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Abstract:

Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling
dependent data. While the early literature has shown them to be powerful in capturing many network
features of interest, recent work highlights difficulties related to the models’ ill behavior, such as most of
the probability mass being concentrated on a very small subset of the parameter space. This behavior
limits both the applicability of an ERGM as a model for real data and inference and parameter estimation
via the usual Markov chain Monte Carlo algorithms.

To address this problem, we propose a new exponential family of models for random graphs that build
on the standard ERGM framework. Specifically, we solve the problem of computational intractability
and ‘degenerate’ model behavior by an interpretable support restriction. We introduce a new parameter
based on the graph-theoretic notion of degeneracy, a measure of sparsity whose value is commonly low in
real-worlds networks. The new model family is supported on the sample space of graphs with bounded
degeneracy and is called degeneracy-restricted ERGMs, or DERGMs for short. Since DERGMs general-
ize ERGMs – the latter is obtained from the former by setting the degeneracy parameter to be maximal
– they inherit good theoretical properties, while at the same time place their mass more uniformly
over realistic graphs. The support restriction allows the use of new (and fast) Monte Carlo methods for
inference, thus making the models scalable and computationally tractable. We study various theoretical
properties of DERGMs and illustrate how the support restriction improves the model behavior. We also
present a fast Monte Carlo algorithm for parameter estimation that avoids many issues faced by Markov
Chain Monte Carlo algorithms used for inference in ERGMs.

1. Introduction

Exponential family random graph models, also known as ERGMs for short, are known to be a theoretically
flexible class for modeling real world networks. There is a growing literature in applications such as Snijders
et al. (2006), Saul & Filkov (2007) and Goodreau et al. (2009), but also a growing set of contributions on
concerns regarding model complexity and degenerate behavior. Among the many contributions, we single out
recent work by Yin et al. (2016), Chatterjee & Diaconis (2013), Bannister et al. (2014), where various issues of
ERGMs have been pointed out and addressed theoretically. While some ERGMs may, as some like to phrase
it, ‘behave badly’, this literature also suggests that if we understand this bad behavior, we can still work with
this model family - a desirable outcome as the family is quite flexible and broadly encompassing.

Degenerate behavior of some models in the ERGM family that go beyond dyadic independence, as explained
in Handcock (2003) and, more recently, in Rinaldo et al. (2009), stems from two main issues: The first issue is
that given a fixed parameter value, a “degenerate” model places most of the probability mass on a small region
of the support. The second issue is that the subset of parameters where this behavior does not happen can be
very small. This property is then naturally implicated in other problems such as estimation, in particular, non-
convergence of MCMC-MLE estimates. A popular algorithm for estimation is to approximate the log likelihood
using importance sampling from the model with a fixed parameter θ0, usually via an MCMC sampler. To obtain
an accurate approximation of the log likelihood, the standard MCMC sampler must generate samples from the
region where the mass is concentrated. Since the mass is tightly concentrated on a small region, the MCMC
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sampler must start with a parameter very close to MLE, otherwise estimation fails. See Snijders (2002) for the
Robbins-Monro algorithm, which need not start with a parameter close to the true MLE for the estimation to
not fail.

The literature offers several approaches to address the issue of model degeneracy, including the study of
curved ERGMs with alternating k-star and k-triangle terms and geometrically weighted edge wise shared
partner terms (Snijders et al. (2006), Hunter & Handcock (2006), Hunter et al. (2008b)); dyad-independent
ERGMs (ERGMs that assume the dyads are independent) with sparsity assumptions (Krivitsky et al. (2011),
Kolaczyk & Krivitsky (2015)); ERGMs with local dependence (Schweinberger & Handcock (2015)), nonpara-
metric ERGMs (Thiemichen & Kauermann (2017)); and an example of a re-parametrized ERGM that appears
in Horvát et al. (2015), who study the edge-triangle ERGM and propose a one-to-one transformation of the
sample space that renders the model non-degenerate.

Our work contributes to this understanding and proposes a natural support restriction of ERGMs to sparse
graphs and without the dyadic independence assumption. The class of sparse graphs that we consider are
called k-degenerate graphs, defined below. We show that restricting support to k-degenerate graphs provably
reduces the degenerate behavior. To formally show improvement in model behavior, we rely on the notion
of model degeneracy and stability as defined in Schweinberger (2011) as our starting points. Schweinberger
defined stability of sufficient statistics and showed that instability leads to model degeneracy. We generalize
and strengthen this definition to support-restricted ERGMs, including DERGMs, and prove that stability
implies non-degeneracy of the model.

To decide how to restrict support, we build our intuition on the observation that has been noted in much
of the network literature: many real-world networks are sparse in some sense. While there are many different
notions of sparsity, we use the following class of sparse graphs: a network is said to be sparse if it has bounded
degeneracy1, defined as follows (see Remark 1 for equivalent descriptions).

Definition 1 (Degeneracy of a graph g, Lick & White (1970); Seidman (1983)). The k-core Hk(g) of g is
the maximal subgraph of g in which every vertex has degree at least k. Here, maximal means with respect to
inclusion. The degeneracy of a graph g is the maximum index of its non-empty core: max{k : Hk(g) 6= ∅}.

Examples: Consider a star graph on n nodes. It has degeneracy 1. On the other extreme, a fully connected
graph has degeneracy n. Note that the degree of the star graph is n − 1, but its degeneracy is 1. Figure 1
shows a more interesting example of a small network with degeneracy 4, along with its cores.

Fig 1: An example of a small graph g (left), its 2-core (center), and its 3- and 4-core (right). Adapted from
Karwa et al. (2017)

Many real world networks tend to have small degeneracy with respect to the number of nodes. The table
below (adapted from Karwa et al. (2017)) shows examples of some sample networks whose degeneracy is much
less compared to the number of nodes.

Without further ado, let us define the model class, and then discuss the graph-theoretic notion more
intuitively.

Let Gn be the set of all simple graphs on n nodes. This sample space definition for ERGMs is standard,
though extensions exist to valued graphs, see Krivitsky (2012). Recall that the ERGM with sufficient statistics

1Sadly, the two fields - graph theory and statistics - use the same term, degeneracy, for two different concepts. We will show
that degeneracy-restricted graphs lead to non-degenerate models.
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Network Dataset Nodes Edges Degeneracy
Scotland 244 256 4
Geom 7343 11898 21
NDyeast 2114 2277 5
NetScience 1589 2742 19
USpowerGrid 4941 6594 5
Erdős 6927 11850 10

vector t = (t1, . . . , td) defined on the parameter space Θ ⊂ R
d places the following probability on any g ∈ Gn:

PERGM (G = g) =
exp{θT · t(g)}

c(θ)
, (1)

where θ = (θ1, . . . , θd) are the canonical parameters, c(θ) is the normalizing constant c(θ) =
∑

g∈Gn
exp{θT ·

t(g)}, and the set of possible parameters is given by Θ = {θ ∈ R
d : c(θ) < ∞}. In the corresponding DERGM,

we simply restrict the support of the model from Gn to the set of all graphs on n nodes whose degeneracy is
at most k.

Definition 2 (DERGM). Denote by Gn,k the set of all graphs on n nodes whose degeneracy is at most k.
Choose a vector of graph statistics t = (t1, . . . , td). The degeneracy-restricted exponential random graph model,
or DERGM for short, with sufficient statistics vector t places the following probability on a graph on n nodes:

PDERGM (G = g) =

{

exp{θT · t(g)} · ck(θ)−1, if g ∈ Gn,k

0, otherwise,
(2)

where ck(θ) is the modified normalizing constant

ck(θ) =
∑

g∈Gn,k

exp{θT · t(g)},

and the set of possible parameters is given by

Θ = {θ ∈ R
d : ck(θ) < ∞}.

Note that setting k = n− 1 reduces the DERGM to the usual ERGM.
Section 4 illustrates the effect of changing the degeneracy parameter value on the model behavior. For

example, following Schweinberger (2011), we investigate whether models exhibit excessive sensitivity, where
small changes in the values of the natural parameters lead to large changes in the mean-value parameter and
show an example where DERGMs do not exhibit such excessive sensitivity when compared to the corresponding
ERGM. In addition, simulation results in Section 5 provide evidence that the parameter estimates of a DERGM
are not too different from the corresponding ERGM, in cases where both can be estimated. That is, even if
the true data generating distribution is an ERGM, there is very little or no difference in fitting a DERGM.

One may ask, what is the point of fitting a DERGM in such cases when the ERGM parameters can also be
estimated? Our reasoning is that in such cases, one may think of support restriction as a means of improving
the properties of the MCMC-MLE estimation procedure by preventing the Markov chain from visiting states
that are extremal (e.g. graphs that are complete or near complete). Moreover, we believe that any reasonable
ERGM that fits a real world data will place very little mass on graphs with large degeneracy (this can be
demonstrated by fitting an ERGM, simulating a lot of graphs from the ERGM and recording the degeneracy
parameter). Further, these experiments show that in cases where ERGMs cannot be fit, fitting a DERGM will
give us reasonable parameter estimates.

