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Abstract

Fast algorithms are developed for Bayesian analysis of Gaussian hierarchical models with intrinsic conditional
autoregressive (ICAR) spatial random effects. To achieve computational speed-ups, first a result is proved
on the equivalence between the use of an improper CAR prior with centering on the fly and the use of a
sum-zero constrained ICAR prior. This equivalence result then provides the key insight for the algorithms,
which are based on rewriting the hierarchical model in the spectral domain. The two novel algorithms
are the Spectral Gibbs Sampler (SGS) and the Spectral Posterior Maximizer (SPM). Both algorithms are
based on one single matrix spectral decomposition computation. After this computation, the SGS and SPM
algorithms scale linearly with the sample size. The SGS algorithm is preferable for smaller sample sizes,
whereas the SPM algorithm is preferable for sample sizes large enough for asymptotic calculations to provide
good approximations. Because the matrix spectral decomposition needs to be computed only once, the SPM
algorithm has computational advantages over algorithms based on sparse matrix factorizations (which need
to be computed for each value of the random effects variance parameter) in situations when many models
need to be fitted. Three simulation studies are performed: the first simulation study shows improved
performance in computational speed in estimation of the SGS algorithm compared to an algorithm that
uses the spectral decomposition of the precision matrix; the second simulation study shows that for model
selection computations with 10 regressors and sample sizes varying from 49 to 3600, when compared to the
current fastest state-of-the-art algorithm implemented in the R package INLA, SPM computations are 550 to
1825 times faster; the third simulation study shows that, when compared to default INLA settings, SGS and
SPM combined with reference priors provide much more adequate uncertainty quantification. Finally, the
application of the novel SGS and SPM algorithms is illustrated with a spatial regression study of county-level
median household income for 3108 counties in the contiguous United States in 2017.
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1. Introduction

Bayesian hierarchical models with conditional autoregressive (CAR) (Besag, |1974) spatial random effects
are used in a wide variety of fields such as economics, environmental science, and neuroscience. One of the
most widely used spatial hierarchical models has intrinsic CAR (ICAR) random effects (Besag et al., |[1991]).
The distribution of each ICAR random effect typically conditions on the ICAR effects of its neighbors.
While this formulation has become ubiquitous in practice, two main difficulties arise when using ICAR
spatial random effects. First, the joint density of ICAR effects is improper, which complicates inference
on the spatial random effects. Second, the priors placed on the hyperparameters of the hierarchical model
may unduly influence the analysis. To address these issues, |[Keefe et al.| (2018} 2019)) have proposed sum-
zero constrained ICAR models and a corresponding reference prior for hierarchical models with sum-zero
constrained ICAR random effects. These methods have been implemented in the R package ref.ICAR
(Porter et al., |2019). Despite these advances, it has remained unclear whether Bayesian inferences based
on the sum-zero constrained ICAR differ from the historical practice of centering the spatial random effects
at each iteration of the Markov chain Monte Carlo (MCMC) algorithm. Here we show that the resulting
analyses are equivalent.

A second practical contribution of this work is a huge speed up in computations for ICAR models.
The proof of the equivalence result mentioned in the above paragraph provides the key insight for the
speed up. Specifically, the spectral decomposition of the ICAR precision matrix in the equivalency proof
is used to transform both the dependent variable and the regressors from their respective domains to the
spectral domain. We call these new algorithms the Spectral Gibbs Sampler (SGS) and the Spectral Posterior
Maximizer (SPM). We note that a similar spectral decomposition transformation was first proposed by
Crainiceanu and Ruppert| (2004) in the context of likelihood ratio tests for linear mixed models and was used
by |[Kang et al.[ (2008) for the analysis of genomic wide association studies. To the best of our knowledge,
similar spectral decomposition transformations have not been used for the analysis of hierarchical models
with ICAR spatial random effects.

A decision on whether to use algorithms based on the spectral decomposition or algorithms based on
numerical linear algebra for sparse matrices (e.g., as implemented in the R package INLA (Rue et al. 2009;
Martins et al) [2013)) depends on the problem to be solved. Specifically, even though the computation of
matrix spectral decomposition scales cubically with sample size, for a given neighborhood structure this
decomposition needs to be computed only once to transform the data to the spectral domain, and then
the SGS and SPM algorithm are applied directly to the spectral-domain data. In contrast, numerical
decompositions for sparse matrices implemented in the R package INLA (the current fastest state-of-the-art)
need to be performed for each different value of the random effects variance parameter. Thus, in situations
when many models need to be fitted, the SPM algorithm may be substantially faster than INLA. For example,
as shown in a simulation study in Section [7] for model selection computations with 10 regressors and sample

sizes varying from 49 to 3600, when compared to INLA, SPM computations are 550 to 1825 times faster.



In addition, another simulation study shows that, when compared to default INLA settings, SGS and SPM
combined with reference priors provide much more adequate uncertainty quantification.

As shown in Section [7} when the sample size is too small for the asymptotic approximations used in
SPM and INLA to be valid, MCMC computations such as in SGS provide more reliable inference. Thus,
we have performed a simulation study to compare the SGS algorithm with the MCMC algorithm suggested
by [Keefe et al.| (2019). Of note, the methods in Keefe et al. (2019) use a spectral decomposition without
rewriting the model in the spectral domain, and so only achieve a reduction to O(n?) computational cost.
We call the algorithm suggested by [Keefe et al.| (2019) the Spectral Decomposition of the Precision (SDP)
algorithm. When compared to the SPD algorithm, our SGS algorithm reduces the computational time by
25.48% for datasets with 49 regions and 99.95% for datasets with 3600 regions. Therefore, the reduction in
computational time is substantially more important for larger spatial datasets.

Finally, we illustrate the application of the new SGS and SPM algorithms with an analysis of median
household income for 3108 counties in the contiguous United States in 2017. In this analysis, we consider 8
possible socio-economic covariates and one of the objectives is to select the best model amongst the possible
28 = 256 models. In a standard laptop, a full exploration of the model space with INLA takes 3267 seconds
(54.45 minutes) whereas SPM takes 11.7 seconds with 8.2 seconds spent in the computation of the spectral
decomposition and transformation of the data to the spectral domain, and 3.5 seconds spent in the estimation
and computation of model selection criteria for all 28 = 256 possible models.

The remainder of the article is organized as follows. Section[2reviews ICAR models including specification
of priors. Section [3| proves the equivalency between the sum-zero constrained ICAR prior and the improper
ICAR prior with centering on the fly. Section [4 reviews the hierarchical sum-zero constrained ICAR model.
Section [5] proposes the fast and scalable SGS algorithm for posterior simulation. Section [6] presents the
spectral posterior maximizer (SPM) approach to accelerate computations for large sample sizes. Section
presents three simulation studies: the first simulation study compares computational speed in estimation
of the MCMC algorithms SGS and SDP; the second simulation study compares computational speed in
estimation and model selection of SPM and INLA; and the third simulation study compares statistical
properties of default INLA statistical procedures with those of SGS and SPM combined with reference
priors. Section [§] illustrates the use of the SGS and SPM algorithms with a spatial data analysis on county
level median income in the United States. Section [J] provides a discussion and concluding remarks. For

convenience of exposition, all proofs appear in the Appendix.

2. Hierarchical model specification

2.1. Model for the spatial data
We consider spatial areal data, that is, data observed on a geographical region of interest that is par-
titioned into n disjoint subregions. We denote these subregions by numbers 1,...,n and consider that we

have one observation for each subregion. For ease of reference, we use a similar notation to that used by



[Keefe et al.| (2018). Further, we assume there is a neighborhood structure where Nj is the set of subregions

that are neighbors of subregion j, j = 1,...,n. Specifically, we consider the model
y=al+XB+¢+e, (1)

where y is an n-dimensional vector that contains the observed response variable, o is an intercept, 1 is the
n-dimensional vector of ones, X is an n X p design matrix that has one row for each subregion and one column
for each regressor, and 3 is a p-dimensional vector of regression coefficients. Further, € = (e1,...,¢,)" is an
n-dimensional error vector sometimes referred to as the vector of unstructured random effects. We assume
that €1, ..., €, are independent and identically distributed N (0,0?). Furthermore, ¢ = (¢1, d2, ..., ¢,) is a

vector of spatial random effects that is independent of €. In Section we assume that ¢ is assigned an

improper ICAR prior (Besag and Kooperberg), [1995)); the underlying problem with such specification is that

when the distribution of € is proper and that of ¢ is improper, the distribution of y is also improper. To
address that difficulty, in Section we assume ¢ is assigned a sum-zero constrained ICAR prior (Keefe
et al, 2018, [2019).

2.2. ICAR priors for spatial random effects

Here we introduce the improper ICAR model and the sum-zero constrained ICAR model.

2.2.1. Improper ICAR model

Consider a set of uncentered spatial random effects w = (wy, ... ,wn)/ over the n subregions. First, we

assume that w follows an improper ICAR specification (Besag and Kooperberg] [1995) with a joint density

that is defined up to a constant of proportionality as
T !

Here, 70~ 2H is the precision matrix where 7 > 0 is a noise-to-signal ratio parameter. The matrix H is

symmetric and positive semidefinite with elements

h’iv ifi = j7
0 otherwise.

