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Abstract—Intelligent interactive narrative systems coordinate a
cast of non-player characters to make the overall story experience
meaningful for the player. Narrative generation involves a trade-
off between plot-structure requirements and quality of character
behavior, as well as computational efficiency. We study this
tradeoff using the example of benchmark problems for narrative
planning algorithms. A typical narrative planning problem calls
for a sequence of actions that leads to an overall plot goal
being met, while also requiring each action to respect constraints
that create the appearance of character autonomy. We consider
simplified solution definitions that enforce only plot requirements
or only character requirements, and we measure how often each
of these definitions leads to a solution that happens to meet both
types of requirements—i.e., the density with which narrative plans
occur among plot- or character-requirement-satisfying sequences.
We then investigate whether solution densities can guide the
selection of narrative planning algorithms. We compare the
performance of two search strategies: one that satisfies plot
requirements first and checks character requirements afterward,
and one that continuously verifies character requirements. Our
results show that comparing solution densities does not by itself
predict which of these search strategies will be more efficient
in terms of search nodes visited, suggesting that other important
factors exist. We discuss what some of these factors could be. Our
work opens further investigation into characterizing narrative
planning algorithms and how they interact with specific domains.
The results also highlight the diversity and difficulty of solving
narrative planning problems.

I. INTRODUCTION

HEN it comes to developing games with dynamic
storylines and elaborate character interactions, manual
content authoring techniques such as dialogue trees dominate
the industry [1], but intelligent narrative generation technolo-
gies could open new opportunities. Rather than requiring steep
growth of authoring effort as the length and branching factor
of the narratives increase [2]], these technologies could allow
scale, complexity, and variety to be added easily; rather than
restricting player options to match preconceived paths, these
games could offer players greater freedom with the narrative
adapting at runtime to unexpected player decisions.
Although surprising outcomes from an unbounded ‘“emer-
gent narrative” [3]] are sometimes part of a system’s appeal,
usually the system author will have some requirements for the
overall progression of events. For instance, in an educational
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game or training simulation, the scenario should unfold in
a direction that supports the system’s pedagogical goals; in
a role-playing game, the author may want certain important
plot points to occur even if the events in-between can vary.
At the same time, the story’s believability to the player can
benefit from the individual virtual characters behaving like
autonomous agents—e.g., acting based on limited information
to further their own goals [4]—whether the underlying archi-
tecture is a true multiagent system or the characters are being
controlled by a hidden central coordinator.

The most appropriate choice of architecture for a narrative
generation system depends on the relative importance and
difficulty of meeting criteria such as these. We characterize the
problem of combining story-structure constraints with charac-
ter constraints as one of finding members of narrower solution
spaces within wider solution spaces, where “solutions” are
generated stories that have a given set of desired properties.

Consider the process of designing a narrative generator
starting from a fully centralized architecture. With direct
control over all of the characters, the central agent has full
power over the story structure formed by the collective sum of
the characters’ actions. However, manipulating the characters
freely can lead to a jarring player experience if individual
characters show no consistency of their own. The designer
can counteract this by imposing some form of character model
and requiring the central agent to choose manipulations that
are justified according to that model, creating the illusion of
autonomy [S]]. The architecture starts from a solution space
that satisfies story-structure constraints, and narrows it to a
solution space that also satisfies character constraints.

Conversely, consider designing a narrative generator starting
from a fully multiagent architecture. There is no need to im-
pose the illusion of character autonomy because the characters
are already autonomous by the nature of the system. However,
to ensure that a story with a desired structure emerges, the
designer must add additional features—e.g., behind-the-scenes
collusion between the character agents [6]], partial guidance
from an experience manager agent [7], or simply the ability
to simulate many possible story trajectories offline and discard
them until a satisfying one is found [8]. The architecture starts
from a solution space that satisfies character constraints, and
narrows it to a solution space that also satisfies story-structure
constraints.

This paper extends our previous work [9]] providing the first
direct investigation of solution spaces in the narrative planning
model of narrative generation. A solution to a narrative plan-
ning problem is a sequence of character actions that satisfies
certain author-oriented and character-oriented requirements.
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We consider relaxed solution definitions consisting of author-
oriented or character-oriented requirements. For a variety of
benchmark narrative planning problems, we count the solu-
tions that exist for each of the relaxed definitions, as well as for
the strict definition incorporating both types of requirements.
By doing so, we can see how frequently a strict solution occurs
among relaxed solutions, i.e., the density of the former space
within the latter ones.

This analysis highlights many examples of cases where
a system designed only around author-oriented requirements
will often produce results that may be unsatisfactory from a
character-oriented perspective, and vice versa, supporting the
value of approaches that explicitly model both types of re-
quirements. In addition to being interested in this information
for its own sake, we ultimately wish to use it to help guide
the design of narrative planning algorithms.