Remark 1. Graph degeneracy has other characterizations; for instance, a k-degenerate graph admits an
ordering of its vertices v1, . . . , vn such that vertex vi has at most k neighbors after it in the ordering; thus a
bounded-degeneracy graph means there exists a vertex with few neighbors. In fact, another characterization
is that in a k-degenerate graph, every induced subgraph has a vertex of degree at most k. Hence, bounding
the degeneracy of a graph is a weaker constraint than bounding the overall node degree in the graph, and
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it is also weaker than bounding the so-called h-index, which means that most nodes have few neighbors. For
supporting evidence of low-degeneracy network data, see (Karwa et al., 2017, Section 3.1), where the authors
compute degeneracy of each of the undirected graphs in the Batagelj & Mrvar (2006) database. A secondary
reason to consider this support restriction is that restricting to bounded-degeneracy graphs makes many sub
graph counting algorithms computationally efficient: for example, all the maximal cliques can be enumerated
in polynomial time in the case of bounded degeneracy, while in general the problem is NP-hard.

Remark 2. We want to emphasize the fact that bounding the degeneracy of a graph does not impose any
bound on the maximum degree. Consider, for example, a star graph on n nodes. The maximum degree is n−1,
but the degeneracy is only 1. In fact, the key reason for bounding the degeneracy and not the degree is that
one gets a class of graphs that can have very high degree nodes, but are still sparse in some sense.

Remark 3. A discussion on the choice of k is in order. The problem of simultaneously estimating θ and k from
gobs seems quite difficult, since changing k changes the support of the model. We consider the choice of k akin
to the problem of model selection, as different values of k describe different models. Valid choices of k range
from the observed value kobs to n− 1, where k = n− 1 reduces to the usual ERGM. Setting k = kobs seems to
be a reasonable choice (and it is the minimal choice, otherwise the model places 0 probability on the observed
graph), for now, given that in most real world networks kobs is much smaller than n. More importantly, we
will show in Section 2 that setting k � n leads to improved model behavior, and in addition we prove a lower
bound on the size of the support of such a DERGM compared to the full ERGM. Choosing smaller values of
k leads to a likelihood function that is better behaved, eliminates dense graphs from the support, and reduces
model degeneracy. We show this in detail theoretically and by simulations.

A summary of the contributions of the remainder of this manuscript is as follows. In Section 2, we prove
that the support of a DERGM with k � n is not too small compared to k = n − 1, extend and strengthen
the definition of stability of sufficient statistics from Schweinberger (2011), and prove that stability implies
that the DERGM is non-degenerate. We also present an example of an unstable ERGM whose counterpart
DERGM is stable, namely, one with a two-dimensional parameter space whose sufficient statistics are the
number of edges and number of triangles in the graph. The degeneracy of the edge-triangle model is studied
in detail by Rinaldo et al. (2009). In Section 3 we discuss the general estimation problem in DERGMs and
address various aspects of the problem, including existence of the MLE and approximate MLE. Section 3.1 also
provides a straightforward Metropolis-Hastings algorithm to sample from the model. In Section 4 we provide
simulation results that support the theoretical claims about degeneracy-restricted ERGMs. Specifically, we
discuss the choice of k, why DERGMs do not suffer from the same estimation issues that arise in standard
ERGMs, model degeneracy issues and how they disappear for smaller values of k. We focus on the edge-
triangle models as the running example; these are well-studied sufficient statistics that arise naturally when
considering Markov dependence, see for example Frank & Strauss (1986) and recent complementary work
Lauritzen et al. (2018). As a running example in Rinaldo et al. (2009), it is also the natural example to
compare ERGM behavior to DERGMs. Section 5 includes simulation studies on real-world network data,
including those where a DERGM fits but ERGM fails to converge, as well as examples where both models
fit. Section 6 derives uniform samplers of the sample space Gn,k — which were used throughout Section 4 —
and further discusses some of the algorithmic considerations pertaining to scalability and applicability. The R
and Python code used to run the simulations in Section 4, along with implementations of the main algorithms
from Section 6, is available on GitHub under Bajić (2016).

2. Non-degeneracy and Stability of DERGMs

In this section, we formally show that restricting the support of an ERGMs to k-degenerate graphs improves
model behavior. Schweinberger (2011) showed that the degenerate behavior of an ERGM is closely tied with
the notion of “stability” of sufficient statistics that are used to define the ERGM. In particular, “un-stable”
sufficient statistics lead to excessive sensitivity of the model, which in turn leads to degenerate model behavior
and impacts the MCMC-MLE estimation. We extend the notion of stability to support-restricted models and
tie it to the support size of a model. Roughly, a sufficient statistic is stable if it can be strictly upper-bounded
by the log of support size of the model. In an ERGM, the log of support size is of order O(n2) and hence any
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sufficient statistic that grows faster than O(n2) is considered unstable. This includes the number of triangles
and number of two-stars, both of which grow at a rate of O(n3). This unstable behavior leads to excessive
sensitivity and degeneracy of the edge-triangle ERGM. DERGMs, on the other hand, are defined by restricting
the support size and include only k-degenerate graphs for a fixed k. Restricting the support to k-degenerate
graphs induces stability of sufficient statistics such as triangles and two-stars, which in turn improves model
behavior. Furthermore, if k is fixed, the number of edges and triangles is of the same order, so the triangle
term cannot dominate the edge term; see Proposition 1.

First, we study the size of the support of DERGMs in Theorem 1, generalize the notion of stable sufficient
statistics in Definition 3, and show stability holds for the edge-triangle DERGM in Proposition 1 (Schwein-
berger (2011) showed the edge-triangle ERGM is unstable; cf. Rinaldo et al. (2009)). Then, in Theorem 3,
we show that any DERGM with stable sufficient statistics is not degenerate under the formal definition of
asymptotic non-degeneracy from Schweinberger (2011).

Order notation. Many of the results in this paper are asymptotic and use the order notation. For readers’
convenience, we include the definitions we use: the ‘big-O’, denoted by O(·); ‘little-O’, or o(·); ‘big-Omega’,
Ω(·); and ‘Theta’, Θ(·). They offer convenient shorthand for comparing the asymptotic growth of two functions
f(n) and g(n), n ∈ Z≥0:

1. f(n) is O(g(n)) if there exists a constant c > 0 and an integer n0, such that for all n > n0, the bound
f(n) ≤ c · g(n) holds.

2. f(n) is o(g(n))) if for all constants c > 0, there exists an integer n0 such that for every n ≥ n0,
f(n) < c · g(n).

3. f(n) is Ω(g(n)) if there exists a constant c > 0 and an integer n0, such that for all n > n0, such that
f(n) ≥ c · g(n).

4. f(n) is Θ(g(n)) if f(n) is O(g(n)) and f(n) is o(g(n)).

2.1. Support size of DERGMs

The number of graphs in the support of a ERGM is 2(
n

2). Since a DERGM restricts the support, a natural
question that arises is: what is the number of graphs in the support of a DERGM with degeneracy parameter
k? Unfortunately, there are no simple formulas to count the number of k-degenerate graphs; nonetheless, we
can obtain an asymptotic lower bound as follows.

Theorem 1 (Support size of DERGMs). Let Sk(n) denote the number of simple graphs with n nodes and
degeneracy at most k. Then, for a fixed k, there exist positive constants c1, c2 > 0 and an integer n0 such that
for all n > n0,

c1 · n log n ≤ logSk(n) ≤ c2 · n log n

That is, for a fixed k, and as n goes to infinity, logSk(n) = Θ (n log n) . On the other hand, for k = n − 1,
logSn−1(n) = Θ(n2).

Theorem 1 is an asymptotic statement that gives an asymptotic upper and lower bound on the support
size of DERGMs, when k is a fixed constant. For the finite sample settings, we can consider k = O(1), i.e. k
is a bounded from above by a constant, whereas n is increasing. (As a practical example, n may be 5000, but
k may be 50 or even 10.) Under such settings, Theorem 1 shows that there are about O(2n logn) graphs in

the support of DERGM. On the other hand, the ERGM has O(2n
2

) graphs. Note that Sn−1(n) is the size of
the support of the full ERGM. We found two interesting properties: that parameter estimates of a DERGM
do not change drastically from that of the corresponding ERGM, see Section 5.2 for a concrete example; and
that the graphs eliminated from the support of the ERGM are precisely the ones that cause instability issues,
as illustrated in the next result.

Proof of Theorem 1. We derive both upper and lower bounds for the DERGMs support size. A natural lower
bound on the number of k-degenerate graphs is the number of well-ordered k-degenerate graphs. A well-
ordered k-degenerate graph is a labeled graph with vertex-labels 1, . . . , n such that the ordering of the vertices
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by their labels is a well-ordering of the graph. From Bauer et al. (2010), the number of well-ordered graphs
with degeneracy at most k is given by

Dk(n) = Dk(n− 1) ·
min(n−1,k)
∑

i=0

(
n− 1

i

)

.

