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Nearly all animals forage to acquire energy for survival through efficient

search and resource harvesting. Patch exploitation is a canonical foraging

behaviour, but there is a need for more tractable and understandable math-

ematical models describing how foragers deal with uncertainty. To provide

such a treatment, we develop a normative theory of patch foraging decisions,

proposing mechanisms by which foraging behaviours emerge in the face of

uncertainty. Our model foragers statistically and sequentially infer patch

resource yields using Bayesian updating based on their resource encounter his-

tory. A decision to leave a patch is triggered when the certainty of the patch

type or the estimated yield of the patch falls below a threshold. The time

scale over which uncertainty in resource availability persists strongly impacts

behavioural variables like patch residence times and decision rules determin-

ing patch departures. When patch depletion is slow, as in habitat selection,

departures are characterized by a reduction of uncertainty, suggesting that

the forager resides in a low-yielding patch. Uncertainty leads patch-exploiting

foragers to overharvest (underharvest) patches with initially low (high)

resource yields in comparisonwith predictions of the marginal value theorem.

These results extend optimal foraging theory and motivate a variety of

behavioural experiments investigating patch foraging behaviour.

1. Introduction
Foraging is performed by many different species [1–5] and engages cognitive

computations such as learning of resource distributions across spatio-temporal

scales, route planning and decision-making [6]. Comparing species, one can ask

how these integrated processes have been shaped by natural selection to opti-

mize returns in the face of environmental and physiological constraints [6,7].

Foraging thus provides the opportunity to study and quantify how both

evolution and neural circuitry shape a natural behaviour [8–11].

In natural landscapes, foraging involves a decision hierarchy that unfolds

across multiple length and time scales, which consider both where to forage as

well as how long to exploit a certain resource [12,13]. On long time scales, animals

accumulate evidence to choose which of a collection of large areas they will

dwell in and forage, during which their activity does not appreciably change

the resource landscape. Following previous work, we refer to this as ‘habitat

choice’ [12]. Within habitats, animals exploit resources on shorter time scales,

while their activity depletes resources in visits to localized regions. We refer

to this behaviour as ‘patch exploitation’ or ‘patch leaving’. Questions of

where to forage and how long to exploit local patches of resource constitute a

multi-level framework for examining behaviour across spatial scales; still

larger scales consider the home range of an individual, as well as the species

range [13,14]. For both habitat choice and patch leaving, the local regions of
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an environment can be conceptualized as a ‘patch’; the key

difference is in whether or not the forager’s activity impacts

the resource availability in the landscape. As a decision pro-

blem, both are sequential choice processes, so the forager

does not make a choice between discrete alternatives that

are presented simultaneously, but rather only receives evi-

dence from the current patch and must decide whether to

stay or go [15]. Thus, habitat choice and patch leaving are

related but differ in the length and time scales involved

(figure 1a). However, most theoretical work has considered

these two problems separately.

Regarding habitat choice, the optimal behaviour is clear: the

forager should locate and spend as much time as possible in

the habitat patch that maximizes fitness outcomes. Observa-

tional studies of habitat choice often consider the combined

effects of multiple factors to ask howwell they predict observed

habitat use (e.g. [16]). Theoretical and experimental studies have

investigated multiple factors, such as density-dependent effects

predicted by the ideal free distribution when there are multiple

foragers on a landscape [17] and how perceptual constraints

may lead to deviations from optimal choices [18]. Our focus

here is specifically on understanding an accumulation process

by which individuals use information to reach decisions on

habitat choice, and deriving this result in amathematically tract-

able model that can more precisely parameterize strategy and

performance in a wide range of environments.

Patch leaving considers shorter time scales, where the for-

ager substantially depletes the patch during its visit and must

subsequently decide when to leave the current patch in

search of another. A basic result in behavioural ecology, the

marginal value theorem (MVT), states that an animal can

optimize the resource intake rate by leaving its current

patch when the estimated within-patch resource yield rate

falls below the global average resource intake rate of the

environment [19]. While this theory has been validated in

multiple behavioural studies [20–29], it does not explicitly

indicate how beliefs about environmental features (e.g.

resource distribution) are accumulated over time or how

decision rules might be applied to these beliefs in the form

of concrete dynamical equations. To explain how foraging

decisions are shaped by the presence and reduction of uncer-

tainty based on resource encounters, it is useful to have

normative Bayesian models of patch leaving that ask how

animals use limited information to make foraging decisions.

However, those that do tend to consider a narrow range of

environmental conditions [30,31–46]. General models that

have been proposed are challenging to analyse mathemat-

ically [47], making it difficult to reveal how environmental

parameters shape an optimal forager’s strategy and yield in

many different environments.

The aim of our study is thus to develop a Bayesian frame-

work of foraging behaviour, treating decisions as a statistical

inference problemand connectingnormative theoryof foraging

decisionswithmechanistic evidence accumulationmodels [48].

Normative strategies provide a best-case scenario for a parti-

cular objective, which can then be used as a touchstone for

comparison with heuristics and actual animal behaviours.

Animals may actually use evidence accumulation mechanisms

that approximate Bayes’ optimal strategies, such as energy

measurement via the passage of food through the gut [49], so

we consider our model to be an abstraction that such physical

strategies can be measured against. We first define a general

mathematical framework to model patch-foraging decisions

that applies at different time scales with regards to search and

depletion of the resource. These represent the different ecologi-

cal decision cases described above: ‘habitat choice’ and ‘patch

leaving’. Because these cases are only separated in the time

scale of resource depletion, we treat both with the framework

ofpatch foragingas an evidence accumulationprocesswhereby

a threshold on available evidence triggers a decision.

Using several mathematically tractable cases in which

probabilistic updating based on the receipt of resources

within a patch can be modelled by stochastic differential

equations (SDEs), we determine patch-leaving statistics via

solutions to first-passage time problems. We thus obtain

analytical expressions for optimal decision thresholds that
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p(l0)

patch resource encounter rate

l0

resource encounters

x(t) =

j

d (t − tj)

observer belief

p(l|x(t))

high l0

low l0

transit

resource

encounters

x(t) =

move to new patch

forage within patch

feeding history-based 

belief update

l

lMLE

ltrue

time

p
(l

|x
(t

))

time

t1 t2 t3 t4 t5

(a) (b)

habitat

choice

patch

exploitation

resource

chunk

forager

movement

b
el

ie
f 

u
p
d
at

e

Figure 1. Patch-departure tasks and model. (a) Task environments: on long time scales, an animal decides between habitats whose resource yields change slowly;
on shorter time scales, the animal exploits patches whose resources are depleted more quickly. In our model analysis, we assume that the forager is solving one of
these problems at a time, but not both simultaneously. (b) Ideal observer foraging model: the initial yield of the patch is drawn from the distribution p(λ0),
generating random resource encounter times t1:K, and updating the belief of the current resource yield rate λ(t) for the patch. We illustrate the movement of
the forager and subsequent time series of resource encounters x(t), resulting in a refinement of the posterior p(λ|x(t)). The maximum-likelihood estimate
λMLE approaches the true λtrue yield rate over time.
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connect to observable quantities of interest, including patch

