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Abstract—Psychological research has demonstrated that as we
experience a story several features affect the salience of its events
in memory. These features correspond to who? where? when?
how? and why? questions about those events. Computational
models of salience have been used in interactive narratives to
measure which events people most easily remember from the
past and which they expect more readily from the future. We
use three example domains to show that events in sequences that
are solutions to narrative planning problems are generally more
salient with each other, and events in non-solution sequences
are less salient with each other. This means that measuring the
salience of a sequence of actions during planning can serve as
an efficient cost function to improve the speed, and perhaps also
the quality, of a narrative planner.

Index Terms—narrative, planning, salience, search

I. INTRODUCTION

Algorithms for generating stories have long been of interest
to the entertainment Al community as a tool for controlling
interactive experiences, such as video games or training sim-
ulations [1]. In previous work, we explored how modeling the
salience of events while generating an interactive story can
inform the choices offered to the player [2], [3]. In this paper,
we explore whether modeling salience can also improve the
speed of the search algorithms.

As we experience a narrative, we segment it into discrete
events and store information about past events in memory.
These past events can be easier or harder to recall based on
how they relate to the event or situation we are currently
experiencing (dubbed the current situation model). The event-
indexing model (EIM) [4] has established at least five impor-
tant indices by which stored events can be linked in memory:

o Protagonist (who?): It is easier to recall events that

involve characters who are involved in the current event.

e Time (when?): It is easier to recall events that happened

in the same time frame (e.g. day) as the current event.

o Space (where?): It is easier to recall events that occurred

in the same location as the current event.

o Causality (how?): It is easier to recall events which

caused the current event to occur.

« Intentionality (why?): It is easier to recall events which

happened in service of the same goal as the current event.
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For example, when the current event of a story is happening to
King Arthur (protagonist) in Camelot (space), previous events
that also involved him and took place in Camelot are more
salient, or easier to recall, than they would be otherwise.

These five indices can be mapped onto features readily
available in planning-based computational models of narra-
tive [5]. A planning algorithm is one that searches for a
sequence of events to achieve a goal. Planning algorithms are
a popular tool for story generation because they offer a formal,
generative model of a goal-directed sequence of events, along
with the causal and temporal constraints on the events [6].
The knowledge representation for planning algorithms has
been extended to include models of character goals [7], [8],
character beliefs [9], [10], conflict [11], and others (see Young
et al. [1] for a survey). This rich knowledge representation
provides a way to model the who, when, where, how, and why
of a plan’s events, which can then be used to model salience.

Planning algorithms are especially attractive for interactive
narratives where a story must be repaired or regenerated in
response to a player’s actions. For example, fast planners
have been used to make interactive versions of the TV
show Friends [12], Flaubert’s novel Madame Bovary [13],
Shakespeare’s play The Merchant of Venice [14], and various
role-playing games [15], [16]. Planning is computationally
expensive [17], which limits the scope of the stories that can be
generated at run time. Algorithms like IMPRACTical [8], [9],
Glaive [18], and Sabre [19] adapt research on fast heuristic
search to speed up narrative generation.

In this paper we provide preliminary evidence that a simple
model of event salience can be used to speed up narrative
planning. Algorithms like Breadth-First Search, Uniform Cost
Search, and A* all measure some version of a plan’s length
or cost when deciding which partial plans to extend when
searching for a solution. Typically a plan’s cost is simply
its length (number of events) or the time it takes to execute
those events in the case of a scheduler. We use an alternative
measure of plan cost based on salience: the more salience
indices two events share, the smaller the distance between
them, and the cost of a plan is the sum of the distances
between contiguous events. Using three domains, we show that
solutions tend to have a lower salience cost than non-solutions,
and that narrative planners can sometimes find solutions faster
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by prioritizing plans with low salience cost. We suspect that
modeling salience during search can improve both the speed
and coherence of interactive stories, though this paper deals
only with speed.

II. RELATED WORK

STRIPS-like planning problems [20] define a set of pa-
rameterized operators, or templates, to represent the types
of events that can occur in the story world. Each opera-
tor defines preconditions—logical literals that must be true
before the event can happen, and effects—literals that be-
come true as a result of the event. Operators imply a set
of ground actions, which are every way specific arguments
can be substituted for the operator’s parameters. The action
walk(Tom, Cottage, Crossroads, Day;) is a ground action
that assigns four specific arguments to the parameters of the
operator walk(person, from,to, date).