By definition, Dk(n) is a lower bound on the Sk(n). Applying the recursion, for a constant k, we get

Dk(n) =

(
k∑

i=0

(
n− 1

i

))

·
(

k∑

i=0

(
n− 2

i

))

. . . ·
(

k∑

i=0

(
k

i

))

·
(

k−1∑

i=0

(
k − 1

i

))

·
(

1∑

i=0

(
1

i

))

,

which further simplifies as follows:

Dk(n) =

n−1∏

r=k+1

k∑

i=0

(
r

i

)

·
k∏

r=1

r∑

i=0

(
r

i

)

=
n−1∏

r=k+1

k∑

i=0

(
r

i

)

·
k∏

r=1

2r

=

n−1∏

r=k+1

k∑

i=0

(
r

i

)

· 2(k2).

Taking logarithms gives

logDk(n) =

n−1∑

r=k+1

log

(
k∑

i=0

(
r

i

))

+

(
k

2

)

log 2

≥
n−1∑

r=k+1

log

(
r

k

)

+

(
k

2

)

log 2.

Note that the second term depends only on k and hence we can focus on the first term. Let

Tk(n) :=

n−1∑

r=k+1

log

(
r

k

)

.

Using the lower bound
(
r
k

)
≥ (r/k)k, we get,

Tk(n) ≥ k ·
n−1∑

r=k+1

log(r/k)

≥ k ·
(

n−1∑

r=k+1

log r

)

− k log k(n− k − 1)

= k ·
(

n−1∑

r=1

log r −
k∑

r=1

log r

)

− k log k(n− k − 1)

= k · (log(n− 1)!− log k!)− k log k(n− k − 1)

= Ω(n log n).

Thus the claimed lower bound follows: logSk(n) ≥ logDk(n) ≥ Tk(n) = Ω(n log n).
For the upper bound on the support size of k-degenerate graphs, we will use the following strategy. Let

#G(n,≤ m) denote the number of graphs on n nodes with at most m edges, we will show below that

log#G(n,≤ m) ≤ 2m · log(en) (3)
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From Proposition 1 below, the maximum number of edges in a k-degenerate graph is k ·n−
(
(k+1)

2

)
. Using the

fact that
Gn,k ⊂ G(n,≤ m),

where m = k · n−
(
(k+1)

2

)
, we have the following upper bound:

logSk(n) ≤ log#G

(

n,≤ k · n−
(
(k + 1)

2

))

≤ 2

(

k · n−
(
(k + 1)

2

))

log(en)

< 2k · n log(en) = O(n log n)

Finally, to see that the upper and lower bounds for the case when k = n− 1 hold, note that k = n− 1 is the

full ERGM and we have 2(
n

2) graphs in the support of an ERGM. Thus logSn−1(n) = log 2(
n

2) = Θ(n2).
All that remains to be shown is equation 3. Note that the number of graphs on n nodes with m edges is

((n2)
m

)
, since there are

(
n
2

)
possible locations to choose from and place the m edges. Now the number of graphs

with at most m edges is given by

#G(n,≤ m) =

m∑

i=0

((n
2

)

i

)

≤
(

e
(
n
2

)

m

)m

,

from the well known fact
∑m

i=0

(
n
i

)
≤
(
en
m

)m
. Taking logs, we get

log#G(n,≤ m) ≤ log

(

e
(
n
2

)

m

)m

≤ log

(
en2

m

)m

≤ 2m log en.

2.2. Stability of Sufficient Statistics

By restricting the support to include only those graphs with degeneracy at most k, where k is small compared
to n, we eliminate “dense” graphs from the model. In turn, this has a stabilizing effect on the sufficient
statistics. A formal definition of a stable sufficient statistic in ERGMs is given in Schweinberger (2011).

Definition 3 (Stable sufficient statistics). Let Sk(n) be the size of support of a DERGM with sufficient statistic
t(g). Then t(g) is said to be stable if for any constant C > 0 there exists an integer n0 such that for every
n ≥ n0

max
g∈Gn,k

t(g) < C · logSk(n)

or in other words, max
g∈Gn,k

t(g) ∈ o(logSk(n)). On the other hand t(g) is said to be unstable if for any C > 0,

however large,
max
g∈Gn,k

t(g) ≥ C · logSk(n)

A vector of sufficient statistics is stable if all the components of the vector are stable, if any component is
unstable, the vector of sufficient statistics is unstable.

Roughly, a sufficient statistic is stable if it can eventually be strictly upper-bounded by the log of the
support size of the DERGM. If it cannot be upper bounded by the log of support size, then it is unstable.
For an ERGM, with no support restriction, this definition reduces to strictly upper bounding the sufficient
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statistic by
(
n
2

)
, where n is the number of nodes and it strengthens the definition of stable sufficient statistics in

Schweinberger (2011). The edge-triangle ERGM is not stable due to the instability of the number of triangles,
as shown in Schweinberger (2011). However, it turns out that the edge-triangle DERGM is stable.

Proposition 1. Let e(g) be the number of edges and 4(g) be the number of triangles in a graph. Then

1. max
g∈Gn,k

e(g) = k · n−
(
(k+1)

2

)

2. max
g∈Gn,k

4(g) =
(
k
3

)
+
(
k
2

)
(n− k).

Proof. For this proof, we use the notion of a shell index of a node: define the i-th shell of a graph g to be the
difference of the two consecutive cores Hi(g) \Hi−1(g). Note that a node may belong to more than one core,
but shell membership is unique. Thus we say that a vertex v is said to have shell index i if v ∈ Hi(g) but
v 6∈ Hi+1(g).

For any given network, the shell sequence s1 ≤ s2 . . . ≤ sn is the sorted sequence of shell indices of each
node. From Proposition 10 in Karwa et al. (2017), the maximum number of edges in a graph with a shell
sequence s1 ≤ s2 . . . ≤ sn is given by:

(
k

2

)

+

n−k∑

i=1

si.

This expression is maximized by graphs in which all the nodes are in the kth core, which has a shell sequence
s1 = k, s2 = k, . . . sn = k. Thus the maximum number of edges in a k-degenerate graph is

(
k

2

)

+

n−k∑

i=1

k =
k(k − 1)

2
+ k(n− k) = nk −

(
(k + 1)

2

)

.

Similarly, from Proposition 12 in Karwa et al. (2017), the maximum number of triangles in a graph with
shell sequence s1 ≤ s2 . . . ≤ sn is given by:

(
k

3

)

+

n−k∑

i=1

(
si
2

)

.

This expression is maximized also when all the nodes are in the kth core. Thus the maximum number of
triangles is

(
k

3

)

+

n−k∑

i=1

(
k

2

)

=

(
k

3

)

+ (n− k)

(
k

2

)

.

Proposition 1 shows that the number of triangles in a k-degenerate graph is O(n), whenever k = O(1). (In
fact k can be allowed to grow with n, albeit slowly, see the next theorem) On the other hand, without any
restriction on the degeneracy, the number of triangles can be as large as O(n3) making the ERGMs unstable.
The number of triangles in k-degenerate graphs is linear in n, which make them a good candidate to model
sparse graphs, which are commonplace in the real world.

In Theorem 2, we use Proposition 1 to show that the edge-triangle DERGM is stable. The way we defined
a DERGM assumes that k is fixed; however, note that Theorem 2 shows that k can grow with n, albeit slowly:
For instance, if k grows with

√

log(n), then the sufficient statistics are still stable.

Theorem 2 (Stability of Edge-Triangle DERGM). Consider the edge-triangle dergm with the vector of suffi-
cient statistics t(g) = (e(g),4(g)) where e(g) is the number of edges and 4(g) is the number of triangles. The
edge-triangle dergm is stable as long as k = o(

√
log n).
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Proof. We need to show that for all c > 0, there exists n0, there exists n > n0 such that maxg(e(g),4(g)) <
c · logSk(n)) where the max is over the support set g ∈ Gn,k. Fix a g in Gn,k. From Proposition 1, we have,

(e(g),4(g)) ≤
(

k · n−
(
(k + 1)

2

)

,

(
k

3

)

+

(
k

2

)

(n− k)

)

≤ O(k · n, k2 · n)

Thus, if k = o(
√
log n), we have, (e(g),4(g)) = o(n log n) = o(logSk(n)).

2.3. Non-degeneracy of DERGMs

We now show that stability of sufficient statistics implies that a DERGM is non-degenerate. Let us begin
by defining degeneracy of a distribution, or more precisely the degeneracy of a parameter associated with a
distribution. Consider a DERGM defined by the parameter vector θ and sufficient statistics t(g) and let Mk(θ)
be the set of modes, i.e.

Mk(θ) = argmax
g∈Gn,k

eθ
T ·t(g)

ck(θ)
.

One also defines a set of ε-modes for any 0 < ε < 1:

Mε,k(θ) = {G ∈ Gn,k : eθ
T ·t(G) > (1− ε) max

g∈Gn,k

eθ
T ·t(g)}.

A parameter θ is said to be asymptotically degenerate if the distribution induced by θ asymptotically places
all of its mass on its modes.

