they behave as designed despite disturbances or (2) evolving
current modeling and design frameworks to enable prediction
and optimization of complex interactions among modules and
between a circuit and its context (Fig. 2). To advance synthetic
biology, we will likely need a combination of the two.

Designing insulated genetic circuit modules
Robust circuit components are advantageous as they can main-
tain a desired behavior in the presence of environmental distur-
bances. There are already examples of genetic circuits that
implement negative feedback and feedforward compensation
mechanisms to attenuate interference from select extramodular
processes.29,30,54–64 As this work continues, we need to carefully
consider which system properties should be robust and to
which perturbations they should be robust. Additional chal-
lenges include the trade-offs between robustness to distur-
bances and input sensitivity, and between designing for
robustness and maintaining a scalable design process.

For instance, if we were to implement feedback compensation
for every single module, we would quickly introduce even more
resource loading and run out of orthogonal parts. This approach
may also prevent us from exploiting additional intermodule inter-
actions, thereby yielding suboptimal circuit designs. These practi-
cal challenges of engineering robust modules will require us to
consider which nodes in a system require feedback compensa-
tion for ensuring robustness of emergent output properties.

We will also need to develop new uncertainty representations
and robustness techniques to address these and other aspects
of engineering robust genetic circuits. In fact, while classical ro-
bust control methodologies65 may be leveraged, these are
mainly focused on exact parameterization of uncertainty,
which is most likely not conducive for engineering biology.
Therefore, new methods that tolerate large and unstructured
uncertainty, also and especially within the controller compo-
nents, will be needed. In addition, robustness is often only
addressed for steady state or deterministic I/O behavior. How-
ever, it is critical that we define metrics for assessing robustness
of a broader set of dynamical and stochastic properties, such as
with respect to periodic behavior, multistability, probability dis-
tributions, and more sophisticated signal processing.

Expanding the biomolecular modeling
and design toolbox
As many of the interactions among engineered modules and
their context will be difficult to completely disentangle, we
will also likely need to embrace uncertainty in the design
phase with new modeling and design frameworks that are ro-
bust to lack of information, especially in the connectivity
among circuit components. In the same way that Thévenin’s
theorem guides composition of complex electrical circuits
under ‘‘nonideal’’ conditions (without infinite input impedance
or zero output impedance),66 we need tools that allow us to pre-
dictably compose modules despite all the uncertainty inherent
in biological systems.

In this respect, we may also draw inspiration from the course
of natural evolution, wherein core processes are repeated and
conserved in different contexts, but their connectivity remains
fluid and context dependent through ‘‘weak regulatory link-
ages.’’67 This, too, will require novel approaches; nature has suc-
cessfully ‘‘designed’’ complex and robust systems through
billions of years of trial and error, whereas time is a precious
and limited resource in research and technology.

In cases wherein quantitative prediction of system be-
havior is required in the design process, we may be able to
adapt machine learning (ML) approaches to reduce uncer-
tainty in biophysical models and to facilitate system composi-
tion and prediction in a variety of contexts. These models
could allow us to identify designs that are more likely to per-
form as intended, thereby reducing the number of circuit var-
iants to be tested and ultimately accelerating the design
process.

However, our ability to generate strong ML models is tied to
data quality: we often have imprecise, indirect, and sparse mea-
surements, wherein only a subset of the system’s state can be
measured through a proxy, and at times with only population-
level resolution. Often, the types of measurements we can
make depend on the experimental setup, so we need to develop
ML models that accommodate these inputs. Furthermore, the
outputs of these models also need to be tailored for synthetic
biology: ML models, such as neural networks, can have low in-
terpretability, which curtails their utility for informing genetic
circuit design. To overcome this, physics-informed ML, devel-
oped for other engineering problems, may serve as a starting
point.68

Conclusions
Although conceptual analogies between synthetic biology and
electrical and computer engineering can play a constructive
role in engineering biology, a strict mapping between the fields
is not conducive for overcoming current challenges in synthetic
biology. In particular, the convenience of applying principles of
modular and hierarchical design to engineering biology is un-
dercut by the accompanying insufficient attention paid to the
poor robustness to context of today’s defined genetic compo-
nents. If this trend continues, we may not reach a future
where engineered cells are employed for myriad real-world
applications, for which safety, accuracy, and reliability are
paramount.

Fundamental research is critically needed to explore novel de-
sign approaches that acknowledge context dependence and
achieve emergent robustness from possibly nonrobust compo-
nents. Accordingly, new mathematical formalisms for predict-
ing, exploiting, or mitigating systems’ connectivities will be
instrumental. Addressing these gaps in our ability to engineer
biology will yield a powerful set of tools that will allow us to
move synthetic biology and biotechnology forward.
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59. Darlington APS, Kim J, Jiménez JI, et al. Dynamic allocation of orthogonal
ribosomes facilitates uncoupling of co-expressed genes. Nat Commun.
2018;9:695. DOI: 10.1038/s41467-018-02898-6.

60. Lillacci G, Benenson Y, Khammash M. Synthetic control systems for high
performance gene expression in mammalian cells. Nucleic Acids Res.
2018;46:9855–9863. DOI: 10.1093/nar/gky795.

61. Segall-Shapiro TH, Sontag ED, Voigt CA. Engineered promoters enable con-
stant gene expression at any copy number in bacteria. Nat Biotechnol.
2018;36:352–358. DOI: 10.1038/nbt.4111.

62. Liu CC, Jewett MC, Chin JW, et al. Toward an orthogonal central dogma. Nat
Chem Biol. 2018;14:103–106. DOI: 10.1038/nchembio.2554.

63. Aoki SK, Lillacci G, Gupta A, et al. A universal biomolecular integral feedback
controller for robust perfect adaptation. Nature. 2019;570:533–537. DOI:
10.1038/s41586-019-1321-1.

64. Frei T, Chang C-H, Filo M, et al. Genetically engineered proportional-integral
feedback controllers for robust perfect adaptation in mammalian cells.
Synthetic Biol. 2020. [Epub ahead of print]; DOI: 10.1101/2020.12.
06.412304.

65. Zhou K, Doyle J, Glover K. Robust and optimal control. Prentice Hall. 1996.
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