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Abstract

Fast algorithms are developed for Bayesian analysis of Gaussian hierarchical models with intrinsic conditional

autoregressive (ICAR) spatial random effects. To achieve computational speed-ups, first a result is proved

on the equivalence between the use of an improper CAR prior with centering on the fly and the use of a

sum-zero constrained ICAR prior. This equivalence result then provides the key insight for the algorithms,

which are based on rewriting the hierarchical model in the spectral domain. The two novel algorithms

are the Spectral Gibbs Sampler (SGS) and the Spectral Posterior Maximizer (SPM). Both algorithms are

based on one single matrix spectral decomposition computation. After this computation, the SGS and SPM

algorithms scale linearly with the sample size. The SGS algorithm is preferable for smaller sample sizes,

whereas the SPM algorithm is preferable for sample sizes large enough for asymptotic calculations to provide

good approximations. Because the matrix spectral decomposition needs to be computed only once, the SPM

algorithm has computational advantages over algorithms based on sparse matrix factorizations (which need

to be computed for each value of the random effects variance parameter) in situations when many models

need to be fitted. Three simulation studies are performed: the first simulation study shows improved

performance in computational speed in estimation of the SGS algorithm compared to an algorithm that

uses the spectral decomposition of the precision matrix; the second simulation study shows that for model

selection computations with 10 regressors and sample sizes varying from 49 to 3600, when compared to the

current fastest state-of-the-art algorithm implemented in the R package INLA, SPM computations are 550 to

1825 times faster; the third simulation study shows that, when compared to default INLA settings, SGS and

SPM combined with reference priors provide much more adequate uncertainty quantification. Finally, the

application of the novel SGS and SPM algorithms is illustrated with a spatial regression study of county-level

median household income for 3108 counties in the contiguous United States in 2017.
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1. Introduction

Bayesian hierarchical models with conditional autoregressive (CAR) (Besag, 1974) spatial random effects

are used in a wide variety of fields such as economics, environmental science, and neuroscience. One of the

most widely used spatial hierarchical models has intrinsic CAR (ICAR) random effects (Besag et al., 1991).

The distribution of each ICAR random effect typically conditions on the ICAR effects of its neighbors.

While this formulation has become ubiquitous in practice, two main difficulties arise when using ICAR

spatial random effects. First, the joint density of ICAR effects is improper, which complicates inference

on the spatial random effects. Second, the priors placed on the hyperparameters of the hierarchical model

may unduly influence the analysis. To address these issues, Keefe et al. (2018, 2019) have proposed sum-

zero constrained ICAR models and a corresponding reference prior for hierarchical models with sum-zero

constrained ICAR random effects. These methods have been implemented in the R package ref.ICAR

(Porter et al., 2019). Despite these advances, it has remained unclear whether Bayesian inferences based

on the sum-zero constrained ICAR differ from the historical practice of centering the spatial random effects

at each iteration of the Markov chain Monte Carlo (MCMC) algorithm. Here we show that the resulting

analyses are equivalent.

A second practical contribution of this work is a huge speed up in computations for ICAR models.

The proof of the equivalence result mentioned in the above paragraph provides the key insight for the

speed up. Specifically, the spectral decomposition of the ICAR precision matrix in the equivalency proof

is used to transform both the dependent variable and the regressors from their respective domains to the

spectral domain. We call these new algorithms the Spectral Gibbs Sampler (SGS) and the Spectral Posterior

Maximizer (SPM). We note that a similar spectral decomposition transformation was first proposed by

Crainiceanu and Ruppert (2004) in the context of likelihood ratio tests for linear mixed models and was used

by Kang et al. (2008) for the analysis of genomic wide association studies. To the best of our knowledge,

similar spectral decomposition transformations have not been used for the analysis of hierarchical models

with ICAR spatial random effects.

A decision on whether to use algorithms based on the spectral decomposition or algorithms based on

numerical linear algebra for sparse matrices (e.g., as implemented in the R package INLA (Rue et al., 2009;

Martins et al., 2013)) depends on the problem to be solved. Specifically, even though the computation of

matrix spectral decomposition scales cubically with sample size, for a given neighborhood structure this

decomposition needs to be computed only once to transform the data to the spectral domain, and then

the SGS and SPM algorithm are applied directly to the spectral-domain data. In contrast, numerical

decompositions for sparse matrices implemented in the R package INLA (the current fastest state-of-the-art)

need to be performed for each different value of the random effects variance parameter. Thus, in situations

when many models need to be fitted, the SPM algorithm may be substantially faster than INLA. For example,

as shown in a simulation study in Section 7, for model selection computations with 10 regressors and sample

sizes varying from 49 to 3600, when compared to INLA, SPM computations are 550 to 1825 times faster.
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In addition, another simulation study shows that, when compared to default INLA settings, SGS and SPM

combined with reference priors provide much more adequate uncertainty quantification.

As shown in Section 7, when the sample size is too small for the asymptotic approximations used in

SPM and INLA to be valid, MCMC computations such as in SGS provide more reliable inference. Thus,

we have performed a simulation study to compare the SGS algorithm with the MCMC algorithm suggested

by Keefe et al. (2019). Of note, the methods in Keefe et al. (2019) use a spectral decomposition without

rewriting the model in the spectral domain, and so only achieve a reduction to O(n2) computational cost.

We call the algorithm suggested by Keefe et al. (2019) the Spectral Decomposition of the Precision (SDP)

algorithm. When compared to the SPD algorithm, our SGS algorithm reduces the computational time by

25.48% for datasets with 49 regions and 99.95% for datasets with 3600 regions. Therefore, the reduction in

computational time is substantially more important for larger spatial datasets.

Finally, we illustrate the application of the new SGS and SPM algorithms with an analysis of median

household income for 3108 counties in the contiguous United States in 2017. In this analysis, we consider 8

possible socio-economic covariates and one of the objectives is to select the best model amongst the possible

28 = 256 models. In a standard laptop, a full exploration of the model space with INLA takes 3267 seconds

(54.45 minutes) whereas SPM takes 11.7 seconds with 8.2 seconds spent in the computation of the spectral

decomposition and transformation of the data to the spectral domain, and 3.5 seconds spent in the estimation

and computation of model selection criteria for all 28 = 256 possible models.

The remainder of the article is organized as follows. Section 2 reviews ICAR models including specification

of priors. Section 3 proves the equivalency between the sum-zero constrained ICAR prior and the improper

ICAR prior with centering on the fly. Section 4 reviews the hierarchical sum-zero constrained ICAR model.

Section 5 proposes the fast and scalable SGS algorithm for posterior simulation. Section 6 presents the

spectral posterior maximizer (SPM) approach to accelerate computations for large sample sizes. Section 7

presents three simulation studies: the first simulation study compares computational speed in estimation

of the MCMC algorithms SGS and SDP; the second simulation study compares computational speed in

estimation and model selection of SPM and INLA; and the third simulation study compares statistical

properties of default INLA statistical procedures with those of SGS and SPM combined with reference

priors. Section 8 illustrates the use of the SGS and SPM algorithms with a spatial data analysis on county

level median income in the United States. Section 9 provides a discussion and concluding remarks. For

convenience of exposition, all proofs appear in the Appendix.

2. Hierarchical model specification

2.1. Model for the spatial data

We consider spatial areal data, that is, data observed on a geographical region of interest that is par-

titioned into n disjoint subregions. We denote these subregions by numbers 1, . . . , n and consider that we

have one observation for each subregion. For ease of reference, we use a similar notation to that used by
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Keefe et al. (2018). Further, we assume there is a neighborhood structure where Nj is the set of subregions

that are neighbors of subregion j, j = 1, . . . , n. Specifically, we consider the model

y = α1+Xβ + ϕ+ ϵ, (1)

where y is an n-dimensional vector that contains the observed response variable, α is an intercept, 1 is the

n-dimensional vector of ones, X is an n×p design matrix that has one row for each subregion and one column

for each regressor, and β is a p-dimensional vector of regression coefficients. Further, ϵ = (ϵ1, . . . , ϵn)
′ is an

n-dimensional error vector sometimes referred to as the vector of unstructured random effects. We assume

that ϵ1, . . . , ϵn are independent and identically distributed N(0, σ2). Furthermore, ϕ = (ϕ1, ϕ2, . . . , ϕn)
′ is a

vector of spatial random effects that is independent of ϵ. In Section 2.2.1 we assume that ϕ is assigned an

improper ICAR prior (Besag and Kooperberg, 1995); the underlying problem with such specification is that

when the distribution of ϵ is proper and that of ϕ is improper, the distribution of y is also improper. To

address that difficulty, in Section 2.2.2 we assume ϕ is assigned a sum-zero constrained ICAR prior (Keefe

et al., 2018, 2019).

2.2. ICAR priors for spatial random effects

Here we introduce the improper ICAR model and the sum-zero constrained ICAR model.

