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Abstract—In this paper, we consider False Data Injection
(FDI) attacks with small injected error, and derive risk upper
bounds for cyberattack detectors using multiple observations.
FDI attacks with small injected error are “slow” attacks which
are harder to detect, but such slow attacks can cause major
failures if continuously applied over a long time period. A natural
question to ask is to what degree the cyberattack detection
problem becomes easier if multiple observations acquired over a
long time period are used for threat assessment, and the risk level
reduction achieved for each new observation. For a cyberattack
detector, the false alarm rate is the probability of triggering an
alarm when there is no cyberattack, and the probability of miss
is the probability of not detecting a cyberattack. The risk level
of a cyberattack detector is defined as the sum of the probability
of false alarm and the probability of miss. By using the notion of
Hellinger distance, we derive bounds on the minimum possible
(achievable) risk level under multiple observations, and study
asymptotic properties of such bounds. It is proved that that the
minimum possible risk level converges to zero exponentially as
the number of observations goes to infinity.

Index Terms—Cyberattack Detection, Multiple Observations,
Slow Attacks, Risk Bounds, False Data Injection.

I. INTRODUCTION

Cyberattack detection is a very important problem in net-
worked control systems [1]–[3]. Attack detection becomes
quite difficult if the difference between the no-attack case and
the cyberattack case is quite small. Namely, if the “unusual”
behaviour observed in the cyberattack case is very similar to
the no-attack case, detection will be difficult. In [4], an edge
case with a small injected error is presented to bypass detection
and to destabilize the overall system. In other words, “slow”
but persistent attacks, i.e. FDI attacks with small injected error,
may easily cause a major damage without being detected. For
such attacks, it will be more difficult to design a detector
which will guarantee a small risk, PF + PM , where the
PF is the probability of false cyberattack alarm, and PM
is the probability of not detecting the cyberattack. The risk
level, PF + PM , is a quality metric for the detector, hence
we consider it as the performance level of the detector. A
natural question to ask is the following: What will be the best
achievable detector risk level if we try to make a cyberattack
assesment by using more and more measurements? How fast
the risk level will decrease and converge to zero? A risk level
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converging to zero very slowly may not be useful from an
engineering perspective, because such detectors may detect
the attack too late, i.e. well-after a major damage has already
been made. In this paper, we provide a theoretical study of this
question and illustrate how it can be used for practical cases.
We do not design or recommend a particular type of attack
detector, instead we study the best achievable risk level among
all possible attack detectors and derive performance bounds.

Cyberattacks on power systems infrastructure may cause
major blackouts, and result equipment and infrastructure dam-
age. Cyberattacks is also an important problem for connected
vehicle systems, because such attacks may cause major ac-
cidents, loss of life and property. Autonomous vehicles (AV)
and advanced driver assistance systems (ADAS) use highly ad-
vanced sensors and communication networks which are subject
to cyberattacks. A discussion of different attack scenarios for
connected vehicles is presented in reports [5], [6]. In [7]–[11],
cyberattacks to automotive radars systems are discussed and
different attack detection mechanisms are proposed.

A commonly used technique for cyberattack detection is to
use an estimator, and generate an alarm if there is a significant
difference between estimated and measured values. Basically,
a significant difference could be an indication of something
unusual. Depending on how this difference value is processed,
it is possible to define various types of attack detectors, see
[12]–[15], and references therein. Also in [16]–[18], alterna-
tive attack detection techniques are explored. In general, the
attack detector should be designed to minimize false alarms
without significantly degrading the attack detection capability.
In other words, it should have a small risk value, PF + PM ,
which justifies why the risk level is adopted as a quality metric
for cyberattack detectors.

Estimator based techniques are quite useful for detecting
cyberattacks at the communication layer, but the accuracy of
the estimation model is of crucial for proper operation. In [19],
[20], physical-layer attacks on automotive radar sensors are
discussed. The first one is based on estimators and the second
one is based on a technique called spatio-temporal challenge-
response (STCR) which does not depend on an estimation
model. A related technique called, physical challange-respone
authentication (PyCRA), is introduced in [21]. Both STCR
and PyCRA techniques can be quite robust because they do not
need an accurate estimator for reliable operation. For physical-
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layer attacks, there is a sensor which may or may not be con-
nected to a communication network, and attacks occur at the
physical level, i.e. adversarial agents generate physical signals
to directly interfere with the sensor’s measurement process,
confuse the sensor and hence the embedded system processing
the sensor output [5], [21]. If the processing nodes, i.e. the
embedded systems with sensors, are also communicating with
each other, then attacks at the communication layer is also
possible. In a good engineering design, both physical-layer
and communication layer (if exists) attack detectors should be
used to improve safety and reliability.

