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Nature is in constant flux, so animals must account for changes

in their environment when making decisions. How animals learn

the timescale of such changes and adapt their decision

strategies accordingly is not well understood. Recent

psychophysical experiments have shown humans and other

animals can achieve near-optimal performance at two

alternative forced choice (2AFC) tasks in dynamically changing

environments. Characterization of performance requires the

derivation and analysis of computational models of optimal

decision-making policies on such tasks. We review recent

theoretical work in this area, and discuss how models compare

with subjects’ behavior in tasks where the correct choice or

evidence quality changes in dynamic, but predictable, ways.
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Introduction
To translate stimuli into decisions, animals interpret

sequences of observations based on their prior experi-

ences [1]. However, the world is fluid: The context in

which a decision is made, the quality of the evidence, and

even the best choice can change before a judgment is

formed, or an action taken. A source of water can dry up,

or a nesting site can become compromised. But even

when not fully predictable, changes often have statistical

structure: Some changes are rare, others are frequent, and

some are more likely to occur at specific times. How have

animals adapted their decision strategies to a world that is

structured, but in flux?

Classic computational, behavioral, and neurophysiologi-

cal studies of decision-making mostly involved tasks with

fixed or statistically stable evidence [1,2,3]. To character-

ize the neural computations underlying decision strate-

gies in changing environments, we must understand the

dynamics of evidence accumulation [4]. This requires

novel theoretical approaches. While normative models

are a touchstone for theoretical studies [5,6!!], even for

simple dynamic tasks the computations required to

optimally translate evidence into decisions can become

prohibitive [7]. Nonetheless, quantifying how behavior

differs from normative predictions helps elucidate the

assumptions animals use to make decisions [8,9!!].

We review normative models and compare them with

experimental data from two alternative forced choice

(2AFC) tasks in dynamic environments. Our focus is on

tasks where subjects passively observe streams of evidence,

and the evidence quality or correct choice can vary within or

across trials. Humans and animals adapt their decision

strategies to account for such volatile environments, often

resulting in performance that is nearly optimal on average.

However, neither the computations they use to do so, nor

their neural implementations are well understood.

Optimal evidence accumulation in changing
environments
Normative models of decision-making typically assume

subjects are Bayesian agents [14,15] that probabilistically

compute their belief of the state of the world by combin-

ing fresh evidence with previous knowledge. Beyond

normative models, notions of optimality require a defined

objective. For instance, an observer may need to report

the location of a sound [16], or the direction of a moving

cloud of dots [5], and is rewarded if the report is correct.

Combined with a framework to translate probabilities or

beliefs into actions, normative models provide a rational

way to maximize the net rewards dictated by the envi-

ronment and task. Thus an optimal model combines

normative computations with a policy that translates a

belief into the optimal action.
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How are normative models and optimal policies in

dynamic environments characterized? Older observations

have less relevance in rapidly changing environments

than in slowly changing ones. Ideal observers account

for environmental changes by adjusting the rate at which

they discount prior information when making inferences

and decisions [17!]. In Box 1 we show how, in a normative

model, past evidence is nonlinearly discounted at a rate

dependent on environmental volatility [5,17!]. When this

volatility [8] or the underlying evidence quality [13!!,18]

are unknown, they must also be inferred.

In 2AFC tasks, subjects accumulate evidence until they

decide on one of two choices either freely or when interro-

gated. In these tasks, fluctuations can act on different

timescales (Figure 1a): on each trial (Figure 1b,c) [5,6!!],

unpredictably within only some trials [19!,20], between

trials in a sequence [11,16], or gradually across long blocks

of trials [21]. We review findings in the first three cases and

compare them to predictions of normative models.

Within trial changes promote leaky evidence
accumulation
Normative models of dynamic 2AFC tasks (Figures 1b,c

and 2a, Box 1) exhibit adaptive, nonlinear discounting of

prior beliefs at a rate modified by expectations of the

environment’s volatility (Figure 1c) and saturation of

certainty about each hypothesis, regardless of how much

evidence is accumulated (Figure 2a). Likewise, the per-

formance of ideal observers at change points — times

when the correct choice switches — depends sensitively

on environmental volatility (Figure 2aiii). In slowly

changing environments, optimal observers assume that

changes are rare, and thus adapt slowly after one has

occurred. Whereas, in rapidly changing environments,

observers quickly update their belief after a change point.