Definition 4 (Asymptotically degenerate parameters, see also Schweinberger (2011)). A parameter θ is said
to be asymptotically degenerate if

lim
n→∞

Pθ(G ∈ Mk(θ)) = 1.

If, on the other hand, lim
n→∞

Pθ(G ∈ Mk(θ)) is bounded away from 1, the model is asymptotically non-

degenerate. We define asymptotic near-degeneracy for DERGMs similarly using ε-modes.
As Schweinberger (2011) discusses, strict degeneracy in discrete exponential families isn’t attainable, thus

θ is said to be near-degenerate if the mass concentrates on ε-modes. The same reference proves that unstable
sufficient statistics lead to near degenerate distributions. In the following result we prove that, under a technical
condition that the number of graphs in the ε-modes grows slower than square root of the model support size,
stability implies non-(near-)degeneracy in the more general case of DERGMs.

Theorem 3 (Stability implies non-(near)-degeneracy). Consider any DERGM with parameter vector θ and the
vector of sufficient statistics t(g), and a bounded and fixed degeneracy parameter k. Suppose that t(g) is stable.
Assume θ ∈ Θ is such that there exists a constant c and an n0 such that for all n > n0, |Mε,k(θ)| < c ·

√

Sk(n),
that is the number of graphs in the set of ε modes does not grow larger than the square root of the total number
of graphs in the model support. Then, the DERGM is asymptotically non-(near)-degenerate at θ.

Proof. To show that a DERGM is not near-degenerate, we need to show that lim
n→∞

Pθ(G ∈ Mε,k(θ)) < 1.

That is, we need to show that for every 0 < ε < 1, however small, Pθ(G ∈ Mε,k(θ)) is bounded away from 1
asymptotically.
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Pθ(G ∈ Mε,k(θ)) =
1

ck(θ)

∑

g∈Mk,ε(θ)

exp(θT · t(g))

=

∑

g∈Mε,k(θ)
exp(θT · t(g))

∑

g∈Gn,k
exp(θT · t(g))

=

∑

g∈Mε,k(θ)
exp(θT · t(g))

∑

g∈Mε,k(θ)
exp(θT · t(g)) +∑g∈Gn,k\Mε,k(θ)

exp(θT · t(g))

=
1

1 + rn
,

where

rn =

∑

g∈Gn,k\Mε,k(θ)
eθ

T ·t(g)

∑

g∈Mε,k(θ)
eθT ·t(g)

.

Now, showing that lim
n→∞

Pθ(G ∈ Mε,k(θ)) < 1 is equivalent to showing lim
n→∞

rn > 0.

Let Nm = |Mε,k(θ)| and let Un,k(θ) = max
g∈Gn,k

θT · t(g), and Ln,k = min
g∈Gn,k

θT · t(g). Without loss of generality

we can assume that Ln,k(θ) is 0. This follows from observing that Pθ(G = g) is invariant under the translations
of θT · t(g) by −Ln,k(θ). Also, note that for any g ∈ Mε,k(θ), and any 0 < ε < 1, we have θT · t(g) ≤ Un,k(θ).
Thus, we have,

rn =

∑

g∈Gn,k\Mk(θ)
eθ

T ·t(g)

∑

g∈Mε,k(θ)
exp(θT · t(g))

>

∑

g∈Gn,k\Mk(θ)
eθ

T ·t(g)

NmeUn,k(θ)

≥
∑

g∈Gn,k\Mk(θ)
eLn,k(θ)

NmeUn,k(θ)
=

∑

g∈Gn,k\Mk(θ)
e0

NmeUn,k(θ)
=

Sk(n)−Nm

NmeUn,k(θ)
=

Sk(n)
Nm

− 1

eUn,k(θ)
≥

Sk(n)
2Nm

eUn,k(θ)

≥ c0
√

Sk(n)

2eUn,k(θ)
( By assumption, Nm < c0 ·

√

Sk(n))

≥ c0
2

√
ec1·n logn

eUn,k(θ)
( Since logSk(n) > c1 · n log n, from Theorem 1).

The last inequality follows from Theorem 1, which states that there exists a constant c1, and an n0 such
that for all n > n0, logSk(n) ≥ c1 · n log n. Recall that t(g) being stable means that for all c > 0, there exists
an n0 such that for all n > n0, max

g∈Gn,k

t(g) < c · logSk(n).Thus, for all c > 0,

Un,k(θ) = max
g∈Gn,k

θT · t(g)

< cθ · c · log(Sk(n))

< cθ · c · c2 · n log n.

The last inequality again follows from Theorem 1 which states that there exists a constant c2 and an n0 such
that for all n > n0, logSk(n) ≤ c2 ·n log n. Here, cθ is a constant that depends on θ. Thus we get, for all c > 0,
there exists an n0, c1 and c2 such that for all n > n0,

rn >
c0
2

e
c1
2
·n logn

eUn,k(θ)

>
c0
2

e
c1
2
·n logn

ec·cθc2·n logn

>
c0
2
e(

c1
2
−c·c2cθ)·n logn.
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Since this holds for any c > 0, let us choose c such that c1
2 − c · c2cθ = 0. Then, rn > c0

2 > 0 in the limit, as
required.

In order to show an explicit example of a model for which we can find a set of parameter values θ for which
Theorem 3 holds, we spell out the result for the example of the triangle DERGM studied in the previous
section. At the same time we can prove stronger result, relaxing the assumption on the degeneracy k.

Corollary 1 (Stability implies non-(near)-degeneracy for edge-triangle DERGM). Consider DERGM with
parameter vector θ = (θ1, θ2) and sufficient statistics (e(g),4(g)). Allow the degeneracy parameter k to increase
as follows:

1. k = o(
√
log n).

For θ ∈ Θ, suppose that:

1. |θ|1 < o(log n), where |θ|1 is the l1 norm of θ,
2. θ ∈ Θ is such that there exists and constant c0 and an n0 such that for all n > n0, |Mε,k(θ)| < c0

√

Sk(n),
that is the number of graphs in the set of ε modes does not grow larger than the square root of the total
number of graphs in the support of the DERGM.

Then, the edge-triangle DERGM is asymptotically non-(near)-degenerate at θ.

Assumption 1 of course holds for fixed values of k, thus it is not restrictive on the DERGM as we defined
it, but rather is a relaxation. The last assumption is the same as in the theorem above. Note that the former
(concerning the growth of k) is weak, whereas the latter (concerning the number of modes) is strong.

Proof. To prove asymptotic non-(near-)degeneracy, we repeat the same steps as in the theorem above, but
consider a finer lower bound on the ratio rn from the end of the proof:

rn >
c0
2

· e
c1
2
·n logn

eUn,k(θ)
.

Now, let us examine rn for the case of number of edges and triangles. From Proposition 1, there exists a
constant c2 and an n0 such that for all n > n0, the following holds:

Un,k(θ) = max
g

(θ1, θ2)
T · (e(g),4(g)) < |θ|1 ·max

g
(e(g) +4(g))

< |θ|1 · c2 · k2 · n

Thus we have,

rn ≥ c0
2

· e
c1
2
·n logn

eUn,k(θ)

≥ c0
2

· e
c1
2
·n logn

e|θ|1·c2·k2·n
.

If we allow |θ|1 = o(log n), and k = o(
√
log n), then we have c2|θ|1 · k2 · n = o(n log n), which means for all

c > 0, there exists an n0 such that for all n > n0, c2|θ|1 · k2 · n < c · n log n. Thus, we have,

rn ≥ c0
2

· e
c1
2
·n logn

ec·n logn
.

Choosing c = c1
2 , we get rn ≥ c0

2 , as needed.

Corollary 1 shows that the edge-triangle DERGM is asymptotically non-(near)-degenerate for k = o(log n)
and |θ|1 = o(log n). This result implies that for large n, the edge-triangle DERGM cannot place all its mass
on the set of ε-modes, and there must be a considerable amount of mass assigned to points outside the set of
ε-modes.
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3. Maximum Likelihood Estimation of DERGMs

In this section, we consider the problem of estimating the parameters of a DERGM given by Equation (2)
from a single observed graph gobs on n nodes. Suppose that gobs has degeneracy kobs. To fit a DERGM to gobs,
we need to estimate the parameter vector θ and the degeneracy parameter k. From now on, we assume k is
fixed and equal to kobs; see Remark 3. For a fixed k, one can write the log-likelihood function of a DERGM in
the following form:

lk(θ; gobs) = − log




∑

g∈Gn,k

exp
(
θT∆(g; gobs)

)



 , (4)

where ∆(g; gobs) = t(g)− t(gobs). We will also use ∆(g) to denote ∆(g; gobs) when it is clear that gobs is fixed.
The maximum likelihood estimate of θ is

θ̂ = argmax lk(θ; gobs).

As is the case with ERGMs, directly maximizing Equation (4) to obtain θ̂ is intractable. Hence, we need
to resort to approximate maximization. The most commonly used method is the MCMC-MLE proposed in
Geyer & Thompson (1992) and applied to ERGMs by and Hunter & Handcock (2006). An alternative is to
use stochastic approximation of Robbins & Monro (1985), see Snijders (2002). However, as stated in Hunter
et al. (2012), and shown in Geyer & Thompson (1992), the MCMC-MLE procedure makes more efficient use
of the samples in comparison to the stochastic approximation method.

