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ABSTRACT

Background. A pangenome is the collection of all genes found in a set of related
genomes. For microbes, these genomes are often different strains of the same species,
and the pangenome offers a means to compare gene content variation with differences
in phenotypes, ecology, and phylogenetic relatedness. Though most frequently applied
to bacteria, there is growing interest in adapting pangenome analysis to bacteriophages.
However, working with phage genomes presents new challenges. First, most phage
families are under-sampled, and homologous genes in related viruses can be difficult to
identify. Second, homing endonucleases and intron-like sequences may be present,
resulting in fragmented gene calls. Each of these issues can reduce the accuracy of
standard pangenome analysis tools.

Methods. We developed an R pipeline called Rephine.r that takes as input the gene
clusters produced by an initial pangenomics workflow. Rephine.r then proceeds in
two primary steps. First, it identifies three common causes of fragmented gene calls:
(1) indels creating early stop codons and new start codons; (2) interruption by a selfish
genetic element; and (3) splitting at the ends of the reported genome. Fragmented genes
are then fused to create new sequence alignments. In tandem, Rephine.r searches for
distant homologs separated into different gene families using Hidden Markov Models.
Significant hits are used to merge families into larger clusters. A final round of fragment
identification is then run, and results may be used to infer single-copy core genomes
and phylogenetic trees.

Results. We applied Rephine.r to three well-studied phage groups: the Tevenvirinae
(e.g., T4), the Studiervirinae (e.g., T7), and the Pbunaviruses (e.g., PB1). In each case,
Rephine.r recovered additional members of the single-copy core genome and increased
the overall bootstrap support of the phylogeny. The Rephine.r pipeline is provided
through GitHub (https://www.github.com/coevoeco/Rephine.r) as a single script for
automated analysis and with utility functions to assist in building single-copy core
genomes and predicting the sources of fragmented genes.
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INTRODUCTION

A pangenome is the collection of all genes found in a set of related genomes (Tettelin et al.,
2005; Vernikos et al., 2015). These genomes might be different strains of the same species or
taken from the same genus or higher taxonomic level. Pangenomes are useful, because they
allow one to compare gene content variation to differences in phenotypes, ecology, and
evolutionary history. For instance, by mapping gene content of potential pathogens onto a
phylogeny and contrasting clade-specific genes with differences in reported strain virulence,
the pangenome can help reveal how these genes relate to pathogenicity while placing them
in an evolutionary context (e.g., Hurtado et al., 2018; Wyres et al., 2019). Pangenomes have
also been used to describe which functions are conserved among members of bacterial taxa
in different environments (e.g., Zhang & Sievert, 2014).

Pangenome analysis is most commonly applied to bacteria. Due to the explosion of
data from metagenomes and microbiome studies, many bacterial taxa are well-sampled
and can be associated with large sets of ecological or health-related metadata. Additionally,
multiple software packages are available that facilitate automated inference of bacterial
pangenomes, such as Anvi’o (Eren et al., 2021) and Roary (Page et al., 2015).

A typical pangenome analysis pipeline starts with two main steps: gene prediction and
gene clustering. Often, workflows also include subsequent steps for function prediction,
sequence alignment, and core gene identification. The accuracy of the two primary steps
of inferring a pangenome is paramount. If a gene caller ignores an open reading frame
(ORF) or inaccurately returns the end position of the ORF, genes may be truncated
or merged. Errors in clustering—the process of placing related sequences into gene
families—can include grouping unrelated genes or failing to place homologs in the same
cluster. Together, these errors in gene calling and clustering may significantly impact
identification of the “single-copy core genome” (SCG). The SCG is commonly used as
the basis for phylogenetic inference, and excluding genes can mean missing important
sequence variation and building less informative trees.

There is growing interest in applying pangenomic and phylogenomic workflows
to bacteriophages (e.g., Edwards et al., 2019; Bellas et al., 2020). Just as the deluge of
metagenomic data has expanded bacterial comparative genomics, thousands of phage
genomes are now published every year (Roux et al., 2019; Dion, Oechslin ¢ Moineau,
2020). Because no single gene is conserved among all phage genomes, gene content profiles
and gene sharing networks have become standard tools in virus taxonomy for identifying
and comparing related viruses (Bolduc et al., 2017; Shapiro ¢ Putonti, 2018). In the process,
pangenomics has become an intrinsic component of phage bioinformatics.