One relevant design factor is computational efficiency.
Solution density has previously been used to characterize
the performance of search algorithms on classic sequential
decision-making problems [[10]. We present an experiment that
applies it similarly for narrative planning. We test two variants
of depth-first search—one prioritizing author-oriented require-
ments, and one prioritizing character-oriented requirements—
to investigate whether the choice of search strategy affects
performance in terms of how many search nodes are enumer-
ated and whether solution density can be used to predict which
search strategy will enumerate fewer search nodes.

Our results show a significant difference between the two
search strategies for some benchmarks, but not others. Among
significant results, the more space-efficient search strategy
differs over domains and does not consistently align with the
solution densities we measured; that is, knowing the solution
densities alone is not enough to predict which search strategy
will visit fewer nodes for a previously-unknown domain.
We conclude that while solution densities offer one tool for
comparing domains, they do not by themselves give enough
information about a search space to guide algorithm selection,
and more analysis tools are needed to complement them.

The rest of this paper is as follows. In Section we
situate our research within the literature. In Section we
introduce notation and definitions for the types of narrative
generation problems we will be investigating. In Section IV}
we enumerate the solutions for a set of narrative generation
problems according to different definitions of a solution. In
Section [Vl we define an explanation-first search algorithm
and an author-goal-first search algorithm as a component for
the experiments that follow. In Section we compare the
number of nodes visited by these algorithms, and we relate
our findings to the data from Section [IV] In Section we
discuss the future directions suggested by our results.

II. RELATED WORK

Narrative generation technologies have a wide variety of
subcategories and approaches, as surveyed by Kybartas and
Bidarra [11]. Outside our scope are approaches that focus
on controlling the presentation (discourse) of a narrative,
including natural language generation, as well as approaches
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that focus on generating the setting of a story world or the
objects within. Instead, we focus on the generation of plot as
a sequence of events within the story world.

Resolving the tension between a system’s control over story
structure and other desiderata like character believability (as
well as player agency [12]) has been an enduring theme
in the past two decades of narrative intelligence research.
Mateas [13] proposes that narrative systems exist on a spec-
trum from strong story, where a central agent makes all
character decisions, to strong autonomy, where characters can
act with full independence. The advantage of the former is
tight control over the overall story structure; the advantage
of the latter is the ability to harness the wealth of available
work in creating believable autonomous agents. One of the
most famous achievements in intelligent interactive narrative,
Facade [14]], strives to balance these advantages using a rich
library of local character behaviors, an experience manager
that directs the characters with plot-advancing goals, and the
ability for a group of characters to perform a joint behavior
that is neither centrally imposed nor based fully on individual
autonomy. Contrast this with two prominent works from
the history of non-interactive story generation: The strongly
autonomous TALE-SPIN [15] lets a story emerge based on
how characters’ motivations, beliefs, and traits interact with
the system’s physical and social dynamics, while AUTHOR
[L6] exemplifies strong story by aiming to simulate the mind
of an author developing a plot structure rather than simulating
the story world itself.

The narrative planning family of narrative generation ap-
proaches adopts classical planning’s language of propositional
world state, propositional goals, and declarative action defini-
tions. A plan is taken to be the overall plot structure, with
the story characters carrying out the actions that comprise
it. The goal-directed nature of planning is appealing because
it allows for a form of authorial intent to be enforced; the
author can specify desired properties of a state where the
plot should eventually lead, i.e., an author goal [17]. It is
typically assumed that narrative planning is a tool of a strong-
story experience manager that performs all reasoning centrally,
although Teutenberg and Porteous [18] provide an example
of a partially distributed algorithm where character agents
propose candidate actions to the experience manager.

The narrative planner IPOCL [5] follows the paradigm of
partial-order planning, which constructs a plan as a directed
acyclic graph of actions backwards from the goal, adding
actions and orderings only as needed to ensure preconditions
and goal propositions will be fulfilled; this guarantees that
all plot events are relevant to the outcome of the story by
way of fulfilling or enabling fulfillment of the author goal.
IPOCL also promotes character believability by introducing
character goals, separate from the author goal, and requiring
all character actions to be linked to character goal achievement
in the same way that all actions overall are linked to author
goal achievement.

