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Abstract

Solutions to challenging inference problems are often subject to a fundamental trade-off
between: 1) bias (being systematically wrong) that is minimized with complex inference
strategies, and 2) variance (being oversensitive to uncertain observations) that is minimized
with simple inference strategies. However, this trade-off is based on the assumption that the
strategies being considered are optimal for their given complexity and thus has unclear rele-
vance to forms of inference based on suboptimal strategies. We examined inference prob-
lems applied to rare, asymmetrically available evidence, which a large population of human
subjects solved using a diverse set of strategies that varied in form and complexity. In gen-
eral, subjects using more complex strategies tended to have lower bias and variance, but
with a dependence on the form of strategy that reflected an inversion of the classic bias-vari-
ance trade-off: subjects who used more complex, but imperfect, Bayesian-like strategies
tended to have lower variance but higher bias because of incorrect tuning to latent task fea-
tures, whereas subjects who used simpler heuristic strategies tended to have higher vari-
ance because they operated more directly on the observed samples but lower, near-
normative bias. Our results help define new principles that govern individual differences in
behavior that depends on rare-event inference and, more generally, about the information-
processing trade-offs that can be sensitive to not just the complexity, but also the optimality,
of the inference process.

Author summary

People use diverse strategies to make inferences about the world around them, often
based on limited evidence. Such inference strategies may be simple but prone to system-
atic errors or more complex and accurate, but such trends need not always be the rule. We
modeled and measured how human participants made rare-event decisions in a

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010323  July 19, 2022

1/30


https://orcid.org/0000-0002-6774-2143
https://orcid.org/0000-0002-1975-3913
https://orcid.org/0000-0002-2835-9416
https://doi.org/10.1371/journal.pcbi.1010323
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010323&domain=pdf&date_stamp=2022-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010323&domain=pdf&date_stamp=2022-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010323&domain=pdf&date_stamp=2022-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010323&domain=pdf&date_stamp=2022-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010323&domain=pdf&date_stamp=2022-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010323&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1371/journal.pcbi.1010323
https://doi.org/10.1371/journal.pcbi.1010323
http://creativecommons.org/licenses/by/4.0/
http://osf.io
https://doi.org/10.17605/OSF.IO/J9XET
https://doi.org/10.17605/OSF.IO/J9XET
https://github.com/teissa/RareEvents
https://www.nih.gov/

PLOS COMPUTATIONAL BIOLOGY Humans decision strategies with asymmetric evidence

Competing interests: The authors have declared
that no competing interests exist.

preregistered, online study. The participants tended to use suboptimal decision strategies
that reflected an inversion of the classic bias-variance trade-off: some used complex,
nearly normative strategies with mistuned evidence weights that corresponded to rela-
tively high choice biases but lower choice variance, whereas others used simpler heuristic
strategies that corresponded to lower biases but higher variance. These relationships illus-
trate structure in suboptimality that can be used to identify systematic sources of human
errors.

Introduction

Understanding how the brain makes inferences about the world requires first understanding
the diversity of strategies individuals use to solve inference problems. One useful approach for
understanding this diversity is to assess patterns of errors, which can reflect particular strate-
gies. In general, errors can result from either: 1) bias, which can arise from an incorrect model
of the world that produces inferences that are systematically offset from the ground truth; or 2)
variability, which can reflect either intrinsic noise or oversensitivity to particular observations
(which we refer to as “noise” and “variance,” respectively) and can lead to inferences that are
variable over multiple instances of the same problem. Some forms of inference reflect an inher-
ent trade-off between bias and variance[1] that depends on the complexity of the inference
process [2, 3]: higher complexity provides more flexibility that tends to decrease bias but incor-
porates oversensitivity to task-irrelevant variability, whereas lower complexity tends to
increase bias but decrease variance. However, this trade-off has typically been considered in
the context of inference processes (or “models” in machine learning) that vary in complexity,
but are optimized for the given problem and complexity level. Much less understood is
whether and how similar trade-offs arise as people solve inference problems using suboptimal
strategies [4-6].

To better identify the sources of errors in suboptimal inference, and how these sources of
error might relate to the bias-variance trade-off, we examined the choice behavior of human
subjects performing a two-alternative forced-choice inference task in which evidence in favor
of one alternative was sparse [7]. These inference problems are interesting because they give
rise to choice asymmetries; i.e., a tendency to chose one alternative more frequently than the
other, even when the alternatives are a priori equally likely. We exploited this tendency to iden-
tify how subjects’ strategies differed in terms of their resulting choice bias and variance, which
were defined with respect to values obtained by the ideal observer performing the (simulated)
task under the same conditions. We were particularly interested in how deviations from the
ideal observer differed across individual subjects and task conditions, and how these subop-
timalities related to the underlying inference strategies that we identified using quantitative
model fitting and other methods.

We focused on two classes of strategies whose differences were central to our interpretation
of the suboptimal bias-variance trade-off under asymmetric conditions. The first was based on
Bayesian principles. We used several related models, each of which produced choice asymme-
tries like the ideal observer that are based on inferences about their latent causes (i.e., the prob-
abilistic structure of the task). Unlike the ideal observer, these models could be suboptimal by
using different forms of mistuned inferences. The second class was based on heuristic princi-
ples. We used several models that more directly mapped patterns of observations, rather than
observation counts, to choices. These suboptimal strategy classes gave rise to a bias-variance
trade-off that is inverted relative to its typical formulation: subjects using more-complex
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Bayesian strategies tended to have higher bias and lower variance, whereas subjects who used
less-complex heuristic strategies tended to have lower bias and higher variance. We show that
these results are not predicted by the ideal observer but are a logical consequence of the differ-
ent, rational ways of achieving nearly optimal task performance. The results also highlight the
usefulness of breaking evidence symmetries in task paradigms aimed at studying the diversity
of human inference strategies.

Materials and methods
Ethics statement

Human subject protocols were approved and determined to be Exempt by the University of
Pennsylvania Internal Review Board (IRB protocol 844474). Subjects provided written consent
on-line before they began the task.

Experimental design

The goal of the task was to identify which of two jars was the source of a sample of balls shown
to the observer. The jars were equally likely to be the source a priori, and subjects were
informed of this fact. On each trial, subjects were shown a sample of 2, 5, or 10 red and/or blue
balls drawn randomly with replacement and asked to determine which of the two jars dis-
played on the screen was the source of the sample (Fig 1A, S1 Fig, see Supplementary Materials
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Fig 1. Different environmental evidence weights cause decision biases. a-b. Schematic of the Jar-Discrimination Task. Balls were drawn with
replacement from one of two equally probable jars with different ratios of red to blue balls. Here h.. denotes the probability that a red ball is drawn from
the high (h,) and low (h_) jar. We consider conditions with symmetric priors and symmetric evidence (h_ = 1 — h,; a), in which the red/blue ball
observations had equal weights but opposite signs, or asymmetric evidence (h_ # 1 — h,; b), in which rare (in this example red) balls were weighted
more heavily in a decision. c-d. The corresponding probability distribution of a 10-ball sample for a given number of rare balls drawn from the high jar
(h,, top) and low jar (h_, bottom) for the symmetric (c) and asymmetric (d) evidence cases. Colored bars presented on the top axis denote an ideal
Bayesian observer’s jar choice resulting from the associated log likelihood ratio (LLR; an LLR of zero results in a random response). e-f. Example of a
10-ball sample and corresponding choices of a Bayesian observer with varying relative ball weights. e. Ideal ball weights for the symmetric environment
produce even response fractions. f. Ideal asymmetric weights produce a choice asymmetry in favor of the low jar. Deviations from the ideal weights in
either environment produce decision biases.

https://doi.org/10.1371/journal.pcbi.1010323.g001
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S1 Text “Task and Recruitment” for additional details). The ratios of colored balls in each jar
were varied to create five blocks of trials and could be described by the proportion of balls of
one color, termed the “rare-ball” color. The rare-ball color remained consistent throughout all
blocks. Blocks were defined by the following rare-ball fractions for the high jar (containing
more rare balls)/low jar (containing fewer rare balls): Control (0.9/0.1), Hard Asymmetric
(HA; 0.2/0.1), Hard Symmetric (HS; 0.55/0.45), Easy Asymmetric (EA; 0.4/0.1), Easy Symmet-
ric (ES; 0.7/0.3).

Before beginning the full task, subjects were shown a training slideshow and performed 24
trials in the control block. To continue to the full task, each subject was required to respond
correctly on at least 80% of the control trials. Subjects who did not pass this pre-test were not
allowed to complete the task and were not included in our subject counts. Full sessions
included randomized block orders for the remaining 4 test blocks interspersed with 12 control
trials between test blocks. Subjects who achieved 50% or less on at least two of the interspersed
control blocks were considered inattentive and not included in further analyses (3/ 201 sub-
jects). Each test block consisted of 42 trials, with randomly ordered but equally sampled values
of: 1) the jar used for ball draws, and 2) sample length for each trial (2, 5, or 10 balls).

Prior to data acquisition, we used synthetic data generated by simulating the responses
from the proposed models to confirm that models were identifiable given the task conditions
and could be compared to human responses given amount of data to be collected (Fig 2). We
determined the number of trials in a block by balancing: 1) model parameter identifiability,
with 2) reasonable task-time length for human subjects (i.e., about 30 min per session). The jar
ratios were selected based on generated synthetic responses of the ideal observer, such that
overall accuracy was matched between the asymmetric and symmetric blocks at each difficulty
(i.e., the hard asymmetric and hard symmetric tasks were matched in accuracy). Models were
developed and fit to pilot data to ensure model and parameter identifiability (See Model Fitting
and Comparison below and Supplementary Materials S2 Text “Model Fitting”, S3 and S5 Figs,
for more details).