2.2.1. Improper ICAR model

Consider a set of uncentered spatial random effects ω = (ω1, . . . ,ωn)
′
over the n subregions. First, we

assume that ω follows an improper ICAR specification (Besag and Kooperberg, 1995) with a joint density

that is defined up to a constant of proportionality as

p(ω) ∝ exp
{︂
− τ

2σ2
ω′Hω

}︂
. (2)

Here, τσ−2H is the precision matrix where τ > 0 is a noise-to-signal ratio parameter. The matrix H is

symmetric and positive semidefinite with elements

(H)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
hi, if i = j,

−gij , if i ∈ Nj ,

0 otherwise.

(3)

Here, gij ≥ 0 is a measure of similarity between subregions i and j. Further, by symmetry we have that

gij = gji. Finally, the ith diagonal element is equal to the sum of the off-diagonal elements in row i, that

is, hi =
∑︁
j ̸=i

gij . For example, a widely used measure of similarity is a binary indicator equal to gij = 1 if

subregions i and j share a border, and gij = 0 otherwise.

The fact that H is positive semidefinite results from the equality hi =
∑︁
j ̸=i

gij . With this equality in mind,

it is easy to verify that n−1/21 is a normalized eigenvector of H corresponding to a null eigenvalue (Ferreira
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and De Oliveira, 2007; De Oliveira and Ferreira, 2011). Further, we assume that there are no islands in the

region of interest, that is, any two subregions are connected by a path. As a consequence, the null eigenvalue

of H has multiplicity one and H is singular. This leads the ICAR “density” in Equation (2) to be improper,

as
∫︁
Rn

p(ω)dω = ∞. When the improper ICAR specification is used as a prior for spatial random effects,

practitioners implementing MCMC algorithms usually simulate the spatial random effects from a working

full conditional distribution obtained by ignoring any constraint. Then, to guarantee propriety of the joint

posterior distribution, practitioners usually center on the fly, recentering the simulated spatial random effects

at each MCMC iteration.

2.2.2. Sum-zero constrained ICAR model

Now consider the sum-zero constrained ICAR specification proposed by Keefe et al. (2018, 2019). Let

K be a symmetric positive semi-definite matrix such that 1′K1 > 0, that is, the sum of the elements of

K is positive. In addition, let H+ be the Moore-Penrose generalized inverse of H. Keefe et al. (2018)

have derived a sum-zero constrained ICAR model by using a limit argument in three steps. The first step

considers a proper CAR model (Ferreira and De Oliveira, 2007) with a positive definite precision matrix

equal to τσ−2(κK+H), where κ > 0 is a scalar. The second step centers the vector of proper CAR spatial

random effects so that its elements sum to zero. The third and last step takes the limit when κ approaches

zero to obtain the sum-zero constrained ICAR model. Keefe et al. (2018) have shown that for any symmetric

positive semi-definite matrix K such that 1′K1 > 0, the resulting sum-zero constrained ICAR model is the

singular Gaussian distribution N(0, τ−1σ2H+).

Singular Gaussian distributions are very useful because their mean vectors and singular covariance ma-

trices implicitly encode linear constraints. In particular, singular Gaussian distributions can be used both as

prior distributions for unknown quantities in Bayesian hierarchical models as well as distributions for data.

For example, Ferreira et al. (2010, 2011) have used singular Gaussian distributions to build dynamic multi-

scale spatiotemporal models. Keefe et al. (2019) have used the singular Gaussian distributionN(0, τ−1σ2H+)

as a prior distribution for spatial random effects.

To elicit the linear constraints implicit in a singular Gaussian distribution, we need to consider the

spectral decomposition of its singular covariance matrix. Specifically, let Z ∼ N(µ,Σ) where Σ is a singular

covariance matrix with dimension n and rank n − k. Let Σ = PDP′ be the spectral decomposition of Σ

where P = (p1, . . . ,pn) is a matrix with columns p1, . . . ,pn equal to the normalized eigenvectors of Σ,

and D = diag(d1, . . . , dn) with d1 ≥ · · · ≥ dn−k > dn−k+1 = · · · = dn = 0 being the respective ordered

eigenvalues of Σ. Then, for any index i = n − k + 1, . . . , n of an eigenvector corresponding to a null

eigenvalue of Σ, we have that E(p′
iZ) = p′

iµ and V ar(p′
iZ) = p′

iΣpi = 0. Thus, P (p′
iZ = p′

iµ) = 1,

i = n − k + 1, . . . , n. Therefore, the singular Gaussian distribution N(µ,Σ) implicitly encodes k linear
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constraints p′
iZ = p′

iµ, i = n− k + 1, . . . , n. The density of the singular Gaussian distribution N(µ,Σ) is

p(z) = (2π)−(n−k)/2

(︄
n−k∏︂
i=1

di

)︄1/2

exp

{︃
−1

2
(z− µ)′Σ+(z− µ)

}︃ n∏︂
i=n−k+1

1(p′
iz = p′

iµ), (4)

where Σ+ is the Moore-Penrose generalized inverse of Σ and 1(.) is the indicator function.

Computation of probabilities for singular Gaussian distributions with density given by Equation (4) are

integrals over Rn−k in the spectral domain. Consider the spectral transformation of Z to the spectral domain,

that is, R = (R1, . . . , Rn)
′ = P′Z. Then, R1, . . . , Rn are independent such that for i = 1, . . . , n − k the

distribution of Ri is univariate N(p′
iµ,p

′
iΣpi), and for i = n−k+1, . . . , n the distribution of Ri is degenerate

P (Ri = p′
iµ) = 1. Let us partition R into a non-degenerate part R1 = (R1, . . . , Rn−k)

′ and a degenerate

partR2 = (Rn−k+1, . . . , Rn)
′. Correspondingly, partition P = (P1,P2) such thatR1 = P′

1Z andR2 = P′
2Z.

Then, to compute P (Z ∈ A), we first find the equivalent set A∗ = {R1 : Z = PR ∈ A and R2 = P′
2µ}.

Thus, A∗ ∈ Rn−k. After that, we compute P (Z ∈ A) = P (R1 ∈ A∗) as an integral in Rn−k with respect to

the distribution of R1 = (R1, . . . , Rn−k). Such integrals are easily approximated by Monte Carlo methods.

Now we connect these general results for singular Gaussian distributions to the particular case of the

sum-zero constrained ICAR distribution N(0, τ−1σ2H+). Because the rank of H+ is n− 1, this distribution

implicitly encodes one linear constraint. Further, because n−1/21 is the normalized eigenvector of H corre-

sponding to its null eigenvalue, n−1/21 is also the eigenvector of H+ corresponding to the null eigenvalue of

H+. Thus, ϕ ∼ N(0, τ−1σ2H+) implicitly encodes the constraint 1′ϕ = 0. Finally, the sum-zero constrained

ICAR prior distribution for the spatial random effects ϕ has density equal to

p(ϕ) = (2πσ2)−(n−1)/2τ (n−1)/2

(︄
n−1∏︂
i=1

si

)︄1/2

exp
{︂
− τ

2σ2
ϕ′Hϕ

}︂
1(1′ϕ = 0), (5)

where s1 ≥ · · · ≥ sn−1 > sn = 0 are the ordered eigenvalues of H. Note that the sum-zero constraint

explicitly appears in the expression of the density in Equation (5).

Importantly, the density in Equation (5) is completely specified including the constant of proportionality.

This may facilitate computation of Bayes factors for Bayesian model selection. Further, this complete

specification shows a sharp distinction between the sum-zero constrained ICAR density and the improper

ICAR density that appears in Equation (2), where the latter does not have a well-defined constant of

proportionality.

Additionally, and again in contrast to the improper ICAR density in Equation (2), the exponent for

τ/σ2 is well-defined and equal to (n− 1)/2 in the sum-zero constrained ICAR density in Equation (5). The

fact that this exponent is equal to (n− 1)/2 is crucial because it allows for specification of unequivocal full

conditional distributions for σ2 and τ . This fact supports the current practice in applications of the improper

ICAR prior that use the exponent (n − 1)/2 (e.g., see Hodges et al., 2003; Rue and Held, 2005; Banerjee

et al., 2014). We also note that earlier publications that implemented the improper ICAR prior used a similar

exponent equal to n/2 (Besag and Kooperberg, 1995; Besag et al., 1995). Further, Lavine and Hodges (2012)
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have shown that different ways to take a limit to obtain an improper ICAR model from a proper CAR model

may lead to different exponents, including the (n−1)/2 and n/2 exponents. In addition, Lavine and Hodges

(2012) criticized previous attempts to obtain the exponent as being mathematically incorrect.