Here, g;; > 0 is a measure of similarity between subregions 7 and j. Further, by symmetry we have that
9ij = gji- Finally, the ith diagonal element is equal to the sum of the off-diagonal elements in row 4, that
is, h; = > gij. For example, a widely used measure of similarity is a binary indicator equal to g;; = 1 if
subregiorjl?i and j share a border, and g;; = 0 otherwise.
The fact that H is positive semidefinite results from the equality h; = )~ g;;. With this equality in mind,
£
it is easy to verify that n~'/21 is a normalized eigenvector of H corresporjjing to a null eigenvalue 1




and De Oliveiray, 2007; [De Oliveira and Ferreira, [2011)). Further, we assume that there are no islands in the
region of interest, that is, any two subregions are connected by a path. As a consequence, the null eigenvalue
of H has multiplicity one and H is singular. This leads the ICAR “density” in Equation to be improper,
as fRn p(w)dw = co. When the improper ICAR specification is used as a prior for spatial random effects,
practitioners implementing MCMC algorithms usually simulate the spatial random effects from a working
full conditional distribution obtained by ignoring any constraint. Then, to guarantee propriety of the joint
posterior distribution, practitioners usually center on the fly, recentering the simulated spatial random effects

at each MCMC iteration.

2.2.2. Sum-zero constrained ICAR model

Now consider the sum-zero constrained ICAR, specification proposed by [Keefe et al. (2018, 2019)). Let
K be a symmetric positive semi-definite matrix such that 1’K1 > 0, that is, the sum of the elements of
K is positive. In addition, let HT be the Moore-Penrose generalized inverse of H. [Keefe et al. (2018)
have derived a sum-zero constrained ICAR model by using a limit argument in three steps. The first step
considers a proper CAR model (Ferreira and De Oliveiral [2007) with a positive definite precision matrix
equal to 70~ 2(kK + H), where x > 0 is a scalar. The second step centers the vector of proper CAR spatial
random effects so that its elements sum to zero. The third and last step takes the limit when x approaches
zero to obtain the sum-zero constrained ICAR model. Keefe et al.[(2018) have shown that for any symmetric
positive semi-definite matrix K such that 1’K1 > 0, the resulting sum-zero constrained ICAR model is the
singular Gaussian distribution N (0,77 1o?H™).

Singular Gaussian distributions are very useful because their mean vectors and singular covariance ma-
trices implicitly encode linear constraints. In particular, singular Gaussian distributions can be used both as
prior distributions for unknown quantities in Bayesian hierarchical models as well as distributions for data.
For example, [Ferreira et al.| (2010} 2011)) have used singular Gaussian distributions to build dynamic multi-
scale spatiotemporal models. [Keefe et al. (2019) have used the singular Gaussian distribution N (0,7 1o?H™)
as a prior distribution for spatial random effects.

To elicit the linear constraints implicit in a singular Gaussian distribution, we need to consider the
spectral decomposition of its singular covariance matrix. Specifically, let Z ~ N(u, ¥) where X is a singular

covariance matrix with dimension n and rank n — k. Let ¥ = PDP’ be the spectral decomposition of X

where P = (p1,...,pn) is a matrix with columns py,...,p, equal to the normalized eigenvectors of X,
and D = diag(dy,...,d,) with dy > -+ > dp—p > dp—gy1 = -+ = d,, = 0 being the respective ordered
eigenvalues of 3. Then, for any index i = n — k + 1,...,n of an eigenvector corresponding to a null

eigenvalue of 3, we have that E(p,Z) = pip and Var(p,Z) = p;¥p;, = 0. Thus, P(p;Z = p,u) = 1,

it =mn—k+1,...,n. Therefore, the singular Gaussian distribution N(u,¥) implicitly encodes k linear



constraints p;Z = pju,i =n — k+ 1,...,n. The density of the singular Gaussian distribution N(u,X) is

n—~k 1/2 n
pla) = (2m) " H/2 (H di> eo{-J-w=e-wp I 1pa-pe. @

=1 i=n—k+1

where 27 is the Moore-Penrose generalized inverse of & and 1(.) is the indicator function.

Computation of probabilities for singular Gaussian distributions with density given by Equation (4) are
integrals over R"~* in the spectral domain. Consider the spectral transformation of Z to the spectral domain,
that is, R = (Ry,...,R,) = P'Z. Then, Ry,..., R, are independent such that for ¢ = 1,...,n — k the
distribution of R; is univariate N (p;u, p;Xp;), and for i = n—k+1, ..., n the distribution of R; is degenerate
P(R; = pjp) = 1. Let us partition R into a non-degenerate part Ry = (Ry,...,R,—1) and a degenerate
part Ro = (Ry—g+1,- -, Rn)’. Correspondingly, partition P = (P, P3) such that Ry = P{Z and R, = P, Z.
Then, to compute P(Z € A), we first find the equivalent set A* = {R; : Z = PR € A and Ry = Pyu}.
Thus, A* € R"~*. After that, we compute P(Z € A) = P(R; € A*) as an integral in R"~* with respect to
the distribution of Ry = (R1,..., Rn—k). Such integrals are easily approximated by Monte Carlo methods.

Now we connect these general results for singular Gaussian distributions to the particular case of the
sum-zero constrained ICAR distribution N (0,7 1¢?H™). Because the rank of H* is n — 1, this distribution
implicitly encodes one linear constraint. Further, because n~'/21 is the normalized eigenvector of H corre-
sponding to its null eigenvalue, n~1/21 is also the eigenvector of HT corresponding to the null eigenvalue of
H*. Thus, ¢ ~ N(0,7~10?H") implicitly encodes the constraint 1’¢ = 0. Finally, the sum-zero constrained

ICAR prior distribution for the spatial random effects ¢ has density equal to

n—1 1/2
P(g) = (2m0?) (/2012 (H ) exp {5556 Ho | 1(1'¢ = 0). (5)
Pl 20
where s > --- > s,_1 > s, = 0 are the ordered eigenvalues of H. Note that the sum-zero constraint

explicitly appears in the expression of the density in Equation .

Importantly, the density in Equation is completely specified including the constant of proportionality.
This may facilitate computation of Bayes factors for Bayesian model selection. Further, this complete
specification shows a sharp distinction between the sum-zero constrained ICAR density and the improper
ICAR density that appears in Equation 7 where the latter does not have a well-defined constant of
proportionality.

Additionally, and again in contrast to the improper ICAR density in Equation , the exponent for
7/0? is well-defined and equal to (n — 1)/2 in the sum-zero constrained ICAR density in Equation . The
fact that this exponent is equal to (n — 1)/2 is crucial because it allows for specification of unequivocal full
conditional distributions for o2 and 7. This fact supports the current practice in applications of the improper
ICAR prior that use the exponent (n — 1)/2 (e.g., see Hodges et all [2003} |[Rue and Held, 2005; Banerjee
et al.|2014). We also note that earlier publications that implemented the improper ICAR prior used a similar
exponent equal to n/2 (Besag and Kooperberg), (1995 Besag et al.,[1995). Further, Lavine and Hodges| (2012)



have shown that different ways to take a limit to obtain an improper ICAR model from a proper CAR model
may lead to different exponents, including the (n—1)/2 and n/2 exponents. In addition, Lavine and Hodges
(2012) criticized previous attempts to obtain the exponent as being mathematically incorrect.

Fortunately, Keefe et al.| (2018) proposed a formal mathematical way to obtain a sum-zero constrained
ICAR model as a limit of a proper CAR model that leads to a unique distribution. The key to the construction
proposed by [Keefe et al.| (2018)) is to first project the proper CAR spatial random effects onto the subspace
where the sum of the random effects is zero, and to take the limit after this projection. As shown by [Keefe
et al.| (2018)), two of the ways to approach the limit considered by |[Lavine and Hodges| (2012|) correspond to
two distinct K matrices. While in [Lavine and Hodges| (2012)) these two ways to approach the limit lead to
two distinct exponents equal to (n —1)/2 and n/2, |[Keefe et al.| (2018) show that if, before taking the limit,
the random effects are projected onto the subspace where the sum of the random effects is zero, then the
limit leads to a unique exponent equal to (n — 1)/2.

Henceforth, consistent with the results of Keefe et al.| (2018) and with existing applications of improper
ICAR models with centering on the fly (Hodges et al. 2003; Rue and Held, 2005; Banerjee et al. 2014]), we
will assume that the constant of proportionality in the improper ICAR density in Equation is proportional

to (ro—2)(n=1/2,

3. Equivalence between sum-zero constrained ICAR and improper ICAR

Next, we introduce some notation. Let H = QSQ’ be the spectral decomposition of H where
Q = (q1,92,...,49,) I8 a n x n matrix with columns that are the normalized eigenvectors of H and
S = diag(s1, $2,...,5,) where s1 > 89 > -+ > 5,1 > s, = 0 are the ordered eigenvalues of H. We assume

for the vector of spatial random effects the sum-zero constrained ICAR prior ¢|o?, 7 ~ N(0,0%r1HT)
proposed by [Keefe et al| (2018) with density given by Equation . Then, the following proposition gives
the full conditional distribution of ¢.