We recruited 201 consenting subjects to perform the Jar-Discrimination Task on the Ama-
zon Mechanical Turk crowdsourcing platform (95 female, 105 male, 1 non-disclosed). Subjects
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Fig 2. Suboptimalities are reflected by the psychometric function. a. Illustration of how suboptimalities, such as mistuned ball weights or biased
priors, compensate for (overweighting, bias in favor of high jar) or accentuate (underweighting, bias in favor of low jar) choice asymmetry in
environments with asymmetric evidence, whereas increases in variability (inclusion of noise and/or variance) have a small impact on choice
asymmetry. b. Examples of how a psychometric function fit to data is modulated by suboptimalities. An increase in noise decreases the slope, and a bias
results in a horizontal shift of the psychometric function. We define variance as the mean absolute error between the bestfit psychometric function and
the data, representing systematic aspects of strategies unaccounted by the LLR. c. Schematized bias-variance space showing how suboptimal bias and
variance shift an observer’s location in bias-variance space. Bias was bounded between [-10, 10] to mitigate overfitting due to outliers. Positive
(negative) biases corresponded to more (fewer) low-jar selections.

https://doi.org/10.1371/journal.pcbi.1010323.9002
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Fig 3. Human subjects displayed choice asymmetries that deviated from the ideal observer. a. Accuracy for each subject (N = 198, grey circles) and
sample-matched ideal observer responses (grey diamonds) for each block: Control (CT), Hard Asymmetric (HA), Hard Symmetric (HS), Easy
Asymmetric (EA), Easy Symmetric (ES). Population bootstrapped means (1000 iterations) and 95% confidence intervals are shown in bold. Model and
subject population accuracy was significantly above chance in all cases (0.5; p < 0.05). b. Low-jar response fractions displayed as in a. Filled markers
denote a significant population shift away from the prior (0.5; p < 0.05). c-d. Example psychometric function (line) fit to a sample subject’s high-jar
responses (dots) for the HA block (c) and EA block (d) across all sample lengths. e-f. Bias and variance for individual subjects (points) obtained from
fits of the psychometric curves to data from HA blocks (e) and EA blocks (f). Bias was bounded between [-10, 10] to mitigate overfitting to outliers.
Positive (negative) biases corresponded to more (fewer) low-jar selections.

https://doi.org/10.1371/journal.pcbi.1010323.9003

were recruited only if they had a 95% or better approval rating and had performed at least 100
previous approved tasks and were compensated $4.50 for completing the task. Subject location
was restricted to the United States. The task and some of the analyses were preregistered at osf.
io prior to data acquisition (doi: 10.17605/OSF.IO/J9XET). The preregistration described the
task structure, including block length, ball samples, and type of task. Analyses presented in
Figs 3A and 3B and 4, and the MLEs from Fig 5B and 5C were performed exactly as listed in
the preregistration.

Models

To develop models of the Jar-Discrimination task, we assigned the parameter k. to refer to the
proportion of rare-colored balls in a set of jars: The A, (high) jar included more balls of the
rare color, whereas the hi_ (low) jar included fewer balls of the rare color, so that 0 < h_ < h,.
When the proportions were symmetric, i, = 1 — h_. When the proportions were asymmetric,
0<h_ <h, <05

Bayesian models. One class of models we considered depended on the probabilities of
ball samples coming from the high or low jar that would be computed by a Bayesian observer.

Ideal observer. Because the two jars were always visible, we assumed the fractions of rare
balls, h, and h_, in the low and high jars are known to the ideal observer. In the simplest case
without noise, an ideal Bayesian observer makes a decision based on a sample of n balls drawn
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Fig 4. Subjects used Bayesian and heuristic strategies in asymmetric blocks. a. Bayesian models. Differences between the Noisy Bayesian model and
alternative Bayesian models are underlined. b. Heuristic models. See Methods and ‘Formal model comparison’ section for more model details. c. Log
Bayes factors (log(BF)) for each subject-block, computed between each alternative model and the Noisy Bayesian model. log(BF)>0 favors the
alternative model, with log(BF)>1 or <-1 (dashed lines) providing strong evidence in favor of a given model [8]. Black (grey) markers indicate that the
listed alternative model is (is not) the most likely model (percentage of subjects whose most-likely model is identified by strong evidence: 36% for Noisy
Bayesian, 42% for Set p, 32% for Prior, 90% for Variable Rare, 87% for Rare Ball, 82% for Guess). d. Subjects categorized by the model that best
describes their responses for the Hard Asymmetric (HA) and Easy Asymmetric (EA) blocks. For both blocks, a majority of the subjects’ responses were
best described by Bayesian models (55% in HA, 86% in EA), but with a relatively high percentage of heuristic strategies under the HA condition.

https://doi.org/10.1371/journal.pcbi.1010323.9004

from one of the jars, &, where §; = 1 (§; = —1) denote an observation of a rare (common) ball

color. The ideal observer uses these observations to update the log likelihood ratio (belief),

P(h= h+‘§ln
(h=h_|¢1.,

frequency of h = h+ (high) or h = h_ (low). We can write the belief as:
n é |h n

z, = Zlo P&, PCIR) ;‘P(éj),

z, = log , between the probabilities that the sample came from a jar with a rare ball

where the belief increment due to observing the color of the j ball is
h./h_, & =+1,

LP(@) = log
(1=h)/A=h), ¢

—1.

The most likely choice based on # ball draws is given by the sign of z,, (z,, > 0 — choose the
high jar; z, < 0 — choose the low jar). In all blocks, the probability that either jar was the

source of the sample was 0.5, so that the ideal observer model had a flat prior, and

_ Plh=hy) __
z, = logp(h:hj) =0

In symmetric environments, i, =1 - h_, so

_ he _ +
Y(+1) = log1 —h - = —W¥(-1),
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Fig 5. Increased bias and variance in asymmetric blocks corresponded to Bayesian subject model fits with mistuned parameters and heuristic
subject model fits, respectively. a. Left: Hard Asymmetric (HA) and Easy Asymmetric (EA) block bias-variance plots from Fig 3E and 3F, color-coded
according to each subject’s best-fitting model described in Fig 4D. Triangles denote median values for the bias-variance fits for: 1) Nearly Ideal subjects
(best fit by “Noisy Bayesian Set p” model), 2) Mistuned Bayesian subjects (best fit by “Noisy Bayesian” or “Prior Bayesian” models), 3) Heuristic subjects
(best fit by “Variable Rare”, “Rare Ball”, or “Guess” models). Mistuned Bayesian and Heuristic groups that significantly (not significantly) differ from
the Nearly Ideal group are denoted by filled (open) triangles based on a Wilcoxon rank-sum test with p < 0.05. Right: Group bootstrapped means (1000
iterations) and 95% confidence intervals for low-jar responses. Statistically significant differences between groups (two-sided ¢-test with unequal
variance, p < 0.05) are noted with an asterisk. b. Estimated subject bias obtained from best-fit psychometric functions compared with the maximum-
likelihood estimate (MLE) of the rare-ball weight, p, for subjects best fit by the Noisy Bayesian model in asymmetric blocks (dots, EA-grey, HA-black).
Regression lines are shown for group-blocks with significant correlations (Spearman correlations, p < 0.05). Vertical lines indicating the rare-ball
weights used by the ideal observer for each asymmetric block and symmetric blocks (orange) are included for reference. c. Estimated subject bias from
fit psychometric functions compared with the MLE of the response bias (Prior) for subjects best fit to the Prior Bayesian model in the asymmetric block
(marker legend as in b). Negative values correspond to a bias in favor of the low jar.

https://doi.org/10.1371/journal.pcbi.1010323.9005

and thus the magnitude of the belief increment is the same for either observation (|¥(+1)| = |
W(-1)|). When the environment is asymmetric, h_ < 1 — h,, and different ball colors corre-
spond to different evidence weights (| (+ 1)| # [W(-1)]).
For n ball draws, we can compute the probability of the responses (choices) on a given trial,
r=h_and r = h, for the low and high fraction jars as
P(r=h,) =Pr=h|h=h)Plh=h,)+P(r=h|h=h)P(h="h_)
Pr=h_) =Pir=h_|h=h)Plh=h)+Plr=h_|lh=h)P(h=h_)

using binomial distributions. For example,

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1010323  July 19, 2022 7/30


https://doi.org/10.1371/journal.pcbi.1010323.g005
https://doi.org/10.1371/journal.pcbi.1010323

PLOS COMPUTATIONAL BIOLOGY Humans decision strategies with asymmetric evidence

Conditioning on trial type, we can extend this analysis to obtain the minimum number of
rare balls, B, that must be observed to produce a high jar response, given a sample of size n.
This number is dependent on s, and h_. When the jars are symmetric (h, =1 - h_), B=n/2.
In asymmetric cases, B < n/2if h, + h_ < 1. Thus,

P(r=h.|h=h.)= i:(n)hi(l - hi)nik

k>B k

and

Pr=h|h=h,)= i(:{l)hi(l —h)"

k=1

To construct a class of Mistuned Bayesian models, we then perturbed this ideal observer
model away from optimality in several ways.

Noisy Bayesian model. We extended the ideal observer model to include noisy belief
updates, with means and variances of arbitrary magnitude. To do so we let w; ~ N(0,a’) be a
normally distributed random variable with zero mean and variance a” that was fit as a free
parameter. Here we defined the belief updates by

P éj = +1,
W(E) = log
-1, &=-1
and
z, = ) [Y(¢) +wl,

=1

where p is a free parameter representing the belief update in response to observing a rare ball,
&, = 1. Because the sign of z,, is all that matters for determining a model observer’s response,
we normalized the update in response to a common ball to remove an unnecessary parameter.
Thus, fits using this model had two free parameters: a* and p.

Noisy Bayesian set p model. For this model, the belief updates are given by

logh, /h_
P=po= ;
© ~ log(l—h,)/(1—h)

and equal to those in a rescaled ideal Bayesian model. Each belief update is perturbed addi-
tively by a Gaussian random variable with variance, a>. We set p to the optimal value p;o, and
thus the variance, a*, was the only free parameter.