Later narrative planners iterate on this approach: CPOCL
[19] refines the IPOCL algorithm so character actions can be
linked to character goal achievement through unexecuted steps,
allowing characters’ attempts at accomplishing their goals to
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fail in the executed plan (e.g., because another character’s
actions interfered). Glaive [20]] keeps CPOCL’s concept of ex-
plaining character actions with unexecuted steps but divorces
it from partial-order planning, instead achieving performance
gains through a state-space heuristic search. Sabre [21] per-
forms state-space search to find plans and character action
explanations like Glaive but adds a character belief model,
including the ability to anticipate actions by other characters.
Sabre’s model of author goal achievement as a form of story
structure, and goal-and-belief-based explainability as a form
of character believability, is the basis for our experiments.
However, these are not the only notions of story structure
and character believability that have been explored in the
narrative planning literature; for instance, Shirvani and Ware
[22] incorporate an emotional model into character motivation,
Porteous et al. [23] use PDDL state trajectory constraints to
express mid-narrative authorial intent, and Young [24] and Bae
and Young [25] discuss control over story structure to induce
suspense and surprise respectively in the audience.

Analyzing a narrative generation domain based on its so-
lution densities can be considered a form of analyzing its
expressive range, a concept first discussed by Smith and
Whitehead [26] in the context of characterizing platform game
levels produced by a procedural content generator. Later works
apply this concept to narrative generation: Partlan et al. [27]]
use metrics to evaluate the influence of player choice in
branching interactive scenarios, and Kybartas et al. [28], 29]
provide tools to visualize the potential for character conflict
in possible states of a simulated story world. These forms
of analysis, like ours, can help creators of narrative systems
understand how design decisions will affect the set of possible
stories their systems could produce.

The term “solution density” comes from the heuristic search
literature [[10], where it refers to the ratio of actual solutions
to candidate solutions; for instance, a Boolean satisfiability
problem over n variables that has k satisfying assignments is
said to have a density of /2™ [30].

IIT. NARRATIVE GENERATION SOLUTION DEFINITIONS

In this section, we introduce the notation for the formal
model of narrative generation we use in our experiments.
While it is unfeasible to define a single formalism that is repre-
sentative of the entire diverse spectrum of narrative generation
approaches, we aim to capture common features and generate
solutions for some well-defined existing narrative generation
problems. To achieve this, we use a modified version of a
formalism introduced by Shirvani et al. [4] and implemented
in Sabre [21]. The formalism ultimately derives from STRIPS-
style [31]] classical planning. We build up to a definitions
for strict narrative-planning solutions incorporating author and
character constraints, and relaxed solution definitions incorpo-
rating only author or only character constraints.

A. Problem Instances

We consider narrative generation problems consisting of a
tuple <$03 V; Ca A7 Yas G(C)>
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V' is a set of propositional variables. A state assigns a value
of true or false to each of those variables. sq is a state called
the initial state, which is supplied to describe the starting state
of the story world.

C is a set of objects representing the story’s characters.
Characters have (possibly-wrong) beliefs about the state of
the world; for every character ¢ € C and variable v € V, we
define an additional variable believes(c,v) € V representing
the proposition that a character ¢ believes v is true (other-
wise, ¢ believes v is false). Beliefs can be arbitrarily nested;
believes(cy, believes(cq,v)) is the proposition that character
c1 believes character ¢y believes v is true. A state tracks all
characters’ beliefs, including beliefs about each other’s beliefs
and so on. (See Shirvani et al. [32] for a discussion of how
the infinite set of resulting beliefs can be finitely represented.)
A character’s beliefs also correspond to a state; at any time, a
character believes exactly one value for each variable.

A is a set of actions. Each action has preconditions and
effects, which are propositions over V. An action can be
taken only in a state where its preconditions holds, and results
in a state where its effects hold. Every action also defines
a (possibly empty) set of consenting characters from C.
Intuitively, consenting characters are the characters that “take”
an action; in some solution types defined later, these also affect
which actions can be taken.

go 1s the author’s goal, a proposition over V. For every
character ¢ € C, G(c) is a set of propositions over V; these
constitute character goals for cﬂ These are used to define
solutions later in this section.

We illustrate with a running example based on the
grandma domains [33]. The character set C' includes the
Merchant and the protagonist Tom. The variable set V' de-
fines the locations of the characters and of items such as
a Coin and a Potion (e.g., the variable at(Tom, Cottage)
tracks whether Tom is at the Cottage). The initial state sg
declares initial facts, such as Tom being at the Cottage (i.e.,
at(Tom, Cottage) is true) with the Coin, the Merchant being
at the Market with the Potion, Tom believing the Merchant
is at the Market, and the Merchant not knowing Tom is
at the cottage (i.e., believes(Merchant, at(Tom, Cottage))
is false). G(c) says the Merchant wants to have the Coin
(i.e., at(Coin, Merchant) € G(Merchant)) and that Tom
wants to have the Potion at the Cottage. g, says the author
goal is also for Tom to have the Potion at the Cottage (i.e.,
9o = (at(Tom, Cottage) N at(Potion, Tom)).