Many of the potential sources of error for bacterial pangenome analysis are amplified
when studying phages. First, phages are under-sampled despite regular publication of
new genomes and identification of prophages within bacterial genomes (Dion, Oechslin ¢
Moineau, 2020). Isolation, even of better-sampled groups through dedicated programs like
SEA-PHAGES continues to discover novel viruses with genes lacking obvious homology to
any known sequence (Pope et al., 2015). As a result, we often try to compare virus genomes
that are more distantly related than expected for most pangenomic workflows. This can
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make it difficult to recognize homologs between phage genomes that have low sequence
identity. Further, many phages include intron-like sequences and homing endonucleases
(Belfort, 19905 Stoddard, 2005). These selfish genetic elements interrupt genes and cause
fragmented gene calls during annotation. Thus, the two main tasks of a pangenome
analysis—gene identification and gene clustering—are more error-prone with phages than
with bacteria.

Here, we describe a pipeline implemented in R, Rephine.r, for identifying and correcting
common errors in the initial gene clusters and gene calls returned by pangenomic
workflows. Given the results from a traditional pangenome analysis, Rephine.r: (1) merges
gene clusters using Hidden Markov Models (HMMs) and (2) identifies fragmented gene
calls to avoid the overprediction of paralogs and to improve sequence alignments. Each of
the steps in Rephine.r can also be run separately for individual use cases that require only
cluster merging or defragmentation. We demonstrate the value of Rephine.r using three
phage taxa: the Tevenvirinae (e.g., T4), the Studiervirinae (e.g., T7), and the Pbunaviruses
(e.g., PB1). These virus groups represent a range of genome sizes and sampling depth,
and each has at least 30 members with a RefSeq assembly. We show that correcting errors
in gene cluster and gene fragmentation increases the size of the SCG in each case and
enables inference of better-supported phylogenies. The tool is available through GitHub
as a command line R script (https://www.github.com/coevoeco/Rephine.r) and includes
utility scripts for returning the single-copy core genes and classifying the causes of gene
fragmentation events.

MATERIALS & METHODS

Overview of the pipeline

The Rephine.r pipeline (summarized in Fig. 1) assumes the researcher has already completed
a workflow for predicting gene clusters in a pangenome, such as the combination of blastp
(Altschul et al., 1990) and MCL (Enright, Van Dongen & Ouzounis, 2002) implemented
by Anvi’o (Eren et al., 2021) and other programs (e.g., vVConTACT Bolduc et al., 2017
and Roary Page et al., 2015). In what follows, we use Anvi’o as the basis for initial
pangenomes, as Anvio is both a popular tool for bacterial pangenomes and includes
several useful commands for facilitating our corrections. Future updates will expand
Rephine.r’s compatibility with other tools.

Following initial gene clustering Rephine.r pipeline: (1) identifies and merges gene
clusters containing distantly related homologs using HMMs, and (2) identifies fragmented
gene calls that can be fused for the purpose of SCG inference and generating phylogenies.
By default, Rephine.r will first run the cluster merging and defragmentation steps in
tandem, produce a set of new clusters that combine the results of these corrections, and
will then run a second round of defragmentation to identify any new cases that emerge
due to the prior steps. Command line options are also offered for users that wish to run
the HMM merging or fragment fusion steps individually. In addition to the main pipeline,
we include two complementary scripts: getSCG.r returns the single-copy core genes and a
concatenated alignment file for phylogenetics; fragclass.r categorizes the likely events that
led to fragmented gene calls.
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Figure 1 Flowchart of the Rephine.r pipeline.
Full-size Eal DOI: 10.7717/peerj.11950/fig-1

Merging gene families with HMMs

Gene clustering based on sequence similarity relies on threshold criteria for defining when
two sequences are related and for clustering related sequences into groups. In Anvi’o, the
default identity heuristic is defined by the “minbit” score, the ratio of the BLAST bit score
between two sequences and the minimum bit score from blasting each sequence against
itself. This metric generally performs well, and for bacteria, where homologs are typically
over 50% identical, it is especially successful. For phages, however, this approach can miss
more distant homologs. Even using a 35% amino acid identity threshold (Cresawn et al.,
2011; Shapiro ¢ Putonti, 2018), we may miss cases that only appear related when viewing
alignments or comparing phage genes by structure or synteny. Unfortunately, it is not as
simple as specifying a lower minbit threshold, since doing so will also increase the number
of unrelated genes that are clustered together erroneously.