Our notation is the standard notation used in Measure
Theory. This paper is organized as follows: In Section II,
we start with some preliminaries needed for the rest of the
paper. Main results are presented in Section III, and numerical
examples are given in Section IV. Finally, we make some
concluding remarks in Section V.

II. PRELIMINARY RESULTS

In this section, we present some preliminary results on
matrices, the Hellinger distance, and the total variation norm
[22].

A. A bound on the determinant of sum two PD matrices

In this subsection, we prove a generalization of the well-
known arithmetic-geometric mean inequality for positive def-
inite (PD) matrices.

Lemma 1 (DSM). Let A and B two positive definite matrices.
If A ̸= B, then

det

(
A+B

2

)
> det(A1/2B1/2) (1)

Proof. For 1 × 1 matrices, this is the usual arithmetic-
geometric mean inequality. Therefore, without loss of gen-
erality we assume that matrices are of size 2× 2 or more. If
M is a positive definite matrix, then

det(I +M) > 1 + det(M).

Because, if λi, i = 1, · · · , n are the eigenvalues of M , then
det(I +M) =

∏
i(1 + λi) which is greater than 1+

∏
i λi =

1 + det(M). By using this simple inequality, we get

det(A+B) = det(A) det(I +A−1/2BA−1/2)
> det(A)(1 + det(A−1/2BA−1/2))
> det(A) + det(B)

Therefore,

det

(
A+B

2

)
>

det(A) + det(B)

2
≥ det(A1/2B1/2),

where the last inequality follows from the scalar version of
the arithmetic-geometric mean inequality.

B. Hellinger distance and total variation

In this subsection, we define the Hellinger distance, the
total variation norm, and prove some inequalities. If f(x) and
g(x) are probability density functions defined on Rd, then the
Hellinger distance, H(f, g), is defined by

H2(f, g) = 1
2

∫
Rd

(√
f(x)−

√
g(x)

)2

dx

= 1−
∫
Rd

√
f(x)

√
g(x) dx

and the total variation TV (f, g) is defined as

TV (f, g) =
1

2

∫
Rd

|f(x)− g(x)|dx.

It is clear that both TV (f, g) and H(f, g) are in [0, 1].

Lemma 2 (NPDF). Let f(x) and g(x) be probability density
functions (pdf) defined on Rd. Then,

H2(f, g) ≤ TV (f, g) ≤ H(f, g)
√
2−H2(f, g) ≤

√
2H(f, g).

Proof. The first inequality follows from

2H2(f, g) =
∫
Rd(

√
f(x)−

√
g(x) )2dx

≤
∫
Rd |

√
f(x)−

√
g(x) | |

√
f(x) +

√
g(x) | dx

=
∫
Rd |f(x)− g(x)|dx = 2TV (f, g)

The second inequality follows from the Cauchy-Schwartz
inequality,

TV 2(f, g) = (1/4)(
∫
Rd |f(x)− g(x)|dx)2

≤ (1/4)
∫
Rd(

√
f(x)−

√
g(x) )2dx ·∫

Rd(
√
f(x) +

√
g(x) )2dx

= H2(f, g)(2−H2(f, g))

where for the last inequality
∫
Rd f(x)dx =

∫
Rd g(x)dx = 1 is

used.

C. Hellinger distance for Gaussian distributions

Consider two multivariable Gaussian distributions,
N(µ1,Σ1) and N(µ2,Σ2), and let h be the Hellinger
distance between the pdfs. Then

h =

(
1− det(Σ1)

1/4 det(Σ2)
1/4

det(Σ1+Σ2
2 )

1/2 ·

exp

{
− 1

8 (µ1 − µ2)
T
(
Σ1+Σ2

2

)−1
(µ1 − µ2)

})1/2

(2)
A proof of this closed form expression is given in [22]. This
will be a key result for the rest of the paper.

D. Asymptotic behaviour of the Hellinger distance

For a given pdf, p, defined on Rd, we define

p(n)(x1, · · · , xn) =
n∏
k=1

p(xk),

which will be a pdf defined on Rnd. Let f and g be the pdfs
for the multivariable Gaussian distributions, N(µ0,Σ0) and
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N(µ1,Σ1), both defined in Rd. In this section, we study the
asymptotic behaviour of

TV (f (n), g(n))

Both f (n) and g(n) will be multivariable Gaussian distribu-
tions. The mean and variance of f (n) and g(n) will beµ1

...
µ1

 ,
µ2

...
µ2

 , and

Σ1

. . .
Σ1

 ,
Σ2

. . .
Σ2


respectively, where the first two mean values are in Rnd and
the last two are block diagonal matrices of size nd× nd.

Let

α =
det(Σ1)

1/4 det(Σ2)
1/4

det
(
Σ1+Σ2

2

)1/2 ,

and

β =
1

8
(µ1 − µ2)

T

(
Σ1 +Σ2

2

)−1

(µ1 − µ2).