Actions in A include travel, give, pick-up, kill, and buy.
The action for Tom to travel from the Cottage to the Market,
for instance, has the precondition that Tom is at the Cottage
(at(T'om, Cottage)) and the effects that Tom is at the Market
instead and that characters at these locations update their be-
liefs to reflect this (at(Tom, Market) A—at(Tom, Cottage) A
V.ccat(c, Cottage) — believes(c, at(Tom, Market))A--+).

ISabre uses a richer syntax where desires are specified in terms of a
utility function instead of propositional goals; however, since the original
forms of our domains generally use propositional goals and we set up the
utility functions to handle these goals equivalently, we will use a goal-based
formalism in this paper for brevity.

ublications/rights/index.html for more information.



2475-1502 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution r

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3149529, IEEE

Transactions on Games

B. Explaining Actions

What differentiates instances of the above problem from
classical planning instances is the addition of character goals,
character beliefs, and consenting characters for actions. This
makes possible some of the solution definitions we will con-
sider in Section that impose character-based constraints
on chosen actions, reinforcing the idea that story characters
should behave like autonomous agents with their own goals
and models of the world. These constraints say that when an
action is selected to be taken by character c, there should exist
a hypothetical plan from c’s perspective where the action helps
lead to one of ¢’s goals in G(c) being achieved, thus giving ¢
a reason to participate in the action.

Let s be a state. When s holds, let sp,; be the state
character c believes the world is in, as defined by the believes
propositions in s. An action a € A taken in s is explained for
consenting character c iff:

1) Starting from state spe; where some goal g € G(c) does
not hold, there exists a legal sequence of actions (called
an explanation) that begins with action a and ends in a
state where g holds.

2) All actions in the explanation have consenting charac-
ters ]

3) If an action in the explanation has a consenting character
¢ # c, that action is explained for ¢’.

4) The explanation does not contain a strict subsequence
that also meets these criteria.

The first criterion ensures that from c¢’s perspective, a could be
part of a plan to achieve a goal; the last criterion ensures that a;
is actually relevant to the goal achievement, rather than being
redundant. The other criteria ensure that if ¢ anticipates an
action taking place outside of its own direct control, that action
is plausible based solely on ¢’s awareness of other characters’
beliefs and desires.

Returning to our grandma example, suppose we are in the
initial state and Tom travels from the Cottage to the Market.
To explain this action, we consider a plan Tom could have that
begins with this action and achieves his goal: He could use his
Coin to buy the Potion from the Merchant at the Market, and
then travel back to the Cottage. The buy action can only be
included if it is explainable for the Merchant, as she is another
consenting character. We confirm that it is explainable, as it
immediately achieves the Merchant’s goal of having the Coin.

C. Solution Definitions

Starting from the initial state sg, consider a sequence of
actions (aq,as,--- ,a,) where applying the effects of any
action a; to s; results in a state s;+1. We call such a
sequence legal if each a;’s preconditions hold in s;. Possi-
ble “solutions” to a narrative generation problem are taken
from among legal action sequences. We consider multiple
definitions of a solution; given a narrative generation instance
P = {s,V,C, A, gq,G(c)), we define:

21n other words, a character can anticipate how other characters will behave,
but has no means of predicting events beyond any character’s control.
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o Auth(P): The set of author-constraint-satisfying se-
quences, namely, those action sequences (a1, ag, - ,an)
where the author goal g, holds precisely after a,, is taken.

o Char(P): The set of character-constraint-satisfying se-
quences, namely, those action sequences where each
action is explained for its consenting characters.

o Auth(P)NChar(P): The set of sequences that are both
author-constraint- and character-constraint-satisfying.

For instance, in grandma, an example of an Auth(P) N
Char(P) solution is the one where Tom fravels to the Market,
buys the Potion, and travels back to the Cottage. An example
of a solution in Auth(P) but not Char(P) is one where the
Merchant travels to the Cottage and gives Tom the Potion; the
Merchant initially has no reason to travel to the Cottage as she
does not know Tom is there, and she has no reason to give him
the Potion as it does not help her get the Coin. An example
of a solution in Char(P) but not Auth(P) is one where Tom
travels to the Market only for the Merchant to kill him so she
can pick-up his Coin; the Merchant acts consistently with her
own goal but prevents the author goal from being achieved.

IV. MEASURING SOLUTION DENSITIES

In this section, we count solutions to characterize the
solution spaces of a variety of narrative generation domains.
By “domain”, we mean a set of problem instances sharing
the same variables, characters, and actions; instances from a
domain may have different initial states and goals. We aimed
to represent domains from a variety of authors and contexts;
for instance, some were designed to gauge player perception of
character believability in an interactive adventure game (e.g.,
[33]), to benchmark (e.g., Ware and Young [20]) or illustrate
key features of a planner (e.g., Christensen et al. [34]), or
to serve as part of a larger story generation pipeline (e.g.,
Cardona-Rivera and Li [33])).