In contrast, ideal observers in static environments weigh

all past observations equally, and their certainty grows

without bound until a decision [3,1].

The responses of humans and other animals on tasks in

which the correct choice changes stochastically during a

trial share features with normative models: In a random

dot-motion discrimination (RDMD) task, where the

motion direction switches at unsignaled changepoints,

humans adapt their decision-making process to the

switching (hazard) rate (Figure 2ai) [5]. Yet, on average,

they overestimate the change rates of rapidly switching

environments and underestimate the change rates of

slowly switching environments, possibly due to ecolog-

ically adaptive biases that are hard to train away. In a

related experiment (Figure 2aii), rats were trained to

identify which of two Poisson auditory click streams

arrived at a higher rate [22]. When the identity of the

higher-frequency stream switched unpredictably during a

trial, trained rats discounted past clicks near-optimally on

average, suggesting they learned to account for latent

environmental dynamics [6!!].

However, behavioral data are not uniquely explained by

normative models. Linear approximations of normative

models perform nearly identically [17!], and, under cer-

tain conditions, fit behavioral data well [5,6!!,23]. Do

subjects implement normative decision policies or sim-

pler strategies that approximate them? Subjects’ decision

strategies can depend strongly on task design and vary

across individuals [5,9!!], suggesting a need for sophisti-

cated model selection techniques. Recent research sug-

gests normative models can be robustly distinguished

from coarser approximations when task difficulty and

volatility are carefully tuned [24].

Subjects account for correlations between
trials by biasing initial beliefs
Natural environments can change over timescales that

encompass multiple decisions. However, in many experi-

mental studies, task parameters are fixed or generated

independently across trials, so evidence from previous

trials is irrelevant. Even so, subjects often use decisions

and information from earlier trials to (serially) bias future

choices [25,26,27!], reflecting ingrained assumptions

about cross-trial dependencies [21,28].
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Box 1 Normative evidence accumulation in dynamic

environments.

Discrete time. At times t1:n an observer receives a sequence of noisy

observations, j1:n, of the state S1:n, governed by a two-state Markov

process (Figure 1b). Observation likelihoods, f"ðjÞ ¼ PðjjS"Þ,

determine the belief (log-likelihood ratio: LLR), yn ¼ log
PðSn¼Sþ jj1:nÞ
PðSn¼S' jj1:nÞ

;

after observation n. If the observations are conditionally indepen-

dent, the LLR can be updated recursively [5,17!]:

yn ¼ log
fþðjnÞ

f'ðjnÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

current evidence

þ log
ð1 ' hÞexpðyn'1Þ þ h

h expðyn'1Þ þ ð1 ' hÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

discounted prior belief

; ð1Þ

where h is the hazard rate (probability the state switches between

times tn'1 and tn). The belief prior to the observation at time tn, yn'1,

is discounted according to the environment’s volatility h. When

h ¼ 0, Eqn (1) reduces to the classic drift-diffusion model (DDM), and

evidence is accumulated perfectly over time. When h ¼ 1=2, only the

latest observation, jn; is informative. For 0 < h < 1=2, prior beliefs

are discounted, so past evidence contributes less to the current

belief, yn, corresponding to leaky integration. When 1=2 < h < 1, the

environment alternates.

Continuous time. When tn ' tn'1 ¼ Dt ( 1, and the hazard rate is

defined Dt)h, LLR evolution can be approximated by the stochastic

differential equation [5,17!]:

dy ¼ gðtÞdt

|fflffl{zfflffl}

drift

þ dWt

|ffl{zffl}

noise

' 2h sinhðyÞdt

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

nonlinear filter

; ð2Þ

where gðtÞ jumps between þg and 'g at a rate h, Wt is a zero mean

Wiener process with variance r2, and the nonlinear filter '2h sinhðyÞ

optimally discounts prior evidence. In contrast to the classic con-

tinuum DDM, the belief, yðtÞ, does not increase indefinitely, but

saturates due to evidence-discounting.
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To understand how subjects adapt to constancy and flux

across trials, classic 2AFC experiments have been

extended to include correlated cross-trial choices

(Figure 2b) where both the evidence accumulated during

a trial and probabilistic reward provide information that

can be used to guide subsequent decisions [16,29]. When

a Markov process [30] (Figure 1b) is used to generate

correct choices, human observers adapt to these trial-to-

trial correlations, and their response times are accurately

modeled by drift diffusion [11] or ballistic models [16]

with biased initial conditions.