Proposition 3.1. If the prior for the wvector of spatial random effects ¢ is the sum-zero constrained
ICAR prior ¢lo?,7 ~ N(0,0277YHT), then the full conditional distribution of ¢ is Ply,a,B,0%, 7 ~
N(Q*m,02Q*S*Q*'), where Q* = (qi,...,qn_1), S* = diag((1 + 7s1)74,...,(1 + 75,_1)7'), and
m = S5*"Q*(y — Xp3).

Now consider the case when someone applies Bayes’ Theorem using the improper ICAR prior with density
given by Equation while ignoring the constraint 1’¢p = 0. They obtain a working intermediate full
conditional distribution for uncentered spatial random effects w. Then they simulate w from this working
intermediate full conditional distribution and center w on the fly to obtain a simulated realization of ¢
that satisfies the constraint 1’¢» = 0. The next proposition provides the resulting implied full conditional

distribution for the simulated ¢.



Proposition 3.2. Assume for a vector of uncentered spatial random effects w the improper ICAR prior with
density given by FEquation (@ In addition, consider the likelithood based on the hierarchical model given in
Equation replacing ¢ with w. Assume that w is simulated from the resulting full conditional distribution

and a vector of centered spatial random effects is obtained as ¢ = (I —n~'11")w. Then:

1. The full conditional distribution for w is wly,a,B,0%,7 ~ N(k,C), where C = o?(I + 7H)™! and
k=Co?%(y—al-X83)=I+7H)1(y —al — X3).

2. The implied full conditional distribution for ¢ is ¢|y,a,B3,0%,7 ~ N(Rk,RCR/), where R = I —
n~111’.

The following theorem states the equivalence between the full conditional distribution for ¢ obtained
using the sum-zero constrained ICAR prior and the implied full conditional distribution for ¢ obtained by

using the improper ICAR prior and centering on the fly.

Theorem 3.1. The full conditional distribution for ¢ under the conditions of Proposition[3.1 and the implied

full conditional distribution for ¢ under the conditions of Proposition[3.9 are equivalent.

Finally, we note that [Ferreiral (2019) showed that the singular Gaussian distribution N (0,7 1o?H") is the
limiting distribution of a one-at-a-time Gibbs sampler applied to the intrinsic CAR prior in Equation with
centering on the fly. Unfortunately, that result was not directly applicable to posterior analyses. In contrast,
by showing the equivalence of posterior analyses, Theorem implies that methods and computations
developed for sum-zero constrained ICAR models are directly applicable to ICAR-based Gaussian hierarchical

models widely used in practice.

4. Hierarchical model specification

Since Gaussian hierarchical models with sum-zero constrained ICAR random effects and Gaussian hier-
archical models with improper ICAR centered-on-the-fly random effects are equivalent, we can explore the
well-defined sum-zero constrained ICAR distribution to accelerate computations.

We now combine the column corresponding to the intercept and the design matrix to form F = [1|X].
Likewise, we expand the vector B to include the intercept, that is, let 8 = (o, 8')’. Then, in the original

spatial domain, the hierarchical model we consider is given by
y = FO+¢+e e~ N(0,0°0), (6)
¢ | o’ 7~N(0,0r'HT). (7)
The following two sections discuss two key decisions that need to be made for the practical application of

the above hierarchical model: Section discusses the assignment of priors for 8, o2, and 7; and Section

discusses the choice of the neighborhood structure that implies a choice of the matrix H.



4.1. Assignment of priors

Bayesian analysis requires the assignment of a joint prior density for 8, o, and 7. While researchers
should specify proper informative priors if legitimate prior information about these parameters is available,
we find that in practice many researchers will use vague priors for @ and 2. In addition, most researchers
(including many Bayesian statisticians) will have a difficult time specifying an informative prior for 7.

Previous literature have focused on gamma priors for precision parameters such as 7 (e.g., see
[dinelli et all [1995; Best et al.l [1999; [2013; [Serbye and Rue, [2014)). In particular, Bernardinelli et al.|

(1995)) proposed to assign priors based on the concept of fairness in the sense that the marginal variance

implied for the spatial random effects be of the same magnitude as the variance of the unstructured random

error. Using a similar idea, [Sgrbye and Rue| (2014) proposed to assign priors for distinct competing neigh-

borhood structures based on the implied geometric mean of the ICAR marginal variance. Both gamma prior

proposals by Bernardinelli et al.| (1995) and by [Sgrbye and Rue| (2014)) require some subjective choices, and

to the best of our knowledge there are no systematic studies about the frequentist statistical properties of

procedures based on these gamma priors. Such statistical properties are important if the procedures are to

be used repeatedly by many different users (e.g., see Berger} 2006} [Efron! 2015)). Further, Keefe et al|(2019)

have shown that some other gamma priors previously proposed in the literature and widely used
may have undue strong influence in the analysis. Specifically, gamma priors for 7 have
exponentially decaying tails that may dominate the posterior analysis in undesirable ways leading to highly
biased point estimates and credible intervals that have frequentist coverage very far from the nominal level.

Thus, for the case when no prior information is available, we recommend the use of the reference prior

proposed by [Keefe et al| (2019). This reference prior leads to posterior analyses with good frequentist

properties such as small mean squared estimation errors and credible intervals with frequentist coverage close
to nominal. In addition to their Bayesian interpretation, Bayesian credible intervals that attain frequentist
coverage close to nominal can be interpreted as frequentist confidence intervals. Since frequentist properties
convey the average behavior of a method when it is used multiple times, good frequentist properties are

particularly important for methods that are to be used automatically by many researchers. With these

considerations in mind, the reference prior proposed by Keefe et al| (2019)) is implemented in the package
ref.ICAR (Porter et al) [2019) that is available for the statistical programming language R (R Core Team
2014)) from the Comprehensive R Archive Network (CRAN, https://cran.r-project.org/).

To specify the reference prior, let G = I,, — F(F'F)~!F’ be the matrix that projects vectors in R™ onto
the space orthogonal to the space spanned by the columns of F. Further, consider the spectral decomposition
G = MLM/’, where L is a diagonal matrix with diagonal elements equal to the eigenvalues of G ordered in
decreasing order, and M is a matrix with columns equal to the corresponding eigenvectors of G. Furthermore,
let M* be the n by (n—p—1) matrix that contains the columns of M corresponding to the nonzero eigenvalues

of G. Finally, let A > --- > X\,,_,_1 be the ordered eigenvalues of the matrix M*'"HTM?*. Then, the reference



prior proposed by [Keefe et al.| (2019) is given by

97 1/2

) 1 n—p—1 s 2 1 n—p—1 s
0 — j s J ,
p( 30—77)0(7_0_2 Z <T+)\]> n—p—l g <T+/\]> (8)

j=1 j=1

We note that the reference prior for 8 is uniform on RP*! and the prior for o2

is proportional to its
reciprocal. In addition, the decay of the prior for 7 as 7 goes to oo is proportional to 7—2. Further, as 7 goes
to 0 the prior for 7 converges to a positive constant. Hence, the reference prior for 7 is a proper density.

Computation of the eigenvalues Ay, ..., \,—p—1 may be time consuming for large sample sizes. Thus, for
those situations we propose the use of an approximate reference prior that has the same tail behavior of the
reference prior given in Equation . Specifically, results from [Keefe et al.| (2019)) show that the reference
prior for 7 behaves as O(1) as 7 — 0 and as O(772) as 7 — oo. Thus, here we propose the use of an
approximate reference prior of the form

1

(@)(9. 52 I
b (’U’T)O(UQ(aerT)Q’

(9)

where a,; > 0 is a hyperparameter. Our experience shows that a, = 0.5 works well in practice.
Keefe et al.| (2019) shows that analysis based on the reference prior provides parameters’ estimates
with good statistical properties and credible intervals with correct quantification of uncertainty. Therefore,

in the absence of relevant prior information, we recommend as an automatic safe choice the reference prior.

4.2. Choice of neighborhood structure

The choice of neighborhood structure is a crucial modeling decision that depends on the substantive
applied problem at hand. We note that there are algorithms such as the one implemented in the function
poly2nb from the R package spdep (Bivand et all 2013) that greatly facilitate the analysis of spatial areal
data by automatically obtaining a neighborhood structure from a map of the region of interest. However,
we strongly believe that such automatically obtained neighborhood structures should not be used as is, but
instead they should be carefully examined and revised to make sure they are adequate for answering the
scientific questions at hand. In particular, automatic algorithms often provide a neighborhood structure that
is not fully connected. However, our practical experience is that if the data analyst thinks carefully, then in
most applied problems she/he will decide that the neighborhood structure should be fully connected.

Take for example the widely analyzed dataset on lip cancer in Scotland initially analyzed by |Clayton
and Kaldor| (1987) and [Breslow and Clayton| (1993). There are two main objectives in the analysis of this
dataset: to produce a smoothed map of risk, and to estimate the effect on lip cancer risk of the percentage
of the work force employed in forestry, fishing, or agriculture. In this application, the spatial random effects
play two main roles: to account for possible spill over effects (e.g., in case lip cancer was contagious), and
to account for spatially varying regressors not included in the analysis such as population smoking habits

and level of solar ultraviolet radiation. To account for spatial dependence due to regressors not included in
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the analysis, it would be inadequate to define as neighbors only counties that share a border. For example,
counties located in geographic islands in the north of Scotland would clearly be more related to counties in
the north of mainland Scotland than to counties in the south. Accordingly, in their analyses [Clayton and
Kaldor| (1987) and |Breslow and Clayton| (1993) used a fully connected neighborhood structure for the lip
cancer dataset. Statistical evidence in favor of a fully connected neighborhood structure for this dataset is
provided in [Freni-Sterrantino et al.| (2018)).