Fortunately, Keefe et al. (2018) proposed a formal mathematical way to obtain a sum-zero constrained

ICARmodel as a limit of a proper CARmodel that leads to a unique distribution. The key to the construction

proposed by Keefe et al. (2018) is to first project the proper CAR spatial random effects onto the subspace

where the sum of the random effects is zero, and to take the limit after this projection. As shown by Keefe

et al. (2018), two of the ways to approach the limit considered by Lavine and Hodges (2012) correspond to

two distinct K matrices. While in Lavine and Hodges (2012) these two ways to approach the limit lead to

two distinct exponents equal to (n− 1)/2 and n/2, Keefe et al. (2018) show that if, before taking the limit,

the random effects are projected onto the subspace where the sum of the random effects is zero, then the

limit leads to a unique exponent equal to (n− 1)/2.

Henceforth, consistent with the results of Keefe et al. (2018) and with existing applications of improper

ICAR models with centering on the fly (Hodges et al., 2003; Rue and Held, 2005; Banerjee et al., 2014), we

will assume that the constant of proportionality in the improper ICAR density in Equation (2) is proportional

to (τσ−2)(n−1)/2.

3. Equivalence between sum-zero constrained ICAR and improper ICAR

Next, we introduce some notation. Let H = QSQ′ be the spectral decomposition of H where

Q = (q1,q2, . . . ,qn) is a n × n matrix with columns that are the normalized eigenvectors of H and

S = diag(s1, s2, . . . , sn) where s1 ≥ s2 ≥ · · · ≥ sn−1 > sn = 0 are the ordered eigenvalues of H. We assume

for the vector of spatial random effects the sum-zero constrained ICAR prior ϕ|σ2, τ ∼ N(0, σ2τ−1H+)

proposed by Keefe et al. (2018) with density given by Equation (5). Then, the following proposition gives

the full conditional distribution of ϕ.

Proposition 3.1. If the prior for the vector of spatial random effects ϕ is the sum-zero constrained

ICAR prior ϕ|σ2, τ ∼ N(0, σ2τ−1H+), then the full conditional distribution of ϕ is ϕ|y, α,β, σ2, τ ∼

N(Q∗m, σ2Q∗S∗Q∗′), where Q∗ = (q1, . . . ,qn−1), S∗ = diag((1 + τs1)
−1, . . . , (1 + τsn−1)

−1), and

m = S∗Q∗(y −Xβ).

Now consider the case when someone applies Bayes’ Theorem using the improper ICAR prior with density

given by Equation (2) while ignoring the constraint 1′ϕ = 0. They obtain a working intermediate full

conditional distribution for uncentered spatial random effects ω. Then they simulate ω from this working

intermediate full conditional distribution and center ω on the fly to obtain a simulated realization of ϕ

that satisfies the constraint 1′ϕ = 0. The next proposition provides the resulting implied full conditional

distribution for the simulated ϕ.
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Proposition 3.2. Assume for a vector of uncentered spatial random effects ω the improper ICAR prior with

density given by Equation (2). In addition, consider the likelihood based on the hierarchical model given in

Equation (1) replacing ϕ with ω. Assume that ω is simulated from the resulting full conditional distribution

and a vector of centered spatial random effects is obtained as ϕ = (I− n−111′)ω. Then:

1. The full conditional distribution for ω is ω|y, α,β, σ2, τ ∼ N(k,C), where C = σ2(I + τH)−1 and

k = Cσ−2(y − α1−Xβ) = (I+ τH)−1(y − α1−Xβ).

2. The implied full conditional distribution for ϕ is ϕ|y, α,β, σ2, τ ∼ N(Rk,RCR′), where R = I −

n−111′.

The following theorem states the equivalence between the full conditional distribution for ϕ obtained

using the sum-zero constrained ICAR prior and the implied full conditional distribution for ϕ obtained by

using the improper ICAR prior and centering on the fly.

Theorem 3.1. The full conditional distribution for ϕ under the conditions of Proposition 3.1 and the implied

full conditional distribution for ϕ under the conditions of Proposition 3.2 are equivalent.

Finally, we note that Ferreira (2019) showed that the singular Gaussian distributionN(0, τ−1σ2H+) is the

limiting distribution of a one-at-a-time Gibbs sampler applied to the intrinsic CAR prior in Equation (2) with

centering on the fly. Unfortunately, that result was not directly applicable to posterior analyses. In contrast,

by showing the equivalence of posterior analyses, Theorem 3.1 implies that methods and computations

developed for sum-zero constrained ICARmodels are directly applicable to ICAR-based Gaussian hierarchical

models widely used in practice.

4. Hierarchical model specification

Since Gaussian hierarchical models with sum-zero constrained ICAR random effects and Gaussian hier-

archical models with improper ICAR centered-on-the-fly random effects are equivalent, we can explore the

well-defined sum-zero constrained ICAR distribution to accelerate computations.

We now combine the column corresponding to the intercept and the design matrix to form F = [1|X].

Likewise, we expand the vector β to include the intercept, that is, let θ = (α,β′)′. Then, in the original

spatial domain, the hierarchical model we consider is given by

y = Fθ + ϕ+ ϵ, ϵ ∼ N(0, σ2I), (6)

ϕ | σ2, τ ∼ N(0, σ2τ−1H+). (7)

The following two sections discuss two key decisions that need to be made for the practical application of

the above hierarchical model: Section 4.1 discusses the assignment of priors for θ, σ2, and τ ; and Section 4.2

discusses the choice of the neighborhood structure that implies a choice of the matrix H.
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4.1. Assignment of priors

Bayesian analysis requires the assignment of a joint prior density for θ, σ2, and τ. While researchers

should specify proper informative priors if legitimate prior information about these parameters is available,

we find that in practice many researchers will use vague priors for θ and σ2. In addition, most researchers

(including many Bayesian statisticians) will have a difficult time specifying an informative prior for τ.

Previous literature have focused on gamma priors for precision parameters such as τ (e.g., see Bernar-

dinelli et al., 1995; Best et al., 1999; Lee, 2013; Sørbye and Rue, 2014). In particular, Bernardinelli et al.

(1995) proposed to assign priors based on the concept of fairness in the sense that the marginal variance

implied for the spatial random effects be of the same magnitude as the variance of the unstructured random

error. Using a similar idea, Sørbye and Rue (2014) proposed to assign priors for distinct competing neigh-

borhood structures based on the implied geometric mean of the ICAR marginal variance. Both gamma prior

proposals by Bernardinelli et al. (1995) and by Sørbye and Rue (2014) require some subjective choices, and

to the best of our knowledge there are no systematic studies about the frequentist statistical properties of

procedures based on these gamma priors. Such statistical properties are important if the procedures are to

be used repeatedly by many different users (e.g., see Berger, 2006; Efron, 2015). Further, Keefe et al. (2019)

have shown that some other gamma priors previously proposed in the literature and widely used (Best et al.,

1999; Lee, 2013) may have undue strong influence in the analysis. Specifically, gamma priors for τ have

exponentially decaying tails that may dominate the posterior analysis in undesirable ways leading to highly

biased point estimates and credible intervals that have frequentist coverage very far from the nominal level.

Thus, for the case when no prior information is available, we recommend the use of the reference prior

proposed by Keefe et al. (2019). This reference prior leads to posterior analyses with good frequentist

properties such as small mean squared estimation errors and credible intervals with frequentist coverage close

to nominal. In addition to their Bayesian interpretation, Bayesian credible intervals that attain frequentist

coverage close to nominal can be interpreted as frequentist confidence intervals. Since frequentist properties

convey the average behavior of a method when it is used multiple times, good frequentist properties are

particularly important for methods that are to be used automatically by many researchers. With these

considerations in mind, the reference prior proposed by Keefe et al. (2019) is implemented in the package

ref.ICAR (Porter et al., 2019) that is available for the statistical programming language R (R Core Team,

2014) from the Comprehensive R Archive Network (CRAN, https://cran.r-project.org/).

To specify the reference prior, let G = In − F(F′F)−1F′ be the matrix that projects vectors in Rn onto

the space orthogonal to the space spanned by the columns of F. Further, consider the spectral decomposition

G = MLM′, where L is a diagonal matrix with diagonal elements equal to the eigenvalues of G ordered in

decreasing order, andM is a matrix with columns equal to the corresponding eigenvectors ofG. Furthermore,

letM∗ be the n by (n−p−1) matrix that contains the columns ofM corresponding to the nonzero eigenvalues

of G. Finally, let λ1 ≥ · · · ≥ λn−p−1 be the ordered eigenvalues of the matrix M∗′H+M∗. Then, the reference
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prior proposed by Keefe et al. (2019) is given by

p(θ, σ2, τ) ∝ 1

τσ2

⎡⎢⎣n−p−1∑︂
j=1

(︃
λj

τ + λj

)︃2

− 1

n− p− 1

⎧⎨⎩
n−p−1∑︂
j=1

(︃
λj

τ + λj

)︃⎫⎬⎭
2
⎤⎥⎦
1/2

. (8)

We note that the reference prior for θ is uniform on Rp+1 and the prior for σ2 is proportional to its

reciprocal. In addition, the decay of the prior for τ as τ goes to ∞ is proportional to τ−2. Further, as τ goes

to 0 the prior for τ converges to a positive constant. Hence, the reference prior for τ is a proper density.