Therefore, to estimate DERGMs, we use the MCMC-MLE method, combined with the step length algorithm
of Hummel et al. (2012). The key idea in MCMC-MLE is to approximate the log-likelihood function using
importance sampling, which is then maximized to obtain an approximate MLE. The approximate MLE is used
to sample graphs and obtain an improved approximation of the likelihood function, which is again maximized.
This process is repeated iteratively, until convergence.

More specifically, letting θ0 be a fixed starting value (usually taken to be the maximum pseudo-likelihood
estimator), the log-likelihood from Equation (4) can be written as:

lk(θ; gobs) = − log (ck(θ0))− logEPθ0,k

[
exp((θ − θ0)

t∆(G; gobs))
]
, (5)

where ∆(G; gobs) = t(G)− t(gobs) and the expectation is over Pθ0,k, which denotes a DERGM with parameters
θ0 and degeneracy parameter k. If G1, . . . , GB are iid samples from Pθ0,k, one can obtain a strongly consistent
estimate of the log-likelihood by using

l̂k(θ; gobs) = − log (ck(θ0))− log

B∑

b=1

[
exp((θ − θ0)

t∆(Gb; gobs))
]
+ logB (6)

∝ log
B∑

b=1

[
exp((θ − θ0)

t∆(Gb; gobs))
]
.

The estimated log-likelihood in Equation (6) is maximized to obtain an approximate maximum likelihood
estimator. Thus, the approximate MLE is defined as

θ̃ = argmax l̂k(θ, gobs). (7)

In general, it is not possible to obtain iid samples from Pθ0 , and one resorts to MCMC methods to draw
approximate samples from the model by running the Markov chain until convergence, see Snijders (2002) and
Hunter & Handcock (2006) for more details. Thus, the key step in estimating DERGMs using MCMC-MLE is
to draw MCMC samples from a DERGM with a fixed value of θ with the support restricted to k-degenerate
graphs.
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3.1. Sampling graphs from a DERGM with a fixed parameter

In this section, we discuss an MCMC algorithm for sampling graphs from the DERGM for a fixed value of θ
with degeneracy parameter k. The key issue is that to sample from a DERGM using MCMC, we need to ensure
that the proposed graphs are in the set Gn,k, i.e. they have degeneracy restricted to k. To this end, we consider
two different approaches: the first, straightforward approach, is to use the usual tie-no-tie proposal (see, for
example, Caimo & Friel (2011)) along with the Metropolis-Hastings step. Such a proposal may generate graphs
outside the set Gn,k, which are naturally rejected by the Metropolis-Hastings algorithm. Thus, whenever the
degeneracy of the proposed graph is more than k, the graph is rejected, otherwise it is accepted with the usual
acceptance probability that depends on the change statistics, see Hunter et al. (2008a) for more details. Note
that the degeneracy of a graph can be computed in O(m) time, where m is the number of edges, using the
algorithm of Batagelj & Zaversnik (2003).

While the first method works, it can be wasteful and slow, i.e. at each step of the Markov chain, we have
to compute the degeneracy of the graph and reject it whenever it is larger than k. The second approach is
to directly propose graphs from the set Gn,k. For this, we develop a uniform sampler that proposes graphs
uniformly from the set of all k-degenerate graphs. The uniform sampler is presented in section 6.

Algorithm 1 summarizes the approach 2 where the proposal is the uniform distribution from Gn,k, denoted
by Un,k. Let π(g) ∝ exp(θt0t(g)). The Metropolis-Hastings acceptance ratio becomes

α(gcurrent, gproposed) = min

(

1,
π(gproposed)

π(gcurrent)

)

.

Algorithm 1: Independent Metropolis algorithm to sample from the model
input : g0, the starting value of the chain

1 Let g0 be the starting value of the chain and set gcurrent = g0.
2 For t = 1, . . . , B:
3 Propose a new value gproposed from Un,k

4 Define

α(gcurrent, gproposed) = min

(

1,
π(gproposed)

π(gcurrent)

)

.

5 Let u ∼ Unif(0, 1).
6 If u ≤ α, accept the new proposal and set gt+1 = gproposed;
7 Else set gt = gcurrent.

3.2. Existence of MLE and the approximate MLE

There are two likelihood functions: the true likelihood l(θ) given by Equation (4) and the estimated likelihood

l̂(θ) given by Equation (6). Correspondingly, there are two maximizers, the true MLE θ̂ and the approximate
MLE θ̃. We will discuss the existence of the true MLE and the approximate MLE and argue that using a
smaller k makes the estimation of the MLE easier.

Using the standard theory of exponential families Barndorff-Nielsen (2014), existence of the true MLE θ̂
depends on the marginal polytope, that is, the convex hull of sufficient statistics of the set Gn,k. The log-
likelihood function is concave and a unique maximum exists if and only if the observed sufficient statistic
t(gobs) lies in the relative interior of the marginal polytope. The marginal polytopes of ERGMs are difficult
to obtain in general (see for example Engström & Norén (2011)) and known only in few special cases, such
as Rinaldo et al. (2013), Karwa & Slavković (2016). Obtaining the marginal polytopes for the degeneracy-
restricted ERGMs appears to be more difficult and is an open problem in general, as it can only be computed
for one specific DERGM at a time. We will compute these polytopes numerically for the edge-triangle DERGM
in Section 4.

On the other hand, existence of the approximate MLE can be checked numerically. As discussed in Hand-
cock (2003), the estimated log-likelihood (6) can be written as the log-likelihood of a model from a discrete
exponential family with support over t(G1), . . . , t(GB) with observed sufficient statistic t(gobs). Hence, using
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again the standard theory of exponential families Barndorff-Nielsen (2014), one can show that the estimated
log-likelihood is concave and Equation (6) has a unique maximum if and only if 0 lies in the interior of the
convex hull of {∆(G1, gobs), . . . ,∆(GB , gobs)}. Thus, assuming that the MLE exists, the existence of the ap-
proximate MLE is crucially tied to the sampling algorithm used to approximate the likelihood, which in turn
depends on the behavior of the model.

4. Simulations on the effect of k on model behavior

In this section, we use extensive simulations to show that “bad behavior” of the model is a function of
the degeneracy parameter. In particular, the bad behavior of the model increases with values of degeneracy
parameter k, where “bad behavior“ is an umbrella term used to denote model degeneracy, sensitivity, the
difficulty of MLE computations. These simulations provide additional justification to the theory developed
in Section 2 and illustrate that restricting the support of the model to k-degenerate graphs improves model
behavior. We focus on the edge-triangle DERGM as a running example, a model whose sufficient statistics
are the number of edges and the number of triangles of the graph. To illustrate the changing behavior of the
degeneracy-restricted ERGMs, in each of the following examples we fix n and vary k from the observed value
to the maximum k = n− 1.

Remark 4. The edge-triangle model is also the running example in Rinaldo et al. (2009), where the authors
show that the model degeneracy is captured by polyhedral geometry of the model and the entropy function.
We also study the model polytope and the entropy function of DERGMs.

4.1. Insensitivity and lack of degeneracy of DERGMs

We begin by studying the effect of k on the mean value and the natural parameters of DERGMs. The goal is
to gain insight into the model degeneracy and excessive sensitivity of DERGMs as a function of k. Roughly,
the model is said to suffer from degeneracy issues, if the mean value parameters of the model are pushed to
the boundary for different values of the natural parameter. Similarly, the model is said to suffer from excessive
sensitivity, small changes in the values of the natural parameters lead to large changes in the mean value
parameter, see Schweinberger (2011) for more details.

Remark 5. We want to note that the term “degeneracy” is being used in two different contexts. In section 2,
we defined asymptotic degeneracy to denote the situation where a distribution places most of its mass on its
modes. In this section, the term “degeneracy” is used to denote the situation when the mean value parameter
of a distribution is pushed to its boundary. In fact, the second type of degeneracy is implied by asymptotic
degeneracy, as shown in Schweinberger (2011).

In the rest of the section, we focus on one-parameter exponential families. We will work with normalized
sufficient statistics. Specifically, let Uk denote the maximum of t(g) when g ∈ Gn,k. Let the normalized
sufficient statistic be tnorm(g) = t(g)/Uk. For the natural parameter θ, the mean value parameter is given by
µk(θ) = EPθ,k

tnorm(g).
We consider two different DERGM models: the two-star DERGM with the number of two-stars as the

sufficient statistic, and the triangle DERGM with the number of triangles as the sufficient statistic. Degeneracy
corresponds to the situation where if θ > 0, µk(θ) → 1 and θ < 0, µk(θ) → 0. Sensitivity corresponds to the
situation where the derivative of µk(θ) with respect to θ is very large in a small neighborhood of θ.