Specifically, |[Freni-Sterrantino et al.| (2018]) discuss how to define and scale ICAR models for disconnected
graphs. In addition, they consider the Scotland lip cancer dataset with a disconnected graph using a scaled
ICAR and an unscaled ICAR, and provide for these two disconnected-graph models DICs equal to 299.4 and
298.5, respectively (Table 1, [Freni-Sterrantino et al., 2018). Further, for a scaled ICAR, with the connected
graph considered by |Clayton and Kaldor (1987) and Breslow and Clayton| (1993), the DIC is equal to 297.1
(p. 32, Freni-Sterrantino et al., [2018). Thus, for the Scotland lip cancer dataset the data provides more
support for the connected neighborhood than for the disconnected neighborhood.

Finally, we note that the use of an automatic statistical procedure to deal with an automatically obtained
disconnected neighborhood structure could have unwarranted consequences such as spatial random effects for
geographic islands being set to zero (Thomas et al.,|2004)) or being unduly shrank to zero (Freni-Sterrantino
et al.}2018). According to our practical experience, in the vast majority of applied spatial areal data analyses

the most adequate neighborhood structure will be fully connected.

5. Fast and scalable posterior simulation

In this section, we propose the SGS algorithm for the simulation from the posterior distribution of
0 = (o, #'), 02, and 7 that is fast and scalable. Specifically, the SGS algorithm is a Metropolis-within-Gibbs
sampler based on transforming the hierarchical model from the spatial domain to the spectral domain.

In particular, we premultiply the terms in Equation @ by the matrix Q that contains the eigenvec-
tors of H. Let ¥ = Q'y, X = Q'F, £ = Q¢, ¢ = Q'¢, and u = (0],_;,/n)’. Note that because
Cov(¢) = Cov(Q'e) = 02Q'Q = o1, then ¢ ~ N(0,0%I). In addition, note that Cov(§) = Cov(Q'¢) =
2 IQHTQ = 027718t = aszldiag(sfl, ceey sgil, 0). Therefore, the hierarchical model given by Equa-

tions @ and can be written in the spectral domain as

Y = X0+€&+¢, ¢(~N(0,0%), (10)
13

| 0%, 7~ N(0,0%7718T). (11)

Analysis based on the spectral domain model given by and is much simpler, faster, and more
scalable than analysis based on the original spatial domain model because both the error vector ¢ and the
spectral random effects £ have diagonal covariance matrices. As a result, computations that in the original

spatial domain would involve matrix multiplications with computational cost that increases quadratically
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with the sample size n become Hadamard vector and matrix multiplications that have computational cost
increasing linearly with n.

To develop the SGS algorithm, we first integrate out the spectral random effects £ from the model. We
do this because £ is highly correlated @ posteriori with ¢? and 7. Thus, we find that integrating out &€
analytically allows us to develop an MCMC algorithm that converges much faster. Integrating out & we

obtain the model in the spectral domain:
V=X0+n, n~N0,{I+718T}). (12)

Our spectral Metropolis-within-Gibbs sampler includes a Gibbs step for 8, as well as a joint Metropolis-
Hastings step for 7 and ¢2. From a posterior sample of these parameters, a posterior sample of the spectral
random effects £ can be easily obtained by composite sampling, and then a posterior sample of the spatial
random effects ¢ can be obtained using the expression ¢ = Q€.

Let ® denote the Hadamard product (p. 45, Magnus and Neudecker, |1999) that returns the matrix of

element-wise products. Further, let ® be the Kronecker product. In addition, let

b(ﬂ:( L T 71>/. (13)

781+ 1 TSp_1+1

Note that X’(I + 71S+)~ {X o ( 1' ® b(r } where the operation on the left costs about 2pn?
products and 2pn? sums, whereas the operation on the right is much faster and costs just 2np products.

Then, one iteration of our SGS algorithm proceeds as follows.

1. Simulate @ from its full conditional distribution N (mg, Cy), where
—1
Co=c*{X'I+7'SH A}y =0 [{X © (1, ®b(r } X} ,
and

my = {XA+77'8H) X} AT 4rt8t) Y (14)

[{(xo@ebE) ¥] {(xoa,ebr))y. (15)

2. Propose o2(Pm°P) from Lognormal(log(a?(¢*™)), §,,).
3. Propose 7(P"°P) from Lognormal(log(7(c*")),§,).

4. Accept (a2Prop) 7(Prop)) with probability equal to min(1,a) where

( o2(prop) )(n+2)/2 (T(prop))(nl)/Q (HZL_—ll( .T(curr)+1)>1/2 p(T(pTOp))

o2(current) T(curr) H’ﬂ 1(8 T(prop) + 1) p(,r(cur'r))
1 /
X exp |:_2 {(y _ XG) ® (O—Q(prop)b(T(prop)) —2(curr)b( (curr) ))} (y _ X@):| ]

We note that when using the reference prior analysis proposed by [Keefe et al| (2019), one needs to

compute the spectral decomposition of the precision matrix H. Thus, the use of the reference prior and the
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use of our SGS algorithm are synergistic. Further, we note that because the vector of spectral random effects
&= (&,...,&) = Q¢ has both prior and posterior covariance matrices that are diagonal, simulation of
&, ...,&, can be done very fast and be implemented in parallel.

The SGS and the SDP algorithms have many things in common, and one crucially important difference
that makes the SGS algorithm much faster. Specifically, the SDP algorithm computes the spectral decom-
position H = QSQ’ of the H matrix before the MCMC iterations. After that, the SDP algorithm uses the
identity (I+77'HT)"! = Q(I+77!ST)~1Q’ to perform matrix inversions of I+ 7 'HT within the MCMC
iterations, where the inversion of the diagonal matrix I +7-1S* can be performed with O(n) operations.
Thus, instead of the usual O(n?) operations needed to invert a matrix, in the SDP algorithm the inversion
of I+ 771HT costs O(n?) operations per MCMC iteration due to matrix multiplications.

In contrast, we have realized that we can compute equivalent matrix multiplications before the start
of the MCMC algorithm. These equivalent matrix multiplications are the spectral transformations of the
dependent variable and of the regressors that the SGS algorithm computes before the MCMC iterations. As
a result, in the SGS algorithm the corresponding matrix inversions within each MCMC iteration cost O(n)
operations. Thus, the main difference between the SGS and the SDP algorithms is that the MCMC iterations
in the SDP algorithm are applied to the original variables whereas the SGS algorithm first spectral transforms
the variables and then runs specialized MCMC iterations for the spectral transformed variables. All other
aspects of the SDP and SGS algorithms are the same; so much so that if you start the two algorithms with
the same pseudo-random seed for the pseudo-random numbers generator, the posterior samples generated

by the two algorithms will be exactly the same.

6. Computation acceleration for large sample sizes

For large sample sizes, further computational speed ups may be achieved through the use of large sample
approximations. In particular, when the sample size is large enough for the use of an asymptotic normality
approximation to the joint posterior density of the unknown parameters, we may estimate the parameters
using the maximum a posteriori (MAP) (that is, the posterior mode) and we may compute credible intervals
using the MAP and the Fisher information matrix. These computations require optimization of the posterior
density, which can be performed orders of magnitude faster than MCMC algorithms. We call this the spectral
posterior maximizer (SPM) approach.

The computational acceleration through spectral transformations that we propose is particularly useful
for model selection problems. For those problems, after the spectral decomposition of the matrix H is
performed and the data are transformed onto the spectral domain, no additional matrix decompositions
need to be performed. The computations for each model can then be performed in the spectral domain
and grow linearly with sample size. In contrast, the currently fastest state-of-the-art computational tool for
hierarchical models with CAR, priors, implemented in the R package INLA (Rue et al., [2009; Martins et al.,

2013)), is based on fast matrix decompositions that, nevertheless, have to be performed at each iteration of
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an optimization procedure. Thus, in INLA the matrix decompositions, albeit fast, need to be performed
multiple times for each fitted model.

Take for example a problem where the researcher is interested in fitting a hierarchical model with ICAR
random effects to data with one dependent variable and 10 regressors from all counties in the United States.
There are over 3000 such counties. With 10 regressors, there are 2'° = 1024 possible models. As we show in
a simulation study in Section [7] in such an example our proposed approach computes information criteria
such as AIC and/or DIC for all 1024 models very fast. Specifically, in a MacBook Pro with a 2.7 GHz Intel
Core i7 processor and MacOS Mojave operating system, with computations implemented in R version 4.0.2
optimized with Intel’s Math Kernel Library, INLA version 20.03.17 takes about 5 hours while SPM takes
about 30 seconds.

Additional acceleration of computations can be obtained by using the fact that for large sample sizes
the posterior density may be well approximated by a Gaussian density. In addition, further speed up can
be obtained by the use of the approximate reference prior @ In that case, the joint posterior density of
(0,0%,7) is p(8,02, 7|V, X) x p9 (8,02, T)p(V|X,0,0%,T).