Given the initial gene clusters returned by Anvi’o, Rephine.r builds separate HMM
profiles for each cluster using the hmmbuild function from HMMER (Eddy, 1998) and
converts the concatenated HMM profiles into a database with hmmpress. The script then
uses hmmscan to compare every original gene call against each HMM profile. This step
is expected to be more sensitive for recognizing distant homologs than the initial blastp,
as the HMM profiles make use of variation from multiple members of the same cluster.
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Significant hits are then defined as follows: for each original gene cluster, the “minimum
self-bit” (or “selfbit™) score is recorded as the minimum of the bit scores for each of
the gene calls that was initially assigned to that cluster by MCL. This selfbit score then
serves as a profile-specific significance threshold. Any gene call that was originally assigned
to another cluster but has a bit score greater than this value is then used to establish a
putative connection between gene clusters. We also include the option of specifying an
absolute minimum bit score as an additional criterion. These connections are recorded
in the form of a network edgelist linking gene calls to gene clusters. Next, this edgelist is
relabeled to define edges between the original gene clusters that share putative homologs.
Finally, this edgelist is used to generate a network with the R (R Core Team, 2013) package
igraph (Csardi et al. , 2006), and the connected components are returned with the function
“components”. The result defines sets of the original gene clusters that are suitable for
merging into a single, larger cluster.

Identifying fragmented gene calls

To find fragmented genes, Rephine.r first identifies every gene cluster that includes at least
two sequences from the same genome. These sequences may represent true duplicates or
paralogs, or they may be separate pieces of the same original sequence that have been split
by one of several processes, including: a frameshift due to an indel, insertion of a selfish
genetic element, or being artificially split across the ends of the genome when it was reported
to GenBank. This third case may also arise as an artifact of the two other mechanisms.
For any of these scenarios, the two pieces of the gene will be notable in two ways: (1)
they will align with separate parts of the gene in a multiple sequence alignment, with one
piece corresponding to an N-terminal fragment, and the other to the C-terminus; (2) they
should have lower sequence similarity to each other than to the average comparison with
other sequences in the multiple sequence alignment. Fig. 2A illustrates how a fragmented
gene may appear in an alignment.

Given clusters with potential fragments, every gene call within an affected cluster is
compared using blastp to every other gene call in the same cluster. For the two focal gene
calls from a potential fragmented gene, the bit score from their blast alignment is compared
to the mean bit score for other blast results within the gene cluster. We defined the ratio of
this pairwise blast to the cluster average as the “relative bit” (or “relbit”’). Mathematically,
for potential fragments A and B within a gene cluster G, this is defined as:

bit (A, B bit (B, A
relbit (A.B) = 2 AD) it (B.A) = L (1)
bit (A, G) bit (B, G)

where the overbar refers to the mean. The maximum of these relbit values is then used as a
criterion for judging similarity between A and B. If this value is below a chosen threshold,
the ORFs are considered to be sufficiently dissimilar.

Rephine.r also compares the extent of overlap within the pairwise alignment space
between each potential paralog. This step is needed, because dissimilar gene fragments may
still have overlaps in the alignment due to alignment errors or if the original fragmentation
event was caused by a short duplication. To quantify this overlap, the “percent overlap” is
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Figure 2 Fragmented gene calls can be identified from alignments. (A) An original multiple sequence
alignment where the gene from NC_041902 has been split into two fragments by an indel. (B) The cor-
rected alignment following Rephine.r. Highlighted colors are used to indicate regions of each fragment
and where they correspond within an intact homolog.