We used the following domains adapted for the Sabre
narrative planner [Zl]EI

e blackbeard, based on the Treasure Island domain
from Shirvani et al. [32].

e fantasy from Ware and Young [36], adapted to add
character beliefs.

e grandma-lose, the domain used for the simple adven-
ture game in the experiments of Ware et al. [33], but with
the author goal of the protagonist dying.

¢ grandma-win, the same domain except with the author
goal matching the protagonist goal. (The original domain
has the disjunction of the “win” and “lose” goals as the
author goal.)

e hospital from Porteous et al. [37]], adapted to add
character beliefs and intentions and to have a solution
space small enough to fully enumerate.

e hubris from Christensen et al. [34].

e lovers from Farrell and Ware [38]].

e raiders from Ware and Young [20], adapted to add
character beliefs.

3Sabre and full domain definitions will be available in the near future at:
http://cs.uky.edu/~sgware/projects/sabre/
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o red from the Porteous et al. [37] adaptation of Riedl
[[17]], adapted to add character beliefs and intentions.

e space from Ware and Young [36], adapted to add
character beliefs.

e villains, a domain used for (Cardona-Rivera and Lis
PlotShot [35]], omitting “discourse” actions used to deter-
mine presentation rather than plot events.

Each of these domains is paired with a single “canonical”
problem instance, except hospital which comes with ten
manually-authored instances and lovers for which we used
ten randomly-generated instances known to be solvable.

In order to enumerate the action sequences in Auth(P),
Char(P), and Auth(P)NChar(P) for each problem instance
P, we needed to limit the size of the solution spaces, as
many instances would allow an infinite number of solutions
by repeating cycles of actions. For each problem instance, we
imposed a maximum depth on any given solution. Maximum
depth d means the solution can only be d actions long. Depth
limit also affects explanation length: If an action appears at
depth ¢ and an explanation of length j is needed to explain it,
we require i+j < d. We generated and counted all solutions up
to a maximum depth for each solution definition. We consid-
ered only the executed sequence for determining what counts
as a unique solution; if there were multiple ways to explain
the same executed sequence, it still contributed only one to the
solution count. Furthermore, since many solutions in Char(P)
are simply truncations of longer solutions, we considered only
maximal sequences with respect to the solution definition and
maximum depth, i.e., sequences that were extended as far as
they could go within the depth limit while still meeting the
solution definition.

Tables [[I shows the number of solutions for each domain
with each solution definition. For multi-instance domains, the
values shown are averaged over the instances.

The table also shows as a ratio how densely Auth(P) N
Char(P) solutions occur among overall Auth(P) or
Char(P), calculated by dividing the solution count for
Auth(P)NChar(P) by the solution count for the other space.
In other words, this solution density expresses the probability
that a randomly-sampled sequence in Auth(P) or Char(P)
will be an Auth(P) N Char(P) solution. Note that by this
metric, a larger Auth(P) or Char(P) does not inherently
mean rarer Auth(P) N Char(P) solutions; what matters
is the proportional size of the latter space. Note also that
solution density does not directly express the probability that
an Auth(P) or Char(P) sequence produced by a narrative
generation algorithm will be an Auth(P)NChar(P) solution,
since there are nonrandom elements to these algorithms; how-
ever, our experiments in Section [VI|aim to capture whether the
random-sampling probability is a good proxy for the difficulty
of algorithmic generation.

By default, we set the maximum depth to be the lowest
depth at which solutions for Auth(P) N Char(P) appear;
we make reference to these results for our Section [VI] exper-
iments, since those experiments revolve around an iterative-
deepening search that stops at the first depth where it finds
Auth(P) N Char(P) solutions. However, for some single-
instance domains (limited by available computation time and
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space), we repeated the data collection at larger maximum
depths; these additional results are not referenced in the later
experiments but are presented for their own sake in the table.
For instances with several points of data, these results are also
illustrated as plots in Figure [I]

V. SEARCH STRATEGIES

A typical narrative planner searches for a solution defined
much like our Auth(P) N Char(P) space. It generates an
author-goal-achieving action sequence to be executed, plus
unexecuted sequences constituting explanations, i.e., proofs
that the actions meet the character constraints. Sabre [21] does
this in what we will call an explanation-first search: Before it
adds an action to the tentative executed sequence, it generates
an explanation for that action, discarding the action if no
explanation is found. It assembles an author-goal-achieving
sequence from already-explained actions, so that when the
final author-goal-achieving action is added to the sequence,
the whole sequence is known to be a valid narrative plan. We
will refer to this search process as EXPFIRST, and we detail
it in Algorithm 1. Generating explanations is itself a search
process; the explanation process, EXPLAIN in Algorithm 2,
likewise proceeds in an explanation-first manner, but it treats
a character’s beliefs as true and tries to satisfy character goals
rather than taking the actual world state and satisfying author
goals.