The problem also defines an initial state, a conjunction of
ground literals that completely describes the initial configura-
tion of the world, and a goal, a conjunction of ground literals
to be achieved. A solution to the problem is a sequence of
actions that can be executed from the initial state to achieve
the goal.

The Intentional Partial-Order Causal Link planner
(IPOCL) [7] designates some objects in the domain as the set
of story characters who can possess their own character goals.
IPOCL operators define a set of consenting characters—those
who are responsible for taking the action and must have a
reason for doing so. During search, IPOCL tracks intention
frames for each character—sequences of actions taken by
the character to achieve their character goal. To ensure all
actions in the solution appear properly motivated, the planner
guarantees that each action appears within an intention frame
for each of its consenting characters.

Indexter [S5] is a computational model that maps the five
EIM indices onto IPOCL plans. The characters and char-
acter goals introduced by IPOCL are used to determine
the protagonist and intentionality indices: Two actions share
protagonist if the story’s protagonist (a predefined character)
is a consenting character in both actions, and they share
intentionality if they appear within the same intention frame.
Indexter defines the causality index using the planner’s causal
link structures, which explicitly track how the effects of earlier
actions establish preconditions needed by later actions [21].
There is a great deal of nuance to causality and the types of
causal relationships between actions that are perceived during
narrative processing [22]. For our purposes we use a simple
definition of enablement, where two actions are determined to
share causality if one enables the other.

Indexter extends the IPOCL model to account for the
remaining indices by requiring location and time frame pa-
rameters for each operator. Thus two actions share space
if their location parameter is the same symbol, and time if
their time frame parameter is the same symbol. The Indexter
model was shown to be sufficiently accurate to validate the
pairwise event salience hypothesis—that past actions are more
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Fig. 1: The Grammalot domain’s characters and locations.
Note the merchant starts at the market but may move to her
mansion at night.

salient when they share indices with the current action—
using readers’ response times as an indicator of salience [23].
Readers were interrupted during a story and asked to recall
previous actions, and actions which shared indices with the
current action were recalled faster (e.g. when the most recently
read action involved King Arthur, readers were able to recall
past actions involving Arthur faster).

Other studies suggest that this model of salience can be used
to represent meaningful dimensions by which humans segment
perceived trajectories through interactive narrative spaces. In
one study, subjects reported feeling more agency when they
were making choices whose outcomes differed along at least
one index [2]. In another, readers’ choices for story endings
were predicted based on the number of indices each ending
shared with previous choice outcomes [3]. Based on these
findings, we observed that actions in story plans often share
indices with one another. In this work we explore whether this
idea can help narrative planners identify solutions faster.

III. EXAMPLE DOMAIN

We will use an example narrative planning domain adapted
from a short interactive narrative game [16] to illustrate our
method. In the original domain there was no meaningful time
index, so we modified it to include a day/night transition.
The domain contains four characters—7Tom, a bandit, a
guard, and a merchant—and five locations. The crossroads
contains paths to each of the other four locations: Tom’s
cottage, the bandit’s camp, the merchant’s mansion, and the
market, as depicted in Figure 1. Characters can only walk
along these paths.

Tom needs to acquire a special potion for his grandmother.
During the day, the potion can be bought for one coin from the
merchant at the market, who also has a sword for sale at the
same price. At night, the merchant goes to sleep at her mansion
with all of her items. Tom can choose to wait for night,
or the next day, at any location. Characters can steal items
from others who are sleeping or dead, and characters who
are armed with a sword may rob or kill unarmed characters,
but these are all crimes punishable by death. The guard is
armed, and he watches the market during the day, intending
to punish any criminals he knows about. The bandit is a
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known criminal, but his whereabouts are initially unknown
to the other characters. The bandit begins at his camp, where
there is a chest containing one coin. Characters can take items
out of the chest. The bandit is armed, and intends to acquire
other valuable items such as coins and potions. Tom begins
at his cottage with one coin. The story ends when Tom either
succeeds in returning to his cottage with the potion, or is killed
by another character.

IV. SALIENCE DISTANCE

We introduce a simple way to estimate the salience distance
between two contiguous actions and the overall salience cost
of a sequence of actions. Because we are designing fast search
algorithms, we are interested in a method which can be quickly
pre-computed for every pair of actions in the domain and
stored in a table for fast lookup during search. The method
we describe is intentionally simple; it is meant to guide a fast
search, so it leaves out much of the nuance of EIM research.