Full-size & DOI: 10.7717/peerj.11950/fig-2

calculated as the size of the ORFs’ intersection within the alignment divided by the number
of unique, aligned positions between the two sequences. In mathematical terms, for a gene
with potential fragments A and B, we define:

|ANB]

|AUB @)

PercentOverlap =

where the size terms are based solely on the aligned positions within the multiple sequence
alignment.

Ultimately, sequence pairs with low relative bit scores (“relbit”) and low percent
overlaps (“percoverlap”) are the likeliest to fit our expectations of a fragmented gene
call. In practice, we implemented default parameters for these criteria of 0.25 for “relbit”
and 0.25 for “percoverlap.” These choices are based on plotting values of each parameter
(Fig. S1) from the test cases described below and identifying a set of points that weakly
cluster together in the graph. When checked manually, each of these genes appeared to
correspond to fragmented calls, whereas nearby points in the graph included potential

Shapiro and Putonti (2021), PeerJ, DOI 10.7717/peerj.11950 6/15


https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/NC_041902
https://doi.org/10.7717/peerj.11950/fig-2
http://dx.doi.org/10.7717/peerj.11950#supp-1
http://dx.doi.org/10.7717/peerj.11950

Peer

errors. These parameters can be adjusted at the command line, and we would encourage
others to visually inspect their alignments.

Once fragmented genes are identified, a new FASTA file is created in which the original
pieces of the full-length gene are artificially spliced (or “fused”) into a single gene call. To
preserve the original event that separated the sequences, the script inserts an “X” between
the two pieces of the gene. New alignments are then made with MUSCLE (Edgar, 2004) for
each affected gene cluster, with these X’s imposing a gap in the alignment (see Fig. 2B for an
illustration of this step). If desired, the user can then use the additional script, getSCG.r, to
return a list of the single-copy core gene clusters, along with a concatenated alignment file
that is suitable for phylogenetics. The script, fragclass.r, can also be used to obtain a table
summarizing predicted causes for each type of fragment based on the separation between
the original gene calls.

Virus genomic data

Phages in the subfamily Studiervirinae (family Autographiviridae), the subfamily
Tevenvirinae (family Myoviridae), and the genus Pbunavirus (family Myoviridae) were
chosen as well-studied examples for testing Rephine.r. We downloaded all available
RefSeq genomes from each of these taxa from the National Center for Biotechnology
Information’s (NCBI) genome browser (as of February 2021). This data set included 145
Studierviruses, 127 Tevenviruses, and 38 Pbunaviruses (a full list of accessions is included
in Table S1). The Studiervirinae (e.g., phages T3 and T7) and the Tevenvirinae (e.g., phage
T4) are among the best-studied phage subfamilies and include characterized examples
of introns and homing endonucleases (Chu et al., 1986; Belle, Landthaler ¢ Shub, 2002;
Bonocora & Shub, 2004; Petrov, Ratnayaka ¢» Karam, 2010). These features made these two
subfamilies ideal for testing methods for identifying distant homologs and fragmented
gene calls. The Pbunaviruses were chosen due to the relatively large number of available
genomes at the genus level, offering a less diverse contrast to the other phage groups.

Initial pangenome workflow with Anvi’o

We built an initial pangenome for each phage group using Anvi'o v6.2 (Eren et al.,
2021) following the standard pangenomics workflow (https://merenlab.org/2016/11/
08/pangenomics-v2/), which uses Prodigal (Hyatt et al., 2010) for gene calling. Alternative
gene callers can also be used, and these gene calls can be imported into Anvi’o as part of
the anvi-gen-contigs-database program. The “~use-ncbi-blast” flag was specified for the
anvi-pan-genome command. Due to the large genetic diversity of phages, we set the minbit
threshold to 0.35, based on prior work (Cresawn et al., 2011; Shapiro ¢ Putonti, 2018).

Phylogenetics

Maximum likelihood phylogenies were estimated using IQTREE v2.0.3 (Nguyen et al.,
2015) with ModelFinder (Kalyaanamoorthy et al., 2017) to automate choosing the optimal
substitution model for each tree. For each of the three virus groups, trees were built based
on concatenated alignments for the original SCGs and again following Rephine.r using
the expanded SCGs. Tree summary statistics were computed in R using the ape package
(Paradis, Claude & Strimmer, 2004) and drawn using ggtree (Yu et al., 2017).
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Table 1 Summary of results of running Rephine.r for each phage group.