Feedback or decisions across correlated trials impact dif-

ferent aspects of normative models [31] including accumu-

lation speed (drift) [32–34], decision bounds [11], or the

initial belief on subsequent trials [12,35,36]. Given a

sequence of dependent but statistically identical trials,

optimal observers should adjust their initial belief and

decision threshold [16,28], but not their accumulation

speed in cases where difficulty is fixed across trials [18].

Thus, optimal models predict that observers should, on

average, respond more quickly, but not more accurately

[28]. Empirically, humans [12,35,36] and other animals [29]

do indeedoften respond faster on repeat trials, which canbe

modeled by per trial adjustments in initial belief.

Furthermore, this bias can result from explicit feedback

or subjective estimates, as demonstrated in studies where

no feedback is provided (Figure 2biii) [16,36].

The mechanism by which human subjects carry informa-

tion across trials remains unclear. Different models fit to

human subject data have represented inter-trial depen-

dencies using initial bias, changes in drift rate, and

updated decision thresholds [11,16,34]. Humans also tend

to have strong preexisting repetition biases, even when

such biases are suboptimal [25,26,27!]. Can this inherent

bias be overcome through training? The answer may be

attainable by extending the training periods of humans or

nonhuman primates [5,9!!], or using novel auditory deci-

sion tasks developed for rodents [6!!,29]. Ultimately, high

throughput experiments may be needed to probe how

ecologically adaptive evidence accumulation strategies

change with training.

Time-varying thresholds account for
heterogeneities in task difficulty
Optimal decision policies can also be shaped by unpre-

dictable changes in decision difficulty. For instance, task

difficulty can be titrated by varying the signal-to-noise

ratio of the stimulus, so more observations are required to

56 Computational neuroscience

Figure 1
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Two alternative forced choice (2AFC) tasks in dynamic environments. (a) Possible timescales of environmental dynamics: The state (Sþ or S'), or

the quality of the evidence (e.g. coherence of random dot motion stimulus) may switch within a trial [5,6!!,10], or across trials [11,12,13!!]; the

hazard rate (switching rate, h), can change across blocks of trials [6!!,9!!]. (b) In a dynamic 2AFC task, a two-state Markov chain with hazard rate

h determines the state. (bi) The current state (correct hypothesis) is either Sþ (red) or S' (yellow). (bii) Conditional densities of the observations,

f"ðjÞ ¼ PðjjS"Þ; shown as Gaussians with means "m and standard deviation s. (c) Evidence discounting is shaped by the environmental

timescale: (Top) In slow environments, posterior probabilities over the states, PðS"jj1:4Þ; are more strongly influenced by the cumulative effect of

past observations, j1:3, (darker shades of the observations, ji, indicate higher weight) and thus points to Sþ. (Bottom) If changes are fast, beliefs

depend more strongly on the current observation, j4, which outweighs older evidence and points to S'.
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obtain the same level of certainty. Theoretical studies

have shown that it is optimal to change one’s decision

criterion within a trial when the difficulty of a decision

varies across trials [13!!,18,37]. The threshold that deter-

mines how much evidence is needed to make a decision

should vary during the trial (Figure 3a) to incorporate up-

to-date estimates of trial difficulty [18]. There is evidence

that subjects use time-varying decision boundaries to

balance speed and accuracy on such tasks [38,39].