Computation of the eigenvalues λ1, . . . , λn−p−1 may be time consuming for large sample sizes. Thus, for

those situations we propose the use of an approximate reference prior that has the same tail behavior of the

reference prior given in Equation (8). Specifically, results from Keefe et al. (2019) show that the reference

prior for τ behaves as O(1) as τ → 0 and as O(τ−2) as τ → ∞. Thus, here we propose the use of an

approximate reference prior of the form

p(a)(θ, σ2, τ) ∝ 1

σ2(aτ + τ)2
, (9)

where aτ > 0 is a hyperparameter. Our experience shows that aτ = 0.5 works well in practice.

Keefe et al. (2019) shows that analysis based on the reference prior (8) provides parameters’ estimates

with good statistical properties and credible intervals with correct quantification of uncertainty. Therefore,

in the absence of relevant prior information, we recommend as an automatic safe choice the reference prior.

4.2. Choice of neighborhood structure

The choice of neighborhood structure is a crucial modeling decision that depends on the substantive

applied problem at hand. We note that there are algorithms such as the one implemented in the function

poly2nb from the R package spdep (Bivand et al., 2013) that greatly facilitate the analysis of spatial areal

data by automatically obtaining a neighborhood structure from a map of the region of interest. However,

we strongly believe that such automatically obtained neighborhood structures should not be used as is, but

instead they should be carefully examined and revised to make sure they are adequate for answering the

scientific questions at hand. In particular, automatic algorithms often provide a neighborhood structure that

is not fully connected. However, our practical experience is that if the data analyst thinks carefully, then in

most applied problems she/he will decide that the neighborhood structure should be fully connected.

Take for example the widely analyzed dataset on lip cancer in Scotland initially analyzed by Clayton

and Kaldor (1987) and Breslow and Clayton (1993). There are two main objectives in the analysis of this

dataset: to produce a smoothed map of risk, and to estimate the effect on lip cancer risk of the percentage

of the work force employed in forestry, fishing, or agriculture. In this application, the spatial random effects

play two main roles: to account for possible spill over effects (e.g., in case lip cancer was contagious), and

to account for spatially varying regressors not included in the analysis such as population smoking habits

and level of solar ultraviolet radiation. To account for spatial dependence due to regressors not included in
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the analysis, it would be inadequate to define as neighbors only counties that share a border. For example,

counties located in geographic islands in the north of Scotland would clearly be more related to counties in

the north of mainland Scotland than to counties in the south. Accordingly, in their analyses Clayton and

Kaldor (1987) and Breslow and Clayton (1993) used a fully connected neighborhood structure for the lip

cancer dataset. Statistical evidence in favor of a fully connected neighborhood structure for this dataset is

provided in Freni-Sterrantino et al. (2018).

Specifically, Freni-Sterrantino et al. (2018) discuss how to define and scale ICAR models for disconnected

graphs. In addition, they consider the Scotland lip cancer dataset with a disconnected graph using a scaled

ICAR and an unscaled ICAR, and provide for these two disconnected-graph models DICs equal to 299.4 and

298.5, respectively (Table 1, Freni-Sterrantino et al., 2018). Further, for a scaled ICAR with the connected

graph considered by Clayton and Kaldor (1987) and Breslow and Clayton (1993), the DIC is equal to 297.1

(p. 32, Freni-Sterrantino et al., 2018). Thus, for the Scotland lip cancer dataset the data provides more

support for the connected neighborhood than for the disconnected neighborhood.

Finally, we note that the use of an automatic statistical procedure to deal with an automatically obtained

disconnected neighborhood structure could have unwarranted consequences such as spatial random effects for

geographic islands being set to zero (Thomas et al., 2004) or being unduly shrank to zero (Freni-Sterrantino

et al., 2018). According to our practical experience, in the vast majority of applied spatial areal data analyses

the most adequate neighborhood structure will be fully connected.

5. Fast and scalable posterior simulation

In this section, we propose the SGS algorithm for the simulation from the posterior distribution of

θ = (α,β′)′, σ2, and τ that is fast and scalable. Specifically, the SGS algorithm is a Metropolis-within-Gibbs

sampler based on transforming the hierarchical model from the spatial domain to the spectral domain.

In particular, we premultiply the terms in Equation (6) by the matrix Q that contains the eigenvec-

tors of H. Let Y = Q′y, X = Q′F, ξ = Q′ϕ, ζ = Q′ϵ, and u = (0′
n−1,

√
n)′. Note that because

Cov(ζ) = Cov(Q′ϵ) = σ2Q′Q = σ2I, then ζ ∼ N(0, σ2I). In addition, note that Cov(ξ) = Cov(Q′ϕ) =

σ2τ−1Q′H+Q = σ2τ−1S+ = σ2τ−1diag(s−1
1 , . . . , s−1

n−1, 0). Therefore, the hierarchical model given by Equa-

tions (6) and (7) can be written in the spectral domain as

Y = Xθ + ξ + ζ, ζ ∼ N(0, σ2I), (10)

ξ | σ2, τ ∼ N(0, σ2τ−1S+). (11)

Analysis based on the spectral domain model given by (10) and (11) is much simpler, faster, and more

scalable than analysis based on the original spatial domain model because both the error vector ζ and the

spectral random effects ξ have diagonal covariance matrices. As a result, computations that in the original

spatial domain would involve matrix multiplications with computational cost that increases quadratically
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with the sample size n become Hadamard vector and matrix multiplications that have computational cost

increasing linearly with n.

To develop the SGS algorithm, we first integrate out the spectral random effects ξ from the model. We

do this because ξ is highly correlated a posteriori with σ2 and τ . Thus, we find that integrating out ξ

analytically allows us to develop an MCMC algorithm that converges much faster. Integrating out ξ we

obtain the model in the spectral domain:

Y = Xθ + η, η ∼ N(0, σ2{I+ τ−1S+}). (12)

Our spectral Metropolis-within-Gibbs sampler includes a Gibbs step for θ, as well as a joint Metropolis-

Hastings step for τ and σ2. From a posterior sample of these parameters, a posterior sample of the spectral

random effects ξ can be easily obtained by composite sampling, and then a posterior sample of the spatial

random effects ϕ can be obtained using the expression ϕ = Qξ.

Let ⊙ denote the Hadamard product (p. 45, Magnus and Neudecker, 1999) that returns the matrix of

element-wise products. Further, let ⊗ be the Kronecker product. In addition, let

b(τ) =

(︃
τs1

τs1 + 1
, · · · , τsn−1

τsn−1 + 1
, 1

)︃′

. (13)

Note that X ′(I + τ−1S+)−1 =
{︁
X ⊙ (1′

p ⊗ b(τ))
}︁′
, where the operation on the left costs about 2pn2

products and 2pn2 sums, whereas the operation on the right is much faster and costs just 2np products.

Then, one iteration of our SGS algorithm proceeds as follows.

1. Simulate θ from its full conditional distribution N(mθ,Cθ), where

Cθ = σ2{X ′(I+ τ−1S+)−1X}−1 = σ2
[︂{︁

X ⊙ (1′
p ⊗ b(τ))

}︁′ X ]︂−1

,

and

mθ =
{︁
X ′(I+ τ−1S+)−1X

}︁−1 X ′(I+ τ−1S+)−1Y (14)

=
[︂{︁

X ⊙ (1′
p ⊗ b(τ))

}︁′ X ]︂−1 {︁
X ⊙ (1′

p ⊗ b(τ))
}︁′ Y. (15)

2. Propose σ2(prop) from Lognormal(log(σ2(curr)), δσ).

3. Propose τ (prop) from Lognormal(log(τ (curr)), δτ ).

4. Accept (σ2(prop), τ (prop)) with probability equal to min(1, a) where

a =

(︃
σ2(prop)

σ2(current)

)︃−(n+2)/2(︃
τ (prop)

τ (curr)

)︃(n−1)/2
(︄∏︁n−1

i=1 (siτ
(curr) + 1)∏︁n−1

i=1 (siτ
(prop) + 1)

)︄1/2
p(τ (prop))

p(τ (curr))

× exp

[︃
−1

2

{︂
(Y − Xθ)⊙

(︂
σ−2(prop)b(τ (prop))− σ−2(curr)b(τ (curr))

)︂}︂′
(Y − Xθ)

]︃
.

We note that when using the reference prior analysis proposed by Keefe et al. (2019), one needs to

compute the spectral decomposition of the precision matrix H. Thus, the use of the reference prior and the
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use of our SGS algorithm are synergistic. Further, we note that because the vector of spectral random effects

ξ = (ξ1, . . . , ξn)
′ = Q′ϕ has both prior and posterior covariance matrices that are diagonal, simulation of

ξ1, . . . , ξn can be done very fast and be implemented in parallel.