residence time, travel time, resource consumption over time

and patch yield rate over time. For both habitat choice and

patch leaving, we show that, in uncertain or resource-poor

environments, uncertainty causes even an ideal Bayesian obser-

ver to tend to stay too long in low-yielding patches

(overharvesting) and not long enough in high-yielding patches

(underharvesting). Past studies have suggested that such devi-

ations can also arise from patch-discrimination limits [18] or

behavioural state dependence [50]. Though our work is not

the first to demonstrate that over- and underharvesting can

arise from uncertainty in statistical inference models [51,52],

we are able to show how these trends vary across a wide

range of environments owing to our model’s mathematical

tractability. By establishing a general Bayesian framework for

patch foraging at multiple scales, our study provides a platform

to study behavioural and neural mechanisms of naturalistic

decision-making akin to how trained decision-making behav-

iour is studied within systems neuroscience [8,53].

2. Sequential sampling model framework
The patch-foraging model framework, which describes

both habitat choice and patch leaving, considers an animal

searching its environment, which contains distributed resource

patches (figure 1a). When the animal enters a patch, it con-

sumes resources within the patch. In the case of habitat

choice, we assume that resources are depleted slowly enough

that the depletion is negligible, whereas for the patch leaving

problem resources are depleted.We represent the decision pro-

cess to leave a patch via a sequential sampling model for an

ideal observer’s posterior of its current patch’s yield rate, λ(t).

This assumes that an animal learns over time the yield of the

patch it is currently in and to decide if and when it should

leave and search for another patch.

The initial yield rate lk0 determines the rate at which the

animal initially encounters a resource in the patch and is

drawn from the distribution p(λ0). We assume that the forager

knows and initializes its belief with the prior p(λ0) when

arriving in a patch (figure 1b). This simplifying assumption

allows us to obtain tractable solutions. Considering randomly

timed resource encounters within a patch, we use a Poisson

rate λ(t) = λ0− ρK(t) generating exponentially distributed

waiting times between encounters (as in random search

[54]) that decreases with K(t), the number of resource encoun-

ters so far, where ρ is the impact of each resource encounter

on the underlying yield rate of the patch. Resource encounter

history can be described by the summed sequence of encoun-

ters, each at time tj: x(t) ¼ K0(t) ¼
PK(t)

j¼1 d(t� tj). An ideal

forager performs a Bayesian update of its belief about the cur-

rent patch yield rate λ,

p(ljx(t)) ¼ p(x(t)jl)
p0(lþ K(t)r)

p(x(t))
/

(l=rþ K)!

(l=r)!
e�ltp0(lþ Kr),

l � 0: (2:1)

In general, resource encounters both: (i) give evidence of

higher yield rates λ, since encounters are more probable

in high-yielding patches; and (ii) deplete the patch,

decrementing the yield rate λ by ρ (figure 1b).

Varying ρ changes the rate of patch depletion relative to

the time scale of the foraging process. Small relative values

of ρ/λ0 represent a large resource patch that the forager

depletes very slowly. The limiting case ρ/λ0→ 0 represents

the habitat choice problem. Alternatively, when this ratio is

intermediate up to unity (ρ/λ0∈ [10−2, 1]), the forager con-

siderably depletes the patch with each encounter. We refer

to this as the patch leaving problem, and show that, in such

cases, uncertainty in the patch yield can play a major role

in shaping the departure strategy. We first consider the habi-

tat choice problem in §3; following this, we consider the patch

leaving problem in §4.

3. ‘Habitat choice’: minimizing time to find
high-resource habitats

Habitat choice refers to patch use at scales where the forager’s

activity does not significantly affect the resource distribution

or, in other words, that resource depletion occurs very slowly

relative to the time needed for the search process. We represent

this with the mathematically tractable yet representative limit

of zero patch depletion. In this case, the optimal behaviour is

to quickly locate a patch with the highest yield and remain

there. Although in real environments habitats eventually

deplete and the forager would leave, our theoretical treatment

of a ‘remain in the high-yielding patch’ strategy can simply

translate to a ‘stay a long time in the initially high-yielding

patch’ strategy, with results applying similarly to both because

of the separation of time scales: for habitat choice, the time

needed to search and decide on a high-yield patch to remain

in (which we denote as Tarrive) is much less than the time that

would be needed to actually deplete the patch.

Upon entering a patch, the forager must use its experience

of resource encounters to decidewhether to stay in the patch or

leave for another. We first consider a simplified binary environ-

ment where there are only two patch types—high-yield versus

low-yield—and that the forager knows these possible patch

types and their return rates. Here, the optimal behaviour is to

infer whether or not it is currently in a high-yield patch, and,

if so, to stay, but otherwise to leave. Uncertainty and stochasti-

city of resource encounters means that the forager will visit

some low-yielding patches until it learns the yield rate and

departs, and may also visit and depart from high-yielding

patches if the type is incorrectly inferred. We then consider

more general cases, and show that the general trends and opti-

mal strategies from the simpler binary case still apply; this

includes environments with multiple patch types and environ-

ments with continuous distributions of patch types where the

forager has a threshold for accepting a patch as sufficiently

dense with resources. With this approach, we can explicitly

derive statistics associated with patch departures and examine

how the efficient identification of high-quality habitats

depends on environmental parameters like patch discrimin-

ability (e.g. λH/λL) and high-yield patch prevalence (pH).

3.1. Two patch types
An environment with two possible patch types—high yielding

and low yielding—is a mathematically tractable case that gives

insight into optimal decision strategies and their resulting

behavioural observables. Here, the probability distribution of

patch types (likelihood that the next-visited patch is of a certain

type) is p0(λ) = pHδ(λ− λH) + pLδ(λ− λL): H denotes the higher

yielding patch and L denotes the lower yielding patch. As

stated, we assume that the forager knows the values λH and
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λL and uses these as prior information to infer the type of the

current patch. Using the limit of slow depletion (ρ→ 0) to rep-

resent habitat choice, the animal determines which patch type

it is currently in using the log-likelihood ratio (LLR) y(t)≡

log( p(λH|x(t))/p(λL|x(t))). With this, their belief update can

be written as an SDE:

dy

dt
¼ log

lH

lL

X

1

j¼1

d(t� tj)� (lH � lL), (3:1)

with initial condition set by the prior y(0) = log((pH)/(1− pH)).

Resource encounters provide evidence for the high-yielding

patch (first term) while elapsed time between resource encoun-

ters builds up evidence for the low-yieldingpatch (second term).

Equation (3.1) has a simple form similar to classic evidence

accumulation models of decision-making psychophysics

[55,56], recently extended to foraging decisions [48].

The long-term resource intake rate is maximized if the

forager finds and remains in a high-yielding patch (figure 2a).