Remark 6. When k = n − 1, from the properties of standard exponential families, we can show that the
derivative of µk(θ) with respect to θ is the variance of the sufficient statistic. Thus, another way to view
sensitivity is that the variance of the sufficient statistic is very large in a small neighborhood of θ. Fellows &
Handcock (2017) restrict the variance, addressing the degeneracy and sensitivity issues.

Recall that our goal is to study the map from θ to µk(θ) for varying values of k and gain insights into model
behavior. To avoid any issues due to MCMC sampling, we compute this map exactly for a small network,
where enumeration is possible. Specifically, we consider networks defined on n = 7 nodes. When n = 7, there
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Fig 2: Mean value Parameters vs Natural parameters for the 2-star DERGM for n = 7 and k = 2, 3, 6
respectively.
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Fig 3: Mean value parameters vs Natural parameters for the triangle DERGM for n = 7 and k = 2, 3, 6
respectively.

are a total of 2(
7

2) possible simple networks. We enumerate all possible networks, and compute the number
of edges, two-stars, triangles and degeneracy of each network. The total number of networks with different
degeneracy values is shown in Table 1.

k 1 2 3 4 5 6
n(g) 36960 1095461 900298 63801 630 1

Table 1

Number of graphs of degeneracy exactly k for n = 7 nodes

The plot of mean value vs natural parameter for each DERGM model is generated as follows. We fix a
value of k, and fix a sufficient statistic. Next, we vary θ from −3 to 3 in steps of 0.01. For each value of θ, we
compute the corresponding mean value parameter µk(θ) using the enumerated networks. We normalize µk(θ)
to make sure it lies between 0 and 1 and plot the normalized µk(θ) on y-axis and the natural parameter θ
on the x-axis. We repeat this process for different values of k, and obtain a separate plot for each value of k.
Similarly, we get different sets of plots for each DERGM. The results are shown in Figures 2 and 3.

Let us focus on Figure 3c. This figure shows the map between θ and µk(θ) for the triangle-DERGM when
k = 6 and n = 7, which is the same as the ERGM (since k = 6 is the maximum possible, there is no support
restriction). The plot shows that the mean value parameter is pushed to its corresponding boundaries for
positive and negative values of θ, i.e. for θ > 0, µk(θ) is close to 1, and for θ < 0, µk(θ) is close to 0. Moreover,
for θ close to 0, the mean value parameter is very sensitive to small changes in θ. This is the classic model
degeneracy and excessive sensitivity. On the other hand, if we consider Figures 3a and 3b, we can see that if we
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Fig 4: Simulated plot of Mean value parameters vs Natural parameters, based on MCMC, for the triangle
DERGM for n = 50 and k = 3 and k = 49 respectively.

restrict the support to 2-degenerate graphs or 3-degenerate graphs, the mean value map improves. Specifically,
for k = 2, Figure 3a shows that µk(θ) is not pushed to its boundaries for positive or negative values of θ, and
has a small derivative near θ = 0. This shows that the model does not suffer from degeneracy and excessive
sensitivity when k is small. A similar conclusion holds for the 2-star model shown in Figure 2. We also created
such plots for n = 50, for which we had to resort to MCMC sampling to estimate the mean value parameters,
see Figure 4 for the triangle DERGM for k = 3 and k = 50. The results for this setting was the same as
described here: For small values of k, the triangle and the two-star DERGM does not suffer from excessive
sensitivity and model degeneracy.

4.2. Existence of approximate MLE, the model polytope, and entropy

Consider first the issue of existence of the approximate MLE. Recall from Section 3.2 that in the MCMC-MLE
estimation, the approximate MLE does not exist when the observed sufficient statistics lies outside of the
convex hull of the sufficient statistics sampled from Pθ0 . In DERGMs, this is more likely to happen when the
degeneracy parameter k is large relative to the observed graph degeneracy.

As an example to illustrate this phenomenon, consider fitting the edge-triangle DERGM to Sampson
monastery data Sampson (1968), in particular, the time period T4, available at Batagelj & Mrvar (2006)
and Hunter et al. (2008a). In this data set, n = 18 and observed graph degeneracy is k = 3. Building on the
correspondence between MLE non-existence and the model polytope from Rinaldo et al. (2009), we study the
location of the observed edge-triangle vector with respect to estimated DERGM model polytopes for varying
values of k. Recall that the model polytope for an exponential family model is the convex hull of all observable
vectors of sufficient statistics. We estimate the DERGM polytopes as convex hulls of edge-triangle pairs of
networks obtained by sampling graphs uniformly from the support Gn,k, using Algorithm 2. Figure 5 shows
the estimated model polytopes for different values of k, along with the relative location of the Sampson edge-
triangle vector. When k = 3, the observed sufficient statistic lies well in the relative interior of the sampled
sufficient statistics. On the other hand, when k = 6 and higher, the observed sufficient statistic lies well outside
the convex hull.
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Network Nodes Edges Degeneracy
Sampson 18 41 3
Faux Mesa High 205 203 3
Ecoli 418 519 3

Table 2

Summary of Datasets used to fit the edge-triangle DERGMs

Networks Faux Mesa High Sampson Ecoli
edges −5.13∗∗∗ −1.62∗∗∗ −5.32∗∗∗

(0.08) (0.34) (0.05)
triangle 2.62∗∗∗ 0.36 (2.65)∗∗∗

(0.10) (0.34) (0.16)
AIC 2029.17 157.41 6210
BIC 2045.06 163.47 6229
∗∗∗p < 0.001

Table 3

Fitting the edge-triangle DERGM where the edge-triangle ERGM fit fails. The ∗ denotes level of significance, based on the
p-values. (The numbers in the parenthesis are the standard errors of the MCMCMLE.)

5. Estimation and fitting DERGMs on real world data

In this section, we present the results of fitting DERGMs to some real world networks. These results were
obtained by fitting the DERGMs using the MCMC-MLE estimation algorithm using the tie-no-tie procedure,
and Hummel et al. (2012) step length algorithm to improve the estimation. The degeneracy parameter k was
set to its observed value.

5.1. Examples where DERGMs fit whereas ERGM fit fails to converge

We first start by showing three examples where the MCMC-MLE procedure fails to converge when fitting
an edge-triangle ERGM, whereas it converges when using the edge-triangle DERGM with the degeneracy
parameter set to the observed degeneracy. We consider three networks - an undirected version of the Sampson
dataset, the Faux Mesa High network and the undirected version of ecoli network, from the ergm package
in R. The summary statistics of these networks are given in Table 2. Note that we are not claiming that the
edge-triangle DERGM is the best model for these data. Instead, the point is to illustrate that restricting the
degeneracy has a direct impact on MCMC-MLE estimation.

The Sampson network has n = 18 nodes and m = 41 edges, with an observed degeneracy k = 3. The Faux
Mesa High network has 205 nodes and 203 edges, and an observed degeneracy of 3. The ecoli network has
n = 423 nodes, m = 519 edges with a degeneracy k = 3. Note that all the networks have a low observed
degeneracy. In particular, the ecoli and the faux mesa high networks are very sparse since the degeneracy is
very small in comparison to the number of nodes.

While fitting the edge-triangle ERGM to these networks, the MCMC-MLE combined with the step length
procedure failed to converge due to model degeneracy; for a detailed study of this model’s degeneracy, see
Rinaldo et al. (2009). Specifically, the Markov chain started sampling networks whose number of edges and
triangles are very far from the observed network, indicating model degeneracy. On the other hand, there
were no such issues when fitting the edge-triangle DERGM and the MCMC-MLE combined with the step
length procedure converged. The estimated parameter for the edge-triangle DERGMs for these networks
are given in Table 3. There are two sources of standard error here, one from the MCMC estimation and
another corresponding to the MCMCMLE. The MCMCMLE standard errors are calculated by using an MCMC
estimate of the inverse of the estimated fisher information matrix, as described in Hunter & Handcock (2006).

5.2. Examples when both ERGM and DERGM fit converges

We now consider cases where the MCMC-MLE procedure is able to fit both an ERGM and a DERGM to
the same dataset. In these cases, we show that the parameter estimates obtained from both these models are
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Degeneracy 2 3 4 10 15
(k) (ERGM)
edges −1.672∗∗∗ −1.678∗∗∗ −1.675∗∗∗ −1.672∗∗∗ −1.667∗∗∗

(0.392) (0.362) (0.352) (0.346) (0.351)
triangle 0.410 0.172 0.167 0.152 0.146

(0.731) (0.595) (0.580) (0.572) (0.596)
AIC 111.786 112.058 112.073 112.090 112.071
BIC 117.361 117.633 117.648 117.665 117.646
Log Likelihood -53.893 -54.029 -54.036 -54.045 -54.035
∗∗∗p < 0.001

Table 4

Fitting DERGM and ERGM to the Florentine data. The ∗ denotes level of significance, based on the p-values. (The numbers in
the parenthesis are the standard errors of the MCMCMLE.)

very close to each other. We fit the edge-triangle DERGMs and ERGM to the florentine dataset. This dataset
has n = 16 vertices and m = 20 edges, with a degeneracy parameter k = 2. We fit DERGMs with increasing
values of k = 2, 3, . . . , 15. Note that when k = 15, the DERGM is equivalent to the edge-triangle ERGM.
The parameter estimates are given in Table 4. This table shows that the edge parameter is more or less the
same for all the DERGMs and ERGM. The parameter corresponding to the triangles varies, but is within the
margin of the standard error.