The SGS and the SDP algorithms have many things in common, and one crucially important difference

that makes the SGS algorithm much faster. Specifically, the SDP algorithm computes the spectral decom-

position H = QSQ′ of the H matrix before the MCMC iterations. After that, the SDP algorithm uses the

identity (I+ τ−1H+)−1 = Q(I+ τ−1S+)−1Q′ to perform matrix inversions of I+ τ−1H+ within the MCMC

iterations, where the inversion of the diagonal matrix I + τ−1S+ can be performed with O(n) operations.

Thus, instead of the usual O(n3) operations needed to invert a matrix, in the SDP algorithm the inversion

of I+ τ−1H+ costs O(n2) operations per MCMC iteration due to matrix multiplications.

In contrast, we have realized that we can compute equivalent matrix multiplications before the start

of the MCMC algorithm. These equivalent matrix multiplications are the spectral transformations of the

dependent variable and of the regressors that the SGS algorithm computes before the MCMC iterations. As

a result, in the SGS algorithm the corresponding matrix inversions within each MCMC iteration cost O(n)

operations. Thus, the main difference between the SGS and the SDP algorithms is that the MCMC iterations

in the SDP algorithm are applied to the original variables whereas the SGS algorithm first spectral transforms

the variables and then runs specialized MCMC iterations for the spectral transformed variables. All other

aspects of the SDP and SGS algorithms are the same; so much so that if you start the two algorithms with

the same pseudo-random seed for the pseudo-random numbers generator, the posterior samples generated

by the two algorithms will be exactly the same.

6. Computation acceleration for large sample sizes

For large sample sizes, further computational speed ups may be achieved through the use of large sample

approximations. In particular, when the sample size is large enough for the use of an asymptotic normality

approximation to the joint posterior density of the unknown parameters, we may estimate the parameters

using the maximum a posteriori (MAP) (that is, the posterior mode) and we may compute credible intervals

using the MAP and the Fisher information matrix. These computations require optimization of the posterior

density, which can be performed orders of magnitude faster than MCMC algorithms. We call this the spectral

posterior maximizer (SPM) approach.

The computational acceleration through spectral transformations that we propose is particularly useful

for model selection problems. For those problems, after the spectral decomposition of the matrix H is

performed and the data are transformed onto the spectral domain, no additional matrix decompositions

need to be performed. The computations for each model can then be performed in the spectral domain

and grow linearly with sample size. In contrast, the currently fastest state-of-the-art computational tool for

hierarchical models with CAR priors, implemented in the R package INLA (Rue et al., 2009; Martins et al.,

2013), is based on fast matrix decompositions that, nevertheless, have to be performed at each iteration of
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an optimization procedure. Thus, in INLA the matrix decompositions, albeit fast, need to be performed

multiple times for each fitted model.

Take for example a problem where the researcher is interested in fitting a hierarchical model with ICAR

random effects to data with one dependent variable and 10 regressors from all counties in the United States.

There are over 3000 such counties. With 10 regressors, there are 210 = 1024 possible models. As we show in

a simulation study in Section 7, in such an example our proposed approach computes information criteria

such as AIC and/or DIC for all 1024 models very fast. Specifically, in a MacBook Pro with a 2.7 GHz Intel

Core i7 processor and MacOS Mojave operating system, with computations implemented in R version 4.0.2

optimized with Intel’s Math Kernel Library, INLA version 20.03.17 takes about 5 hours while SPM takes

about 30 seconds.

Additional acceleration of computations can be obtained by using the fact that for large sample sizes

the posterior density may be well approximated by a Gaussian density. In addition, further speed up can

be obtained by the use of the approximate reference prior (9). In that case, the joint posterior density of

(θ, σ2, τ) is p(θ, σ2, τ |Y,X ) ∝ p(a)(θ, σ2, τ)p(Y|X ,θ, σ2, τ).

Further, we note that because σ2 and τ are positive quantities, convergence to normality will happen

faster (that is, for smaller sample sizes) for the corresponding logarithm reparameterizations γ = log σ2 and

ψ = log τ . Multiplying the approximate reference prior (9) by the Jacobian of the transformation equal to

eγeψ, in this new parameterization the approximate reference prior becomes

p(a)(θ, γ, ψ) ∝ eψ

(aτ + eψ)2
. (16)

Thus, we estimate (θ, γ, ψ) with the posterior mode

(ˆ︁θ, ˆ︁γ, ˆ︁ψ) = max
(θ,γ,ψ)

log[p(a)(θ, γ, ψ)p(y|X,θ, γ, ψ)] = max
(θ,γ,ψ)

log[p(a)(θ, γ, ψ)p(Y|X ,θ, γ, ψ)]. (17)

Specifically, for a given ψ the posterior mode of θ is

ˆ︁θ(ψ) = [︂{︁X ⊙ (1′
p ⊗ b(eψ))

}︁′ X ]︂−1 {︁
X ⊙ (1′

p ⊗ b(eψ))
}︁′ Y. (18)

where b(τ) is defined in Equation (13). In addition, for given (θ, ψ) the posterior mode of γ is

ˆ︁γ(θ, ψ) = − log(n) + log

{︄
n−1∑︂
i=1

(Yi −X ′
iθ)

2

1 + e−ψs−1
i

+ (Yn −X ′
nθ)

2

}︄
. (19)

Thus, we use Equations (18) and (19) to write the joint posterior density of (θ, γ, ψ) as a function of ψ only.

After that, we use a one-dimensional numerical maximizer to find the MAP ˆ︁ψ of ψ, and then recursively

substitute ψ by ˆ︁ψ in Equations (18) and (19) to find the MAPs ˆ︁θ and ˆ︁γ. Finally, the corresponding estimates

of σ2 and τ are ˆ︁σ2 = eˆ︁γ and ˆ︁τ = e
ˆ︁ψ.

For large samples, uncertainty quantification may be performed with the posterior information matrix.

Let η(ψ, c) =
∑︁n−1
i=1 (sie

ψ + 1)−c. For the parameterization (θ, γ, ψ), the posterior information matrix for
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the model in the spectral domain given in Equation (12) is

I(θ, γ, ψ) =

⎛⎜⎜⎜⎝
e−γ

{︁
X ⊙ (1′

p ⊗ b(τ))
}︁′ X 0p 0p

0′
p

n
2 − 1

2η(ψ, 1)

0′
p − 1

2η(ψ, 1)
1
2η(ψ, 2)+

2aτe
ψ

(aτ+eψ)2

⎞⎟⎟⎟⎠ . (20)

Hence, the asymptotic posterior covariance matrix of (θ, γ, ψ) based on the approximate reference prior

is the inverse of the posterior information matrix given by

Covasymp(θ, γ, ψ) =

⎛⎝ eγ
[︂{︁

X ⊙ (1′
p ⊗ b(τ))

}︁′ X ]︂−1

0p,2

02,p Covasymp(γ, ψ)

⎞⎠ , (21)

where 0p,q is the p× q matrix of zeros and

Covasymp(γ, ψ) = 2

[︃
nη(ψ, 2) +

4naτe
ψ

(aτ + eψ)2
− {η(ψ, 1)}2

]︃−1
⎛⎝ η(ψ, 2) + 4aτe

ψ

(aτ+eψ)2
η(ψ, 1)

η(ψ, 1) n

⎞⎠ . (22)

Hence, asymptotic credible intervals for elements of θ as well as for γ and ψ may be trivially computed

from the asymptotic covariance matrix. In addition, corresponding credible intervals for σ2 and τ can be

computed in a straightforward manner by exponentiating the limits of the credible intervals for γ and ψ,

respectively. Section 8 illustrates the use of these asymptotic approximations with a real dataset.

7. Simulation studies

This section presents simulation studies to compare the computational cost as well as statistical properties

of the SGS and SPM algorithms with competing algorithms.

7.1. Computational time

In this section we present two simulation studies: the first simulation study compares computational speed

in estimation of the MCMC algorithms SGS and SDP; the second simulation study compares computational

speed in estimation and model selection of SPM and INLA. In the two simulation studies, we consider

regular square grids with sizes: 49, 100, 400, 900, 1600, 2500, and 3600. The spatial random effects follow

a sum-zero constrained ICAR specification with first-order neighborhood structure. All computations have

been performed in R version 4.0.2 optimized with Intel’s Math Kernel Library running on a MacBook Pro

with a 2.7 GHz Intel Core i7 processor and MacOS Mojave operating system. Finally, we note that INLA

is an R package with core computations implemented in C and Fortran, whereas we have implemented the

SGS, SPM, and SDP algorithms exclusively in R.