Prior Bayesian model. We modified the Noisy Bayesian Set p model to include a free
parameter 2, for the prior. An observer using this model uses potentially unequal prior proba-
bilities,

(h= h+)

Z) = logw 7é 0,

o RO

where P(h) represents the observer’s assumed prior probability, which may differ from the
true prior probability that a jar with rare ball fraction / is a source of the sample. A positive
(negative) value of z, implies that the observer believes a priori that the high (low) jar is more
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likely to be the source of a sample. Thus, fits using this model had two free parameters: a* and
2.

Heuristic models. The other class of models (heuristic) did not depend on the likelihood
functions associated with drawing a ball of a certain color from either jar.

Variable rare ball model. The probability of choosing either jar in the Variable Rare Ball
model depends only on whether a certain number of rare balls (6) are observed in a sample in
the current trial (N),

P(ry = h, |rare,) = P

rare

P(ry =h_|rare,)) =1—P,.

response

P(ry = h_|no rare,) =P,

no

P(ry =h,|no rare,)) =1 — P,
Here ry is the response on the current trial N; (rare,) = (||[é},], ||, > 0) corresponds to
observing 0 or more rare balls (or the sum of positive entries of éin being at least 0), and
(no rare,) = (||[£},], ]|, < 0) to observing no rare balls in the current trial (or the sum of pos-

itive entries of &}/, being less than 6). Thus, fits using this model had three free parameters: 6,
Pryre> and Py

Rare ball. For this model we assumed that 6 = 1, reducing the number of free parameters
to two.

Guess model. In this model, the probability of each choice is fixed, and independent of
the sample. The Guess model includes one free parameter that determines the probability of
choosing the high jar:

P(ry = h+) = Pguess7 P(ry=h_)=1- Pguess’
regardless of any observations within a trial.

Alternative (Unused) models. In addition to the above models, we considered four alter-
native models, three Bayesian and one heuristic. The Bayesian models included a variation of
the Noisy Bayesian with a bias in the prior probability of the two choices (3 free parameters)
and a history-dependent model with asymmetry in favor of low jar responses (3 free parame-
ters), but we found neither of these to be identifiable (see Model Fitting and Comparison
below and Supplementary Materials S2 Text “Model Fitting” and S5 Fig). We also considered a
windowing Bayesian model (3 free parameters), in which a specified amount of evidence was
used consistently across trials (with the observer drawing from previous trials if the evidence
on the current trial was insufficient), and a history-dependent rare ball model (4 free parame-
ters), in which the probability of a choice depends on observing a rare ball in the sample, and
the choice ry_; on the previous trial. In both cases, fewer than 5 subjects per block were best fit
by these models (Window: CT-1, HA-1, HS-3, EA-2, ES-3; Hist.-Dep: HA-1, HS-1) and were
not included in further analyses. Subjects originally best fit by these models were refit with
accepted models listed above, with history-dependent subjects fit by guess models and win-
dowing subjects fit by a variety of Bayesian and heuristic strategies (7 Bayesian, 3 heuristic fits).

Psychometric functions
We fit a a three-parameter logistic function to subject response data for each block:
o 1— 2« .

1+ exp(=f(LLR, — ¢))

Py =
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Here LLR, is the true LLR of each observed set of balls as computed using the ideal observer
model. We fit the following parameters: 1) ¢, the lapse rate; 2) ¢, the LLR value at which each
choice (high or low jar) is equally likely; and 3) S, the slope around the point ¢. Bias was
defined as a non-zero value of ¢, so that positive (negative) values correspond to biases towards
(away) from the low jar. Noise was defined as 1/|f], so that shallower functions correspond to
higher noise.

Variance was defined as the weighted average of the absolute value of the residuals (mean
absolute error),

1 X
=" nlPlr=h), - i
i=1

where x is the number of LLR values for a block, #; is the number of trials at a given LLR value,
Pu,i is the logistic fit for a given block-LLR, and P(r = h,),,; is the probability of a high jar
response from the observer for a given block-LLR. Larger values of v reflected more variance.

Our interpretation is based on the idea that noise is driven by either errors in the internal
representation of the LLR or post-decision choice variability, whereas variance reflects strate-
gies that are independent of the LLR. Based on the two model classes studied here (Bayesian
and Heuristic), we find that models that rely on the LLR (Bayesian models) and the subjects
best fit by them are fit with some noise but substantially less variance compared to models and
subjects that use a pattern-based approach that does not depend on the LLR (Heuristic mod-
els). While there is correlation between the two metrics, heuristic subjects show substantially
larger values for noise, which reflect the the poor logistic fits to these responses, and the con-
clusions of our analyses are comparable using either metric (see Supplementary Materials S5
Text “Noise Versus Variance”, S10 and S11 Figs, for more details).

Model fitting and comparison

Parameter fitting. We fit model parameters to data using Bayesian maximum-likelihood
estimation. We obtained the posteriors over the parameters by considering the vectors of
responses, 1.4, and observation samples, &).4,, across all 42 trials in a block (&}.¢ for the con-
trol block that had 60 trials total- 24 pre-test, 12 interspersed between each testing block). For
instance, to infer the noise variance, a*, and rare-ball weight, p, in the Noisy Bayesian Model,
we applied Bayes’ rule and then computed the probability of a response ry in a given trial con-
ditioned on observations &y as

_ plryla,p,&y)p(a, p)
p(a’p|rN’§N) - p(rN‘gN) .

Because the denominator provides only a normalization of the probability densities of a and p,
the primary contributions are the probability of a response ry given the parameters and obser-
vations, and the prior over the parameters, p(a, p). We explain the choice of priors below. All
models were defined in terms of either simple binary random variables or thresholded Gaus-
sians, so we could evaluate the associated likelihood functions analytically. For instance, in

the case of the Noisy Bayesian model, for a trial with 5 balls, and a sample containing 4 com-
mon and 1 rare ball ({5 = (-1, -1, + 1, -1, —1)), the probability of choosing the high jar, ry =
h.,is

B 1 o (z+4—p) 1 4—0p
P(r,\,tha,p,éN)\/W/0 exp[ 577 dzf2 1—erf o) |
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For models in which responses are independent across trials, we used the trial-wise response
probabilities to compute the posteriors given responses and samples in a block of trials,

42

__plap)
pla, plrip: &) = mg}’(’}kﬁ P gj)

The maximum of this posterior is the maximum likelihood estimate of the model parameters.
The interval of parameters containing at least 95% of the maximum likelihood estimate were
included as credible intervals for the model fits.

Determining model identifiability. To design the human task and determine whether
the models would be identifiable from the given data, we performed model comparisons on
synthetic data. We first used the Noisy Bayesian model to determine the minimum number of
trials (42) needed to fit synthetic data and produce a task with a reasonable task duration for
online data acquisition (30 minutes or less). However, for this model, parameters produced
with a flat prior were not always identifiable, given the amount of data that we could reason-
ably expect to collect in a block. This problem resulted from dependencies between the noise
variance, a2, and rare-ball weight, p, parameters for high values of noise.

To account for this effect, we used pilot data from 20 subjects to create an informative prior
based on the subjects’ posteriors. The informative priors were computed as a smoothed version
of averaged posteriors produced by the pilot subject’s fits by the Noisy Bayesian model. The
averaged posterior was smoothed with respect to each parameter. To weaken the posterior
with respect to p, the averaged marginal posterior was filtered using a normal distribution
N (1, 6*) where the mean y was set at the maximum value of the averaged marginal posterior
and the variance o” was set such that the median mean squared error (MSE) of the parameter
fits p for 100 synthetic Noisy Bayesian datasets was below one. The averaged marginal poste-
rior with respect to the noise parameter a was smoothed using the function (x + ¢)/(1 + cL)
where x is the marginal posterior and c and L are scaling constants selected such that the aver-
aged posterior was smooth (no jagged edges) but did not impact the accuracy of the rare ball
parameter fitting (values provided in S4 Fig). Given that a low-noise parameter a was identi-
fied for most pilot subjects and that higher values of a could correspond with underweighting
the value of p, we prioritized accurately identifying p (see Supplementary Materials S2 Text
“Model Fitting” and S3 Fig for more details).

To confirm that the new informative priors produced realistic fits for all of our Bayesian
models, we applied the informative priors to model fits for data of 100 synthetically generated
datasets with randomly selected model parameters for each Bayesian model per block and
found that the credible intervals contained the true parameters for the parameter values pre-
dicted by the informative prior. The fits to the synthetic datasets also matched the averaged
posteriors from the pilot data, with a strong preference for low-noise parameter values and val-
ues at or below the true rare-ball weight. Thus, using informative priors did limit identifiability
at high noise variance and rare-ball weight values, but we ensured that our models could be
correctly identified near or below the values predicted by the ideal observer, as was suggested
by the pilot data. The true parameters from synthetic datasets from the heuristic models with a
flat prior were also recoverable with low MSE.

We then generated model responses from 100 randomly sampled versions of each candi-
date model (sampling from the informative priors for Bayesian-based models and flat priors
for heuristics) to confirm that each model could be appropriately selected when compared to
other models. We performed model comparison and selection using log Bayes factors (log
(BF)), comparing the likelihood that a particular dataset came from one of two models by
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computing the log likelihood ratio of the marginal likelihoods for any given pair of models,

P(DMy) . P(MD)P(M,)
log(BF) = log 5 53,y = '8 B(aa, [D)P(a,)

Here D is the data from a block of trials (7.4, and &;.45), and M; and M, are two models from
the list we described above. For example, to compare the Noisy Bayesian model to the Prior
Bayesian model for a given block, we integrate the probability of responses conditioned on
observations and parameters against the priors over the model parameters:

f:o ﬁ)x p(ripla, 2y, $1u)p(a, Zo)dadzU
fux foocp(rl:42|“» p,8,.5)p(a, p)dadp

For all comparisons, we used the Noisy Bayesian model as the baseline model (in the denomi-
nator of the Bayes factor); i.e., model 1 (M;). We found that two candidate models were not
identifiable as listed above (one assumed an asymmetric repetition bias, the other included a
biased prior and free parameter for rare-ball weight; Bayes factors correctly selected the true
model < 80% of the time) and thus were excluded from our analyses (see Supplementary
Materials S2 Text “Model Fitting”, S5 Fig, for additional details and analyses).