If the forager remains in a high-yielding patch, then the

energy intake rate will reach λH in the limit of long time.

Before locating and deciding to remain in a high-yielding

patch, the forager may also visit low-yielding patches, leaving

when its belief crosses the threshold (figure 2a), and may also

visit anddepart fromhigh-yielding patches, if they aremistaken

for low-yielding ones. The departure threshold sets the cer-

tainty that the forager obtains before leaving: a low threshold

means high certainty of the patch type before leaving: while a

high threshold will result in more departures. Too low a

threshold can lead to too much time spent in low-yielding

patches while gathering more evidence, while too high a

threshold can lead to (incorrectly) departing fromhigh-yielding

patches before gathering enough evidence to distinguish their

type. By setting the optimal threshold that balances uncertainty

to minimize the time to arrive and remain in a high-yielding

patch, we can ask how the environmental characteristics of rela-

tive patch yield, relative patch density and travel time influence

behaviour and expected return of resources.

The forager’s strategy is determined by the threshold θ on

its belief (LLR), given by equation (3.1), shaping the time to

find and remain in a high-yield patch �Tarrive(u). This quantity

can be computed from the patch-departure statistics of the

forager, using first-passage time methods, given the prior

y(0) = log(pH/(1− pH)) [57,58]; τ is the mean travel time

between patches, which we assume is known or determined

from experience. Using this, the time to arrive and remain in

a high-yield patch is

�Tarrive(u) ¼ (1� pH)
1þ eu

pH � (1� pH)eu

� �

�
log( pH=(1� pH))� u

(lH � lL)� lL log(lH=lL)
þ t

� �

: (3:2)

The minimum of this, corresponding to θopt (figure 2b,c), can

be determined numerically (solid lines in figure 2d,e). An

explicit approximation of θopt is obtained by differentiating

equation (3.2), dropping higher order terms and solving for

uopt � W�1 �(1� pH)
lH

lL

� �lLt

e�(lH�lL)te2pH�1

" #

þ At

þ log
pH

1� pH
þ 1� 2pH , (3:3)
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Figure 2. Statistics of habitat identification in environments with two patch types. (a) Habitat type belief y(t) = log( p(λH | x(t))/p(λL | x(t))) (as the animal decides
between a habitat with a high, λH, and a low, λL, resource yield) increases with resource encounters and decreases between resource encounters until y(t) = θ and
the observer departs the patch. (b,c) Mean time to arrive and remain in a high-yield habitat varies non-monotonically with departure threshold θ and decreases as
the patch discriminability λH/λL and high-yield fraction pH increase. Solid lines are equation (3.2). Dots are averages from 104 Monte Carlo simulations, each with
independently drawn food encounter sequences. λH = 2 and pH = 0.5 are fixed unless indicated. τ = 5 and λL = 1 are fixed. (d,e) Departure threshold θopt mini-
mizing the time to arrive in the high-yield patch decreases with λH/λL and τ. Solid lines are numerically obtained minima of equation (3.2), dotted lines are
equation (3.3) and dashed lines are equation (3.4). In (d), dotted lines appear overlaid on solid lines because of the close fit. ( f ) The minimal mean time
�T
opt
arrive to arrive in a high-yield patch decreases with λH/λL and pH.
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where A ¼ (lH � lL)� lL log
lH
lL

is defined for ease of nota-

tion (A = 0 for λH = λL, and A > 0 for λH > λL) and W−1(z) is

the (− 1)th branch of the Lambert W function (inverse of

z =WeW). This approximation matches well with the numeri-

cally obtained minima of equation (3.2) (dotted lines in figure

2d,e), and can be further simplified using the approximation

W−1(z)≈ log (−z)− log(−log(−z)), yielding

uopt � log (1� pH)� log [At� log(1� pH)� 2pH þ 1], (3:4)

indicating the scalings of the optimal threshold in limits of

environmental parameters (dashed lines in figure 2d,e). Details

on the derivation of the optimal threshold can be found in [58].

How should an animal best adapt its habitat search strat-

egy to the statistics of the environment? When high-yield

patches are rare (low pH), travel times are large (high τ) or

patches are easily discriminable (high λH relative to λL), the

forager should gain higher certainty by deliberating longer

before departing a patch; indeed, from equation (3.4) and

figure 2d,e we see that the optimal threshold decreases with

ρH, τ and λH. Increasing discriminability (λH/λL) or the

high-yield patch fraction pH decreases the minimal mean

time T
opt
arrive needed to arrive and remain in a high-yield

patch (figure 2f ), since this makes finding a high-yielding

patch easier for the animal.

Furthermore, the outcome �Tarrive(u) is most sensitive to the

strategy (choice of threshold θ) in environmentswith lowdiscri-

minability and a small fraction of desirable patches (figure 2b,c).

In experiments, the value of Tarrive is an observable that can be

used to infer the effective value of θ that an animal is using.

The parameter sensitivity suggests that an animal’s patch-

selection strategy—i.e. the value of θ it is using—could be

more precisely inferred when high-yield patches are rare or

more difficult to identify. Note that the patch leaving rule

of thresholding one’s LLR is mathematically equivalent to

thresholding the mean estimated resource yield rate since
�l ¼ (lH þ e�ylL)=(1þ e�y), analogous to previous patch-

departure rules developed [31,41]. Next, we generalize this

approach to environments with more than two patch types,

so decisions use multiple LLRs, such that optimal decisions

do not simply map to thresholding the estimated yield rate.

3.2. Multiple patch types
Animals may have to select from any number of patch types in

an environment, which begs the question as to how decision

and search strategies should extend to more general environ-

ments. With multiple patch types, decisions made by

computing only two LLRs is sufficient to obtain near optimal

performance in terms of minimizing the time to find and

remain in a high-return patch. This result thus complements

and extends previous work that has considered optimal strat-

egies for two patch types [33,34] or more general models that

are intractable to a mathematical study of how behaviour and

yield varywith environmental and strategy parameters [47,59].

To model multiple patch types, consider environ-

ments with N patch types having resource yield rates λ1 >

λ2 > · · · > λN ≥ 0 with patch fractions p1, p2,…, pN. Defining

LLRs yj = log( p(λ1|x(t))/p(λj+1|x(t))) for j = 1,…, N− 1,

yields the N− 1-dimensional system fully describing an

ideal observer’s belief about the current patch type

y0j ¼ log
l1

l jþ1

X

1

j¼1

d(t� tj)� (l1 � l jþ1), (3:5)

where yj(0) = log ( p1/pj+1), and any likelihood can be recov-

ered as p(l jþ1jx(t)) ¼ e�yj=(1þ
PN�1

k¼1 e�yk ), j = 0, 1,…, N− 1,

where y0 = 0 for j = 0.