For estimation with MCMC, the computational time depends mostly on the sample size. Thus, in the first

simulation study we have considered for the regression part of the model an intercept and one explanatory

variable simulated independently and identically distributed from the standard normal distribution. The

values of the parameters in the first simulation study are τ = 1, σ2 = 2, and β = (1, 5)′. We note that
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Table 1: Computational time in seconds of each MCMC method to run 15000 iterations.

Grid size SGS SDP

49 5.00 6.71

100 4.91 17.86

400 7.43 242.60

900 11.46 1,531.03

1600 15.70 6,824.96

2500 25.05 24,268.77

3600 42.47 102,639.10

often two competing MCMC algorithms will have very different computational costs per MCMC iteration

but, due to their distinct autocorrelation functions for the traces of the simulated parameters, they will also

have distinct effective sample sizes. However, as explained at the end of Section 5, the difference between

the SGS and SPM algorithms is that the SPM algorithm is applied to the original variables whereas the SGS

algorithm is applied to the spectral transformed variables. As a result, for a given number of iterations the

SGS and SPM algorithms will have the exact same effective sample size. Hence, we compare the SGS and

SPM algorithms in terms of computational time. Table 1 presents the computational time in seconds of the

SGS and SDP algorithms to run 15000 MCMC iterations. When compared to the SDP algorithm, our novel

SGS algorithm produces a substantial decrease in computational time. For sample sizes from 49 to 3600

subregions computational times vary respectively from 6.71 seconds to 28.5 hours for the SDP algorithm and

from 4.91 seconds to 42.47 seconds for the SGS algorithm. Therefore, when compared to the SDP algorithm,

our SGS algorithm provides substantial speed-ups.

In addition, as discussed in Section 6, for larger sample sizes approximations based on Gaussian approx-

imations such as SPM and INLA may provide accelerated computations. Figure 1 presents computational

time of SPM, SGS, and INLA for sample sizes varying from 49 to 3600 for hierarchical models with 10

possible regressors, with Panel (a) presenting computational time for estimation and Panel (b) presenting

computational time for model selection with full model space search. All INLA computations presented here

have used INLA version 20.03.17. For estimation, computational times of SPM and INLA are comparable

whereas SGS is somehow slower. For model selection with full model space search, SGS is not competitive,

thus Panel (b) of Figure 1 presents results only for SPM and INLA. As pointed out in Section 6, while in

SPM the spectral decomposition needs to be computed only once and then used for all models, in INLA the

matrix decomposition has to be computed at each iteration of optimization procedures and for each model.

This difference in numerical matrix algebra computations shows up remarkably in Panel (b) of Figure 1.

Specifically, while model selection computations based on INLA increase from 27.5 minutes for n = 49 to

3.4 hours for n = 3600, computations for model selection based on SPM take from 0.9 seconds for n = 49 to
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Figure 1: Computational time of SPM, INLA, and SGS for different sample sizes for hierarchical model with 10 regressors:

(a) Estimation; (b) Model selection with full model space search.

21.8 seconds for n = 3600. Therefore, from a computational time point of view for model selection SPM is

the preferred algorithm.

7.2. Statistical properties

In this section we present a simulation study that compares properties of the statistical procedures

implemented in INLA, SGS, and SPM. Because these methods are to be used by many users, we consider

four frequentist properties: bias, mean squared error (MSE), frequentist coverage and mean width of 95%

credible intervals. We consider these frequentist properties for the variance of the error σ2, the variance of

the spatial random effect σ2/τ , the signal-to-noise ratio τ , the regression coefficient βj and the intercept β0.

We consider square grids with sample sizes equal to 49, 100, 400, 900, 1600, 2500, and 3600. We assume

a first-order neighborhood structure. In all settings, we assume β = (1, 2, 5)′ and the explanatory variables

are a random sample from the standard Gaussian distribution. We note that default methods used by a wide

range of researchers should be invariant to the measurement units used for the dependent and explanatory

variables. To partially check for invariance to measurement units, we consider two values for σ2: 1 and

100. Finally, our experience shows that datasets with moderate to strong spatial dependence have estimated

values of τ between 0.1 and 0.5. Based on that information, we consider for τ values that range from strong

spatial dependence to practically independent observations: 0.1, 0.5, 1, and 10.

We have performed this simulation study from the perspective of a usual practicioner who performs

her/his analysis with the default choices implemented in statistical R packages. The prior implemented in
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SGS is the reference prior proposed by Keefe et al. (2019) given in Equation (8). The default prior in INLA

for the parameters of the hierarchical model given in Equation (6) and (7) is a noninformative uniform prior

for the intercept, independent normal priors with mean 0 and variance 1000 for the regression coefficients,

and gamma priors with parameters 1 and 5× 10−5 (that is, prior mean and prior standard deviation equal

to 0.2× 105) for σ−2 and for τσ−2 (Rue, 2021). Finally, the prior implemented in SPM is the approximate

reference prior given in Equation (9) with hyperparameter aτ = 0.5 which works well for the settings of

this simulation study. For reasons of space, in this manuscript we focus on MSE, frequentist coverage and

mean width of 95% credible intervals for σ2, σ2/τ , and βj for sample sizes 49, 400, 1600, and 3600, for the

case when σ2 = 100. Plots for all parameters, frequentist properties, and sample sizes can be found in the

supplementary material.

Figures 2, 3, and 4 present plots of
√
MSE, frequentist coverage and mean width of 95% credible intervals

as functions of the true value of log10(τ) for σ
2, σ2/τ , and βj . Black lines represent SGS, red lines represent

INLA, and blue lines represent SPM. In terms of
√
MSE, methods SGS and SPM are fairly close to each

other, with SPM having a smaller
√
MSE for the estimation of the variances σ2 and σ2/τ . Meanwhile,

INLA has much higher
√
MSE for the estimation of σ2 and σ2/τ , pointing to inappropriate uncertainty

quantification. This incorrect estimation of variances leads INLA to have higher
√
MSE than SGS and SPM

in the estimation of the regression coefficients βj .

With respect to frequentist properties of 95% credible intervals, SGS is the safest method providing

coverage close to nominal for all parameters under all settings considered. SPM provides credible interval

with coverage close to nominal for small values of τ that correspond to stronger spatial dependence, and the

coverage deteriorates for cases of smaller sample sizes combined with larger values of τ . But the coverage

of SPM credible intervals improves with larger sample sizes and is close to nominal for the three considered

parameters for sample sizes larger or equal to n = 400 and moderate to strong spatial dependence with

τ < 1. In contrast, INLA 95% credible intervals have very low coverage for the variances σ2 and σ2/τ , with

coverage close to zero for the smallest sample size n = 49. Even for sample size n = 3600, INLA 95% credible

intervals have lower coverage than nominal for σ2 and σ2/τ . With respect to the regression coefficient βj ,

all three methods provide credible intervals with frequentist coverage close to nominal. However, for smaller

sample sizes INLA credible intervals for βj are on average much wider than SGS and SPM credible intervals.

Based on these results, we recommend the use of SGS for the analysis of smaller spatial data with sample

size less than 400 observations. And we recommend the use of SPM for larger sample sizes. Recall that SGS

is based on the reference prior (8) and SPM is based on an approximate reference prior (9). The appropriate

uncertainty quantification of SGS and SPM concurs with previously published results for objective Bayesian

analysis of other inferential problems (e.g., see Berger et al., 2001; Ferreira and De Oliveira, 2007; Sun and

Berger, 2007; Ferreira and Suchard, 2008; Fonseca et al., 2008; Salazar et al., 2012; Fonseca et al., 2012;

Ferreira and Salazar, 2014; Keefe et al., 2019; He et al., 2021). Therefore, for the analysis of the models

considered here, we recommend the use of either the reference prior (8) or the approximate reference prior (9).
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Figure 2: Square root MSE of ˆ︁σ2, as well as frequentist coverage and mean length of 95% credible intervals for σ2 as a function

of true value of log(τ) for true value of σ2 = 100. Frequentist coverage close to or above the nominal 0.95 indicates appropriate

quantification of uncertainty. If two methods have frequentist coverage above nominal level, then the method with shorter

credible intervals is preferable.
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Figure 3: Square root MSE of ˆ︂σ2/tau, as well as frequentist coverage and mean length of 95% credible intervals for σ2/tau as

a function of true value of log(τ) for true value of σ2 = 100. Frequentist coverage close to or above the nominal 0.95 indicates

appropriate quantification of uncertainty. If two methods have frequentist coverage above nominal level, then the method with

shorter credible intervals is preferable.
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Figure 4: Square root MSE of ˆ︁βj , as well as frequentist coverage and mean length of 95% credible intervals for βj as a function

of true value of log(τ) for true value of σ2 = 100. Frequentist coverage close to or above the nominal 0.95 indicates appropriate

quantification of uncertainty. If two methods have frequentist coverage above nominal level, then the method with shorter

credible intervals is preferable.
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8. Application: Household income in the United States

To illustrate the possibilities of our novel SGS algorithm to handle large spatial datasets, we analyze

median household income in the contiguous United States in 2017 per county for a total of 3108 counties (or

similar geopolitical entities). The data were downloaded on May 1, 2019, from the website of the Economic

Research Service of the United States Department of Agriculture.