Using the equation (2) for f (n) and g(n) we get

H(f (n), g(n)) = (1− αne−nβ)1/2.

Using the Lemma 2, we get

1− αne−nβ ≤ TV (f (n), g(n))

and

TV (f (n), g(n)) ≤ (1− αne−nβ)1/2(1 + αne−nβ)1/2.

If f and g are different, then either µ1 ̸= µ2 or Σ1 ̸= Σ2. In
the first case, β > 0 and α ≤ 1 by Lemma 1. In the second
case, β ≥ 0 and α < 1. These observations can be summarized
as follows:

Lemma 3 (ASYM). Let f(x) and g(x) be pdfs of two different
multivariable Gaussian distributions defined on Rd. Then,

lim
n→∞

TV (f (n), g(n)) = 1

and the convergence is exponential with n. More precisely,
the non-negative expression, 1 − TV (f (n), g(n)), is bounded
from above and below by two functions which converge to 0
exponentially with n.

III. MAIN RESULTS

Consider a standard binary hypothesis testing problem with
pdfs p0, p1 ∈ L1(Rd) defined as pi(x) = P (x|Hi), i = 0, 1,
and x ∈ Rd. For a cyberattack detection problem, H0 may
correspond to no attack, and H1 may correspond to existence
of an attack. Assume that we have a detector defined by the
complementary regions D0, D1 ⊂ Rm with D0∩D1 = ∅, and
D0 ∪ D1 = Rm. Basically, a cyberattack alarm is triggered
iff we have an observation x ∈ D1, and this is the definition
of our cyberattack detector denoted by A(D0, D1). The false
alarm rate, PF , and the miss rate, PM are defined as

PF = P (x ∈ D1|H0), PM = P (x ∈ D0|H1).

We define the risk, PF + PM , as the performance metric
of the cyberattack detector A(D0, D1), and use the notation
RA(D0, D1) to denote this quantity. A detector is considered
as ”good” iff the risk level, PF + PM , is ”small”. For given
pdfs p0, p1 ∈ L1(Rd), the best possible performance is defined
as

J(p0, p1) = min
D0,D1

RA(D0, D1)

where the minimum is take over all possible complementary
regions D0, D1. Note that,

PF + PM =

∫
D0

p(x|H1) +

∫
D1

p(x|H0),

and the minimum will be achieved when the regions D0 and
D1 are selected as

D0 = {x : p(x|H0) > p(x|H1)}, D1 = {x : p(x|H0) ≤ p(x|H1)}.

For this specific selection of D0, D1

∥p0 − p1∥1 =

∫
D0

(p0 − p1) +

∫
D1

(p1 − p0),

∥p0 − p1∥1 =

∫
D0

p0 +

∫
D1

p0 +

∫
D1

p0 +

∫
D0

p1

−
∫
D1

2p0 −
∫
D0

2p1 = 2− 2J.

Therefore

J(p0, p1) = 1− 1

2
∥p0 − p1∥1 = 1− TV (p0, p1).

This last equality can be summarized as follows: For given
pdfs p0, p1 ∈ L1(Rd), there exists cyberattack detectors with
small risk level iff the total variation norm, TV (p0, p1), is
close to one, and the best achievable risk level is equal to
1− TV (p0, p1).

A. Multivariable Gaussian case

In this subsection, we study how fast the total variation
norm increases as we acquire more and more measurements.
If p0 and p1 are quite similar, TV (p0, p1) will be small and
the corresponding J(p0, p1) will be close to 1, meaning that
minimum possible PF +PM will be close 1. In other words, if
the pdfs p0 and p1 are quite similar, all cyberattack detectors
will have poor performance, because the cyberattack detection
problem itself will be provably ”hard” and it will be impossible
to design a cyberattack detector with a “small” risk value.
However, as long as p0 and p1 are different, no matter how
small TV (p0, p1) is, by Lemma 3 we know that

lim
n→∞

TV (p
(n)
0 , p

(n)
1 ) = 1, and lim

n→∞
J(p

(n)
0 , p

(n)
1 ) = 0

and the convergence will be exponential with n. This result
can be interpreted as follows: Under the independent observa-
tions assumption, even “slow” cyberattack detection problems
become exponentially easier with the number of observations.
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B. Functional Features

In this subsection, we prove the total variation cannot be
increased simply by applying a vector valued function to
multidimensional random variables.

Lemma 4 (FF). Let x and y be Rm valued random variables
with pdfs p and q respectively. Let ψ be a continuous function
from Rm to Rr, and let pψ and qψ be pdfs of Rr valued
random variables ψ(x) and ψ(y). Then

TV (pψ, qψ) ≤ TV (p, q)

Proof. For a given A ⊂ Rr, we have∫
A
pψ(t)dt = P (ψ(x) ∈ A)

= P (x ∈ ψ−1(A)) =
∫
ψ−1(A)

p(τ)dτ.