As in the binary case, the optimal strategy is to find

and remain in the highest yielding patch (λ1). We again

represent patch leaving decisions by thresholding the prob-

ability of being in the high-yielding patch, such that when

p(λ1|x(t)) = ϕ∈ (0, p1) the forager exits the patch. We approxi-

mate this thresholding process by requiring yj≥ θ (for j = 1, 2,

…, N) to remain in the patch, so the forager departs given suf-

ficient evidence that it is not in the highest yielding patch (see

figure 3a for three patch types).

We also consider how effective reduced strategies are, for

which the observer only tracks the first L LLRs y1, y2,…, yL
and compares these with the threshold θ to decide when to

leave the patch. Thus, we compute the mean time to arrive

and remain in the high-yield patch, which depends on the

escape probability π1(θ) from the high-yielding patch and

the mean time to visit each patch �Tj(u, L) when escaping,

�Tarrive(u) ¼
p1(u, L)

1� p1(u, L)
(�T1(u, L)þ t)

þ
1� p1
p1

PN
j¼2 pj(

�Tj(u, L)þ t)

1� p1(u)
, (3:6)

where the patch-departure strategy depends on the number L

of LLRs thresholded and the threshold θ used.

The mean high-yield patch arrival time �Tarrive depends

strongly on the high-yield patch resource yield rate λ1, which

decreases considerably as the patch becomes more discrimin-

able (three patches: figure 3b; five patches: figure 3d). On the

other hand, �Tarrive depends weakly on the worst patch’s yield

rate λ3 (figure 4a), so uncertainty among the less valuable

patches has little effect on behaviour. In a related way, �Tarrive is

much more strongly affected by changes in the fraction of the

high-yieldingpatch (p1: figure 3c) thanbychanges in thebalance

of the mid- (λ2) and low-yielding (λ3) patches (figure 4b).

Again, the optimal threshold decreases when patches are

more discriminable: as λ1 increases the forager should gain a

higher certainty before leaving (figure 3b). The average high-

yield patch arrival time �Tarrive depends weakly on the

threshold near the optimum, but the optimum threshold

shows a non-monotonic dependence on p1. The lower opti-

mum threshold for both low- and high-yield p1 values

represents that, in these cases, it is optimal to be more certain

of the future harvest rate before leaving: for low p1 this occurs

because high-yield patches are rare (and thus there is a higher

premiumon distinguishing the high-yielding patchwhen actu-

ally in one), and for high p1 this occurs because they are

plentiful (one is more likely to land in a high-yielding patch,

so one can afford to require more certainty to depart). Such

an increased premium placed on information gathering for

the reduction of uncertainty about the future yield of a patch

in sparse environments has been identified in previous

analyses of foraging models governed by statistical decision

theory [59,60]. Between these cases, although the optimal

threshold is slightly higher, the dependence is weak. Addition-

ally, this demonstrates that, if the forager did not know p1
(we assumed that this is known and is used to formulate the

leaving decisions), the best strategy would be to err on the

side of choosing a low threshold, because the sensitivity of
�Tarrive to threshold is relatively weak for choices too low but

can be higher for choices too high (figure 3c).
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In an environment with five patches, performance

depends weakly on how many LLRs are used to make

patch-leaving decisions for L > 2. It is sufficient to simply

track the LLRs between the first three patches, which corre-

spond to using L = 2 (figure 3d ). This is because the forager

only needs to know whether it is in one of the best patches

or not, since the goal is to eventually settle in one such

patch as a habitat. This demonstrates again that the key fea-

tures of uncertainty that matter to the optimal forager are

the discriminability and prevalence of the best and second

best patch type.

3.3. Continuum limit: many patch types
Building on the N-patch case, we now consider a scenario

where there is a continuous distribution of patch qualities

(N→∞), so the resource yield rate for each patch λ is drawn

from a continuous distribution p0(λ), which serves as a prior

for the posterior p(λ|x(t)) with each patch visit (figure 5a).

For any continuous probability distribution function p0(λ),

the maximum λ will never be sampled, so arriving and

remaining in the ‘maximum’ yielding patch is not possible.

We therefore assume that the forager seeks patches with

yield rates λθ or above, but deems lower yield rates to be insuf-

ficient. With this formulation, the forager updates an LLR

based on a belief of whether the current patch is greater or

less than λθ. Because this divides the continuous distribution

into two categories, the mathematical treatment is similar to

the binary case, but with added uncertainty because the

patches in each category do not have the same return.

To model this, given a reference yield rate λθ, we represent

decisions in an environment with a continuous distribution of

patch qualities by tracking P(l . lujx(t)) ¼
Ð

1

lu
p(ljx(t)) dl.

For the case of an exponential prior p0(λ) = αe−αλ, given K(t)

resource encounters, we define ρ(t) = log (P(λ > λθ|x(t))/

P(λ < λθ|x(t))) and state that the forager departs the patch

when r(t) �û or when P(l . lujx(t)) � u : ¼ 1=(1þ e�̂u).

Note that, to allow evidence accumulation, we require that

u , a
Ð

1

lu
e�al dl ¼ e�alu

; f, which represents the fraction

of patches where λ≥ λθ.

Computing the probability of escaping a high-yield patch,

pH(u; lu) ¼
Ð

1

lu
p0(l)p(u; l) dl, and the mean time per visit to

high- and low-yield patch types, �TH(u; lu) ¼
Ð

1

lu
p0(l)�T(u; l) dl

and �TL(u; lu) ¼
Ð lu
0 p0(l)�T(u; l)dl, when departing (using

Monte Carlo sampling), we then use equation (3.2) to compute

the time to arrive in a high-yielding patch (figure 5b). Placing a

higher threshold λθ on the quality of an acceptably high-yielding

patch increases the time to arrive in an acceptably high-yield

patch. Moreover, the optimal threshold θ decreases, as more

time must be spent in patches to discriminate a high-yielding

patch, which become rarer as λθ increases. Increasing λθ

corresponds to making sufficiently high-yield patches more

discriminable and more rare.

With this formulation, the mathematical treatment in the

case of a continuous distribution of patches is then the

same as the binary case, and we can map corresponding
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Figure 3. Optimal departure strategies for habitat choice in environments with multiple patch types. (a) Beliefs about three possible habitat types
y1(t) = log ( p(λ1|x(t))/p(λ2|x(t))) and y2(t) = log ( p(λ1|x(t))/p(λ3|x(t))) increase with resource encounters and decrease between resource encounters until either reaches
the departure threshold θ. (b) The mean time �T arrive to arrive and remain in the highest yielding patch λ1 (equation (3.6)) (with N = L = 3) decreases with patch
discriminability λ1, as does the optimal departure threshold θ

opt (circles). Three patch types with λ2 = 2, λ3 = 1, τ = 5, and p1 = p2 = p3 = 1/3. (c) �Tarrive decreases
with the prevalence of the best patch p1 (while p2 = p3 = (1− p1)/2), but θ

opt varies non-monotonically. (d ) The mean time �Tarrive to arrive and remain in the highest
yielding patch λ1 (see equation (3.6)) depends on how many LLRs (L) the forager uses to make a decision. Although the optimal time �T

opt
arrive (curve minima – circles)

decreases with L, the dependence is weak; L = 2 yields nearly identical mean optimal arrival times as L = 4. The optimal threshold which leads to�T
opt
arrive decreases with L.