Further, we note that because ¢? and 7 are positive quantities, convergence to normality will happen
faster (that is, for smaller sample sizes) for the corresponding logarithm reparameterizations v = log 0 and
1 = log 7. Multiplying the approximate reference prior @ by the Jacobian of the transformation equal to
eYe?, in this new parameterization the approximate reference prior becomes

e?

) (g —_— 1
(0,7,9) (ay +e?)2 (16)
Thus, we estimate (6,7, ) with the posterior mode
(0,9,9) = max log[p (8,7, v)p(y[X,0,7,%)] = max log[p'*)(8,7,0)p(V|X,6,7,v)]. (17)
(CRED! CRED)
Specifically, for a given 3 the posterior mode of 0 is
oy [{X@ (1, @b(e?))) x} (X o1, @be)} V. (18)
where b(7) is defined in Equation . In addition, for given (6,1)) the posterior mode of - is
7(0,) = —log(n) + log i /0)° + (Y — X.0)? (19)
’ ~ 1+ e_lbsf1 " .

Thus, we use Equations and to write the joint posterior density of (8,,) as a function of 3 only.
After that, we use a one-dimensional numerical maximizer to find the MAP 1; of ¢, and then recursively
substitute ¢ by 1Z in Equations and to find the MAPs 8 and ~. Finally, the corresponding estimates
of 02 and 7 are 52 = ¢7 and 7 = V.

For large samples, uncertainty quantification may be performed with the posterior information matrix.

Let n(y,c) = Y0 '(sie¥ +1)7¢. For the parameterization (6,7,1), the posterior information matrix for
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the model in the spectral domain given in Equation is
e {Xo @, obr)} X 0 0,
18,7,4) = 0, 3 —in(,1) : (20)
¥
0, —5n(, 1) 30, 2)+(a2,a;:w)2

bS]

N[

Hence, the asymptotic posterior covariance matrix of (0,7, ) based on the approximate reference prior

is the inverse of the posterior information matrix given by

-1
’ b !

OOUasyTYLP(97 Ys w) = e’y |:{X N (11" ¥ (T))} X:| 01"72 ’ (21)
02,p CO'Uasymp ('Ya ¢)

where 0,, 4 is the p x ¢ matrix of zeros and

(,2) + %55 (v, 1)
n(t, 1) n

dna,e?

COUasymP('Ya w) =2 7”7(1/}7 2) + m

(e, 1)}2]_ L (22)

Hence, asymptotic credible intervals for elements of 6 as well as for v and ¢ may be trivially computed
from the asymptotic covariance matrix. In addition, corresponding credible intervals for ¢2 and 7 can be
computed in a straightforward manner by exponentiating the limits of the credible intervals for + and 1,

respectively. Section [8|illustrates the use of these asymptotic approximations with a real dataset.

7. Simulation studies

This section presents simulation studies to compare the computational cost as well as statistical properties

of the SGS and SPM algorithms with competing algorithms.

7.1. Computational time

In this section we present two simulation studies: the first simulation study compares computational speed
in estimation of the MCMC algorithms SGS and SDP; the second simulation study compares computational
speed in estimation and model selection of SPM and INLA. In the two simulation studies, we consider
regular square grids with sizes: 49, 100, 400, 900, 1600, 2500, and 3600. The spatial random effects follow
a sum-zero constrained ICAR specification with first-order neighborhood structure. All computations have
been performed in R version 4.0.2 optimized with Intel’s Math Kernel Library running on a MacBook Pro
with a 2.7 GHz Intel Core i7 processor and MacOS Mojave operating system. Finally, we note that INLA
is an R package with core computations implemented in C and Fortran, whereas we have implemented the
SGS, SPM, and SDP algorithms exclusively in R.

For estimation with MCMC, the computational time depends mostly on the sample size. Thus, in the first
simulation study we have considered for the regression part of the model an intercept and one explanatory
variable simulated independently and identically distributed from the standard normal distribution. The

values of the parameters in the first simulation study are 7 = 1, 02 = 2, and 8 = (1,5)’. We note that
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Table 1: Computational time in seconds of each MCMC method to run 15000 iterations.
Grid size SGS SDP

49 5.00 6.71
100 4.91 17.86
400 7.43 242.60
900 1146  1,531.03

1600 15.70  6,824.96

2500 25.06  24,268.77

3600 42.47 102,639.10

often two competing MCMC algorithms will have very different computational costs per MCMC iteration
but, due to their distinct autocorrelation functions for the traces of the simulated parameters, they will also
have distinct effective sample sizes. However, as explained at the end of Section |5 the difference between
the SGS and SPM algorithms is that the SPM algorithm is applied to the original variables whereas the SGS
algorithm is applied to the spectral transformed variables. As a result, for a given number of iterations the
SGS and SPM algorithms will have the exact same effective sample size. Hence, we compare the SGS and
SPM algorithms in terms of computational time. Table [I] presents the computational time in seconds of the
SGS and SDP algorithms to run 15000 MCMC iterations. When compared to the SDP algorithm, our novel
SGS algorithm produces a substantial decrease in computational time. For sample sizes from 49 to 3600
subregions computational times vary respectively from 6.71 seconds to 28.5 hours for the SDP algorithm and
from 4.91 seconds to 42.47 seconds for the SGS algorithm. Therefore, when compared to the SDP algorithm,
our SGS algorithm provides substantial speed-ups.

In addition, as discussed in Section [6] for larger sample sizes approximations based on Gaussian approx-
imations such as SPM and INLA may provide accelerated computations. Figure [1] presents computational
time of SPM, SGS, and INLA for sample sizes varying from 49 to 3600 for hierarchical models with 10
possible regressors, with Panel (a) presenting computational time for estimation and Panel (b) presenting
computational time for model selection with full model space search. All INLA computations presented here
have used INLA version 20.03.17. For estimation, computational times of SPM and INLA are comparable
whereas SGS is somehow slower. For model selection with full model space search, SGS is not competitive,
thus Panel (b) of Figure [1] presents results only for SPM and INLA. As pointed out in Section [§, while in
SPM the spectral decomposition needs to be computed only once and then used for all models, in INLA the
matrix decomposition has to be computed at each iteration of optimization procedures and for each model.
This difference in numerical matrix algebra computations shows up remarkably in Panel (b) of Figure
Specifically, while model selection computations based on INLA increase from 27.5 minutes for n = 49 to

3.4 hours for n = 3600, computations for model selection based on SPM take from 0.9 seconds for n = 49 to
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Figure 1: Computational time of SPM, INLA, and SGS for different sample sizes for hierarchical model with 10 regressors:

(a) Estimation; (b) Model selection with full model space search.

21.8 seconds for n = 3600. Therefore, from a computational time point of view for model selection SPM is

the preferred algorithm.

7.2. Statistical properties

In this section we present a simulation study that compares properties of the statistical procedures
implemented in INLA, SGS, and SPM. Because these methods are to be used by many users, we consider
four frequentist properties: bias, mean squared error (MSE), frequentist coverage and mean width of 95%
credible intervals. We consider these frequentist properties for the variance of the error ¢2, the variance of
the spatial random effect 0% /7, the signal-to-noise ratio 7, the regression coefficient B; and the intercept 5.

We consider square grids with sample sizes equal to 49, 100, 400, 900, 1600, 2500, and 3600. We assume
a first-order neighborhood structure. In all settings, we assume 8 = (1,2,5)" and the explanatory variables
are a random sample from the standard Gaussian distribution. We note that default methods used by a wide
range of researchers should be invariant to the measurement units used for the dependent and explanatory
variables. To partially check for invariance to measurement units, we consider two values for ¢2: 1 and
100. Finally, our experience shows that datasets with moderate to strong spatial dependence have estimated
values of 7 between 0.1 and 0.5. Based on that information, we consider for 7 values that range from strong
spatial dependence to practically independent observations: 0.1, 0.5, 1, and 10.

We have performed this simulation study from the perspective of a usual practicioner who performs

her/his analysis with the default choices implemented in statistical R packages. The prior implemented in
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SGS is the reference prior proposed by [Keefe et al.| (2019) given in Equation . The default prior in INLA
for the parameters of the hierarchical model given in Equation @ and is a noninformative uniform prior
for the intercept, independent normal priors with mean 0 and variance 1000 for the regression coefficients,
and gamma priors with parameters 1 and 5 x 107> (that is, prior mean and prior standard deviation equal
to 0.2 x 10°) for 0=2 and for 70 ~2 (Rue, 2021)). Finally, the prior implemented in SPM is the approximate
reference prior given in Equation @ with hyperparameter a, = 0.5 which works well for the settings of
this simulation study. For reasons of space, in this manuscript we focus on MSE, frequentist coverage and
mean width of 95% credible intervals for 02, 02 /7, and ; for sample sizes 49, 400, 1600, and 3600, for the
case when o2 = 100. Plots for all parameters, frequentist properties, and sample sizes can be found in the
supplementary material.

Figures and [4| present plots of v/MSE, frequentist coverage and mean width of 95% credible intervals
as functions of the true value of log;,(7) for 02, 02 /7, and 3;. Black lines represent SGS, red lines represent
INLA, and blue lines represent SPM. In terms of vMSE, methods SGS and SPM are fairly close to each
other, with SPM having a smaller v/MSE for the estimation of the variances o2 and o2/7. Meanwhile,
INLA has much higher v/MSE for the estimation of o2 and o2 /T, pointing to inappropriate uncertainty
quantification. This incorrect estimation of variances leads INLA to have higher v/MSE than SGS and SPM
in the estimation of the regression coefficients f3;.