Let m = {a1,as, ...,a,} be a sequence of n actions. Let I
be a set of salience indices. Each index 7 € I is a Boolean
function i(aj, a;41) which returns true if actions a; and a;4
share that index, false otherwise. We use a total of |I| =
4 indices in this paper, adapted from the Indexter model as
follows:

o Protagonist: Two actions are linked according to this
index if there exists a character that appears in the
arguments of both. We do not require a predefined story
protagonist, and instead generalize this index to include
any character. EIM research has also generalized this
dimension to represent other important entities involved
in the situation, including other characters, objects, and
even ideas [24].

o Time: Actions are linked if the same discrete time period
appears in the arguments of both.

e Space: Actions are linked if the same location appears in
the arguments of both.

o Causality: Actions are linked if a; has an effect which
also appears in the precondition of a;,1. Some narrative
planners support conditional effects, which means an
action’s effects depend on the state in which it occurs. We
do not attempt to account for these conditions—that is,
we treat all effect conditions as true when pre-computing
our lookup table.

« Intentionality: We do not account for this index. Ideally,
we would say that two actions are linked if they are taken
in service of the same character goal; however, our metric
is meant for forward planners to use during search. This
means that most actions will not (yet) be explained by
any character goals at the time the metric is calculated.
We could potentially use goal heuristics [18] to estimate
which character goals will be used to explain the actions,
but this would have a polynomial time cost. For this initial
version of our method, we are interested in something that
can be easily pre-computed and stored in a lookup table
to be retrieved in constant time. We considered several
ways to pre-compute this index, but all had a significant
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overlap with the protagonist and causality indices to the
point that they were not helpful as separate indices.
We define the salience distance between two contiguous ac-
tions a; and a;41 as follows:

d(aj,aj+1) =€+ (1 —¢) (1 _ 2ier ]lj(ﬁj,ajﬂ))

where 0 < e <1

Note that 1 is the indicator function, which is 1 when the index
function i(a;, a;+1) returns true and 0 if it returns false. € is
a constant that represents the minimum distance between two
actions. The remaining part of the formula ranges between 0
and 1 — €, depending on how many indices the actions share.
When two actions share all indices, their distance is e. When
they share no indices, their distance is 1. We use a value of
€ = 0.4 in our experiments'.

Having defined the distance between a pair of contiguous
actions, we can define the salience cost of a sequence of n
actions m = {ay, ag, ..., an} as:

n—1

s-cost(m) = Z d(aj,aj+1)

J=1

Consider the example story in Figure 2, where Tom suc-
cessfully walks to the market, buys the potion, and returns
home. What is the salience distance between actions a; and
as? The more indices they share, the closer together they
are. Both actions have T'om in their arguments, so they share
protagonist. Both happen on Day;, so they share time. Both
involve the Crossroads, so they share space. They share
causality because action a; has the effect location(Tom) =
Crossroads which is also a precondition of as. Since they
share all indices, d(a1,a2) is €, the lowest possible value.

Consider a3 and a4. These two actions share protagonist,
time, and space, but not causality, since buy has no effect that
is also a precondition of walk.

The overall salience cost of the solution in Figure 2 is very
low for a five-step plan, s-cost(m) = 1.75.

Now consider a different solution, in which the bandit robs
Tom at the crossroads (Figure 3). The first two actions share
only two indices: time, because they both happen on Day;,
and space, because they both involve the Crossroads. Their
salience distance is 0.7, higher than the pairs in the previous
story. The last two actions share all four indices, since attack
again involves the Bandit, the Crossroads, and Day;, and
is enabled by the effect location(Bandit) = Crossroads of
the previous action.