Subject model selection. To determine the model that best described a human subject’s
responses on a particular block, we computed the log Bayes factors between each alternative
model and the Noisy Bayesian model. Positive values of the log Bayes factor provided evidence
in favor of a particular alternative model over the Noisy Bayesian model, with evidence grow-
ing with the magnitude of the factor (we chose |log BF| > 1 to indicate strong evidence in
favor of a model [8]). The most-likely model was selected based on the maximal log Bayes fac-
tor value across all alternative models. If no values were >0, the Noisy Bayesian model was
selected.

Subject cross-validation. For each block and subject, we used 10-fold 90/10 cross-valida-
tion to test the predictive power of the model identified using Bayes factors that best describes
the subject’s responses. To do so, we fit the model to data from 90% of the trials from the block
and used the result to predict the subjects’ responses on the final 10% of trials in the block. We
repeated this process 10 times and computed the accuracy of the model by comparing its pre-
dictions to the subject’s responses and averaging across all 10 iterations. (See Supplementary
Materials S3 Text and S8 Fig for details.)

log BF = log

Rate-distortion theory

We applied rate-distortion theory to compare the subjects’ accuracy (fraction correct) to the
maximal accuracy bound obtainable by an ideal observer constrained to a fixed amount of
mutual information (MI) between an observer’s response, * and the observation on a trial. We
describe this observation as a random variable (||, n), where 7 is the size of a sample, and |&] is
the number of rare balls in the sample, as:

L(elmn =Y Y ZP%%W%%’

ne{2,5,10}¢€{0,...,n}r=hy B

where i is a subject or model, B is the block. We computed the probabilities P, empirically.

To obtain subject estimates we used all response and observation data for the 42 trials
within a block, so any particular observation sample not seen was not included in the sum.
Each subject’s trials within a block were bootstrapped by uniformly resampling the data 1000
times to obtain a distribution of MI and accuracy estimates for the block.
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The MI with the inclusion of the previous trial was defined as:

, Py([¢l,n,r_y,7)
L([Elnyr 1) = Py([¢],n,r_y,)lo ;
’ ' n,\ilzlr ' g2P1(|é|7”’771) %(7’)
where the sums are taken over ball counts n € {2, 5, 10}, number of rare balls £ € {0, 1, . . ., n},

and previous r_; € h. and current r € h, trial response.

To define the accuracy bound for an optimal observer, we computed MI in the limit of
many samples, allowing for a calculation directly using probability mass functions. As such,
we considered all possible samples &, disregarding ball order, (11 + 1 possible counts for trials
with n =2, 5, 10 ball draws) in E and responses 7/, in R:

L(E.7) = SOP(E) Y n(ri & log, ;'ﬁﬁ),

586_ r €R

where 7t(ri|£}) is the policy used to generate responses from observations across the block.
Note, that this is simply given by the standard ideal observer model defined above when fixing
the MI to unity. However, for values of MI less than one, we employed an optimization proce-
dure, which we describe below, in order to obtain the optimal policy that uses a fixed MI
budget.

Computing the optimal bound. The rate-distortion bound can be computed according
to a constrained-optimization problem in which we identify the maximum possible accuracy
for a given level of MI in the limit of many trials. In the ideal observer case, the policy applied
to compute MI and accuracy is:

1, ¢ >B,
n(r="h|&) =< 0.5, & =B,
0, ¢ <B.

(and (r=h_|&) =1 - n(r = h,|&)) where & € {0, 1, 2, .. ., n} is the count of rare balls observed
and B is the number of rare balls required to trigger a high jar response. Note this provides a
specific accuracy bound for a fixed value of MI, corresponding to the ideal observer. Addition-
ally, we must compute the predictive accuracy using the value function applied to a particular

policy 7
v, = Zp Y w(rle)Q(E ),
re{h, h_}
which sums over all possible combinations of unordered sample counts (§°=0, 1, 2, .. ., n rare

balls for n = 2, 5, 10 balls in a trial) for which we can always compute the trial specific value
function from the ideal observer Q(&°, ) = 1/(1 + e ™), where z,, is the ideal observer’s log
likelihood ratio.

Thus, to bound accuracy for a given MI (I, = C), we maximized the value function accord-
ing to the best policy that uses the prescribed MI:

V*=maxV_ st. I =C,
which generates the optimal predicted bounds. This maximization problem was solved using

MATLAB’s constrained optimization package (fmincon) with a constraint given by I, = C
and V, as the objective function.
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Algorithmic complexity

As in [9], algorithmic complexity is described by the number of operations required for each
strategy, broken into 4 types: 1) arithmetic (A), 2) written into memory (W), 3) stored in mem-
ory (S), 4) read from memory (R). Thus complexity is defined as

C=Cp + (N*) + (NV) + (N®%) + (NF)

reflex
where C, . is the reflexive cost, constant across models. (N') are the lim,._ %Z,T:] N; for
each operator type. For each model, the number of operations are summed to compute the
algorithmic complexity. Details on the operations counted for each strategy used here are
found in S16 Fig and described in Supplementary Materials S7 Text “Complexity Analyses”.
For the Bayesian models, operations scaled with the number of balls in the sample, while heu-
ristic models defined one value for algorithmic complexity across all sample lengths.

Statistics

Population statistics were computed by uniformly bootstrapping 1000 times from each data
set, using the same number of samples as the original sample, to identify the mean and confi-
dence intervals.

Correlations were computed using Spearman’s correlation. Differences between medians
were computed using a two-sided Wilcoxon rank-sum test. We defined significance as
p < 0.05.

Results

We used a form of a classic inference task that required each subject to infer which of two a
priori equally likely jars filled with red and blue balls was the source of a sample of balls drawn
with replacement (Fig 1A). On each trial, the sample of 2, 5, or 10 balls was shown all at once,
with the contents of both jars visible at all times, and it was known that each jar was equally
likely to be the source on each trial. Across different blocks, the proportions of red and blue
balls in each jar were varied, thereby altering the ideal evidence weight of each observation.
Under “symmetric” conditions, the ratios of the two ball colors in the two jars were reciprocal,
such that the rare color in one jar was the common color in the other. In contrast, under
“asymmetric” conditions, the ratios were non-reciprocal, such that both had the same rare
(and common) color, but in different proportions. The jar with more rare balls was termed the
“high” jar, and the jar with fewer rare balls was termed the “low” jar. We asked how optimal,
suboptimal, and human observers compare in their use of symmetric and asymmetric infor-
mation to infer the jar source (see Supplementary Materials S1 Text “Task and Recruitment”
and S1 Fig for more details on the task structure).

Optimal inference

We first derived the strategy of an ideal Bayesian observer that optimizes accuracy given the
known task structure. Because the two jars are always visible, the ideal observer knew the frac-
tion of rare balls in each jar h,, where h, described the rare ball fraction in the high jar and h_
corresponded to the low jar so that 0 < h_ < h,. When the proportions were symmetric, h, =
1 — h_, so rare/common balls were weighted equally. When the proportions were asymmetric,
0 < h_ < h, < 0.5, so rare balls were weighted more heavily than common balls (Fig 1A and
1B).

The ideal observer saw a sample of ball draws all at once, &;.,,, where &, = 1(§; = —1) ifa rare
(common) ball was drawn, and computed the belief as the log-likelihood ratio (LLR),
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P(hy[C1:n)
P(h_|&1:0)

When jar proportions were symmetric, the ideal observer considered only the fraction of

z, = log

, between the probabilities that the sample of draws came from either jar.

rare (or, equivalently, common) balls sampled to determine the more likely jar. When jar pro-
portions were asymmetric, rare balls provided more evidence than common ones. The more
likely jar given n observations was determined by the sign of z,,: z,, > 0 +— choose the high jar;
z, < 0 — choose the low jar.

The impact of evidence asymmetry on ideal-observer choices could be illustrated by com-
paring the probability distributions of rare balls in a 10-ball sample. For symmetric jars, the
distributions of rare-ball counts was symmetric about the midline, at 5 observed rare balls
(Fig 1C). Thus, the ideal observer’s beliefs and choices were also symmetric in this environ-
ment, and they were both consistent with the prior (Fig 1E). In contrast, asymmetric jars pro-
duced rare-ball distributions that were skewed based on the h values. For the asymmetric
example shown, counts of zero or one rare ball(s), which corresponded with the ideal observer
choosing the low jar, occurred more often than counts of two or more rare balls, which corre-
sponded with the ideal observer choosing the high jar (Fig 1D). Thus, in the asymmetric case,
the appropriate weighting of evidence by the ideal observer led to a choice asymmetry in favor
of low-jar choices, even when using the correct prior (Fig 1F).