Specifically, we consider the logarithm of the median household income per county as the dependent

variable in the hierarchical model given by Equations (6) and (7). In addition, we consider 8 regressors:

logarithm of the county population in 2017; logarithm of unemployment rate 2017; three indicator variables

for whether the county belongs to a large metropolitan area, a medium metropolitan area, or a small

metropolitan area; and three level of education variables: logarithm of percent adults with less than high

school education, with a high school degree, and with a bachelor’s degree or higher. Thus, the intercept

corresponds to a baseline of a non-metropolitan area and a level of education of some bachelor’s or associate

degree.

Panels (a) through (e) of Figure 5 present maps of the United States with data per county on the logarithm

scale of median household income, percent of adults with a bachelor’s degree or higher, population size,

unemployment, and metro areas. Each of the variables considered presents some level of spatial dependence.

In addition, there seems to be correlation between the dependent variable and the regressors; however this

dependence is somehow difficult to determine in the face of the spatial dependence. Scatterplots (not shown)

in the logarithm scale of the dependent variable versus each of the regressor variables indicate that it is

reasonable to assume linear relationships after logarithmic transformation. Finally, a linear model without

spatial dependence applied to the logarithm-transformed variables results in the residuals mapped in panel

(f) of Figure 5. Visual inspection of the map of residuals and a Moran-I test (Moran-I statistic = 0.39,

p-value < 10−15) indicate presence of spatial dependence.

Thus, to account for spatial dependence we consider the hierarchical linear model with ICAR random

effects to analyze these data. We have performed the analysis with our SGS and SPM algorithms, as well as

INLA, implemented in R version 4.0.2 optimized with Intel’s Math Kernel Library running on a MacBook Pro

with a 2.7 GHz Intel Core i7 processor and MacOS Mojave operating system. Specifically, 15000 iterations

of the SGS algorithm including the initial time to compute the eigenvalue decomposition of the matrix H

and without the simulation of the spatial random effects take 34.59 seconds. If we include the simulation of

the spatial random effects then the total time is 42.82 seconds. In addition, to estimate the parameters of

the model with all regressors, INLA and SPM take 8.55 seconds and 3.74 seconds, respectively.

For model selection, INLA provides the Widely Applicable Information Criterion (WAIC) (Watanabe,

2010) and the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). In addition, Celeux et al.

(2006) proposed several different definitions of the DIC for models with latent variables which in the case

considered here are the spatial random effects. Here, we use SPM to compute the type 2 DIC proposed

by Celeux et al. (2006). The type 2 DIC is based on the integrated likelihood with the spatial random
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Figure 5: United States socioeconomic data by county: (a) logarithm of median household income; (b) logarithm of percent

of adults with a bachelor’s degree or higher; (c) logarithm of population; (d) logarithm of unemployment; (e) metro areas; (f)

residuals of linear model without spatial random effects.
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effects integrated out and thus it is preferable to the DIC that is computed with estimated spatial random

effects Celeux et al. (2006). The WAIC computed by INLA selects a model with two regressors: logarithm

of percent adults with less than high school education and the indicator variable that the county belongs

to a medium sized metro area. Meanwhile, the DIC computed by INLA selects a model with only one

regressor: the indicator variable that the county belongs to a medium sized metro area. In contrast, the

DIC type 2 computed by SPM chooses the full model with all 8 regressors. In terms of computational time,

a full search of the model space with 28 = 256 possible models with INLA takes 2157.7 seconds (35.96

minutes). In contrast, for the same task SPM takes a total of 6.74 seconds, with 4.1 seconds spent in the

computation of the spectral decomposition of H and transformation of the data to the spectral domain, and

2.64 seconds spent in the estimation and computation of model selection criteria for all 28 = 256 possible

models. Therefore, in this application SPM is 320 times faster than INLA.

Table 2 presents posterior summaries for the parameters of the full hierarchical model computed both

with SGS and SPM. Results for SGS are based on two chains, started from different starting values, with

15,000 iterations each and burnin of 1,000 iterations; the Gelman-Rubin convergence diagnostic (Gelman

and Rubin, 1992) implemented in the R package Coda (Plummer et al., 2006) indicated convergence with

estimated potential scale reduction factor equal to one for τ , σ2, β0, . . . , β8. Results from INLA largely

agree with results from SGS and SPM, thus INLA results are not presented in the table. For most of

the parameters, estimates and credible intervals computed with SGS and SPM are very close. The only

somewhat noticeable difference is for τ , with estimates (95% credible intervals) of 0.1393 (0.0966,0.1902) and

0.1382 (0.0979,0.1952) from SGS and SPM, respectively. From a practical point of view, these numerical

differences between the SGS and SPM results seem to be negligible.

With respect to this specific application, the larger the county population size, the larger tends to be the

median household income. In addition, the educational level of the county’s population is clearly important.

Further, the higher the unemployment rate, the lower tends to be the median household income. Furthermore,

median household incomes tend to be higher in metro areas when compared to non-metro areas, and larger

metro areas tend to have higher median household incomes. Finally, to interpret the results for the spatial

dependence parameter τ we need to recall from Keefe et al. (2019) that smaller values of τ indicate stronger

spatial dependence, whereas larger values of τ indicate weaker spatial dependence, and values of τ larger

than 10 indicate practically independent random effects. In the current case study, the estimate of the spatial

dependence parameter τ is 0.1412 indicating strong spatial dependence.

Finally, Figure 6 presents maps of the United States with the posterior mean and the posterior standard

deviation for the spatial random effects per county. The map of posterior mean reflects the strong spatial

dependence in the spatial random effects. This map is particularly interesting because it indicates the regions

for which the median household income is lower or higher than predicted by the regressors. For example,

median household income is lower than predicted by the regressors in most of New Mexico. On another

hand, median household income is higher than predicted by the regressors in most of California and in the
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Table 2: Logarithm of median household income case study. Posterior summaries from SGS and SPM for parameters of

hierarchical model with ICAR spatial random effects. Baseline education is some college or associate degree. Baseline metro

status is non-metro area. Regressors: logarithm of population; logarithm of percent of adults with less than high school;

logarithm of percent of adults with high school; logarithm of percent of adults with a bachelor’s degree or higher; logarithm of

unemployment; indicator of large metro area; indicator of medium metro area; and indicator of small metro area.

Parameter Posterior estimate 95% Credible Interval

SGS SPM SGS SPM

β0 (intercept) 11.74 11.74 (11.52, 11.97) (11.52, 11.97)

β1 (log population) 0.0099 0.0099 (0.0051, 0.0147) (0.0051, 0.0147)

β2 (log less high school) -0.1506 -0.1506 (-0.1682, -0.1329) (-0.1683, -0.1329)

β3 (log high school) -0.1220 -0.1223 (-0.1609, -0.0837) (-0.1606, -0.0840)

β4 (log bachelor) 0.0233 0.0231 (-0.0043, 0.0505) (-0.0044, 0.0506)

β5 (log unemployment) -0.2235 -0.2236 (-0.2448, -0.2020) (-0.2449, -0.2022)

β6 (metro large) 0.1508 0.1509 (0.1332, 0.1681) (0.1333, 0.1684)

β7 (metro medium) 0.0676 0.0676 (0.0527, 0.0826) (0.0528, 0.0825)

β8 (metro small) 0.0238 0.0238 (0.0098, 0.0376) (0.0099, 0.0377)

τ 0.1393 0.1406 (0.0966, 0.1902) (0.0999, 0.1978)

σ2 0.0048 0.0049 (0.0038, 0.0058) (0.0040, 0.0059)
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Figure 6: Spatial random effects: (a) posterior mean; (b) posterior standard deviation.

Atlantic Coast from the DC metropolitan area going north to the Boston metropolitan area. Finally, even

though beyond the scope of this article, a closer examination of the spatial random effects may suggest other

regressors to include in the analysis.
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9. Discussion

Our novel contributions in this paper are two-fold. First, we prove the equivalence result between the

use of an improper CAR prior with centering on the fly and the use of the sum-zero constrained ICAR prior

proposed by Keefe et al. (2018, 2019). Second, we develop the SGS and SPM algorithms for fast Bayesian

posterior computation for Gaussian hierarchical models with ICAR spatial random effects.

Our results provide fundamental insights about ICAR priors. Specifically, the current prevalent view is

that ICAR priors are improper and centering on the fly is used to ensure posterior propriety. Our results

indicate that the ICAR specification with centering on the fly is actually equivalent to using a singular

Gaussian distribution as the prior. Hence, the prior is not only proper, but is defined on a lower dimensional

space than the space on which the spatial random effects are defined. This insight has fundamental practical

implications that are both methodological and computational.