Studiervirinae Tevenvirinae Pbunaviruses
Number of genomes 145 127 30
Mean genome size 39696 174775 66068
Initial gene calls 6956 35436 3540
Initial gene clusters 558 4067 195
Initial core genes 12 27 28
Initial SCG size 3 13 19
New clusters after merging 16 64 2
Clusters involved in a merger 63 270
Biggest merger 7 30 3
Core genes after merging 14 37 28
SCG size after merging 3 13 19
Defragmented clusters 14 99 17
SCG size after fusion and merge 8 22 26
Additional fusions after merge 1 7 1
New core genes after final fusion 0 0 0
Total SCG gain 5 9 7
Mean tree support before 77.14 87.24 63.6
Mean tree support after 90.55 93.44 69.57

Code Availability

All code for this work is provided on GitHub (https://github.com/coevoeco/Rephine.r).The
code includes a walkthrough for running Rephine.r following a standard Anvi’o workflow,
as well as utility scripts, getSCG.r and fragclass.r, that provide additional output of the SCG
genes and predicted causes of fragmentation events.

RESULTS

To test the Rephine.r pipeline, we downloaded all available RefSeq genomes for the
Studiervirinae, Tevenvirinae, and Pbunaviruses from NCBI. We then followed the standard
pangenomic workflow for Anvi’o to facilitate initial MCL clustering based on blastp scores.
Results and basic information about these taxa are summarized in Table 1. Across all
Studierviruses, there were only 12 core genes, of which three were single-copy. Tevenviruses
included 27 core genes (13 single-copy), and the Pbunaviruses had 28 core genes (19
single-copy).

We ran Rephine.r with default settings, which first predicts fragmented gene calls within
each gene cluster. In tandem, it identifies related gene clusters using HMMs. It then
combines the results from these steps to produce new merged clusters with corrections
for fragmented genes. Last, it runs a second defragmentation step to identify instances
where fragmented gene calls were originally split into separate gene clusters. We examined
results to see how the core genome changed after each step and how the final SCG affected

phylogenetic inference.
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Figure 3 Studiervirinae phylogeny before (A) and after (B) using Rephine.r to correct the SCG. Bootstrap support is shown by coloring branches
preceding nodes, with low support (from 0 to 70) ranging from white to red. Increasing the size of the SCG reduced the number of low-support

branches.

Full-size Gl DOI: 10.7717/peerj.11950/fig-3

The initial HMM merging step resulted in two additional core genes for Studierviruses
and 10 additional core genes for Tevenviruses but no new single-copy core genes for any
of the virus groups. Notably, several mergers involved more than two gene clusters. In one
case for the Tevenvirinae, 30 separate gene clusters were merged, corresponding to the
phage tail fiber. Defragmenting gene calls expanded the SCG for each taxon, increasing
the Studiervirinae SCG to 8 genes, the Tevenvirinae to 22 genes, and the Pbunaviruses to
26 genes (all but two of the Pbunavirus core genes). The final round of defragmentation
identified additional fragmented genes but no additional core genes.

We then built phylogenies for each taxon with the original SCGs and with expanded
SCGs following Rephine.r. With only three single-copy core genes, the initial Studiervirinae
tree contained multiple unresolved polytomies and branches with poor support (Fig. 3A).
The updated tree based on eight genes had improved overall bootstrap support and
displayed greater resolution of closely related genomes (Fig. 3B). (A version of the tree with
all labels is provided in Fig. 52). Trees for the Tevenvirinae and Pbunaviruses (Figs. S3 and
S4) also had improved bootstrap support. In the case of the Pbunaviruses, the tree remains
poorly resolved with very short branches, despite being built from the most genes, as there
was insufficient variation among the viruses from this genus.