Suboptimal inference

To identify suboptimalities in the performance of both simulated and human subjects for this
task (Fig 2A), we analyzed choice data in terms of psychometric functions that related the frac-
tion of high-jar choices to the observed LLR (Fig 2B). For an ideal observer, this relationship
was a step function, with the step at LLR = 0, regardless of the asymmetry of choice fractions.
For real and simulated data, we fit choice probabilities to a logistic function. We defined bias
as the horizontal shift of the bestfit logistic function, so that positive (negative) shifts corre-
spond to biases that accentuate (compensate for) choice asymmetry. We decomposed choice
variability into two components: 1) noise, which we assumed was purely stochastic and there-
fore did not depend on specific patterns of observations, defined as the inverse of the slope of
the logistic function, so that shallower functions corresponded to higher noise; and 2) variance,
which we assumed was sensitive to specific observations that were not accounted for by the
LLR-dependent psychometric function (i.e., different combinations of balls that correspond to
the same LLR might lead to systematically different choice patterns), defined as the mean abso-
lute error between the data and the best-fit logistic function. Below, we focus on variance (Fig
2C) but include comparable analyses of noise in Supplementary Materials S5 Text “Noise Ver-
sus Variance”, which showed that noise and variance were correlated with each other (510 Fig)
and our conclusions were consistent with both metrics (S11 Fig).

Human behavior

We used the crowdsourcing platform Amazon Mechanical Turk (MTurk) to recruit 201 sub-
jects to perform the Jar-Discrimination task (Fig 1A). Each subject first performed 24 relatively
easy control (CT, h, = 0.9/h_ = 0.1) trials with symmetric jars, and then performed 42 trials
under each of four testing conditions that varied in difficulty and evidence asymmetry: Hard
Asymmetric (HA, h, = 0.2/h_=0.1), Hard Symmetric (HS, h, = 0.55/h_ = 0.45), Easy Asym-
metric (EA, h, = 0.4/h_=0.1), and Easy Symmetric (ES, h, = 0.7/h_ = 0.3). Subjects were told
that each jar was equally likely to be the source on each trial, and the contents of both jars visi-
ble at all times. Details about the task structure, including task pre-registration, and subject
participation can be found in the Methods and Supplementary Materials S1 Text“Task and
Recruitment.” (S1 and S2 Figs) For simplicity, we have included results from symmetric and
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asymmetric blocks in Fig 3A and 3B but focus on asymmetric blocks in the remainder of the
manuscript. Results from symmetric blocks can be found in Supplementary Materials S6 Text
“Symmetric Results”, for comparison purposes (S12 Fig).

Overall, the subjects’ accuracy tended to be above chance (bootstrapped means and 95%
confidence intervals were significantly above 0.5 for population data from each of the five
blocks) and in many cases was qualitatively similar to that of the ideal observer under matched
conditions (Fig 3A). Moreover, for asymmetric conditions both the ideal observer and the sub-
jects had choice asymmetries in favor of the low jar that deviated from the prior (Fig 3B, boot-
strapped means and 95% confidence intervals of low-jar responses significantly above 0.5).

However, the subjects also exhibited numerous suboptimalities in the asymmetric blocks.
These suboptimalities included errors attributable to bias and variance (Fig 3C and 3D) that
varied in magnitude across individual subjects but, in general, were larger than expected, given
the responses of the ideal observer (Fig 3E and 3F). Although bias varied in magnitude and
sign, most cases corresponded to an accentuation of choice asymmetry favoring the low jar.
Likewise, variance ranged from zero, corresponding to choices that exactly matched the best-
fitting logistic psychometric function, to near one, corresponding to choice patterns that devi-
ated substantially from the best-fitting psychometric function. These effects were amplified by
short sample lengths and task difficulty (see Supplementary Materials S4 Text “Choice-Asym-
metry Analyses” and S9 Fig for details).

Formal model comparison

To relate these human behavioral patterns to particular inference strategies, we fit Bayesian-
based and heuristic models separately to each individual subject’s responses per block. We
used Bayes factors to select the model that best matched each subject’s responses on a given
block and further confirmed the fits by cross-validating the subject responses with the best-fit
model (S8 Fig). We then determined the bias-variance trends for each subject’s best-fitting
model based on the subjects’ psychometric fits (details on model selection and fitting can be
found in the Methods and Supplementary Materials S2 Text “Model Fitting” and S3 Text “Sub-
ject Model Fitting”, S6 and S7 Figs).

Three models we used were Bayesian-based (Fig 4A). The first model assumed that the
observer makes decisions based on a noisy version of the log-likelihood, in which noise was a
normally distributed random variable with zero mean and a free parameter for variance, and p
was a free parameter representing the belief update in response to observing a rare ball (“Noisy
Bayesian”). When p > 1, the model weighted a rare-ball observation more strongly than an
observation of a common ball. For the second model, we set p to the ideal observer’s rare-ball
weight. Without noise, this version is equivalent to the ideal-observer model (“Noisy Bayesian
Set p”). In the third model, we added a parameterized prior to the “Noisy Bayesian set p”
model (“Prior Bayesian”). Together these models allowed us to identify subjects whose choices
were consistent with principles of Bayesian inference but possibly corrupted by suboptimalities
associated with belief noise, rare-ball mis-weighting, and/or an inappropriate prior.

Three other models we considered were heuristic strategies that, unlike Bayesian-based
observers, assumed that decisions were not based on likelihoods but rather specific patterns of
observed balls (Fig 4B). The first model assumed that the probability of choosing the high jar,
P.are> is determined by whether the number of observed rare balls exceeded a threshold. This
threshold was a model parameter whose value we inferred from subject responses (“Variable
Rare Ball”). Because the threshold was fixed regardless of the total ball count (2, 5, or 10), the
model could produce different response probabilities for different ball patterns with the same
LLR. The second model was a reduction of the Variable Rare Ball model based on the
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assumption that the observer chooses the high jar with some probability whenever one or
more rare balls are observed (“Rare Ball”). This assumption is equivalent to fixing the thresh-
old parameter in the Variable Rare Ball model to 1. The third model described a simple guess-
ing strategy (“Guess”), in which the observer selected the high jar with a probability that was
fixed across trials (and thus did not depend on the specific observations on a given trial) but
could produce an overall bias when its value differed from 0.5.

We determined whether each subject’s responses were better described by either a Bayesian
or heuristic strategy by computing Bayes factors between the Noisy Bayesian and alternative
models (Fig 4C). Most subjects exhibited choice behaviors that were most consistent with one
of the Bayesian models (Fig 4D, > 50% of subjects per block), although the hard asymmetric
block showed the highest percentage of subjects identified as using heuristic strategies. Of sub-
jects best described by a heuristic model, a majority (82-90% in each block) had Bayes factors
that provided strong evidence in favor of the heuristic model (i.e., log(BF) > 1 [8]; Fig 4C).

Model-dependent bias-variance trends

There was a systematic relationship between the model that best described a subject’s
responses and the magnitude of their bias and variance as determined by their best-fit psycho-
metric function (Fig 5A). Specifically, responses of subjects best described by a nearly ideal
Bayesian model (i.e., the Noisy Bayesian Set p model, referred to as the “Nearly Ideal” group)
were characterized by almost no bias and small variances. The choice asymmetries of these
subjects were similar to those of the ideal observer. The remaining subjects exhibited subop-
timalities that differed depending on whether the subject’s choices were best described by a
heuristic or a Bayesian-like model. Suboptimal Bayesian-like models that described subject’s
choices were “mistuned” versions of the ideal observer, which performed the same computa-
tion as the ideal observer but with parameter values (e.g., rare ball weight p) that did not match
the optimal parameter value. The median of the bias parameter from the group of subjects best
described by heuristic models (referred to as the “Heuristic” group) was close to zero, but but
the median of the variance parameter for this group was relatively high for both of the asym-
metric conditions. In contrast, the median variance for the group of subjects best described by
suboptimal Bayesian-like models (i.e., the Noisy Bayesian or Prior Bayesian model, referred to
as the “Mistuned Bayesian” group) was low, but the group showed high median bias in favor
of the low jar, which resulted in a significantly larger low-jar response fraction than either the
Nearly Ideal or Heuristic groups (Fig 5A, right plots; two-sided ¢-test with unequal variance,

p <0.05).

Thus, the Mistuned Bayesian group differed in their bias and the Heuristic group differed
in variance from the Nearly Ideal group (Wilcoxon rank-sum, p < 0.05). Moreover, the rela-
tively high biases exhibited by the Mistuned Bayesian group reflected a mistuning of LLR-rele-
vant parameters. For subjects best fit by the Noisy Bayesian model, this mistuning involved the
weight of evidence from rare-ball observations, p, which was underweighted compared to the
ideal observer, particularly in the hard asymmetric block (Fig 5B). For subjects best fit by the
Prior Bayesian model, this mistuning involved the prior, which was biased and most often
favored the low jar (Fig 5C; Spearman correlations, p < 0.05). In contrast, the relatively high
variance exhibited by the Heuristic group was attributed to choice independence from the
LLR, with strategies that did not accumulate weighted evidence like the Bayesian models.

Complexity-dependent bias-variance trends

To understand how bias and variance were related to the complexity of the strategies the sub-
jects employed on a task, we used two complementary approaches to quantify strategic
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complexity. The first approach was purely data-driven, allowing us to avoid making assump-
tions about the specific, algorithmic form of each strategy. This approach was based on the
idea that efficient inference strategies solve an “information bottleneck” problem [10], which is
closely related to lossy data compression and rate-distortion theory [11]; i.e., maximizing pre-
dictive accuracy for a fixed information budget. Specifically, for this approach we computed
two quantities using data separately from each subject and block: 1) strategic complexity, mea-
sured as the mutual information (MI) between the subject’s observations (the samples of balls
observed on each trial) and their choices in the given block (Fig 6A), where larger values
implied that the known ball sample reduced uncertainty in a subject’s choice; and 2) strategic
effectiveness, measured as the proximity of the subject’s accuracy to the maximum achievable
accuracy given their strategic complexity (termed the “optimal accuracy bound”; for details see
the “Complexity Analyses” S7 Text of the Supplemental Materials), where smaller values
implied that the strategy was being used more effectively to generate correct choices for a
given level of complexity. Note, high complexity does not necessarily imply high accuracy
since complex strategies could use irrelevant information and/or be ineffective, increasing the
distance to the maximal achievable accuracy.