Other parameters are pj = 1/N, λj = 6− j, j = 1, 2, 3, 4, N = 5. In (c) and (d), 106 Monte Carlo simulations are used to compute the curves �Tarrive.
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results: setting a higher lu is equivalent to decreasing pH and

concurrently increasing λH. Although we considered

an exponential distribution for p0(λ), we note that if this

distribution changes, then this will affect the relationship

between lu and the equivalent mapping onto the binary

case (in terms of pH and λH). Another possibility would be

to further ‘bin’ the continuous distribution to correspond to

three effective types, instead of two, as we did using a

single threshold. The continuous case then would be treated

analogously to a three-patch-type environment, and could be

represented with two LLRs. However, further binning may

not be necessary to achieve near-optimal decisions. Overall,

this demonstrates that effective strategies for foraging

environments with a continuum of patch types could be gen-

erated using particle filters that compute likelihoods over a

finite set of patch types [61].

3.4. Summary of results: habitat choice problem
In general, we see that strategies that divide the environment

into two patch types work well in efficiently finding the best

or near-best patches, even in the presence of many patch

types. The optimal time to arrive and remain in the highest

yielding patch decreases as the high-yield patch discriminabil-

ity increases and as high-yield patches becomemore common.

Considering more than two patch types, the associated fora-

ging strategies are most strongly coupled to environmental

parameters of the highest and second highest yielding patch

types. It is not necessary to compute LLRs associated with

all possible types in order to efficiently find a high-yield

patch—even considering only a single LLR gives reasonable

results, and the average time to arrive in a high-yield patch

is not strongly affected when the number of LLRs continues

to increase beyond two. This suggests that animals select habi-

tats by estimating a possible range of high-quality patches and

then making patch-departure decisions based on whether

patches meet those criteria or not.

4. Patch leaving: depletion- versus uncertainty-
driven decisions

When the scale of a patch is smaller, the forager will signifi-

cantly deplete the patch’s resources during its visit. The

decision is then not of which patch to remain in, but rather

of when to leave the current patch in search of another. We

therefore refer to this as patch exploitation (figure 1a;

[12,62]). While the nature of the resource differs for different

animals (and typical patch residence times can accordingly

vary from seconds up to hours—for some examples, see

[30,36,45,63,64]). These cases all have in common that each

resource patch is small enough that availability within the

patch is affected by the consumption of the forager.

The MVT sets the optimal time to leave a patch in order to

maximize resource consumption over time: when the current

patch yield rate equals the overall average yield rate for the

environment [19]. However, the MVT is simply an optimal

rule, and does not specify the mechanistic process of how

an animal uses its experience to reach a decision to leave a
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Figure 4. Insensitivity of patch-finding performance to worst patch statistics. (a) �Tarrive increases with λ3, as does θ
opt, since the worst patches become less easy to

distinguish from the best (λ1 = 3). Here λ2 = 2, τ = 5, p1 = p2 = p3 = 1/3. (b) �T
opt
arrive increases with p2 (while p1 = 0.333 and p3 = 1− p1− p2), as does θ

opt. All
curves for �Tarrive computed from 106 Monte Carlo simulations.
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Figure 5. Habitat selection given a continuum of patch types. (a) The posterior p(λ|x(t)) of the estimated yield rate is shifted up by each resource encounter and
decreases between resource encounters. (b) There is an optimal θ that minimizes the time to arrive and remain in a high-yielding patch (λ > λθ), and the optimal
time �T

opt
arrive (circles) increases as the acceptable yield rate is increased. α = 1 is used here. 106 Monte Carlo simulations for each λθ and θ.
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patch. Previous work has demonstrated that rewards in

discrete chunks—instead of as a continuous rate—can affect

the process an animal uses in decision-making [21,24,48].

From a Bayesian perspective, decisions should use available

information about the resource distribution in the environ-

ment. If resource availability within a patch is discrete or

uncertain, even an ideal observer may not be able to accu-

rately infer the actual rate of return, and thus would not be

able to implement the leaving rule prescribed by the MVT.

Experiments show that, while the general trends predicted

by the MVT hold in many cases, animals often deviate

from an MVT-predicted strategy [50]. Moreover, in cases

where patches contain very few items (e.g. 0 or 1 resource

chunks), reward is not described by a rate function, and the

MVT leaving rule does not apply.

Here we consider an animal that encounters resources in

discrete chunks and infers the state of the environment and sub-

sequently acts. This allows us to ask when the MVT rule is

actually optimal versus when it does not apply, when devi-

ations from the MVT occur owing to uncertainty and how a

forager can incorporate prior knowledge about the resource dis-

tribution in the environment to reach a patch leaving decision.

We first treat the simple case of homogeneous patch types to

establish the basic theoretical approach. Then, we consider

an environment with two patch types to show how the infer-

ence procedure affects decisions in different environmental

configurations, which we refer to as the ‘depletion-dominated’

versus ‘uncertainty-dominated’ regimes.

4.1. Homogeneous environments
To show how discreteness of resources affects decisions

[21,24], we first consider the simple case of a homogeneous

environment with a single patch type. An ideal forager

with prior knowledge of the initial yield rate λ0 can track

time and resource encounters to determine the current yield

rate λ(t), and then depart the patch when the inferred value

of λ(t) falls below some threshold lu. Prior knowledge of

the initial patch yield can be used in order to infer

l(t) ¼ l0 � K(t)r, (4:1)

which represents the true underlying value of λ(t). Using this

in a patch leaving decision strategy is equivalent to departing

after a fixed number of resource encounters [48].

Using this inference strategy, we calculate the long-term

resource intake rate by assuming that λθ is an integer multiple

of ρ. With this, the number of chunks consumed before

departure is mθ≡K(T(λθ)) : = (λ0− λθ)/ρ. Linearity of expec-

tations allows us to compute the mean departure time as

the sum of mean exponential waiting times between resource

encounters Tlu ¼ [Hm0 �Hm0�mu
]=r, where Hn is the nth har-

monic number. Thus, we can approximate the long-term

resource intake rate given λθ as

Rlu �
m0r� lu

log (rm0)� log lu þ rt
, (4:2)

which is valid for m0≫ 1. There is an interior optimum mθ

that maximizes the long-term resource consumption rate,

which we can estimate by computing the approximate critical

point equation of equation (4.2)

m0r� lu

lu
¼ log

rm0

lu
þ rt: (4:3)

For largem0 (many chunks per patch), lu ¼ Rlu , i.e. the leaving

threshold is equal to the overall average rate of return in the

environment; this is the optimum prescribed in the MVT [19].