The s-cost of the second plan is lower, but the second
plan is also shorter. If we divide the s-cost by the number of
actions in the plan, we see that the average salience distance
between actions is 0.35 for the first plan, but 0.37 for the

I'We ran all experiments with values of 0.1, 0.2, ..., 0.9 and found the value
0.4 gave strong results across all domains and search methods.
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a, walk(Tom, Cottage, Crossroads, Day;)

M Protagonist M Time M Space M Causality d(aq,a;) = 0.4
a, walk(Tom, Crossroads, Market, Day,)
M Protagonist M Time M Space M Causality d(ay,az) = 0.4

asz buy(Tom, Potion, Merchant, Coin, Market, Day,)

e

M Protagonist M Time M Space Causality d(az,a4) = 0.55
ay walk(Tom, Market, Crossroads, Day,)

M Protagonist M Time & Space M Causality d(ay,as) = 0.4
as walk(Tom, Crossroads, Cottage, Day;) s-cost(m) = 1.75

Fig. 2: Example solution with low average salience cost

a, walk(Tom, Cottage, Crossroads, Day;)

Protagonist M Time M Space Causality d(aq,a;) = 0.7
a, walk(Bandit, Camp, Crossroads, Day,)

M Protagonist M Time M Space M Causality d(ay,a3) =04
asz attack(Bandit, Tom, Crossroads, Day;) s-cost(m) = 1.1

Fig. 3: Example solution with higher average salience cost

second, indicating that the progression of actions in the first
plan is generally more salient than in the second. This average
distance is used later in our evaluation to show that solution
sequences tend to have lower salience distance between steps
than non-solution sequences.

V. SALIENCE-BASED SEARCH

We can use this distance and cost function to define three
simple variations on existing forward narrative planning search
techniques. A forward planner starts in the initial state with an
empty plan and adds actions to the end of the plan until it is
a solution®. The search typically maintains a priority queue of
plans it could expand next, and search techniques differ based
on how they decide which plans to expand.

Let length(m) be the number of actions in a plan 7.
Let h(m) be any heuristic function that estimates how many
additional actions need to be added to 7 before it is a solution.
Let d(aj,a;+1) and s-cost(m) be defined as in the previous
section. In this paper, we compare five search strategies:

o Breadth-First Search (BFS): Expand the plan that min-

imizes length(m) first.

2 A solution typically needs to meet two constraints: it achieves the system
author’s goal and any actions taken by characters must make sense for those
characters. Narrative planners differ in the specifics of how they define these
constraints, and we do not require any specific definition for this paper. For our
experiments, we used an early prototype of our Sabre narrative planner [19],
but we expect salience distance can be useful for other planners as well.
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« Salience Breadth-First Search (SBFS): Expand the plan
that minimizes length(m) + d(a|r|—1,a5) first (when
|| > 1). This algorithm is like BFS but uses salience
as a tie-breaker; i.e. expand the shortest plan, but when
plans are the same length, choose the one with lower
d(ayr|-1, )

« Salience Uniform Cost Search® (SUCS): Expand the
plan that minimizes s-cost(m) first.

o A*: Expand the plan that minimizes length(mw) + h(m)
first.

o Salience A* (SA*): Expand the plan that minimizes
s-cost(m) + h(m) first.

Note that we introduced € in d(a;,a;_1) so that a sequence
of actions can never have an s-cost of 0, and so that it is
always true that s-cost(m) < s-cost(m + an41). Some search
algorithms become incomplete if we allow a sequence of
actions to have a 0 cost. For example, Uniform Cost Search
explores lowest cost plans first, and given enough time and
memory, it will eventually find a solution if one exists (i.e. it is
complete). However, if it is possible to construct an arbitrarily

3This is a variant of Dijkstra’s Algorithm, but whereas Dijkstra’s calculates
the shortest path to all nodes, Uniform Cost Search stops once it finds
a solution. Uniform Cost Search is the name of this algorithm in the Al
literature, but it is a frustrating name, since costs in the problem are non-
uniform. The name may refer to the property that node costs in the priority
queue during search tend to be uniform.
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TABLE I: Comparison of salience costs between solutions and non-solutions.

Domain Solutions Non-Solutions
Name [ Agents | Actions | Triggers | Length | Count [ Avg.d [ o Count [ Avg.d [ o
Grammalot 4 986 1,331 7 56 0.44 | 0.06 9,038,112 0.55 | 0.06
Raiders 3 39 66 8 6 0.42 | 0.03 81,165 0.57 | 0.08
Prison 3 110 54 7 128 0.49 | 0.08 | 21,076,625 0.62 | 0.07

TABLE II: Search algorithm performance, average of 10 runs.