If s is a ±1 valued measureable function defined on Rr, we
can define

A+ = {t ∈ A : s(A) = +1}, A− = {t ∈ A : s(A) = −1}.

It is clear that,∫
A
pψ(t)s(t)dt =

∫
A+

pψ(t)−
∫
A−

pψ(t)dt

=
∫
ψ−1(A+)

p(τ)dτ −
∫
ψ−1(A−)

p(τ)dτ

hence ∫
A

pψ(t)s(t)dt =

∫
ψ−1(A)

p(τ)ŝ(τ)dτ,

where ŝ(τ) is another ±1 valued measureable function defined
on Rr. Note that, ŝ(τ) is equal to +1 on ψ−1(A+) and is equal
to -1 on ψ−1(A+).

As an application of this result, we have∫
A

(pψ(t)− qψ(t))s(t)dt =

∫
ψ−1(A)

(p(τ)− q(τ))ŝ(τ)dτ,

and by selecting s(t) as the sign of pψ(t)− qψ(t) but forcing
s(t) to be +1 when pψ(t) = qψ(t), we get∫

A
|pψ(t)− qψ(t)|dt =

∫
ψ−1(A)

(p(τ)− q(τ))ŝ(τ)dτ

≤
∫
ψ−1(A)

|p(τ)− q(τ)|dτ.

Now consider the TV (pψ, qψ),

2TV (pψ, qψ) = supA
∫
A
|pψ(t)− qψ(t)|dt

≤ supA
∫
ψ−1(A)

|p(τ)− q(τ)|dτ
≤ 2TV (p, q),

which completes the proof.

IV. NUMERICAL EXAMPLE

In this section, we present a numerical example. For multi-
variable Gaussian pdfs f and g, we have

0.5 α2ne−2nβ ≤ J(f (n), g(n)) ≤ αne−nβ .

where α, β are defined as in Section II.D. Although the best
possible cyberattack detector risk level, J , is between these

upper and lower limits, for ease of visualization we define a
“representative” value as

Ĵ(f (n), g(n)) = α1.5ne−1.5nβ ,

which is almost the geometric mean of upper and lower limits.
Even though the actual J(f (n), g(n)) and Ĵ(f (n), g(n)) can
be different, this Ĵ will be quite useful to approximately
demonstrate the overlap between two pdfs after n observations.

By using a MATLAB script, we compute Ĵ(f (n), g(n)) for
n = 1, f = N(0, 1) and g = N(∆µ, 1), and plot Ĵ as a
function of ∆µ, see Fig. 1.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. Plot of Ĵ versus ∆µ. The vertical axis is a representative value for
minimum achievable risk.

We can interpret Fig. 1 as follows: pdfs N(0, 1) and
N(∆µ, 1) are difficult to differentiate for small ∆µ values,
i.e. no matter which cyberattack detector is used risk level will
not be small. However, for ∆µ > 5, these two pdfs are easy
to seperate, i.e. it is possible to design a cyberattack detector
with a representative risk value less than 0.01.

Consider the Gaussian distributions f = N(0, 1) and g =
N(0.1, 1) shown in Fig. 2. These pdfs are very close to each
other and difficult to differentiate. Meaning that, no matter
which cyberattack detector is used risk level will not be small.

However, if we acquire n = 2500 measurements, the pdfs
f (n) and g(n) will be quite different with representative risk
value of 0.01. Fig. 3 has the equivalent plots of Gaussian
distributions f (n) and g(n). Normally, f (n) and g(n) will be
n = 2500 dimensional pdfs, but the overlap between the two
will be similar to the case shown in Fig. 3. This simplification
in visualization is possible because of our “representative”
risk value definition. Although we have selected the geometric
mean of upper and lower limits as the representative risk, other
averaging schemes for the representative risk will result similar
values.

V. CONCLUSION

In this paper, we studied the difficulty of detection of false
data injection attacks with a very small injected error. Such
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Figure 2. Plots of Gaussian distributions f = N(0, 1) and g = N(0.1, 1).
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Figure 3. Equivalent plots of Gaussian distributions f (n) and g(n).

small attacks are known to be sufficient for instability if
applied persistently over a long period of time. Because of the
small injected error, they are hard to detect. However, if the
same problem is analyzed with multiple observations, the dif-
ficulty, more precisely the overlap between pdfs, gets smaller
with increased number of observations. In summary, we have
derived upper and lower bounds for the best achievable risk
level of a cyberattack detector as a function of the number of
measurements, and proved that the minimal risk converges to
zero exponentially with the number of measurements.
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