Algorithm 1 EXPFIRST(s, A, g4, G(¢), d, )

Input: Initial state sy, action set A, author goal g,, character
goals G(c), depth limit d, current plan 7 (the empty plan
in the initial call)

Output: A sequence of actions in Auth(P) N Char(P), or
null if none exists within the depth limit

1: s < the state resulting from applying 7 to sg

2: if s = g, then

3:  return w

4: else if d = 0 then

5:  return null

6: Nondeterministically choose action a € A legal in s
7: for all ¢, that are consenting characters for a do

8. if "EXPLAIN(s, A, G(c),d — 1, {a)) then

9: return null

10: 7’ < the plan resulting from appending a to 7

—
—_

: return EXPFIRST(sg, A, G(c),d — 1,7, ¢,)

In contrast, some narrative planners (e.g., Glaive [20])
search for solutions in an author-goal-first fashion: First they
find a sequence of not-yet-explained actions that achieves
the author goal (effectively, a classical plan), and then they
try to generate an explanation for each of those actions
retroactively. We stereotype this process as AUTHFIRST in
Algorithm 3. It differs from EXPFIRST only in the timing of
explanation generation within the search for an author-goal-
achieving state; to focus on the effects of this difference, we
keep the explanation procedure (EXPLAIN) the same between
both search strategies.

We use the vocabulary of nondeterministic choice for
brevity; in practice, we implement action choice as a depth-
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TABLE I
SOLUTION COUNTS AND DENSITIES
domain max depth Char(P) Auth(P) Auth(P) N Auth(P) N Auth(P)N

Char(P) Char(P) density Char(P) density
within Char(P) within Auth(P)

blackbeard 3 6 4 2 0.333 0.500
blackbeard 4 23 26 5 0.217 0.192
blackbeard 5 86 165 19 0.221 0.115
blackbeard 6 299 926 60 0.201 0.065
blackbeard 7 1004 5239 188 0.187 0.036
blackbeard 8 4831 28893 1149 0.238 0.040
blackbeard 9 25986 159453 6973 0.268 0.044
fantasy 6 12 18 12 1.000 0.667
fantasy 7 12 1322 12 1.000 0.009
grandma-lose 4 8 1351 1 0.125 0.001
grandma-lose 5 37 13830 2 0.054 < 0.001
grandma-lose 6 403 140677 26 0.065 < 0.001
grandma-lose 7 4147 1437070 228 0.055 < 0.001
grandma-win 5 39 344 1 0.026 0.003
grandma-win 6 450 4485 11 0.024 0.002
grandma-win 7 4786 54866 129 0.027 0.002
hubris 5 3 12 1 0.333 0.083
hubris 6 3 48 3 1.000 0.063
hubris 7 4 165 4 1.000 0.024
hubris 8 4 528 4 1.000 0.008
raiders 7 10 706 3 0.300 0.004
raiders 8 9 3631 5 0.556 0.001
raiders 9 19 16386 8 0.421 < 0.001
raiders 10 16 77739 12 0.750 < 0.001
raiders 11 35 351553 20 0.571 < 0.001
red 5 515 2 2 0.004 1.000
space 3 4 1 1 0.250 1.000
space 4 9 9 2 0.222 0.222
space 5 20 70 6 0.300 0.086
space 6 68 407 22 0.324 0.054
space 7 162 2095 58 0.358 0.028
space 8 459 10057 161 0.351 0.016
space 9 1545 46732 530 0.343 0.011
space 10 3930 213373 1386 0.353 0.006
villains 8 1348 1476 360 0.267 0.244
hospital (avg.) 43 416.2 1504.9 216.0 0.520 0.143
lovers (avg.) 44 315.0 1237.5 19.6 0.062 0.016

Algorithm 2 Subroutine EXPLAIN(s, A, G(c), d, Texp, Cexp)

Input: Initial state s, action set A, character goals G(c), depth
limit d, explanation so far 7., character ceyp;

Output: Boolean: Whether the first action of 7., can be
explained for c.;, in state s by extending m.;, with
maximum depth depth d

Algorithm 3 AUTHFIRST(s, A, g4, G(c),d, )

Input: Initial state sg, action set A, author goal g,, character
goals G(c), depth limit d, current plan 7 (the empty plan
in the initial call)

Output: A sequence of actions in Auth(P) N Char(P), or
null if none exists within the depth limit

5 Sf’el ¢ the state behevpd bY Ceap in iy 1: s + the state resulting from applying 7 to sg
2: sp,; < the state resulting from applying meyp 1O Spe .