Using the exact formula in equation (4.2), we can numerically

determine the optimal threshold for small m0 (a few chunks

per patch). This shows that, when there are only a few

chunks per patch, the true optimal threshold is close, but not

exactly equal, to Rlu (figure 6a). Note that the current estimate

of the encounter rate is monotonically related to the future

expected harvest rate, so a patch-departure rule based on

either can easily be mapped to the other.

4.2. Binary environments
In binary environments, the forager estimates the underlying

yield rate of the current patch, ~l(t), and departs when this

falls below a threshold λθ. Constant threshold strategies are

our focus owing to their relative simplicity, but we note

that alternatively dynamic programming could be used to

determine optima of a more general class of departure strat-

egies [65]. We assume that the forager uses knowledge that

two different patch types exist to estimate the yield rate

of the current patch; this involves using prior informa-

tion to discriminate the patch type (high or low), combined

with resource encounters which decrement the estimated
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Figure 6. Departure strategies for the patch exploitation problem. (a) Rate of resource consumption as a function of strategy Rlu , where the forager departs once
the inferred yield rate falls to or below λθ. Solid lines are exact solution of equation (4.2) and dashed lines are the large m0 approximation. Note optimal
lu � Rlu . (b) Rate of resource consumption Rl

H,L
u in binary environments in which the observer knows the patch type (λH or λL) upon arrival. Optimal strategy

( purple dot) takes lHu ¼ lLu � Rl
H,L
u � 3:3. pH = 0.5, mH

0 ¼ 100, mL
0 ¼ 50 and ρ = 0.1. (c) Optimal waiting time Tmaxu and departure threshold lmaxu in a

binary environment where the low-yield patch has zero chunks of resource and the high-yield patch initially has mH
0 ¼ 50. ρ = 0.1. Transit time τ = 5 throughout.
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yield rate. The belief can be determined according to a non-

autonomous SDE for an LLR,

dy

dt
¼

X

Kmax

j¼1

log
lH � (j� 1)r

lL � (j� 1)r
� d(t� tj)� (lH � lL), (4:4)

where y(0) = log ( pH/(1− pH)) as in the case of habitat choice.

We focus on two different scenarios, which we refer to as:

(i) depletion-dominated regime, where the initial yield rate of

the patch is known, and therefore leaving decisions are based

solely on depletion, and (ii) uncertainty-dominated regime,

where the type of patch is not known upon entry, and optimal

leaving decisions must consider uncertainty in the estimate of

the current yield rate of the patch. For the uncertainty-domi-

nated regime, we consider first the cases where low-return

patches contain zero resources, and then generalize to different

amounts of resources per patch type.

Depletion-dominated regime. To represent what we term the

depletion-dominated regime, we assume that the forager

arrives in a patch and immediately knows the patch type λj

( j∈ {H, L}) in which it resides (e.g. owing to information pro-

vided by conspecifics or visual cues). In this case, the forager

can make an accurate estimate of the true underlying yield

rate of the patch, and therefore there is no uncertainty.

Thus, leaving decisions are driven by depletion of the

patch, as determined by when the estimated yield rate falls

below some level l
j
u.

Following our calculations from the homogeneous case,

the long-term resource intake rate depends on the initial

resource chunk count in patches of type j, m
j
0, and the depar-

ture thresholds, so in the large m
j
0 limit

RlH,L
u �

pH(m
H
0 r� lHu )þ pL(m

L
0r� lLu)

pH ~TH(l
H
u )þ pL~TL(l

L
u)þ rt

, (4:5)

where ~Tj(l
j
u) ¼ log(rm

j
0)� logl

j
u and the critical point

equations for each partial derivative @
l
j
u

RlH,L
u ¼ 0 imply

pH(m
H
0 � lHu )þ pL(m

L
0r� lLu)

¼ l
j
u pH( log (rm

H
0 )� loglHu )þ pL( log (rm

L
0)� log lLu)þ rt

� �

:

(4:6)

This can be rewritten as RlH,L
u ¼ l

j
u ( j =H, L). The aforemen-

tioned equation shows that, like the homogeneous case, an

optimal strategy when there are many chunks per patch is

to depart as the inferred yield rate equals the mean rate of

resource encounters for the environment; additionally, the

optimal threshold only depends on the average yield rate

for the environment, and not the individual patch types

(MVT; figure 6b). When there are a few chunks per patch,

the optimal threshold may slightly differ from this value

(see results for the homogeneous case in figure 6a). The

depletion-dominated regime is similar to a homogeneous

environment: since the forager knows the initial yield rate of

the patch it is currently in, it can accurately infer the true under-

lying yield rate, and depart based on depletion of the patch. As

in the homogeneous case, the optimal decision strategy can be

formulated equivalently as either leaving when the estimated

rate of return falls below a threshold or as counting—leaving

after consuming a certain amount of resources.

Uncertainty-dominated regime—empty low-yield patch. In the

‘uncertainty-dominated’ regime, the forager does not know

the initial yield rate of the patch upon entry. However, we

assume that it has prior knowledge of the types of patches

in the environment, i.e. that it knows the values of λH and λL.

We first consider the tractable scenario where the low-yielding

patch is empty (λL = 0). Such situations occur if certain regions

of the environment appear to have food (e.g. fruiting veg-

etation) but on closer inspection turn out to be empty (e.g.

already foraged or rotten). The optimal strategy is for the obser-

ver to first wait a finite time Tθ to depart if no resources are

encountered, but if resources are encountered before t = Tθ to

consume those resources until the inferred yield rate drops to

λθ = (m0−mθ)ρ. Early/late decisions are thus driven by uncer-

tainty/depletion. Assuming m0≫ 1, we can continuously

approximate the long-term resource intake rate and find that

it is maximized using a waiting time Tθ that is insensitive to

pH. However, the threshold λθ depends on both pH and travel

time, because these parameters affect the overall average rate

of resources available in the environment (figure 6c). The

optimal threshold l
opt
u is not specified by theMVT, since uncer-

tainty drives the forager to spend non-zero time in empty

patches, adding extraneous time to the foraging process.
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Both thresholds are less than the MVT prediction owing to the discreteness of resource encounters. (b) Resource intake rates of the known/unknown cases converge
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Many resource chunks. Next, we generalize to examine

binary environments in which mH
0 . mL

0 are arbitrary inte-

gers. In this case, the belief y(t) = log (P(λH−K(t)ρ|x(t))/

P(λL −K(t)ρ|x(t))) evolves according to equation (4.4). The

forager estimates the current yield rate of the patch from

this belief,

~l(t) ¼
lH þ e�ylL

1þ e�y
� rK(t), (4:7)

and an optimal strategy is to depart when ~l(t) � lu. The

threshold λθ should be tuned to l
opt
u so the long-term resource

intake rate

Rlu ¼
pH �mH þ pL �mL

pH �TH þ pL�TL þ t

is maximized. We can compute departure times �TH and �TL

numerically via Monte Carlo sampling. For an environment

where the overall availability of resources is low and there

are few resource chunks per patch, the optimal strategy when

the patch type is known is to fully deplete each patch before

leaving—this is represented by a threshold of lu ¼ 0 for the

inferred return rate. However, this is only optimal when

the patch type is known; in the case of an unknown patch

type, the forager has uncertainty in whether or not there are

remaining resources in the patch, and this causes the optimum

threshold to be non-zero. In both cases, the discreteness of

resource encounters causes the optimal threshold to be lower

than predicted by the MVT, although within this range of

threshold values the average resource intake actually received

is similar (figure 7a). In the case of high resource availability

andmany chunks per patch, the optimal thresholds are similar

whether or not the forager knows the patch type upon arrival

(figure 7b; compare black/blue curves) and coincide with the

optimal threshold predicted by the MVT.