With respect to frequentist properties of 95% credible intervals, SGS is the safest method providing
coverage close to nominal for all parameters under all settings considered. SPM provides credible interval
with coverage close to nominal for small values of 7 that correspond to stronger spatial dependence, and the
coverage deteriorates for cases of smaller sample sizes combined with larger values of 7. But the coverage
of SPM credible intervals improves with larger sample sizes and is close to nominal for the three considered
parameters for sample sizes larger or equal to n = 400 and moderate to strong spatial dependence with
7 < 1. In contrast, INLA 95% credible intervals have very low coverage for the variances o and o2 /7, with
coverage close to zero for the smallest sample size n = 49. Even for sample size n = 3600, INLA 95% credible
intervals have lower coverage than nominal for 02 and o2/7. With respect to the regression coefficient Bj,
all three methods provide credible intervals with frequentist coverage close to nominal. However, for smaller
sample sizes INLA credible intervals for §; are on average much wider than SGS and SPM credible intervals.

Based on these results, we recommend the use of SGS for the analysis of smaller spatial data with sample
size less than 400 observations. And we recommend the use of SPM for larger sample sizes. Recall that SGS
is based on the reference prior and SPM is based on an approximate reference prior @D The appropriate
uncertainty quantification of SGS and SPM concurs with previously published results for objective Bayesian
analysis of other inferential problems (e.g., see [Berger et al., 2001} Ferreira and De Oliveira), 2007; |Sun and
Berger], 2007} [Ferreira and Suchard, [2008; [Fonseca et al., [2008; |[Salazar et al. 2012} [Fonseca et al., |2012;
Ferreira and Salazar, 2014; |Keefe et al., 2019; He et al.l [2021)). Therefore, for the analysis of the models

considered here, we recommend the use of either the reference prior or the approximate reference prior @D
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Figure 2: Square root MSE of 52, as well as frequentist coverage and mean length of 95% credible intervals for o2 as a function
of true value of log(7) for true value of 2 = 100. Frequentist coverage close to or above the nominal 0.95 indicates appropriate
quantification of uncertainty. If two methods have frequentist coverage above nominal level, then the method with shorter

credible intervals is preferable.
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Figure 3: Square root MSE of 02 /tau, as well as frequentist coverage and mean length of 95% credible intervals for o2 /tau as
a function of true value of log(7) for true value of 2 = 100. Frequentist coverage close to or above the nominal 0.95 indicates
appropriate quantification of uncertainty. If two methods have frequentist coverage above nominal level, then the method with

shorter credible intervals is preferable.
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Figure 4: Square root MSE of Bj, as well as frequentist coverage and mean length of 95% credible intervals for 3; as a function

of true value of log(7) for true value of 02 = 100. Frequentist coverage close to or above the nominal 0.95 indicates appropriate

quantification of uncertainty. If two methods have frequentist coverage above nominal level, then the method with shorter

credible intervals is preferable.
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8. Application: Household income in the United States

To illustrate the possibilities of our novel SGS algorithm to handle large spatial datasets, we analyze
median household income in the contiguous United States in 2017 per county for a total of 3108 counties (or
similar geopolitical entities). The data were downloaded on May 1, 2019, from the website of the Economic
Research Service of the United States Department of Agriculture.

Specifically, we consider the logarithm of the median household income per county as the dependent
variable in the hierarchical model given by Equations @ and @ In addition, we consider 8 regressors:
logarithm of the county population in 2017; logarithm of unemployment rate 2017; three indicator variables
for whether the county belongs to a large metropolitan area, a medium metropolitan area, or a small
metropolitan area; and three level of education variables: logarithm of percent adults with less than high
school education, with a high school degree, and with a bachelor’s degree or higher. Thus, the intercept
corresponds to a baseline of a non-metropolitan area and a level of education of some bachelor’s or associate
degree.

Panels (a) through (e) of Figurepresent maps of the United States with data per county on the logarithm
scale of median household income, percent of adults with a bachelor’s degree or higher, population size,
unemployment, and metro areas. Each of the variables considered presents some level of spatial dependence.
In addition, there seems to be correlation between the dependent variable and the regressors; however this
dependence is somehow difficult to determine in the face of the spatial dependence. Scatterplots (not shown)
in the logarithm scale of the dependent variable versus each of the regressor variables indicate that it is
reasonable to assume linear relationships after logarithmic transformation. Finally, a linear model without
spatial dependence applied to the logarithm-transformed variables results in the residuals mapped in panel
(f) of Figure Visual inspection of the map of residuals and a Moran-I test (Moran-I statistic = 0.39,
p-value < 1071%) indicate presence of spatial dependence.

Thus, to account for spatial dependence we consider the hierarchical linear model with ICAR random
effects to analyze these data. We have performed the analysis with our SGS and SPM algorithms, as well as
INLA, implemented in R version 4.0.2 optimized with Intel’s Math Kernel Library running on a MacBook Pro
with a 2.7 GHz Intel Core i7 processor and MacOS Mojave operating system. Specifically, 15000 iterations
of the SGS algorithm including the initial time to compute the eigenvalue decomposition of the matrix H
and without the simulation of the spatial random effects take 34.59 seconds. If we include the simulation of
the spatial random effects then the total time is 42.82 seconds. In addition, to estimate the parameters of
the model with all regressors, INLA and SPM take 8.55 seconds and 3.74 seconds, respectively.

For model selection, INLA provides the Widely Applicable Information Criterion (WAIC) (Watanabel
2010) and the Deviance Information Criterion (DIC) (Spiegelhalter et all 2002). In addition, |Celeux et al.
(2006) proposed several different definitions of the DIC for models with latent variables which in the case
considered here are the spatial random effects. Here, we use SPM to compute the type 2 DIC proposed
by (Celeux et al.| (2006). The type 2 DIC is based on the integrated likelihood with the spatial random
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Figure 5: United States socioeconomic data by county: (a) logarithm of median household income; (b) logarithm of percent

of adults with a bachelor’s degree or higher; (c) logarithm of population; (d) logarithm of unemployment; (e) metro areas; (f)

residuals of linear model without spatial random effects.
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effects integrated out and thus it is preferable to the DIC that is computed with estimated spatial random
effects (Celeux et al.| (2006). The WAIC computed by INLA selects a model with two regressors: logarithm
of percent adults with less than high school education and the indicator variable that the county belongs
to a medium sized metro area. Meanwhile, the DIC computed by INLA selects a model with only one
regressor: the indicator variable that the county belongs to a medium sized metro area. In contrast, the
DIC type 2 computed by SPM chooses the full model with all 8 regressors. In terms of computational time,
a full search of the model space with 28 = 256 possible models with INLA takes 2157.7 seconds (35.96
minutes). In contrast, for the same task SPM takes a total of 6.74 seconds, with 4.1 seconds spent in the
computation of the spectral decomposition of H and transformation of the data to the spectral domain, and
2.64 seconds spent in the estimation and computation of model selection criteria for all 28 = 256 possible
models. Therefore, in this application SPM is 320 times faster than INLA.

Table [2| presents posterior summaries for the parameters of the full hierarchical model computed both
with SGS and SPM. Results for SGS are based on two chains, started from different starting values, with
15,000 iterations each and burnin of 1,000 iterations; the Gelman-Rubin convergence diagnostic (Gelman
and Rubin, [1992) implemented in the R package Coda (Plummer et al. [2006) indicated convergence with
estimated potential scale reduction factor equal to one for 7, o2, fBy,...,3s. Results from INLA largely
agree with results from SGS and SPM, thus INLA results are not presented in the table. For most of
the parameters, estimates and credible intervals computed with SGS and SPM are very close. The only
somewhat noticeable difference is for 7, with estimates (95% credible intervals) of 0.1393 (0.0966,0.1902) and
0.1382 (0.0979,0.1952) from SGS and SPM, respectively. From a practical point of view, these numerical
differences between the SGS and SPM results seem to be negligible.

With respect to this specific application, the larger the county population size, the larger tends to be the
median household income. In addition, the educational level of the county’s population is clearly important.
Further, the higher the unemployment rate, the lower tends to be the median household income. Furthermore,
median household incomes tend to be higher in metro areas when compared to non-metro areas, and larger
metro areas tend to have higher median household incomes. Finally, to interpret the results for the spatial
dependence parameter 7 we need to recall from [Keefe et al.| (2019) that smaller values of 7 indicate stronger
spatial dependence, whereas larger values of 7 indicate weaker spatial dependence, and values of 7 larger
than 10 indicate practically independent random effects. In the current case study, the estimate of the spatial
dependence parameter 7 is 0.1412 indicating strong spatial dependence.

Finally, Figure [6] presents maps of the United States with the posterior mean and the posterior standard
deviation for the spatial random effects per county. The map of posterior mean reflects the strong spatial
dependence in the spatial random effects. This map is particularly interesting because it indicates the regions
for which the median household income is lower or higher than predicted by the regressors. For example,
median household income is lower than predicted by the regressors in most of New Mexico. On another

hand, median household income is higher than predicted by the regressors in most of California and in the
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Table 2: Logarithm of median household income case study. Posterior summaries from SGS and SPM for parameters of
hierarchical model with ICAR spatial random effects. Baseline education is some college or associate degree. Baseline metro
status is non-metro area. Regressors: logarithm of population; logarithm of percent of adults with less than high school;
logarithm of percent of adults with high school; logarithm of percent of adults with a bachelor’s degree or higher; logarithm of

unemployment; indicator of large metro area; indicator of medium metro area; and indicator of small metro area.