L 2: if s = g, then
3: if sy, is undefined then

© 3:  return
4:  return false .
s else if dundantl hi T th 4: else if d = 0 then
6: e se1t wezptnonre undantly achieves a goal for ¢4, then s return null
7: lrei;‘“;ln— 5“;1 0 6: Nondeterministically choose action a € A legal in s
8: clse ¢ B fal ¢ 7: 7' < the plan resulting from appending a to 7
. return fa'se . ., 8: Ty < AUTHFIRST(so, A, G(c),d — 1,7, ¢c,)
9: Nondeterministically choose action a € A legal in s}, .
. 9: if Tyl = null then
10: for all ¢, # cc.p that are consenting characters for a do
11:  if “EXPLAIN(s, A, G(c),d —1,(a)) th 10: ~ return null
12: e ¢ fal 5,45 e, @ en 11: for all ¢, that are consenting characters for a do
o rern rase . 12: if “EXPLAIN(s, A, G(c),d — 1, (a)) then
13: 7' <— the plan resulting from appending a to 7z,
, . . : 13: return null
14: s’ < the state resulting from taking a in s
, 14: return s,y

15: return EXPLAIN(s, A, G(c),d — 1,7, Cexp)
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Fig. 1. Visualizations of some of the data from Table Note the logarithmic scale.

first search procedure that must spend computational effort
trying candidate actions that will not be used in the final
plan. EXPFIRST risks wasting effort by generating unneeded
explanations, because an explained action may not lead to
the author goal. In other words, the strategy is efficient at
maintaining a sequence known to be in Char(P), but wasteful
if the sequence is not also in Auth(P). AUTHFIRST averts this
risk because it does not explain an action until the action is
already known to lead to the author goal, but instead it risks
wasting effort by generating sequences that turn out not to be
explainable. In other words, it prioritizes finding a sequence
known to be in Auth(P), but is wasteful if the sequence is

not also in Char(P).

VI. COMPARING SEARCH STRATEGIES

This section presents our results from benchmarking the
search algorithms in Section [V] on the domains in Section [[V]
in order to investigate how the choice of author- or character-
constraint prioritization in the search process relates to the
densities of narrative planning (Auth(P)NChar(P)) solutions
within the relaxed author-oriented (Auth(P)) or character-
oriented (Char(P)) solution spaces.

We implemented AUTHFIRST alongside the existing EXP-
FIRST implementation in the Sabre narrative planner. As
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Sabre runs its state-space search, it tracks the nodes visited
during the search process, i.e., the number of state-action
pairs considered, or the total number of recursive calls to
AUTHFIRST/EXPFIRST and EXPLAIN. We use nodes-visited
count as our metric for comparing the two search strategies;
while it does not capture all aspects of an algorithm’s space
and time consumption, it offers a proxy measure that is
independent of low-level implementation details (assuming, as
is true in our implementation, that candidate actions from a
given state are explored in a random order) and the platform
on which the experiments are run.

To capture a “fair” search process without preexisting
knowledge of the depth at which solutions exist, we ran
iterative-deepening versions of each of our strategies, i.e.,
we started at depth limit d = 1, restarted the process with
d = 2 if no solution was found, and so on, tracking the
cumulative nodes-visited count for all successive calls. Note
that this means only minimum-depth Auth(P) N Char(P)
solutions were found—e.g., in reference to Table I} the search
found only depth-3 solutions for blackbeard, depth-6 for
fantasy, and so on.

We collected search data for 10 runs each of AUTHFIRST
and EXPFIRST for each domain, randomizing the order in
which candidate actions were considered at each search node.
For single-instance domains, the 10 runs were on the same
problem instance; for multiple-instance domains, we used a
different instance per run. Table [[I] shows the results: For a
domain in the first column, the average nodes-visited count
for the AUTHFIRST and EXPFIRST strategies are shown in
the second and third columns respectively. The fourth column
identifies which of these strategies visited fewer nodes. The
fifth column shows the p-value (two-tailed Student’s T-test,
independent similar-variance samples) for the hypothesis that
the nodes-visited count differs between AUTHFIRST and EXP-
FIRST. Values indicating significance (p < 0.05) are bolded.

Four domains showed statistically significant differences be-
tween the two search strategies: grandma—-win, raiders,
space, and villains. Among the domains with significant
differences, neither search strategy consistently dominated the
other over all domains, nor was there a clear relationship
between which relaxed solution space had a higher Auth(P)N
Char(P) solution density (at the first depth where solutions
occurred)) and which search strategy required fewer nodes
visited; grandma-win, raiders,and villains all had a
higher solution density within Char(P), but grandma-win
had AUTHFIRST visit fewer nodes while the other two had
EXPFIRST visit fewer.