Comparing cases, we see that foragers in sparser

environments (lower average initial resource amount

�m0 ¼ (�mH
0 þ �mL

0 )=2) stay in low-yield patches too long and

leave high-yield patches too soon in comparison with observers

that immediately know their patch type, owing to their uncer-

tainty about their current patch before and at the time of

departure (figure 7c). Uncertainty thus drives animals to under-

exploit (overexploit) high (low)-yielding patcheswhen high- and

low-yield patches are different enough that it is optimal to spend

significantly more time in high- versus low-yield patches, but

similar enough as to not be immediately distinguishable. Opti-

mal leaving decisions in the uncertainty-dominated regime

must use a rate-estimation process, because of the associated

uncertainty in the true yield rate of the current patch.

5. Discussion
Patch foraging is a rich and flexible behaviour where an

animal enters a patch of resources, harvests them and then

leaves to search for another patch. An animal’s behaviour

can be quantified by its patch residence time distribution,

travel time distribution, the amount of resources consumed

and the movement pattern between patches. In this work,

we used principles of probabilistic inference to establish a nor-

mative theory of patch-leaving decisions. With this general

framework, we showed how foraging at different temporal

and spatial scales is connected by a similar decision problem:

‘habitat choice’ refers to larger scales when foragers do not sig-

nificantly deplete a resource, and ‘patch exploitation’ refers to

smaller scales when the forager’s activity depletes the patch.

For habitat choice the optimal behaviour is to quickly locate

and remain in a high-yielding habitat, while for patch exploi-

tation it is optimal to use prior information along with reward

encounters to estimate the current underlying yield rate to

determine when to leave the patch (figure 8 and table 1).

In ecological contexts, these activities are part of a behav-

ioural hierarchy, where an animal must decide where to forage

and how long to exploit a certain resource.

In the case of habitat choice, the forager should use its

experience of reward encounters to determine whether to

stay or leave; in our model an optimal forager departs a habi-

tat when its LLR for the probability of high-yield versus other

habitats falls below a threshold. Optimal decisions are based

on inference of habitat quality, with uncertainty being the

driving factor in habitat departure times; while this is related

to resource intake rates, it is not the same, because of how

prior information can be used in patch inference. We

showed that, with multiple different patch types, it is not

necessary to track LLRs for all patch types—behaviour is

most strongly affected by inference related to the highest

and second-highest yield habitat types. The optimal time to

arrive and remain in a high-yielding habitat is lower when

patches are more discriminable, or when high-yield patches

are more common. While Tarrive is an experimentally observa-

ble quantity, an animal’s internal decision threshold is not;

our model connects these quantities, and thus can be used

to infer the decision rules an animal is using (figure 2). For

example, a similar approach has been very informative to
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Figure 8. Summarized taxonomy of foraging strategies. See table 1 for details. In different environments with three patch types (low: red, medium: yellow, high:
green yielding), the different time series of decision variables (for a single patch decision) and patch visit time intervals. (a) In habitat choice, an animal must
determine whether its current patch is of the highest yielding type, departing if the probability that it is not in the highest reaches some threshold, and undergoing
a sequence of patch visits until finding and remaining in a high-yielding patch. (b) An ideal forager performing patch exploitation infers the yield rate of its current
patch and departs when the resource yield rate reaches a threshold, continuing patch visits indefinitely in large environments.
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infer the parameters underlying two-choice decision tasks [66].

We showed that it is optimal to have a lower threshold—and

thus gain a higher certainty before leaving—when travel times

are large, high-yield patches are rare or high-yield patches

are easier to discriminate. Analogous results have been found

in observations of animals seeking habitats, where dispersal

costs affect whether or not animals search for a new habitat

[67]. These results give quantitative predictions that can be

used to interpret experiments, for example to examine whether

the animal is minimizing the time to reach the highest

yield habitat in a heterogeneous environment. Moreover, we

showed how behaviour in the general casewhere many habitat

types exist can be understood bymapping results onto the tract-

able case of only two different patch types (figures 3 and 5). By

varying systematically the percentage of high-yielding habitats

and the discriminability (ratio of high- to low-yield rate), the

model predicts how this affects the minimal time to arrive at

the highest yield habitat, and connects this to a process that

could implement such computations.

For patch exploitation, when the forager depletes patches in

its habitat, in most cases the long-term intake rate is maximized

by departing a patchwhen the in-patch estimated resource yield

Table 1. Detailed taxonomy of departure decision strategies. Departure strategies and observable trends depend on the environment and task: habitat selection
or patch exploitation (see also figure 8). Columns describe the important aspects of the optimal decision strategy for each case, along with key model results.

environment decision strategy and dependencies equations figures

habitat selection

objective: minimize time to find highest yielding habitat

known: resource yield rates of each habitat type

N-habitat types — depart habitat when likelihood of being in highest yielding

habitat falls below a threshold

— optimal strategy and arrival time depend on fraction and

discriminability of high-yield habitats

N = 2: equation (3.1);

N≥ 3: equation (3.5)

N = 2: figure 2;

N≥ 3: figure 3

continuum of habitat types — categorize habitats as high or low-yielding and depart habitat

if likelihood of a high-yield falls below a threshold

— time to identify high-yielding habitat is non-monotonic in

departure threshold, and much longer when high-yield patches

are rare

figure 5

patch exploitation

objective: maximize mean resource intake rate R over a long time (several patches)

known: initial yield rates of each patch type

1-patch type — depart when yield rate λ(t) falls to a threshold value λθ

— matches MVT except when there are very few chunks per

patch, in which case the forager should empty the patch

equation (4.3) figure 6a

2-patch types: patch type known

on arrival

— depart when resource yield rate λj(t) reaches a threshold

— represents ‘depletion-dominated’ regime; recovers MVT

equations (4.5)

and (4.6)

figure 6b

2-patch types: empty

low-yield patch

— wait a time Tu, then depart patch if no resources found;

if resources are encountered by t , Tu, use threshold on

inferred yield rate to make leaving decision (similar to

single-patch-type case)

— ‘uncertainty-dominated’ regime deviates from MVT

— optimal wait time and departure threshold λθ increase with

prevalence of high-yielding patch

figure 6c

2-patch types: both high- and

low-yield patches have

resources

— decision via threshold on current estimated yield rate ~l(t);

choose optimal threshold λθ that maximizes long-term

resource intake rate

— optimal return differs from known case given few resources

per patch, converges to known patch case when resource

density is high

— forager stays in low-yield patches too long, leaves high-yield

patches too soon when there are few resources per patch

(uncertainty-dominated regime)

equation (4.7) figure 7
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rate matches the average return rate of the environment (i.e. by

implementing the MVT rule). However, this does not apply

when resources within a patch are limited so there is more

uncertainty about the yield of the current patch upon departure

(figure 7). Often in Nature, the environment is volatile and ani-

mals make foraging decisions while uncertain about local

resource availability [68]. Our model predicts that, if there is

high uncertainty about the patch type, this causes even an

ideal Bayesian forager to stay longer in low-yield patches and

shorter in high-yield patches than predicted by the MVT.