[ Domain [ Search | Time (ms) | Nodes Visited [ Nodes Generated | Time/Node (ms) |

BES 170,674 33,900 991,433 5.0

SBES 117,288 26,859 705,086 4.4

Grammalot | SUCS 14,929 4,281 101,747 3.5
A* 246,849 11,224 445,092 22.0

SA* 1,461,918 69,062 2,656,714 21.2

BFS 984 2,826 32,064 0.3

SBFS 785 2,360 25,174 0.3

Raiders SUCS 356 1,060 11,455 0.3
A* 146 135 2,413 1.1

SA* 10,532 7,424 111,193 1.4

BFS 633,912 >750,000 >14,494,623 0.8

SBFS 606,279 >750,000 >13,462,941 0.8

Prison SUCS 502,747 673,907 11,499,384 0.7
A* 2,624,475 >750,000 >28,853,052 3.5

SAF 331,607 149,193 3,402,289 29

long sequence of actions with a cost of 0, then UCS would
no longer be complete. All five of the above techniques are
complete.

While s-cost(7) is meant to guide the search, it is not really
a heuristic in the traditional sense of measuring the distance
from the current state to the goal. It is a measure of the cost
of the plan built so far. Hence, we do not use it as a heuristic
in SA* and do not discuss whether or not it is admissible.

VI. EVALUATION

We claim that using the salience cost function (instead of the
number of actions) can speed up narrative planning, at least for
our test domains. The three domains we use in our evaluation
are described below, each with a short note about why it was
chosen and some limited attempts to control for bias in how
it was designed. All domains came from our previous work;
in future work we hope to repeat this analysis on domains
designed by other researchers.

o Grammalot is the domain discussed in Section III. It was
originally developed for an experiment using the Camelot
game engine [16], and was meant to allow a wide variety
of different stories with multiple ways for characters to
achieve their goals. We have modified it to include a
day/night transition via the wait action.

e Raiders is the Indiana Jones-inspired domain used to
evaluate the Glaive narrative planner [18]. We designate
its travel action to segment time in addition to space,
since these actions entail significant temporal shifts in
the film the domain is based on. We chose this domain
because it is an established narrative planning benchmark.

e Prison is based on an interactive story involving prison
bullies, escape, and revenge [25]. It was designed for
previous EIM studies, so it already contained multiple
explicit time shifts, protagonists, and character goals.

We performed two experiments. For the first, we generated
every possible sequence of actions of a certain length in
each domain using an early prototype of our Sabre narrative
planner [19] and measured the difference in average salience
cost between solutions and non-solutions*. Table I shows the
number of agents, ground actions, and ground triggers® in
each domain, and the maximum length of the action sequences
generated for that domain. The table also shows the number of
solution and non-solution sequences and their average salience
distance (%) according to our earlier formula. In all
cases, the average salience cost of solutions is at least one
standard deviation lower than the average salience cost of non-
solutions. This preliminary finding supports our hypothesis
that action sequences which are solutions to the problem tend
to have lower salience costs.

For the second experiment, we tested how quickly each of
the proposed search techniques finds its first solution to the
problem. We again used our Sabre narrative planner and, when
applicable, Sabre’s default heuristic, which is based on Bonet
and Geffner’s A+ [26]. Table II shows the time in milliseconds
required by each search (average of 10 runs), along with the
number of nodes visited and generated by each search. It also
gives the average time spent per node visited to demonstrate
the impact of measuring salience cost during search. Each
search was limited to 750,000 nodes visited, so the value
> 750,000 indicates the search exceeded its budget before

4 A non-solution is any sequence of two or more actions that is not a solution
to the problem—for Sabre, that means that either it does not achieve the
author’s goal or some character actions in it cannot be explained by those
characters’ goals. We exclude 1-action sequences because we cannot measure
the s-cost of a plan with only one action. No problems had solutions that
contained only one action.

STriggers are changes that must happen when they can. They are generally
used to update character beliefs based on observations. Triggers do not count
as actions. See the original paper on Sabre [19] for full details.
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finding a solution.

The best performing search differed by domain. In all cases,
using salience as a tiebreaker improved the time and space
performance of Breadth-First Search (BFS), and Salience Uni-
form Cost Search (SUCS) outperformed BFS on all domains.
As we expected, the time spent per node visited was about the
same between BFS, SBFS, and SUCS, and between A* and
SA*, showing that the added overhead of calculating salience
distance was minimal. As expected, the use of the polynominal
time A" heuristic had a much greater affect on time per node.