Dynamic programming can be used to derive optimal

decision policies when trial-to-trial difficulties or reward

sizes change. This method provides an optimal solution to

a complex decision-making process by recursively break-

ing it into a sequence of simpler steps. For instance, when

task difficulty changes across trials in a RDMD task,

optimal decisions are modeled by a DDM with a time-

varying boundary, in agreement with reaction time dis-

tributions of humans and monkeys [18,38]. Both dynamic

programming [18] and parameterized function [38,40]

based models suggest decreasing bounds maximize

reward rates (Figure 3a,b). This dynamic criterion helps

participants avoid noise-triggered early decisions or

extended deliberations [18]. An exception to this trend

was identified in trial sequences without trials of extreme

difficulty [13!!], in which case the optimal strategy used a

threshold that increased over time.

Time-varying decision criteria also arise when subjects

perform tasks where information quality changes within

trials (Figure 3c) [40], especially when initially weak

evidence is followed by stronger evidence later in the

trial. However, most studies use heuristic models to

explain psychophysical data [19!,20], suggesting a need

for normative model development in these contexts.

Decision threshold switches have also been observed

in humans performing changepoint detection tasks,

whose difficulty changes from trial-to-trial [41], and in
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Figure 2
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Dynamic state changes. (a) State changes within trials in a (ai) random dot motion discrimination (RDMD) task, in which drift direction switches

throughout the trial [5], and (aii) dynamic auditory clicks task, in which the side of the higher rate stream alternates during the trial [6!!]. (aiii) An

ideal observer’s LLR (see Eqn 2 in Box 1) when the hazard rate is low (top panels: h ¼ 0:1 Hz) and high (bottom panels: h ¼ 1 Hz). Immediately

after state changes, the belief typically does not match the state. (b) State changes across trials. (bi) In the triangles task [5], samples (star) are

drawn from one of two Gaussian distributions (yellow and red clouds) whose centers are represented by triangles. The observers must choose the

current center (triangle). (bii) In an RDMD task, dots on each trial move in one of two directions (colored arrows) chosen according to a two-state

Markov process. Depending on the switching rate, trial sequences may include excessive repetitions (Top), or alternations (Bottom). (biii) (Top)

Responses can be biased by decisions from previous trials. (Bottom) Probabilistic feedback (‘O’: correct; ‘X’: incorrect) affects initial bias (e.g.

trials 3, 4, and 5), even when not completely reliable.
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a model of value-based decisions, where the reward

amounts change between trials [42]. Overall, optimal

performance on tasks in which reward structure or deci-

sion difficulty changes across trials require time-varying

decision criteria, and subject behavior approximates these

normative assumptions.

One caveat is that extensive training or obvious across-trial

changes are needed for subjects to learn optimal solutions.

A meta-analysis of multiple studies showed that fixed

threshold DDMs fit human behavior well when difficulty

changes between trials were hard to perceive [43]. A similar

conclusion holds when changes occur within trials [44].

However, when nonhuman primates are trained exten-

sively on tasks where difficulty variations were likely diffi-

cult to perceive, they appear to learn a time-varying

criterion strategy [45]. Humans also exhibit time-varying

criteria in reward-free trial sequences where interrogations

are interspersed with free responses [46]. Thus, when task

design makes it difficult to perceive task heterogeneity or

learn the optimal strategy, subjects seem to use fixed

threshold criteria [43,44]. In contrast, with sufficient train-

ing [45], or when changes are easy to perceive [46], subjects

can learn adaptive threshold strategies.

Questions remain about how well normative models

describe subject performance when difficulty changes

across or within trials. How distinct do task difficulty

extremes need to be for subjects to use optimal models?

No systematic study has quantified performance advan-

tages of time-varying decision thresholds. If they do not

confer a significant advantage, the added complexity of

dynamic thresholds may discourage their use.

When and how are normative computations
learned and achieved?
Except in simple situations, or with overtrained animals,

subjects can at best approximate computations of an ideal

observer [14]. Yet, the studies we reviewed suggest that

subjects often learn to do so effectively. Humans appear

to use a process resembling reinforcement learning to

learn the structure and parameters of decision task envir-

onments [47]. Such learning tracks a gradient in reward

space, and subjects adapt rapidly when the task structure

changes [48]. Subjects also switch between different near-

optimal models when making inferences, which may

reflect continuous task structure learning [9!!]. However,

these learning strategies appear to rely on reward and

could be noisier when feedback is probabilistic or absent.