This contrasts with a prediction made in our previous work
[O]. Recall that AUTHFIRST aims to avoid wasting effort
finding explanations that do not end up in the final solution
because the explained actions do not lead to an author goal,
while EXPFIRST aims to avoid wasting effort finding executed
actions that do not end up in the final solution because they
are not explainable. This would suggest AUTHFIRST outper-
forming EXPFIRST as the solution density within Auth(P) be-
comes higher relative to the solution density within Char(P),
and vice versa, which did not consistently hold in our data.

However, this prediction overlooks unmodeled factors that
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could affect search efficiency. For instance, by emphasizing
the number of explanations that the search process needs to
generate, it assumes that the amount of effort required per
explanation is roughly the same. One way that this assumption
could fail to hold is based on our practice of limiting search
depth. The earlier an action occurs in the executed sequence,
the longer its explanation is allowed to be, creating a larger
possible search tree for finding that explanation. All else being
the same, trying to explain an unexplainable action toward the
beginning of the executed sequence wastes more effort than
trying to explain one toward the end. This pattern penalizes
EXPFIRST more heavily when the unexplainable actions are
concentrated closer to the initial state in state space.

VII. CONCLUSIONS

This paper has taken the concept of solution density analysis
from the combinatorial search literature and applied it to narra-
tive generation. Examining solution density can help domain
authors examine the range of possible narratives that might
result from their domains based on criteria like plot structure
and character believability; it can also help narrative planning
algorithm designers make design decisions by examining the
search spaces their algorithms will need to explore.

At the same time, our experiments show that the relative
sizes of author- and character-oriented solution spaces alone
are not enough to explain the difference between different nar-
rative planning algorithms’ performance. The model Vempaty
et al. [10] use to characterize algorithms for traditional search
problems considers both solution density and a form of branch-
ing factor; the unique requirements of narrative planning mean
that explaining and predicting algorithm performance will
likely require new tools alongside these classic ones.

We acknowledge the threats to external validity (i.e., gen-
eralizability of our findings outside of our specific context)
of our experiments; the process we have used to characterize
narrative planning domains and algorithms does not precisely
reflect how a designer of a real system might do so. Firstly, in
order to investigate the relationship between solution densities
and search performance, we pre-computed solutions to a set
of problems and then ran search algorithms on that same
set of problems. In a practical application, if we could pre-
compute the solutions to all instances we would encounter,
we would not fast search algorithms to begin with; it is more
realistic to analyze only a small subset sampled from many
possible instances. Secondly, the algorithms we tested are
straightforward variants of depth-first search and do not have
the optimizations that would be needed for good performance
in a practical application; instead, they are deliberately over-
simplified to focus on the effects of immediately explaining
character actions versus deferring explanation. Thirdly, since
narrative planning has so far not been used in commercial
applications and has appeared in only a few complete playable
experiences by researchers (such as The Best Laid Plans [39]),
the domains we used do not necessarily resemble what might
be used commercially, although we have assembled a set
of domains as diverse as we could from what is currently
available.
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TABLE 11

SEARCH STRATEGY EXPERIMENTAL RESULTS

domain AUTHFIRST avg. nodes EXPFIRST avg. nodes  winner p
visited visited

blackbeard 142.1 157.6  AUTHFIRST 0.429
fantasy 3305198.2 3246841.1  EXPFIRST 0.948
grandma-win 80136.4 155164.6  AUTHFIRST 0.006
grandma-lose 10085.4 11537.0  AUTHFIRST 0.393
hubris 310.0 321.8  AUTHFIRST 0.694
raiders 37807.7 12773.3  EXPFIRST <0.001
red 73200.1 93720.7  AUTHFIRST 0.245
space 50.3 37.5 EXPFIRST 0.036
villains 1081257.6 1753159.9  AUTHFIRST <0.001
hospital 4544.4 6046.1  AUTHFIRST 0.575
lovers 961436.7 288309.8  EXPFIRST 0.410
Despite our experiments’ focus on a narrow formulation  [7] ——, “Towards integrating plot and character for inter-

of narrative generation, some observations are relevant to
other areas of narrative intelligence. For instance, why are
author-constraint-satisfying sequences are more common than
character-constraint-satisfying sequences in most instances?
One factor is that the explanations needed to satisfy character
constraints constitute standalone narratives in themselves, so
a character-constraint-satisfying sequence requires the joint
existence of solutions to many subproblems rather than the
singular problem solved by an author-constraint-satisfying
sequence. While we have taken a perspective of limiting a
space of generated stories, this recursive feature of narrative
can also be used to broaden a story space by discovering,
transforming, and recombining story fragments [40]].
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