6. Uniform samplers for Gn,k

The main contribution of this section is the development of a fast uniform sampler of the space of well-ordered
graphs in Gn,k, contained in Section 6.1, which has been used throughout Section 4 in simulations, most
prominently for estimated polytope plots. We discuss the basis of the algorithm and the updates we made to
make it scalable. This algorithm can be used stand-alone for Monte Carlo sampling for DERGM estimation,
specifically in the case when non-well-ordered graphs are not of interest. On the other hand, it can also be
used in combination with a non-well-ordered sampler to create a stratified sampler for all graphs of Gn,k when
needed; below, we discuss how in some cases the stratified sampler effectively reduces to the well-ordered one.
Finally, if the observed graph is well outside the convex hull of sampled graphs, one may wish to use a fast
importance MCMC sampler, in conjunction with the uniform sampler from Section 6.1 to create an umbrella
sampler on Gn,k. The umbrella sampler converged quickly in simulations, but we omit those results here as
they were not necessary for the data sets we analyze.

6.1. A uniform sampler for well-ordered graphs from Gn,k

In (Bauer et al., 2010, Algorithm 1), the authors derive a uniform sampler for the set of well-ordered graphs
in Gn,k. A well-ordered graph is one in which the node labels are ordered so that no vertex has more than k
neighbors with a higher label.

Using this algorithm as a starting point, we make several key changes to ensure that their algorithm is
computationally efficient: we convert their algorithm from a recursive one to an iterative one. By doing this,
we eliminate many complexity problems inherent in the original algorithm. Specifically, the iterative version
eliminates stack overflow issues for large graphs, as well as greatly reduces the execution time of generating a
graph.

Let us take a closer look at the following algorithm, based on (Bauer et al., 2010, Algorithm 1), which we
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(n, k) Original Recursive Algorithm Our Iterative Version
(Bauer et al., 2010, Algorithm 1) Algorithm 2

(50, 8) 3.96 seconds 0.03 seconds
(800, 2) Stack Overflow 0.51 seconds
(3000, 2) Stack Overflow 1.90 seconds

Table 5

Run times of the uniform samplers.

improved and updated to a scalable version.

Algorithm 2: Generate a well-ordered g from Gn,k uniformly.

input : n, the number of nodes,
k, maximum graph degeneracy.

output: g, a graph in Gn,k in which every vertex i has no more than ≥ k neighbors in the set {i+ 1, . . . , n}.

1 for i = 1 to n do

2 di ∼ restrictedBinomial(n− i, min(n− i, k))
3 if i = n then

4 V = V ∪ {n}

5 end

6 for i = n to 1 do

7 T = {}
8 P = V

9 a = |P |
10 for j = 0 to di − 1 do

11 m ∼ Uniform(0, a− j)
12 T = T ∪ {(i, Pm)}
13 Pm = Pa−j−1

14 end

15 V = V ∪ {i}
16 E = E ∪ {T}

17 end

18 G = {V,E}
19 return G

The algorithm was originally formulated using recursion, which we emulate using two for-loops. The first
for-loop populates a list of degrees where each index of the list corresponds to the respective vertex label.
The degrees for each vertex are generated using a restricted binomial distribution. Instead of utilizing the
cumulative distribution and using binary search to obtain values as suggested by the original paper, we opt
to use the probability density function and store the values in a list data structure, reducing the complexity
of obtaining the degree values. When the loop reaches the very last vertex, we add that vertex to the working
vertex set. For each iteration in the second for-loop, a temporary copy of the current working vertex set is
created. We then uniformly generate di indices to sample without replacement from the vertex set copy, and
use these samples for the edge set of the current vertex. It is obvious that this sample is uniformly generated,
complying with the original algorithm.

For a benchmark, we tested the original recursive version (including generating all possible combinations)
and the new iterative version on a machine with the following specifications: Intel Core i7-4790K CPU @ 4.00
GHz, 8 GB DDR3 RAM, Arch Linux x64, with the results shown in Table 5. The results clearly indicate that
the scalable version is superior in regards to time complexity. In some applications, it may be desirable to
further restrict the sample space of the model by restricting the total number of edges of the graph, or use
such a restriction for stratified sampling of Gn,k. To that end, let Gn,m,k be the set of graphs on n nodes and
degeneracy k with exactly m edges. (Bauer et al., 2010, Algorithm 2) offer an algorithm for uniform sampling
of Gn,m,k, however, it was not implemented due to the complexity of step 3 that the authors suggest be
implemented using Equation (2.7) in Bauer et al. (2010). Pre-computation of degrees proved nearly impossible
in practice for several reasons. The recursive nature of calculating the cardinality for possible graphs of given
vertices, edges, and degeneracy yielded very inefficient computations in which the run time of each computation
was longer than trying to generate whole graphs by other means. While we were able to alleviate this issue
somewhat by utilizing a dynamic programming approach with memoization, even for semi-sparse, average
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size graphs, numerical overflow occurred, which rendered the speed increase fruitless. Instead, we opt to use
(Bauer et al., 2010, Algorithm 3), which is a non-uniform but fast sampler of Gn,m,k. Our implementation of
this algorithm, outlined in Algorithm 3, stays true to the pseudo-code given in the original paper, with the only
alteration being utilizing the same approach to uniform selection as in our implementation of Algorithm 2.

Algorithm 3: Generate a well-ordered g from Gn,m,k non-uniformly.

input : n, the number of nodes,
m, the number of edges,
k, maximum graph degeneracy.

output: g, a graph in ∈ Gn,k with m edges in which every vertex i has no more than ≥ k neighbors in the set
{i+ 1, . . . , n}.

1 C = 1, ..., vn−1

2 for i = 1 to m do

3 j ∼ Uniform(0, |C|)
4 dj = dj + 1
5 if dj = min(n− vj , k) then

6 C \{vj}

7 end

8 for i = 1 to n− 1 do

9 T = {}
10 P = V

11 a = |P |
12 for j = 0 to di − 1 do

13 m ∼ Uniform(0, a− j)
14 T = T ∪ {(i, Pm)}
15 Pm = Pa−j−1

16 end

17 V = V ∪ {i}
18 E = E ∪ {T}

19 end

20 G = {V,E}
21 return G

6.2. Stratified sampling of Gn,k to include non-well-ordered graphs if needed

Another issue with (Bauer et al., 2010, Algo.1) is that it generates only so-called ‘well-ordered’ graphs in Gn,k.
This misses a part of graphs in the support of our model. To remedy this issue, we classify all missing graphs
and produce them via stratified sampling with two strata. Specifically, Algorithm 2 is used to sample from the
set of well-ordered graphs in Gn,k, while Algorithm 4, described below, is used to generate non-well-ordered
graphs in Gn,k. Let n1 and n2 be the number of well-ordered and non-well-ordered graphs, respectively. The

formula for n1 is provided in Bauer et al. (2010) under the notation D
(k)
n , while n2 is studied below. To the

best of our knowledge, the literature does not provide a good estimate of the number n1 of well-ordered k-
degenerate graphs compared to the total number of k-degenerate graphs. Although we derived a lower bound
on the total number of k-degenerate graphs (Ω(n log n)) in Theorem 1, in this section we study the ratio of
n1 and n2 further, which is needed from an algorithmic point of view. It should be noted that, in practice,
the uniform sampler from Section 6.1 may only be omitting a tiny fraction of graphs in the support of the
DERGM; this situation is described in detail at the end of this Section. Therefore, the reader interested in
applications more than in theory behind the algorithms that may not be necessary in practice may skip the
remainder of this technical section.

A graph g ∈ Gn,k is not well-ordered if there exists at least one vertex j with at least k + 1 neighbors in
the set {j + 1, . . . , n}. Among all such vertices with too many big neighbors, let k + c be the minimum such
number of big neighbors, and let i be the index of the smallest vertex that has k+c big neighbors. We construct
non-well-ordered graphs and use them to estimate n1 by going through possible cases for the values of c and
i. For each case c = 1, . . . , n−k− 1, some vertex i has k+ c neighbors in the set {i+1, . . . , n}. For each of the
cases, the vertex i can be chosen from the set {1, . . . , n− (k+ c)}. Note that these k+ c neighbors of i can be
connected in any arbitrary way, as long as the entire graph is in Gn,k. Thus, we proceed as follows: construct
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a random graph h on k + c vertices whose labels are in the set {i+ 1, . . . , n}. Then, construct a suspension g
over h using vertex i, that is, ensure that i is connected to all k+ c vertices of h. Finally, the vertices {1, . . . , i}
can be connected in any way such that, by minimality of i, the resulting subgraph on {1, . . . , i} is well-ordered
and, additionally, each vertex in the set {1, . . . , i} can have at most k neighbors in the vertex set {i+1, . . . , n}.
The construction is outlined in Algorithm 4.