In general, subjects who used more-complex strategies (i.e., those who used more informa-
tion from the current trial to make choices) were more accurate, with subjects that used the
most-complex strategies most closely approaching the optimal accuracy bound (i.e., they used
information more effectively) (Fig 6B). Moreover, both accuracy (absolute accuracy and prox-
imity to the accuracy bound) and complexity depended systematically on strategy type, with
the responses of Heuristic subjects characterized by the lowest MI and accuracy, responses of
Mistuned Bayesian subjects showing increased MI and accuracy, and responses of Nearly Ideal
subjects being the most complex and accurate (Fig 6B). Given the increases in complexity
from Heuristic to Mistuned Bayesian to Nearly Ideal subjects (Wilcoxon rank-sum test,

p < 0.05), it followed that subjects that used suboptimal strategies in the asymmetric condi-
tions exhibited a bias-variance trade-off that was inverted relative to its typical formulation:
the less-complex Heuristic subject group tended to make errors characterized by higher vari-
ance but lower bias, whereas the more complex but suboptimal Mistuned Bayesian subject
group tended to make errors characterized by lower variance but higher bias as compared to
the most-complex Nearly Ideal subject group (Fig 6C and 6D, Wilcoxon rank-sum p < 0.05).
This complexity-based ordering of strategies, from simpler heuristics to more complex Bayes-
ian-based strategies, was robust to an alternative MI metric that included the subject’s choice
from the previous trial as a source of irrelevant information. These trends relating model com-
plexity, bias, and variance were also apparent in simulated model data using distributions of
parameter values that mimicked the subject fits from each group. Moreover, within model
groups, complexity, bias, and variance were correlated, with bias and variance increasing as
MI decreased, reinforcing that observed inversion of the bias-variance trade-off corresponded
with differences in overall strategy type (further details about these alternative measures can be
found in Supplementary Materials S7 Text “Complexity Analyses”, S13, S14 and S15 Figs).

The second approach we used to quantify strategic complexity was based on the algorithmic
complexity of the bestfitting model for a given subject in the given block. This metric is useful
for quantifying the capacity of an algorithm to perform multiple operations that could, in prin-
ciple, affect performance flexibility [9, 12-14]. Moreover, it can provide insights into strategic
complexity beyond simpler quantities like the number of free parameters (which was similar
for many of our models; see Fig 4) that accounts for part of a given model’s ability to process
information in a flexible (complex) manner [15]. Specifically, algorithmic complexity assigns
computational costs to each component of the strategy by counting the total number of opera-
tions (arithmetic, writing to memory, reading from memory, and storage) needed to perform
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Fig 6. More complex but suboptimal human strategies exhibited more bias. a. Mutual information (MI) between the number of rare balls in a
sample (|¢]), the sample length (1), and the response (r) for each subject and block. b. Accuracy versus MI (computed as bootstrapped means from
1000 iterations per subject) for the Hard Asymmetric (HA) and Easy Asymmetric (EA) blocks. Dots represent data from individual subjects, color
coded by subject’s best-fitting model described in Fig 4D. Black line represents the accuracy bound (the maximum accuracy attainable by the idea
observer for a fixed MI in the limit of many trials). The dashed horizontal lines indicate the accuracy bound for maximum MI values. Note that
points could exceed the asymptotic accuracy bound because the number of trials for each subject was finite. Median values for the Nearly Ideal,
Mistuned Bayesian and Heuristic subject groups are indicated with triangles. In each case, filled Mistuned Bayesian and Heuristic triangles denote
statistically significant differences in MI from the nearly ideal group (p < 0.05) based on a Wilcoxon rank-sum test. Median values for all 3 groups
showed increase in both accuracy and MI ranking from lowest (Heuristic), middle (Mistuned Bayesian), highest (Nearly Ideal). c- d. Relationship
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between estimated bias (c) and variance (d) from the fit psychometric function for each subject and MI, triangles represented as in b based on
statistically significant differences in bias or variance. e. Algorithmic complexity for each model. Bayesian models shown as the mean algorithmic
complexity across sample lengths.

https://doi.org/10.1371/journal.pcbi.1010323.9006

the task. Based on our assignments, this metric showed a sample-length dependent scaling in
Bayesian complexity, but still confirmed that measures of complexity for the Bayesian models
were much larger than those of heuristics (Fig 6E). These model-based results support the idea
that the observed patterns of bias and variance are inherent to the relationship between the strat-
egies described by these models and not simply idiosyncrasies of the subjects” behavioral pat-
terns, with errors in more-complex Bayesian-like strategies leading to increased biases, but less-
complex strategies based on the pattern of observations leading to increased variance (details of
this analysis can be found in Supplementary Materials S7 Text “Complexity Analyses”, S16 Fig).

Discussion

How do people’s error trends depend on the inference strategies they use? We examined the
properties of errors made by human subjects performing a two-alternative forced-choice task
with asymmetric evidence [7, 16, 17]. The evidence took the form of two colors of balls drawn
from jars, such that one (“rare”) color was drawn less often than the other. Similar to ideal
observers, most subjects exhibited a choice asymmetry favoring the option that produced
fewer rare balls. In addition, subjects fell into two categories depending on the type of strategy
that best described their responses. Subjects described by heuristic strategies, which were
based on less information and fewer algorithmic operations, displayed substantially more
choice variability but comparable choice asymmetry to the ideal observer. In contrast, subjects
described by more-complex, mistuned Bayesian strategies displayed minimal increases in
choice variability but much more bias than the ideal observer. These effects reflected the nature
of the suboptimalities introduced by each strategy type: the heuristic strategies we considered
did not take into account specific task features responsible for choice asymmetries and thus
tended to add variability, whereas the Bayesian-like strategies that we considered did attempt
to model those features explicitly but, when implemented suboptimally (mistuned) by the sub-
jects, tended to exacerbate asymmetries inherent in such decision rules.

Inversion of the bias-variance trade-off

These findings provide new insights into the generalizability of bias-variance trade-offs that
are well established in machine learning and related fields [2, 3] and can be used to account for
individual differences in human behavior under certain conditions [1, 4]. Bias-variance trade-
offs can be conceptualized in terms of fitting various functions that differ in complexity (e.g.,
polynomial order) to noisy data whose generative source is unknown. Typically, simpler (e.g.,
linear) models tend to have higher bias, because they miss higher-order (e.g., nonlinear) fea-
tures of the generative source, but lower variance, because their best-fitting parameters are rel-
atively stable across different data instances. In contrast, more complex (e.g., high-order
polynomial) models tend to have lower bias, because they can capture complex features of the
data, but higher variance, because the specific features they capture can differ across different
data instances.

Critically, this traditional conceptualization is based on the assumption that each model,
regardless of its complexity, is “optimal,” using the best-fitting parameters given the data and
thus does not introduce additional suboptimalities and errors. In contrast, we considered cases
in which the proposed models (inference strategies) could differ in both complexity and (sub)
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optimality. Specifically, we considered two broad classes of strategies that could result in sub-
optimalities either from the model used or a mistuning of the parameters. In the context of
asymmetric evidence, these suboptimalities introduced errors that could invert the bias-vari-
ance trade-off. However, this inversion only manifested when considering the relationship of
complexity across model classes in asymmetric contexts. In contrast, decreases in complexity
within a model class in asymmetric contexts produced increases in both bias and variance,
regardless of model class. Therefore, our results suggest that the inversion of the bias-variance
trade-off arises in particular situations, such as when suboptimal strategies are used in asym-
metric environments, and may produce a potentially interesting way to analyze performance/
complexity trends in models and subject data in future studies of human inference.

Impacts of mistuned Bayesian strategies on the bias-variance trade-off

One notable component of the bias-variance inversion we observed in subjects’ responses is an
exacerbation in choice asymmetry for Mistuned Bayesian strategies. In general, mistuning of
Bayesian model parameters is not surprising, given that Bayesian models are computationally
expensive [18] and difficult to tune appropriately [6, 19]. However, the nature of this mistun-
ing for tasks involving asymmetric evidence is different than for more commonly studied tasks
involving symmetric evidence, in several ways. These differences highlight specific challenges
that an effective inference strategy must overcome and can be used to predict potential pat-
terns in people’s response errors in asymmetric conditions.

First, a major factor governing performance on inference tasks with either symmetric or
asymmetric evidence is the amount and/or quality of available observations. In general, infer-
ences based on less evidence tend to be less accurate [20, 21], and the ideal observer does not
show systematic biases to a particular alternative when the evidence and priors are symmetric
(although such biases can arise from near-Bayesian decision strategies [22, 23]). In contrast,
when evidence is limited and asymmetric, systematic choice asymmetries can be expected
even for an ideal observer. As we have shown, people have a very strong tendency to exacerbate
these asymmetries, even when given explicit instructions that the alternatives are equally likely.
Thus, systematic biases might be a general feature of inferences that must operate on limited
asymmetric evidence.

Second, effective inference requires weighting evidence appropriately. For symmetric con-
ditions, this weighting should be calibrated to optimize choices but in general can be effective
as long as the symmetry in the evidence weights is maintained, even if the evidence is mis-
scaled relative to the true LLR [24]. In contrast, for asymmetric conditions this weighting often
requires much more fine tuning that, when implemented suboptimally, can give rise to system-
atic errors. In our study, many subjects underweighted evidence from rare balls, which may
reflect a bias toward evenly weighting the evidence gleaned by each ball type. Thus, a strong
prior over even ball-weighting may pull subjects away from the ideal (asymmetric) weights.
Moreover, the description-experience gap theory distinguishes the tendency to overestimate
the importance of rare events when their frequency is described and underestimate their
importance when subjects learn their frequency through experience [25-28]. For our tasks,
event probabilities were both described and experienced across trials, which previously has
been shown to promote better decisions [29]. Nevertheless, a substantial fraction of our sub-
jects underweighted evidence from rare balls. Future iterations could compare this combined
structure with one where subjects only experience the statistics of the jars to identify how uni-
versal this preference for underweighting evidence is in humans.