Last, we checked the results from gene call defragmentation for known instances of
introns and homing endonucleases in the Studiervirinae and Tevenvirinae. These include
interruptions to DNA polymerase in members of Studiervirinae (Bonocora ¢ Shub, 2004)
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and Tevenvirinae (Petrov, Ratnayaka ¢» Karam, 2010) and thymidylate synthase in T4
(Chu et al., 1986). After running Rephine.r, we identified a single-copy core gene that
corresponded to each gene of interest. In each case, inclusion in the SCG was only possible
after fragment identification.

DISCUSSION

We describe Rephine.r, a pipeline for improving results of phage pangenome analysis
by merging gene clusters containing distant homologs and correcting gene calls that
have been fragmented or interrupted by selfish genetic elements. Using the Tevenvirinae,
Studiervirinae, and Pbunaviruses as test cases, we show how this process expands the
putative SCG for each group, enabling more accurate estimates of gene conservation. For
the Tevenvirinae and Studiervirinae, this also improved the quality of the phylogenies,
whereas for Pbunaviruses there was still insufficient variation among the genomes to
produce a reliable tree.

The present work provides a first step for expanding the usage of phylogenetics with
diverse phage genomes. A key concept that we include (which we took advantage of
using manual corrections previously (Shapiro ¢» Putonti, 2020) is the use of artificially
spliced sequences following the identification of interrupted genes. This type of correction
is unsurprising when working with eukaryotic exons, but it is generally ignored with
microbes, because we often fail to appreciate that intron-like sequences are common
features of many phages. Biologically, it is uncertain how often these interrupted genes
remain functional or if the separated ORFs correspond to separate functions. However,
several studies report fully functional, single protein products for phage genes separated
by introns (Belfort, 1990) or inteins (Kelley et al., 2016), as well as at least one case where a
gene split by a homing endonuclease remains active (Friedrich et al., 2007). Though these
ORFs may be interrupted by over 1,000 nucleotides, these interruptions likely correspond
to a single mutational event, and the ORFs should still be treated as a single gene when
reconstructing the SCG and an associated phylogeny. In both the Studiervirinae and
the Tevenvirinae, our approach accurately recognized known homing endonucleases
and introns, and these genes remain the most common multi-copy core genes following
Rephine.r. How interrupted genes are interpreted in functional genomics studies is an
important question, and these fragmented genes should be treated with additional care
when reporting the functional repertoire of genomes.

It is important to note that we have focused our application of Rephine.r on test
cases involving single-contig, RefSeq assemblies. In the case of draft genome assemblies
comprised of multiple contigs (less common for phages under 100 kb), we expect to
observe instances where a gene call is separated into different ORFs on different contigs.
These errors will result in overestimating gene content and incorrect predictions of
paralogous sequences. Similar issues have been noted to cause errors in the analysis of gene
content evolution in eukaryotes (Denton et al., 2014). The current implementation of gene
defragmentation in Rephine.r should successfully resolve many of these mistakes, and it
may offer a future approach for consolidating contigs in assemblies. For instance, suppose
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a gene is split by a transposase that includes short palindromic repeats. These regions are
difficult to assemble with short reads and may lead to one contig ending with half of the
original gene, while a second contig starts with the transposase and the remainder of the
gene. Scaffolding these contigs can be challenging, but by recognizing gene fragments, it
may be possible to resolve the assembly.

Last, bacterial pangenome workflows typically do not account for specific issues that
may arise for prophage regions, such as errors in clustering and gene fragmentation that
we observe in the genomes of phage isolates. Our expectation is that these same errors will
impact prophages, and future work will need to consider how these issues may impact the
accuracy of bacterial pangenomes. Moreover, bacterial genes themselves can be interrupted
by mobile genetic elements (including phages), and Rephine.r should offer a novel approach
for identifying these events.

CONCLUSIONS

The Rephine.r pipeline offers an efficient means to identify and correct errors in phage
pangenomes caused by incomplete gene clustering and fragmented gene calls. Correcting
these errors, in particular for cases of genes interrupted by selfish genetic elements,
increases the size of the SCG in each of our test cases. These corrections provide more
genetic variation for improved phylogenetic inference and are especially useful for large,
diverse phage groups where standard methods produce limited core genomes and poorly
resolved phylogenies.
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