Alternatively, subjects may ignore feedback and learn

from evidence accumulated within or across trials [28,46].

Strategy learning can be facilitated by using simplified

models. For example, humans appear to use sampling

strategies that approximate, but are simpler than, optimal

inference [9!!,49]. Humans also behave in ways that limit

performance by, for instance, not changing their mind

when faced with new evidence [50]. This confirmation

bias may reflect interactions between decision and atten-

tion related systems that are difficult to train away [51].

Cognitive biases may also arise due to suboptimal appli-

cations of normative models [52]. For instance, recency

bias can reflect an incorrect assumption of trial depen-

dencies [53]. Subjects seem to continuously update latent

parameters (e.g. hazard rate), perhaps assuming that these

parameters are always changing [21,29].

The adaptive processes we have discussed occur on

disparate timescales, and thus likely involve neural mech-

anisms that interact across scales. Task structure learning

occurs over many sessions (days), while the volatility of

the environment and other latent parameters can be

learned over many trials (hours) [6!!,49]. Trial-to-trial

58 Computational neuroscience

Figure 3
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Dynamic evidence quality. (a) Trial-to-trial two-state Markovian

evidence quality switching: (ai) Evidence quality switches between

easy (Qeasy) and hard (Qhard) with probability Pswitch. (aii) Optimal

decision policies require time-varying decision thresholds. An observer

who knows the evidence quality (easy or hard) uses a fixed threshold

(gray traces, dashed lines) to maximize reward rate, but thresholds

must vary when evidence quality is initially unknown (black trace,

green gradient). (b) Different triangle task difficulties (from Figure 2ai):

Triangles are spaced further apart in easy trials compared to hard

trials. (c) Changes in quality within trials: (ci) An RDMD task in which

the drift coherence increases mid-trial, providing stronger evidence

later in the trial. (cii) The corresponding LLR increases slowly early in

the trial, and more rapidly once evidence becomes stronger.

Current Opinion in Neurobiology 2019, 58:54–60 www.sciencedirect.com



dependencies likely require memory processes that span

minutes, while within trial changes require much faster

adaptation (milliseconds to seconds).

This leaves us with a number of questions: How does the

brain bridge timescales to learn and implement adaptive

evidence integration? This likely requires coordinating fast

neural activity changes with slower changes in network

architecture [8]. Studies of decision tasks in static environ-

ments suggest that a subject’s belief and ultimate choice is

reflected in evolving neural activity [2,3,1,54]. It is unclear

whether similar processes represent adaptive evidence

accumulation, and, if so, how they are modulated.

Conclusions
As the range of possible descriptive models grows with

task complexity [9,49], optimal observer models provide a

framework for interpreting behavioral data [5,6!!,34].

However, understanding the computations subjects use

on dynamic tasks, and when they depart from optimality,

requires both careful comparison of models to data and

comparisons between model classes [55].

While we mainly considered optimality defined by per-

formance, model complexity may be just as important in

determining the computations used by experimental

subjects [56]. Complex models, while more accurate,

may be difficult to learn, hard to implement, and offer

little advantage over simpler ones [8,9!!] Moreover, pre-

dictions of more complex models typically have higher

variance, compared to the higher bias of more parsimoni-

ous models, resulting in a trade-off between the two [9!!].

Invasive approaches for probing adaptive evidence accu-

mulation are a work in progress [57,58]. However, pupillo-

metry has been shown to reflect arousal changes linked to a

mismatch between expectations and observations in

dynamic environments [10,27!,59].Largepupil sizes reflect

high arousal after a perceived change, resulting in adaptive

changes in evidence weighting. Thus, pupillometry may

provide additional information for identifying computa-

tions underlying adaptive evidence accumulation.

Understanding how animals make decisions in volatile

environments requires careful task design. Learning and

implementing an adaptive evidence accumulation strategy

needs to be both rewarding and sufficiently simple so

subjects do not resign themselves to simpler computations

[43,44]. A range of studies have now shown that mammals

can learn to use adaptive decision-making strategies in

dynamic 2AFC tasks [5,6!!]. Building on these approaches,

and using them to guide invasive studies with mammals

offers promising new ways of understanding the neural

computations that underlie our everyday decisions.
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