Third, many subjects used strategies that appeared to be based on subjective priors with a
preference for the low jar. These findings are distinct from previous work that examined
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choice biases in tasks with symmetric evidence but asymmetries in expected choice frequencies
[30-33] or reward outcomes [32, 34-37]. Under those conditions, biases based on asymmetric
priors are common and, on average, tend to follow established, normative principles often for-
mulated in the context of Signal Detection Theory [30] and/or sequential analysis [38]. In our
study, subjects tended to either use inappropriate priors (e.g., subjects whose choices were best
matched by the Prior Bayesian model with a prior biased towards the low jar) or neglect the
symmetric prior altogether (e.g., subjects whose choices were best matched by heuristic mod-
els). These strategies could, in principle, reflect a relatively common form of recency bias that
can cause an initial belief shift in the direction of the previous response [31, 32, 34, 35, 39, 40],
and, more generally, is consistent with many previous findings of mistuned priors [41-45].
Alternatively, while our Prior Bayesian model described changes in choice asymmetry that
were attributed to biased priors without impacts to the ideal evidence weights, it is plausible
that the ideal observer model and its mistuned Bayesian variants could be implemented by a
competitive neural network model with plastic synapses that could represent the evidence
asymmetry of rare balls and asymmetric priors indicative of base rate neglect [46, 47].

LLR-independent impacts on the bias-variance trade-off

Another important component of the inverted bias-variance trade-off was the relatively high
variance for subjects who used heuristic versus Bayesian-like strategies. In the classic bias-vari-
ance trade-off, it is critical to distinguish variance (variability driven by sensitivity to noisy
observations), which is anti-correlated with bias, from noise (variability driven by intrinsic fac-
tors), which is not generally predicted to relate to bias. Likewise, we attempted to distinguish
the two sources of choice variability in terms of: 1) the mean absolute error of a subject’s
choices, which we interpreted primarily as variance because it represents observation-specific
(and LLR-independent) choice variability; and 2) the slope of the fit psychometric function,
which we interpreted primarily as noise because it represents a general, LLR-dependent degra-
dation of choice accuracy. Although both measures reflect both sources of variability to some
extent, as evidenced by the correlations between the two, either metric was consistent with our
interpretation, with heuristic models showing higher values of noise and variance.

Specifically, the Bayesian models added noise to an LLR-based decision variable, which
affected the steepness of the (biased) psychometric function but less so observation-specific
variability. In contrast, the heuristic models made probabilistic choices in an observation-
dependent manner, which affected both the steepness of the psychometric function and the
observation-specific variability. These results imply that, like for the classic bias-variance
trade-off, the inverted form that we found is not just an empirical observation. Rather, it is an
inherent information processing trade-off that depends on whether the suboptimal strategy
operates primarily on latent (as in Bayesian-like strategies; e.g., LLR) or directly observable (as
in heuristic strategies; e.g., rare ball count regardless of common ball count) properties of
asymmetric environments.

Causes of suboptimal behavior

Why do people typically behave suboptimally in cognitive tasks? Subjects have diverse individ-
ual definitions of optimality, which can be different from the task goals [19]. Likewise, subopti-
mal behavior may be a result of computational and cognitive limits of the brain, which may
hinder a subject’s ability to optimally tune or perform complex tasks [12, 18, 48]. Attention
also varies across subjects, and attention levels may correlate with the likelihood of using a
Bayesian or heuristic strategy and modulate the amount of mutual information between
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observations and their responses [49]. Moreover, the presence and amplitude of rewards
shapes task attention [50], which could be reflected in strategy usage.

In this task, suboptimality took three forms: 1) underweighting rare balls; 2) biased priors
in favor of the low jar; and 3) applying heuristics, which occurred predominantly in harder
tasks. We hypothesize that underweighting may be the result of weighting biases in favor of
symmetric weights, rather than a mistuning relative to the ideal-observers weights, given that
subject’s rare-ball parameters showed comparable values for both easy and hard asymmetric
blocks. Likewise, the mistuning of subjects’ priors in favor of the low jar may reflect a recency
bias, in which previous low-jar responses encourage subjects to repeat their choice [51, 52].
Finally, the use of heuristic strategies in more complex tasks (e.g., hard asymmetric block
where inference is more difficult) can often approximate the accuracy of a more complex
model [5]. Whereas heuristics fail to perform as well in this task, it is possible that subjects
have previously learned that such shortcuts are beneficial by reducing computational cost
without forfeiting accuracy. Given that subjects were not provided feedback on their
responses, it is reasonable for them to apply previous experience to this task. Such possibilities
account only partly for the diversity of causes which lead people to perform suboptimal infer-
ence in our task, but future work could explore how different rewards affect strategy form,
complexity, and optimality.

Conclusion

By studying human inferences based on observations of asymmetrically available evidence, we
identified a novel inversion of the classic bias-variance trade-off that arises as a result of the
strong tendency of people to mistune Bayesian strategies further along the direction of existing
choice asymmetries. This finding also demonstrates the power of de-tuning Bayesian models
as a way of distinguishing strategies in a human cohort. Our study of strategy complexity also
distinguished Bayesian-like and heuristic models based on the mutual information between
observations and responses, in addition to their distinct choice error trends. In general, prob-
ing how humans make inferences in the presence of asymmetric evidence highlights relation-
ships between bias, variance, complexity, and human error that cannot be observed in
standard decision tasks and provides unique insight into the basis of human idiosyncrasies
and bias-variance trade-offs for suboptimal inference strategies.
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S1 Fig. Example of the screen viewed by subjects on Amazon Mechanical Turk. The details
of the current set of jars were available to participants on every trial. A prompt at the bottom
of the screen indicated to the subject to select the jar from which the sample was drawn.

(TIF)

S2 Fig. Inattentive subjects. Accuracy for each subjects’ interspersed control trials to test for
attentiveness (3 interspersed blocks of 12 trials). Inattentive subjects were defined as those
whose accuracy was 50% or lower on two or more interspersed control blocks (3 subjects iden-
tified, red lines). These subjects were excluded from all further analyses.

(TIF)

S3 Fig. Trial identification. Examples of the Bayesian parametric posteriors of the Noisy
Bayesian model with a flat prior over the noise variance 0 < a < 1 and the rare-ball weight 0 <
p < 24.16 (computed from jars with rare-ball probabilities 0.01 < h, < 1). Posteriors are based
on synthetic responses from a Noisy Bayesian model whose true parameters use the ideal
observer’s p and a low level of noise (a = 0.1) and are collected for varied block lengths (12, 24,
and 60 trials, columns) of the Hard Asymmetric (HA) and Easy Asymmetric (EA) blocks
(rows). True parameters used to generate responses are shown as blue dots. By 60 trials, the
parameters are well identified in the posterior, with >40% of the posterior falling within a one
parameter-value range of the true parameter (green box, corresponding percentages shown in
green on top of each panel). Because a flat prior is used, there is a high likelihood for alterna-
tive scenarios in which there is a trade-off between higher noise and lower p values, as shown
by the arrows in the HA fits and motivated the use of an informative prior for Bayesian model
parameter recovery (see Methods and S4 Fig).

(TIF)

$4 Fig. Informed priors. The weakly informative prior used for Bayesian model fitting, com-
puted from the pilot data of 20 subjects. Posteriors were computed for each subject based on
the Noisy Bayesian model with a flat prior and then averaged to produce a population poste-
rior for each block. The averaged posterior was then smoothed to create an informative prior
used during subsequent model fitting. To smooth the posterior with respect to p, the averaged
marginal posterior was filtered using a normal distribution A/ (i, 62), where the mean y was
set at the maximum value of the averaged marginal posterior and the variance o” was set such
that the median mean squared error (MSE) of the parameter fits p for 100 synthetic Noisy
Bayesian datasets was below one. The averaged marginal posterior with respect to the noise
parameter a was smoothed using the function (x + ¢)/(1 + cL), where x is the marginal poste-
rior and c and L are scaling constants selected such that the averaged posterior was smooth (no
jagged edges) but did not impact the accuracy of the rare-ball parameter fitting (symmetric
blocks: L = 2, C = 5, asymmetric blocks: L = 1, C = 2). Red line shows the rare-ball weighting p
for the ideal observer in each block.)

(TIF)

S5 Fig. Model identification. Fraction of times an alternative model was correctly identified
as compared to the Noisy Bayesian model using Bayes factors for each block: Control (CT),
Hard Asymmetric (HA), Hard Symmetric (HS), Easy Asymmetric (EA), Easy Symmetric (ES).
100 sets of synthetic responses were produced for every model using the human task structure
(4 blocks with 42 trials, control block with 60 trials). The Noisy Bayesian model includes noise
and a rare-ball weight, p, that varies across subjects. The Noisy Bayesian Set p model (set p)
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assumes that p equals the ideal observer’s rare-ball weight (p;o). The Prior Bayesian model
(Prior) includes a jar bias (prior), and assumes p = p;o. The Asymmetric (Asym) model
assumes an asymmetric repetition bias following a low-jar response. The Prior with Variable p
(Prior var p) model is the noisy Bayesian model with biased prior. The Windowing (Wind)
model assumes a set window of evidence for each trial. The Variable Rare Ball (Var Rare)
model sets the probability of response for the high jar based on whether or not the number of
observed rare balls meets some threshold. The Rare Ball model (Rare) is a reduction of the
Variable Rare Ball model and sets the rare ball threshold to 1 (observing any rare ball corre-
sponds with a high jar response of probability P,,,.). The History Dependent Rare Ball (HD
Rare) model incorporates past trial responses into the Rare Ball model. Under the Guess
model (Guess), the high jar is chosen with some probability that is set as a free parameter,
regardless of the balls observed. Models were included in subject analyses only if synthetic
responses were identifiable above 80% for all blocks (Asym and Prior var p excluded) and

if > 5 subjects were best fit by the model in any given block (Wind and HD rare models were
excluded from further analyses).