Our theoretical treatment of patch-leaving decisions builds

on previous Bayesian models of foraging [31–39,41]. Our

approach goes further than previous work by providing a

step-by-step derivation of the normative strategies associated

with a continuum of different environmental conditions,

systematically identifying the dependence of observable

behaviours (e.g. patch-departure times) on environmental par-

ameters. During habitat choice, the minimal arrival time to the

high-yield habitat scales with the probability of high-yield

patches in the environment. On the other hand, we have

shown that, in the case of depleting patches, the amount of

time a forager overstays or understays in a patch scales with

the density of resources in the patch. We are also able to infer

the optimal threshold an animal should use. While this

cannot be measured directly in experiments, our observations

do reveal environmental parameter regimes under which per-

formance (e.g. foraging yield) is sensitive to changes in

strategy. This not only informs the design of behavioural fora-

ging experiments, so as to determine task parameters that

best reveal an animal’s strategy, but optimal yields can also be

compared with those obtained by animals in the wild to see

how finely tuned their foraging strategies are.

Analysis of experiments shows that animals forage in ways

that suggest they use Bayesian reasoning [40–46], using prior

knowledge of their environment to modulate foraging behav-

iour [64,69,70]. For example, bumblebees [30] and Inca doves

[71] adjust their foraging strategies in response to the predict-

ability of the environment, as a Bayesian forager would, but

this is not a universal trend [72]. Patch-leaving decisions may

deviate from Bayes’ optimality as animals become risk-averse

in variable environments [73]. Other Bayesian models have

considered patch-foraging decisions, even in rich multiple

patch environments [34,47], but this work does not necessarily

systematically vary environmental and strategy parameters to

explore how the sensitivity of performance changes. Our

work is also sufficiently mathematically tractable to suggest a

mechanistic implementation that the forager can use to

implement optimal decision rules. Moreover, our theoretical

approach applies not only to patch exploitation, but also to habi-

tat choice—where the MVT does not apply—and thus enables

connections across these multiple scales of behaviour [13].

Although we used a constant threshold value based on

either the belief or estimated yield rate, other work has exam-

ined cases where optimal decision strategies involve time-

dependent decision thresholds [65,74–76]. Typically, these

results arise in the context of multi-trial experiments in

which the quality of evidence on each trial varies stochasti-

cally and is initially unknown. In the habitat-choice context,

the quality of evidence is fixed across habitat visits, fitting

the assumptions of classic, constant threshold optimal pol-

icies. We would therefore expect an analysis allowing for a

dynamic threshold to yield the same results as we obtained

here. On the other hand, when the animal performed patch

exploitation in uncertain binary environments, we projected a

higher dimensional description of the patch value to a single

scalar estimate of the patch yield rate. In this case, a constant-

threshold implementation may not be purely optimal. Lever-

aging methods from dynamic programming commonly used

to set optimal decision policies [75] would be a fruitful next

step in ensuring the optimality of our patch-leaving decision

strategies. A common theme in previous Bayesian models

that use dynamic programming [41,47] and our approach is

that the forager should use the expected future return, not

the current return, to make departure decisions. However,

note that current and future return should be tightlymonotoni-

cally related, especially in the limit of short times into the

future. An advantage to the constant-threshold treatment is

that it enables simple explicit quantitative relations that can

be used to interpret experimental data (figure 2). For example,

experiments evaluating how animals value the quality of evi-

dence could help us delineate whether the animal is using a

constant threshold or not.

Effective search is integral to survival in Nature [77], and

search behaviour can give information on individual decision

strategies. One can consider searchwithin andbetweenpatches.

Although we assumed random timings of resource encounters,

an extension of our model could take into account different

spatial arrangements. Within patches, an animal may perform

random or systematic searches. For example, a recent study

found that rats can solve the stochastic travelling salesman pro-

blem using a nearest neighbour algorithm [78]. A similar

approach could ask howan animal’s search and navigation pat-

tern interacts with different patch-leaving decisions to create an

effective foraging strategy that also considers memory of

specific patch locations. Indeed, the explicit consideration of

spatial movement may be necessary to understand foraging

decisions. Previouswork found that, when rats must physically

move to perform foraging, the observed behaviour differed

from tasks that ‘simulate’ foraging by presenting sequential

choices or that consider a visual search [79]. It is an open ques-

tion as to how the animal integrates aspects of spatial

movement with economic valuations of future reward.

Our model assumes that animals know the initial yield rate

of each type of patch in the environment. In a real-life context

or in an experimental set-up, the animal would learn the

environmental parameters, which we could model by consi-

dering another level in the inference hierarchy whereby the

patch-type quality and fraction are learned along with the tran-

sit time distribution. Although we considered a single forager

acting alone, another important extension will be to consider

interactions between animals, either through predator–prey

interactions which affect foraging decisions [80], social foraging

of groups [52,81] or even competitive foraging [17,18,82]. In our

model, the forager only receives direct (non-social) information

about resource availability; in collective foraging, an individual

receives both social and non-social information [83,84]. This can

significantly affect foraging decisions, for example in the case

where an individual must balance resource-seeking with

group cohesion. Building on our modelling approach, foragers

could share social information either by cooperating in the

inference of the patch quality or by signalling to each other

when to depart a patch as a threshold is reached.

To conclude, our model establishes a formal framework

for the quantitative analysis of a natural behaviour—

patch foraging (involving both habitat choice and patch exploi-

tation)—that can be studied with the same formal rigor as
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many trained behavioural tasks. Such validated behavioural

algorithms are crucial for the systematic design of future exper-

iments and interpretation of data on animal behaviour [85]. By

comparing with theoretical optimal strategies, experiments

and data can be used to understand the decision strategies an

animal is employing and relate these to recorded animalmove-

ment and neural data. Future work will build on this model

framework to generate testable hypotheses on the role of

social interactions and the neural mechanistic underpinnings

of foraging behaviour.
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