Parameter Posterior estimate 95% Credible Interval
SGS SPM SGS SPM
Bo (intercept) 11.74 11.74 (11.52, 11.97) (11.52, 11.97)

B (log population)  0.0099  0.0099 (0.0051, 0.0147)  (0.0051, 0.0147)

Bs (log less high school) -0.1506  -0.1506  (-0.1682, -0.1329)  (-0.1683, -0.1329)

B3 (log high school) -0.1220 -0.1223 (-0.1609, -0.0837)  (-0.1606, -0.0840)

B4 (log bachelor) 0.0233  0.0231 (-0.0043, 0.0505)  (-0.0044, 0.0506)

Bs (log unemployment) -0.2235 -0.2236 (-0.2448, -0.2020)  (-0.2449, -0.2022)

Bs (metro large) 0.1508 0.1509 (0.1332, 0.1681) (0.1333, 0.1684)
B7 (metro medium) 0.0676 0.0676 (0.0527, 0.0826) (0.0528, 0.0825)
Bs (metro small) 0.0238 0.0238 (0.0098, 0.0376) (0.0099, 0.0377)
T 0.1393 0.1406 (0.0966, 0.1902) (0.0999, 0.1978)
o? 0.0048 0.0049 (0.0038, 0.0058) (0.0040, 0.0059)
LS
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Figure 6: Spatial random effects: (a) posterior mean; (b) posterior standard deviation.

Atlantic Coast from the DC metropolitan area going north to the Boston metropolitan area. Finally, even
though beyond the scope of this article, a closer examination of the spatial random effects may suggest other

regressors to include in the analysis.
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9. Discussion

Our novel contributions in this paper are two-fold. First, we prove the equivalence result between the
use of an improper CAR prior with centering on the fly and the use of the sum-zero constrained ICAR prior
proposed by [Keefe et al.| (2018, 2019)). Second, we develop the SGS and SPM algorithms for fast Bayesian
posterior computation for Gaussian hierarchical models with ICAR spatial random effects.

Our results provide fundamental insights about ICAR, priors. Specifically, the current prevalent view is
that ICAR priors are improper and centering on the fly is used to ensure posterior propriety. Our results
indicate that the ICAR specification with centering on the fly is actually equivalent to using a singular
Gaussian distribution as the prior. Hence, the prior is not only proper, but is defined on a lower dimensional
space than the space on which the spatial random effects are defined. This insight has fundamental practical
implications that are both methodological and computational.

One methodological implication is the ability to specify reference priors for the hyperparameters of
hierarchical models with ICAR random effects (Keefe et all [2019)). Another methodological implication,
which is the subject of current research, is the ability to use Bayes factors for Bayesian model selection.
Computational implications include the ability to use our fast and scalable SGS and SPM algorithms. Our
results show that computations for Bayesian model selection are greatly accelerated by our SPM algorithm.

We have performed a simulation study to compare the frequentist properties of SGS and SPM meth-
ods with those of INLA. SGS uses the reference prior proposed by Keefe et al| (2019) and SPM uses an
approximate reference prior that we propose here. Our results show that the default settings in INLA do
not quantify uncertainty correctly; in contrast SGS and SPM provide adequate quantification of uncertainty.
Specifically, the mean square error of INLA estimates of variances may be much larger than that of SGS
and SPM. In addition, while frequentist coverage of 95% INLA credible intervals for the variances may be
much lower than nominal level, the frequentist coverage of 95% SGS and SPM credible intervals are much
closer to the nominal 95% level. Further, the frequentist coverage of 95% SGS credible intervals is close to
or above nominal for all parameters and all sample sizes considered. Therefore, for the analysis of Gaussian
hierarchical models with ICAR random effects, we recommend the use of either the reference prior or the
approximate reference prior.

There are many other avenues for future research. One such avenue is the extension of the new methods
proposed here to problems where the variance of the measurement errors varies spatially. Specifically,
that situation would correspond to assume in Equation @ that the vector of errors had distribution € ~
N(0,0°D) for a known diagonal matrix D. We envision that extensions of the methods proposed here could
be applied to appropriately modified and practically useful Gaussian hierarchical models with ICAR priors.
Another promising avenue for future research is the extension of the ideas and methods presented here to
count data. Finally, our current ongoing work includes research on model selection for Gaussian hierarchical

models with ICAR spatial random effects (Porter et al.l [2021]).
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Appendix:. Proofs of main results

Proof of Proposition[3.1.. By Bayes’ Theorem the full conditional distribution of ¢ is

p(@ly, o, 8,0°,7) o« plyld, o, B,0% 7)p(plo”,T)

x exp{—1<y—a1 ~XB - ¢)(y - ol —Xﬁ—¢)}

202

exp {—i ’H¢>} 1(1'¢ = 0)

202

x exp {—2; [#'¢ —2¢/(vy — a1 - XB) + 7¢'QSQ'9)] } 1(1'¢=0)

— e {1 [6/(1+7QSQ)é — 2¢/(y — al — XB)] } 116 = 0)

202
— {5 [FQU+ Q0 - 20QQ v - a1 - X8)] [ 10'6 0,

where the last step uses the fact that Q is orthogonal.
Now let &€ = (&1,...,&)" = Q¢ be a vector of spectral random effects. Thus, ¢ = Q& and the Jacobian
of the transformation is d¢p/d€ = Q. Further, note that 1(1'¢ = 0) = 1(£, = 0). Hence,

p(€|y,04,,6,0'2,7') X |Q|6Xp{ 1

252

[€/(1+78)¢ — 26'Q/(y — a1 — XB)] } 1, = 0)

o Hexp {—%; [5?(1 +78;) — 269, (y — X8) — afiqgl)]} 1(¢, =0)
i=1

n—1

= H exp {%; [53(1 +75;) — 26q;(y — Xﬁ)} } 1(&, = 0),

where the last equality uses the facts that §, = 0 and q;1 = 0 for ¢« = 1,...,n — 1. Thus, &,...,&,—1
are conditionally independent given y,, 3,02, 7 and have full conditional distributions &|y, o, 3,02, 7 ~
N (dj(y —XB)/(1 +7s;),02/(1 +75;)),i = 1,...,n — 1. Let Q* = (qi,...,qn-1). Then, these full
conditional distributions may be written in matrix form as 51:(n71)|y,a,5,0277 ~ N(m,0?S*), where
S* = diag((1 +7s1)7%,..., (1 + 78,-1)71) and m = S*Q*(y — X3). Therefore, the full conditional distri-
bution of ¢ = Q& = Q*&,(,,_1) 1s Bly, o, 8,07, 7 ~ N(Q*m,s2Q*S*Q"). O

Proof of Proposition [3.4.. To obtain the full conditional distribution for w, substitute ¢ with w in the
likelihood function. Then, by Bayes’ Theorem the full conditional density for ¢* is
pwly,a,B,0% 1) o plylw,a,B,0% 7)p(wlo?, 7)
1
o exp{—22(y—a1 - X8 -w)(y—al —Xﬁ—w)}
o
exp {—#w’Hw}
1
X exp {22(.,./(1 + TH)w — 2w(y —al — X,B)} .
o
Hence, the full conditional distribution for w is wly, a, 3,02, 7 ~ N(k,C), where C = o?(I + 7H)~! and

k=Co%(y—-al-X3)=1+7H)"(y — a1l — X3).
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Thus, simulating an intermediate w from this working intermediate full conditional distribution and
centering w using ¢ = (I—n~111")w obtains a simulated value for ¢ with implied full conditional distribution

N(Rk,RCR/). O

The following lemma is useful for proving the equivalence between the sum-zero constrained ICAR prior

and the improper ICAR prior with centering on the fly.
Lemma A1 (Keefe et al., 2018).. RQ = (q1,...,9,-1,0).

Proof of Theorem[3.1.. We now show that the full conditional distribution of ¢ for the improper CAR model
centered on the fly and the full conditional based on the sum-zero constrained ICAR prior by [Keefe et al.
(2018, |2019) are the same. Since both distributions are multivariate Gaussian distributions, we need to show
that both mean vectors and covariance matrices coincide.

First, consider the covariance matrices. Note that

C o2(I+7H)"' = o?(I+7QSQ’) !

= o?Qdiag((14+7s1)7 %, ..., (1+78,) " HQ.

Thus, applying Lemma A1l we get
RCR' = o?RQdiag((1+7s1)7%,...,(1+7s,) ") QR/
= X (a1,...,qn_1,0)diag((1 +7s1)" %, ..., (1 +75,) " (a1, .., dn_1,0)
= o*(a1,...,qn_1)diag((1+7s1)" .., (L +780-1) " D(Q1, .-, A1)’
— 52Q's*Q".
Therefore, the covariance matrices coincide.