SUCS outperformed A* in the Grammalot and Prison
domains, but not in Raiders. Interestingly, SA* only outper-
formed traditional A* in the Prison domain. The inconsistent
performance of SA* is, we suspect, due to the quality of
the heuristic function which estimates the distance from the
current state to the goal. We used Sabre’s default heuristic, an
adaptation of Bonet and Geffner’s h™ [26], which is highly
accurate for the Raiders and Grammalot problems but highly
inaccurate for Prison; for that problem it consistently and
dramatically underestimates the distance to the goal. When
the current-state-to-goal heuristic is highly accurate, the initial-
state-to-current-state cost has less influence on the results.

Figure 4 shows the effect of ¢ (the minimum distance
between actions) for each search technique. The performance
of SUCS and SA* tends to improve the higher € gets. SA*
fails to solve Raiders when € = 0.1 and visits as few as 367
nodes when € = 0.9. Recall that as € approaches 1 salience
has less influence on the cost, so in other words, the closer
SA* gets to A*, the better it does on most problems. The
notable exception is SUCS on Prison, where low values of e
are better. The salience measure shines on the problem where
the current-state-to-goal heuristic consistently underestimates.
We feel this is a strength of our approach; if highly accurate
current-state-to-goal heuristics are available, as they are for
Raiders and Grammalot, improvements may not be needed
in the first place. Our improvements may be most useful for
problems like Prison where the current-state-to-goal heuristic
performs poorly.

VII. DISCUSSION AND FUTURE WORK

Measuring the salience distance between contiguous actions,
and the sum of these distances for whole plans, proved a
simple and easy way to speed up narrative planning for some
search techniques in the domains we studied. Because we
pre-calculated the distances between each pair of actions and
stored them in a table for fast lookup during search, the
additional cost of this reasoning is negligible. Of course, this
suggests a possible direction for future work. Perhaps using
more sophisticated measures of salience will lead to even
greater improvements. For example, we might better capture
the causality dimension by looking at causal links to all past
actions, rather than just the previous action.

One important note about this work is that narrative planners
typically generate plot, or story, which is distinct from the
discourse, or telling of the story. A discourse might leave
out actions or tell them in a different order, and salience
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is more a property of discourse than of story. Still, many
interactive narratives use a straightforward mapping from story
to discourse where all actions are told in order simply because
the story and discourse are being generated on demand. So this
work can still be useful to narrative planners, at least when
story and discourse are similar.

We can imagine at least two explanations for why salience
distance is helpful during search. The first is Chekhov’s Gun.
It makes sense that early actions in a plan establish conditions
needed by later actions. If the first action in the solution is Tom
walking to the crossroads, it is probably because either Tom
or the crossroads or both will be needed for something later.
If we imagine how one might render the narrative on screen
during gameplay, prioritizing plans with low salience cost
avoids plans that jump around unnecessarily from character
to character, place to place, goal to goal, etc. For this reason,
we also suspect that minimizing salience distance can improve
the discourse of interactive stories that tell all actions in order,
though we leave an evaluation of this claim for future work.

Another possible explanation for why salience cost is effec-
tive during search is that it may tap into the domain author’s
original intentions for solutions. Salience can approximate how
easy it is to remember or foresee a sequence of actions. We
suspect, from experience, that domain authors tend to write
domains with certain solutions in mind. It seems reasonable
that, consciously or not, they would structure the domain
to make these solutions salient. It is worth noting that the
salience-based search techniques were most effective in the
domains with more total solutions, suggesting that they are
doing more than simply excelling at finding prototypical
solutions that were specifically intended by the author.

The fact that one approach did not dominate on all prob-
lems, and the fact that higher values of ¢ were not always
better is an interesting result in itself. Specifically, the fact
that SUCS was consistently better than BFS, but that SA*
was not consistently better than A* suggests there may be
some relationship between the s-cost of a plan and the ability
of the heuristic to estimate how close such a plan is to
being a solution. In future work, we hope to investigate this
relationship. We also plan to investigate how we can integrate
salience cost into the ht heuristic itself, or other narrative
planning heuristics, such as Glaive’s [18]. The more accurately
a heuristic can approximate the actual solution, the faster the
search will be, and improving heuristic accuracy may improve
the performance of SA*.

We would also like this work to be replicated by others
and tested in other domains. We determined the value of €
experimentally, but we would like to further investigate how
this parameter affects the search and develop recommendations
for how to choose it intelligently for each domain.
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