Algorithm 4: Generate a non-well-ordered g from Gn,k

input : n, the number of nodes,
k, maximum graph degeneracy.

output: g, a graph in ∈ Gn,k (or Gn,d with d > k, unfortunately) in which there is a vertex i that has ≥ k + 1 neighbors
in the set {i+ 1, . . . , n}.

1 Pick c ∈ {1, . . . , n− k − 1}.
2 Pick i ∈ {1, . . . , n− (k + c)}.

3 Use Algorithm 2 to sample h̃ ∈ Gk+c,k+c−1; repeat until degen(h̃) ≤ k.
4 Choose (uniformly) a subset of k + c vertex labels from the set of legal vertex labels {i+ 1, . . . , n}.

5 Let h be the graph obtained from h̃ by replacing the labels 1, . . . , k by those selected on Line 4.
6 Create the suspension graph g over h by adding to h edges {i, x} for all x ∈ V (h).
7 Connect vertices {1, . . . , i} by constructing any well-ordered graph from Gi,k.
8 Connect any of the vertices {1, . . . , i} to at most k vertices in the set {i+ 1, . . . , n}.
9 Output g if degen(g) ≤ k; otherwise return to Step 1.

There are
(
n−i
k+c

)
ways to choose the neighbors of the vertex i on Line 4 and for each choice of neighbors

there are 2(
k+c

2 ) graphs h̃ generated on Line 3. There are D
(k)
i well-ordered graphs on Line 7 and i

∑k

p=1

(
n−i
p

)

graphs on Line 8. Thus, Algorithm 4 constructs the following number of graphs g:

n−(k+1)
∑

i=1

(
n− i

k + 1

)

︸ ︷︷ ︸

Line 4

· 2(k+1

2 )
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Line 3

· D
(k)
i
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Line 7

· i
k∑

p=1

(
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p

)

︸ ︷︷ ︸

Line 8
︸ ︷︷ ︸
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+
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(
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k + 2

)

· 2(k+2

2 ) ·D(k)
i · i
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(
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p

)

+ . . .
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· · ·+
n−(k+n−k−1)

∑

i=1

(
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p

)
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(
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, (9)

where each of the n− k − 1 summands corresponds to one of the cases c.
Note that Equation (9) is an upper bound on n2, since it counts all graphs g constructed by Algorithm 4.

It is also a strict upper bound on the number of graphs g actually returned by the algorithm, since it counts
those graphs whose degeneracy happens to be strictly larger than k.

Equation (9) counts all graphs on k + c nodes, 2(
k+c

2 ), constructed in Step 3. Surely, a better count can be
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obtained by replacing 2(
k+c

2 ) by

2(
k+c

2 ) −#{well-ordered graphs on k + c vertices of degeneracy > k}.

Doing this replacement in the equation is, crucially, still an upper bound on n2 (since the well-ordered graphs
of degeneracy larger than k certainly do not contribute to any non-well-ordered graphs of degeneracy at most
k). Since

#{well-ordered graphs on k + c nodes of degeneracy > k}
=#{all well-ordered graphs on k + c nodes except those of degereacy ≤ k}
=D

(k+c−1)
k+c −D

(k)
k+c,

the following is a better upper bound on the number of graphs we wish to keep from Algorithm 4 and thus
also an upper bound on n2:
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·
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·D(k)
i · i

k∑

p=1
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p

)

. (10)

Let
ttrue = log n1/(n1 + n2)

be the true threshold used to divide the sample in two strata and define

testimated = log n1/(n1 + (10)).

Given that (10) > n2, testimated < ttrue ≤ 0. Therefore we take the following approach: 1) compute the
threshold testimated for the fixed n and k for which we wish to run the current simulation. 2) If testimated is
close to 0, then that forces ttrue to be close to 0, which in turn means that there is a very, very small number
of non-well-ordered graphs for that choice of n and k and therefore the stratified sampler essentially reduces
to sampling well-ordered graphs only.

Of course, if testimated is not relatively close to 0, then for those values of n and k, while it is possible
that ttrue is close to 0, one should implement both the well-ordered and non-well-ordered algorithm. Falling
back on the well-ordered algorithm is equivalent to using an approximate sampler in practice. The users may
additionally prefer to replace Algorithm 4 by instead permuting the vertices of the output of Algorithm 2,
allowing it to reach the entire sample space Gn,k in another way.

Remark 7. In practice, if the model’s sufficient statistics are subgraph counts (or if the distribution is ex-
changeable), well-ordering does not pose a restriction, because in the uniform sampling using MC in estimating
the MLE, only the values of the sufficient statistics of the sampled graphs are used. These are oblivious to
vertex labels, so ordering is irrelevant.

7. Discussion

In this paper, we introduced a general modification of exponential family random graph models that solves
some of the model degeneracy issues. This modification amounts to a support restriction, by conditioning
on the observed network’s graph-degeneracy, which is a measure of sparsity that is weaker than imposing an
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upper bound on node degrees. The resulting model class, which we name degeneracy-restricted or DERGMs,
does not suffer from the same estimation issues as the usual ERGMs. The proposed support restriction is
interpretable as a weak sparsity constraint, it respects most real-world network data, and it provably does
not eliminate a large part of the support of the full ERGM, while improving model behavior. Specifically, we
show that DERGMs with smaller graph degeneracy parameter k induce stable sufficient statistics, and we
also show that such a stable behavior implies non-degeneracy of the model. Using simulations, we also show
that DERGMs with small values of k have a better-behaved simulated likelihood (i.e., more steep around
the maximum) and the simulated model polytope spreads more mass around realistic graphs by eliminating
very low-probability extreme graphs. This also makes MCMC algorithms to approximate the likelihood more
stable, thus improving the MCMC-MLE estimation.

The particular example of the edge-triangle DERGM presented here is a good illustration of the general
DERGM behavior. It is a natural choice of the running example, given the recent work by Rinaldo et al.
(2009) that studies its degenerate behavior in detail. The general framework presented, however, applies
to any ERGM; a good overview of many of the popular classes being offered in Goldenberg et al. (2009).
Recent work on the shell-distribution ERGM Karwa et al. (2017) introduces a limited version of the current
contribution: it is an example of an ERGM with similarly restricted support and gives direct motivation for
the study of DERGMs in general. However, there, the model support was not Gn,k for fixed n and k, but
rather Gn,k \ Gn,k−1 - networks with degeneracy exactly k. Here were propose to use networks of degeneracy
at most k, to enlarge the model support, and offer greater flexibility in modeling. Our contributions indicate
that DERGMs may offer a feasible and interpretable modification of ERGMs, a powerful and flexible model
class.

Extending the approach presented herein to directed graphs is one of the directions of future work. The
notion of k-degeneracy as defined here applies only to undirected graphs, however it has been extended to
directed graphs recently in Giatsidis et al. (2011). Another direction of future is to develop a distributed
version of Algorithm 2. While we did run the current implementation in parallel, it can further be improved
to run on a cluster. The current implementation scales very well to hundreds of nodes and with the additional
step it should perform just as well on thousands.
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Bajić, Denis. (2016). Dergms: Supplementary material on GitHub. https://github.com/dbajic/degen.
Bannister, Michael J., Devanny, William E., & Eppstein, David. (2014). ERGMs are hard. Preprint
arXiv:1412.1787 [cs.DS].

Barndorff-Nielsen, Ole. (2014). Information and exponential families in statistical theory. John Wiley & Sons.
Batagelj, Vladimir, & Mrvar, Andrej. (2006). Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/.
Batagelj, Vladimir, & Zaversnik, Matjaz. (2003). An o (m) algorithm for cores decomposition of networks.
arxiv preprint cs/0310049.

Bauer, Reinhard, Krug, Marcus, & Wagner, Dorothea. (2010). Enumerating and generating labeled k-
degenerate graphs. Proceedings of the seventh workshop on analytic algorithmics and combinatorics (analco).

Caimo, Alberto, & Friel, Nial. (2011). Bayesian inference for exponential random graph models. Social
networks, 33(1), 41–55.

Chatterjee, Sourav, & Diaconis, Persi. (2013). Estimating and understanding exponential random graph
models. Annals of statistics, 41(5), 2428–2461.

Engström, Alexander, & Norén, Patrik. (2011). Polytopes from subgraph statistics. Discrete mathematics and
theoretical computer science.

Fellows, Ian, & Handcock, Mark. (2017). Removing phase transitions from gibbs measures. Pages 289–297
of: Artificial intelligence and statistics.

Frank, Ove, & Strauss, David. (1986). Markov graphs. Journal of the american statistical association, 81(395),
832–842.

Geyer, Charles J, & Thompson, Elizabeth A. (1992). Constrained monte carlo maximum likelihood for de-
pendent data. Journal of the royal statistical society. series b (methodological), 657–699.

Giatsidis, Christos, Thilikos, Dimitrios M., & Vazirgiannis, Michalis. (2011). D-cores: Measuring collaboration
of directed graphs based on degeneracy. Ieee 11th international conference on data mining.
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