One methodological implication is the ability to specify reference priors for the hyperparameters of

hierarchical models with ICAR random effects (Keefe et al., 2019). Another methodological implication,

which is the subject of current research, is the ability to use Bayes factors for Bayesian model selection.

Computational implications include the ability to use our fast and scalable SGS and SPM algorithms. Our

results show that computations for Bayesian model selection are greatly accelerated by our SPM algorithm.

We have performed a simulation study to compare the frequentist properties of SGS and SPM meth-

ods with those of INLA. SGS uses the reference prior proposed by Keefe et al. (2019) and SPM uses an

approximate reference prior that we propose here. Our results show that the default settings in INLA do

not quantify uncertainty correctly; in contrast SGS and SPM provide adequate quantification of uncertainty.

Specifically, the mean square error of INLA estimates of variances may be much larger than that of SGS

and SPM. In addition, while frequentist coverage of 95% INLA credible intervals for the variances may be

much lower than nominal level, the frequentist coverage of 95% SGS and SPM credible intervals are much

closer to the nominal 95% level. Further, the frequentist coverage of 95% SGS credible intervals is close to

or above nominal for all parameters and all sample sizes considered. Therefore, for the analysis of Gaussian

hierarchical models with ICAR random effects, we recommend the use of either the reference prior or the

approximate reference prior.

There are many other avenues for future research. One such avenue is the extension of the new methods

proposed here to problems where the variance of the measurement errors varies spatially. Specifically,

that situation would correspond to assume in Equation (6) that the vector of errors had distribution ϵ ∼

N(0, σ2D) for a known diagonal matrix D. We envision that extensions of the methods proposed here could

be applied to appropriately modified and practically useful Gaussian hierarchical models with ICAR priors.

Another promising avenue for future research is the extension of the ideas and methods presented here to

count data. Finally, our current ongoing work includes research on model selection for Gaussian hierarchical

models with ICAR spatial random effects (Porter et al., 2021).
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Appendix:. Proofs of main results

Proof of Proposition 3.1.. By Bayes’ Theorem the full conditional distribution of ϕ is

p(ϕ|y, α,β, σ2, τ) ∝ p(y|ϕ, α,β, σ2, τ)p(ϕ|σ2, τ)

∝ exp

{︃
− 1

2σ2
(y − α1−Xβ − ϕ)′(y − α1−Xβ − ϕ)

}︃
exp

{︂
− τ

2σ2
ϕ′Hϕ

}︂
1(1′ϕ = 0)

∝ exp

{︃
− 1

2σ2

[︁
ϕ′ϕ− 2ϕ′(y − α1−Xβ) + τϕ′QSQ′ϕ

]︁}︃
1(1′ϕ = 0)

= exp

{︃
− 1

2σ2

[︁
ϕ′(I+ τQSQ′)ϕ− 2ϕ′(y − α1−Xβ)

]︁}︃
1(1′ϕ = 0)

= exp

{︃
− 1

2σ2

[︁
ϕ′Q(I+ τS)Q′ϕ− 2ϕ′QQ′(y − α1−Xβ)

]︁}︃
1(1′ϕ = 0),

where the last step uses the fact that Q is orthogonal.

Now let ξ = (ξ1, . . . , ξn)
′ = Q′ϕ be a vector of spectral random effects. Thus, ϕ = Qξ and the Jacobian

of the transformation is dϕ/dξ = Q. Further, note that 1(1′ϕ = 0) = 1(ξn = 0). Hence,

p(ξ|y, α,β, σ2, τ) ∝ |Q| exp
{︃
− 1

2σ2

[︁
ξ′(I+ τS)ξ − 2ξ′Q′(y − α1−Xβ)

]︁}︃
1(ξn = 0)

∝
n∏︂
i=1

exp

{︃
− 1

2σ2

[︁
ξ2i (1 + τsi)− 2ξiq

′
i(y −Xβ)− αξiq

′
i1)
]︁}︃

1(ξn = 0)

=

n−1∏︂
i=1

exp

{︃
− 1

2σ2

[︁
ξ2i (1 + τsi)− 2ξiq

′
i(y −Xβ)

]︁}︃
1(ξn = 0),

where the last equality uses the facts that ξn = 0 and q′
i1 = 0 for i = 1, . . . , n − 1. Thus, ξ1, . . . , ξn−1

are conditionally independent given y, α,β, σ2, τ and have full conditional distributions ξi|y, α,β, σ2, τ ∼

N
(︁
q′
i(y −Xβ)/(1 + τsi), σ

2/(1 + τsi)
)︁
, i = 1, . . . , n − 1. Let Q∗ = (q1, . . . ,qn−1). Then, these full

conditional distributions may be written in matrix form as ξ1:(n−1)|y, α,β, σ2, τ ∼ N(m, σ2S∗), where

S∗ = diag((1 + τs1)
−1, . . . , (1 + τsn−1)

−1) and m = S∗Q∗(y −Xβ). Therefore, the full conditional distri-

bution of ϕ = Qξ = Q∗ξ1:(n−1) is ϕ|y, α,β, σ2, τ ∼ N(Q∗m, σ2Q∗S∗Q∗′). □

Proof of Proposition 3.2.. To obtain the full conditional distribution for ω, substitute ϕ with ω in the

likelihood function. Then, by Bayes’ Theorem the full conditional density for ϕ∗ is

p(ω|y, α,β, σ2, τ) ∝ p(y|ω, α,β, σ2, τ)p(ω|σ2, τ)

∝ exp

{︃
− 1

2σ2
(y − α1−Xβ − ω)′(y − α1−Xβ − ω)

}︃
exp

{︂
− τ

2σ2
ω′Hω

}︂
∝ exp

{︃
− 1

2σ2
ω′(I+ τH)ω − 2ω(y − α1−Xβ)

}︃
.

Hence, the full conditional distribution for ω is ω|y, α,β, σ2, τ ∼ N(k,C), where C = σ2(I + τH)−1 and

k = Cσ−2(y − α1−Xβ) = (I+ τH)−1(y − α1−Xβ).
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Thus, simulating an intermediate ω from this working intermediate full conditional distribution and

centering ω using ϕ = (I−n−111′)ω obtains a simulated value for ϕ with implied full conditional distribution

N(Rk,RCR′). □

The following lemma is useful for proving the equivalence between the sum-zero constrained ICAR prior

and the improper ICAR prior with centering on the fly.

Lemma A1 (Keefe et al., 2018).. RQ = (q1, . . . ,qn−1,0).

Proof of Theorem 3.1.. We now show that the full conditional distribution of ϕ for the improper CAR model

centered on the fly and the full conditional based on the sum-zero constrained ICAR prior by Keefe et al.

(2018, 2019) are the same. Since both distributions are multivariate Gaussian distributions, we need to show

that both mean vectors and covariance matrices coincide.

First, consider the covariance matrices. Note that

C = σ2(I+ τH)−1 = σ2(I+ τQSQ′)−1

= σ2Qdiag((1 + τs1)
−1, . . . , (1 + τsn)

−1)Q′.

Thus, applying Lemma A1 we get

RCR′ = σ2RQdiag((1 + τs1)
−1, . . . , (1 + τsn)

−1)Q′R′

= σ2(q1, . . . ,qn−1,0)diag((1 + τs1)
−1, . . . , (1 + τsn)

−1)(q1, . . . ,qn−1,0)
′

= σ2(q1, . . . ,qn−1)diag((1 + τs1)
−1, . . . , (1 + τsn−1)

−1)(q1, . . . ,qn−1)
′

= σ2Q∗S∗Q∗′.

Therefore, the covariance matrices coincide.

Second, consider the mean vectors. Applying Lemma A1 we get

Rk = RCσ−2(y −Xβ − α1)

= RQdiag((1 + τs1)
−1, . . . , (1 + τsn)

−1)Q′(y −Xβ − α1)

= (q1, . . . ,qn−1,0)diag((1 + τs1)
−1, . . . , (1 + τsn)

−1)Q′(y −Xβ − α1)

= ((1 + τs1)
−1q1, . . . , (1 + τsn)

−1qn−1,0)

⎛⎜⎜⎜⎜⎜⎜⎝
q′
1(y −Xβ)

...

q′
n−1(y −Xβ)

q′
n(y −Xβ)− α

√
n

⎞⎟⎟⎟⎟⎟⎟⎠

= ((1 + τs1)
−1q1, . . . , (1 + τsn)

−1qn−1)

⎛⎜⎜⎜⎝
q′
1(y −Xβ)

...

q′
n−1(y −Xβ)

⎞⎟⎟⎟⎠
= Q∗S∗Q∗′y = Q∗m.

Therefore, the mean vectors also coincide. □
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