Second, consider the mean vectors. Applying Lemma Al we get
Rk = RCo ?(y —XB-al)
= RQdiag((1+7s1)7 %, ..., (1+7s,) HQ'(y — XB — al)

= (ai,...,qn_1,0)diag((1 +7s1)7 ..., (1 4+ 75,) Q' (y — X8 — al)

q(y — Xp)
= (1+7s1)'qry..., (1 +75,) 'qn_1,0)
a1 (y — XB)
q,(y — XB) —ay/n
ai(y — XB)
= (T+7s)rar,...,(1+75,) tqn_1)
a1 (y — XB)
- QSQy-Qm.
Therefore, the mean vectors also coincide. O

28



Acknowledgments. The work of Ferreira was supported in part by National Science Foundation Award
1853549. The work of Porter, Franck, and Ferreira was supported in part by a grant from the Virginia
Tech College of Science Dean’s Discovery Fund. We are grateful for the comments and suggestions of the

Associate Editor and two anonymous reviewers that have led to a greatly improved manuscript.

References

Banerjee, S., Carlin, B.P., Gelfand, A.E., 2014. Hierarchical Modeling and Analysis for Spatial Data. CRC
Press, Boca Raton, FL. 2nd edition.

Berger, J., 2006. The case for objective Bayesian analysis. Bayesian analysis 1, 385-402.

Berger, J.0., de Oliveira, V., Sans6, B., 2001. Objective Bayesian analysis of spatially correlated data.
Journal of the American Statistical Association 96, 1361-1374.

Bernardinelli, L., Clayton, D., Montomoli, C., 1995. Bayesian estimates of disease maps: how important are

priors? Statistics in Medicine 14, 2411-2431.

Besag, J., 1974. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal

Statistical Society — Series B , 192-236.

Besag, J., Green, P., Higdon, D., Mengersen, K., 1995. Bayesian computation and stochastic systems (with

discussion). Statistical Science 10, 3-66.
Besag, J., Kooperberg, C., 1995. On conditional and intrinsic autoregressions. Biometrika 82, 733-746.

Besag, J., York, J., Mollié, A., 1991. Bayesian image restoration, with two applications in spatial statistics.

Annals of the Institute of Statistical Mathematics 43, 1-20.

Best, N.G., Arnold, R.A., Thomas, A., Waller, L.A., Conlon, E.M., 1999. Bayesian models for spatially corre-
lated disease and exposure data, in: Bayesian Statistics 6: Proceedings of the Sixth Valencia International

Meeting, Oxford University Press. p. 131.

Bivand, R.S., Pebesma, E.J., Gémez-Rubio, V., Pebesma, E.J., 2013. Applied spatial data analysis with R.
Springer, New York. 2nd edition.

Breslow, N.E., Clayton, D.G., 1993. Approximate inference in generalized linear mixed models. Journal of

the American Statistical Association 88, 9-25.

Celeux, G., Forbes, F., Robert, C.P., Titterington, D.M., 2006. Deviance information criteria for missing
data models. Bayesian Analysis 1, 651-673.

Clayton, D., Kaldor, J., 1987. Empirical Bayes estimates of age-standardized relative risks for use in disease

mapping. Biometrics , 671-681.

29



Crainiceanu, C.M., Ruppert, D., 2004. Likelihood ratio tests in linear mixed models with one variance

component. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66, 165-185.

De Oliveira, V., Ferreira, M.A.R., 2011. Maximum likelihood and restricted maximum likelihood estimation

for a class of Gaussian Markov random fields. Metrika 74, 167—-183.

Efron, B., 2015. Frequentist accuracy of Bayesian estimates. Journal of the Royal Statistical Society — Series

B 77, 617.

Ferreira, M.A.R., 2019. The limiting distribution of the Gibbs sampler for the intrinsic conditional autore-
gressive model. Brazilian Journal of Probability and Statistics 33, 734-744.

Ferreira, M.A.R., Bertolde, A.L., Holan, S., 2010. Analysis of economic data with multi-scale spatio-temporal
models, in: O’Hagan, A., West, M. (Eds.), Handbook of Applied Bayesian Analysis. Oxford University
Press, Oxford, pp. 295-318.

Ferreira, M.A.R., De Oliveira, V., 2007. Bayesian reference analysis for Gaussian Markov random fields.

Journal of Multivariate Analysis 98, 789-812.

Ferreira, M.A.R., Holan, S.H., Bertolde, A.I., 2011. Dynamic multiscale spatio-temporal models for Gaussian
areal data. Journal of the Royal Statistical Society — Series B 73, 663—688.

Ferreira, M.A.R., Salazar, E., 2014. Bayesian reference analysis for exponential power regression models.

Journal of Statistical Distributions and Applications 1, 1-12.

Ferreira, M.A.R., Suchard, M.A., 2008. Bayesian analysis of elapsed times in continuous-time Markov chains.

Canadian Journal of Statistics 36, 355—-368.

Fonseca, T.C.O., Ferreira, M.A.R., Migon, H.S., 2008. Objective Bayesian analysis for the Student-t regres-
sion model. Biometrika 95, 325-333.

Fonseca, T.C.O., Migon, H.S., Ferreira, M.A.R., 2012. Bayesian analysis based on the jeffreys prior for the
hyperbolic distribution. Brazilian Journal of Probability and Statistics 26, 327-343.

Freni-Sterrantino, A., Ventrucci, M., Rue, H., 2018. A note on intrinsic conditional autoregressive models

for disconnected graphs. Spatial and Spatio-temporal Epidemiology 26, 25-34.

Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences. Statistical

Science 7, 457-511.

He, D., Sun, D., He, L., 2021. Objective bayesian analysis for the Student-t linear regression. Bayesian
Analysis 16, 129-145.

Hodges, J.S., Carlin, B.P., Fan, Q., 2003. On the precision of the conditionally autoregressive prior in spatial
models. Biometrics 59, 317-322.

30



Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., Daly, M.J., Eskin, E., 2008. Efficient

control of population structure in model organism association mapping. Genetics 178, 1709-1723.

Keefe, M.J., Ferreira, M.A.R., Franck, C.T., 2018. On the formal specification of sum-zero constrained

intrinsic conditional autoregressive models. Spatial Statistics 24, 54-65.

Keefe, M.J., Ferreira, M.A.R., Franck, C.T., 2019. Objective Bayesian analysis for Gaussian hierarchical

models with intrinsic conditional autoregressive priors. Bayesian Analysis 14, 181-209.

Lavine, M.L., Hodges, J.S., 2012. On rigorous specification of ICAR models. The American Statistician 66,
42-49.

Lee, D., 2013. CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive
priors. Journal of Statistical Software 55, 1-24.

Magnus, J.R., Neudecker, H., 1999. Matrix Differential Calculus with Applications in Statistics and Econo-

metrics. Wiley, Chichester. revised edition.

Martins, T.G., Simpson, D., Lindgren, F., Rue, H., 2013. Bayesian computing with INLA: new features.
Computational Statistics & Data Analysis 67, 68-83.

Plummer, M., Best, N., Cowles, K., Vines, K., 2006. Coda: Convergence diagnosis and output analysis for
mcmce. R News 6, 7-11.

Porter, E.M., Franck, C.T., Ferreira, M.A.R., 2021. Objective Bayesian model selection for spatial hierar-

chical models with intrinsic conditional autoregressive priors. Submitted .

Porter, E.M., Keefe, M.J., Franck, C.T., Ferreira, M.A.R., 2019. ref. ICAR: Objective Bayes Intrinsic Con-

ditional Autoregressive Model for Areal Data. R package version 1.0.

R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing. Vienna, Austria.
Rue, H., 2021. Personal communication.
Rue, H., Held, L., 2005. Gaussian Markov Random Fields: Theory and Applications. CRC Press.

Rue, H., Martino, S., Chopin, N., 2009. Approximate Bayesian inference for latent Gaussian models by using
integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 71, 319-392.

Salazar, E., Ferreira, M.A.R., Migon, H.S., 2012. Objective bayesian analysis for exponential power regression

models. Sankhya - Series B 74, 107-125.

31



Sgrbye, S.H., Rue, H., 2014. Scaling intrinsic Gaussian Markov random field priors in spatial modelling.
Spatial Statistics 8, 39-51.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A., 2002. Bayesian measures of model complexity
and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64, 583-639.

Sun, D., Berger, J.O., 2007. Objective bayesian analysis for the multivariate normal model, in: Bernardo,
J.M., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., West, M. (Eds.), Bayesian Statistics
8. Oxford University Press, Oxford, pp. 525-547.

Thomas, A., Best, N., Lunn, D., Arnold, R., Spiegelhalter, D., 2004. GeoBugs user manual. Cambridge:

Medical Research Council Biostatistics Unit .

Watanabe, S., 2010. Asymptotic equivalence of Bayes cross validation and widely applicable information

criterion in singular learning theory. Journal of Machine Learning Research 11, 3571-3594.

32



	Introduction
	Hierarchical model specification
	Model for the spatial data
	ICAR priors for spatial random effects
	Improper ICAR model
	Sum-zero constrained ICAR model


	Equivalence between sum-zero constrained ICAR and improper ICAR
	Hierarchical model specification
	Assignment of priors
	Choice of neighborhood structure

	Fast and scalable posterior simulation
	Computation acceleration for large sample sizes
	Simulation studies
	Computational time
	Statistical properties

	Application: Household income in the United States
	Discussion
	Proofs of main results