(TTF)

S6 Fig. Consistent subject model fits. Fraction of subjects who were best fit by models in the
same class, Bayesian (purple) or Heuristic (yellow). Subjects’ best-fit strategies were compared
across all blocks (All), only asymmetric blocks (Asym) or only symmetric blocks (Sym). Sub-
jects were typically best described by different models within the model class for each block.
(TIF)

S7 Fig. Subject model accuracy. Subject accuracy based on each subject’s best-fit model in a
block: Control (CT), Hard Asymmetric (HA), Hard Symmetric (HS), Easy Asymmetric (EA),
Easy Symmetric (ES). Colored dots represent individual subject accuracy. Black diamonds and
errorbars show the bootstrapped means (1000 iterations) and 95% confidence interval for each
model-block. Accuracy was significantly (p < 0.05) above chance (0.5) for all models.

(TIF)

S8 Fig. Subject cross validation. 10-fold 90/10 cross-validation accuracy performed between
each subject and the model that best describes their responses for each block: Control (CT),
Hard Asymmetric (HA), Hard Symmetric (HS), Easy Asymmetric (EA), Easy Symmetric (ES).
Each colored point represents one individual. Black diamonds and errorbars show the boot-
strapped means (1000 iterations) and 95% confidence interval for each model-block. Cross-
validation accuracy was significantly above chance (0.5; p < 0.05) for all models except the
Rare-Ball model in the HS block and the Guess model in all blocks. Mean cross-validation
accuracy was > 0.8 for all models except the Rare-Ball and Guess model. Ranges (across
blocks) for the percentage of subjects with > 80% cross validation accuracy for each model:
Noisy Bayesian (Noisy): 40-100%; Noisy Bayesian Set p (set p): 54-85%; Prior Bayesian (Prior):
76-100%; Variable Rare Ball (Var): 50-100%; Rare Ball (Rare): 0-38%; Guess: 0-22%.

(TIF)

S9 Fig. Choice asymmetry. Left: Low-jar response fractions as sample lengths (number of
balls observed) changes for subjects and sample-matched ideal observer (model) for asymmet-
ric blocks (Hard Asymmetric (HA), Easy Asymmetric (EA)). Bold markers and errorbars are
bootstrapped means and 95% confidence intervals. Filled markers denote a significant popula-
tion shift away from 0.5 (p < 0.05). Center: For the asymmetric blocks, the ideal observer’s
probability of responding correctly in favor of the low or high jar changes with the number of
balls drawn and the jar asymmetries (k). As the likelihood of observing a rare ball increases,
the probability of choosing the low jar decreases, until reaching a discrete shift in the number
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of rare balls that must be drawn (e.g., 1 up to 2) to trigger a “high” response, generating a saw-
tooth-shaped response fraction function of ball number. Right: The overall (correct and incor-
rect trials) low-jar response probability for the ideal observer shows a general decrease in
choice asymmetry as sample size increases. However, the effect is accompanied by the saw-
tooth structure depicted in the center panels.

(TIF)

$10 Fig. Noise variance comparison. Top: Estimated noise and variance from psychometric
functions fit to individual subject data (points). Noise and variance showed a significant corre-
lation in all blocks: Control (CT), Hard Asymmetric (HA), Hard Symmetric (HS), Easy Asym-
metric (EA), Easy Symmetric (ES) (Spearman’s Correlation, p < 0.05). Center: Same data as in
the top row, but color coded by each subject’s best-fit models for each block. In general, heuris-
tic subjects had the largest values of variance and noise. Triangles represent medians for each
model group. Filled triangles differ significantly from the Nearly Ideal subjects (two-sided Wil-
coxon rank-sum test, p < 0.05). Bottom: Noise and variance values from synthetic responses
generated by each subject’s best-fit model and parameters (198 sets of synthetic responses dis-
tributed across models based on the subject strategies from Fig 4D). Both subject and synthetic
data showed similar relationships between noise and variance, with Bayesian models display-
ing less noise and variance than heuristics. For all plots, large noise values (>20) were rescaled
to 20 for visualization purposes.

(TIF)

S11 Fig. Noise bias comparison. Subjects’ estimated bias and noise based on the best-fit psy-
chometric functions shown for each task block: Control (CT), Hard Asymmetric (HA), Hard
Symmetric (HS), Easy Asymmetric (EA), Easy Symmetric (ES). Here, dots represent individual
subjects, color coded by an individual’s best-fit strategy. Triangles represent medians for each
model group: the Nearly Ideal subjects, Mistuned Bayesian subjects, and Heuristic subjects.
Filled triangles significantly differed from the Nearly Ideal subjects based on a two-sided Wil-
coxon rank-sum test with p < 0.05. Large noise values (> 20) were rescaled to 20 for visualiza-
tion purposes. Results mimicked those observed when using our measure of variance (see
main text) instead of noise.

(TIF)

$12 Fig. Symmetric block results. Subject bias and variance on symmetric blocks: Control
(CT), Hard Symmetric (HS), and Easy Symmetric (ES), as in Figs 3C-3F and 5. Top: Median
high-jar responses (points) and best-fitting logistic psychometric functions. Bottom: Bias and
variance based on the best-fit psychometric function. Points reflect individual subjects, color-
coded by subjects’ best-fit models. Triangles represent medians for each model group: the
Nearly Ideal subjects, Mistuned Bayesian subjects, and Heuristic subjects. Filled triangles sig-
nificantly differed from the Nearly Ideal subjects based on a two-sided Wilcoxon rank-sum
test with p < 0.05.

(TIF)

$13 Fig. Complexity correlations. Bias and variance tended to decrease with complexity (MI)
across subjects grouped by strategy, particularly on asymmetric blocks. Top: bias-MI plots as
in Fig 6C for all blocks (columns, as indicated). Points are data from individual subjects, color
coded by their best-fit strategy. Significant correlations (Spearman correlation, p < 0.05) are
shown for each model group using color-coded lines. Only asymmetric blocks showed signifi-
cant (negative) correlations, implying that within groups, bias tended to increase with decreas-
ing strategic complexity. Bottom: variance-MI plots as in Fig 6D for all blocks, plotted as in the
top row. All blocks showed at least one within-group relationship between complexity and
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variance, consistent with general trends of better (less variable) performance associated with
more-complex strategies.
(TIF)

S14 Fig. Mutual information with previous response. Across-group bias-variance relation-
ships were robust to a measure of mutual information (MI) that took into account not just the
balls observed on the current trial (i.e., relevant information, as in Fig 6A)) but also the previ-
ous choice (i.e., irrelevant information), for the two asymmetric blocks (columns, as indi-
cated). a: Accuracy versus MI. The bound is the maximum accuracy attainable by the idea
observer for a fixed MI in the limit of many trials. Note that points could exceed the asymptotic
accuracy bound because the number of trials for each subject was finite. The dashed horizontal
lines indicate the accuracy bound for maximum MI values. X’s are data from individual sub-
jects. Squares are per-group medians (filled symbols for Mistuned Bayesian and Heuristic
groups indicate that the median MI is significantly different from that of the Nearly Ideal
group median, Wilcoxon rank-sum test, p < 0.05). Including past choices tended to give
slightly higher MI measures but maintain the same ordering from Heuristics (simplest), to
Mistuned Bayesian, to Nearly Ideal (most complex; compare to Fig 6A)).b: Difference in MI
using this measure versus MI without the previous choice. X’s are data from individual sub-
jects. Squares are per-group medians (filled symbols for Mistuned Bayesian and Heuristic
groups indicate that the ordinate value is significantly different from that of the Nearly Ideal
group median, Wilcoxon rank-sum test, p < 0.05). In general, including the previous choice
increased MI (i.e., subjects tended to have sequential choice dependencies) but did not affect
the inverted bias-variance trade-off.c: Bias-MI and variance-MI plots using this MI measure
that includes the previous choice.

(TIF)

S15 Fig. Simulated response complexity. Synthetic sets of responses were produced using
each subject’s best-fit model and parameters and new samples of ball draws (198 sets of syn-
thetic responses distributed across models based on the strategies that best describe subjects’
responses from Fig 4D) for each block: Control (CT), Hard Asymmetric (HA), Hard Symmet-
ric (HS), Easy Asymmetric (EA), Easy Symmetric (ES). Synthetic responses were then fit to
psychometric functions with bias and variance values extracted. Each dataset of synthetic
responses is denoted by a colored point associated with the generating model. Triangles show
medians for each group. In asymmetric blocks, Mistuned Bayesian models show bias.

(TIF)

S16 Fig. Algorithmic complexity. Algorithmic complexity [9] for each model was computed
based on the number of operations performed on a trial, broken into: arithmetic, writing to
memory, reading from memory, and storage operations. Heuristic models have lower com-
plexity (yellow) compared to Bayesian models (purple). Bayesian model complexity varies
with the number of balls observed (). Example computations are shown for sample lengths of
2,5, and 10 balls. Computations were based on the following operations involved in each
strategy:

Guess: Read and store parameter Pg,.q;.

Rare Ball: Identify presence of the rare ball (max), read the probability of response, store P,
and P,,,,.

Variable Rare Ball: All elements from the Rare-Ball model with additional operations to com-
pute the number of rare balls and store the rare-ball threshold 6.
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Noisy Bayesian Set p: Multiplication of the ball weight for each ball observed (1) and n — 1
summations.

Noisy Bayesian: Arithmetic as in the Noisy Bayesian Set p model with additional operations to
read and store the rare-ball weight p.

Prior Bayesian Arithmetic as in the Noisy Bayesian model with inclusion of the prior that is
read and stored.
(TIF)
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