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Square-Root Robocentric Visual-Inertial Odometry
With Online Spatiotemporal Calibration

Zheng Huai

Abstract—Robocentric visual-inertial odometry (R-VIO) in our
recent work [1] models the probabilistic state estimation problem
with respect to a moving local (body) frame, which is contrary
to a fixed global (world) frame as in the world-centric formula-
tion, thus avoiding the observability mismatch issue and achieving
better estimation consistency. To further improve efficiency and
robustness in order to be amenable for the resource-constrained
applications, in this paper, we propose a novel information-based
estimator, termed R-VIO2. In particular, the numerical stability
and computational efficiency are significantly boosted by using i)
the square-root expression and ii) incremental QR-based update
combined with back substitution. Moreover, the spatial transfor-
mation and time offset between visual and inertial sensors are
jointly calibrated online to robustify the estimator performance in
the presence of unknown parameter errors. The proposed R-VIO2
has been extensively tested on public benchmark dataset as well
as in a large-scale real-world experiment, and shown to achieve
very competitive accuracy and superior time efficiency against the
state-of-the-art visual-inertial navigation methods.

Index Terms—JLocalization, vision-based navigation.

1. INTRODUCTION AND RELATED WORK

ISUAL-INERTIAL odometry (VIO) that typically com-
bines the inertial data from inertial measurement unit
(IMU) and the visual observations from camera to compute the
orientation and position of the sensing platform has been be-
coming popular for GPS-denied navigation applications, rang-
ing from the augmented/virtual reality (AR/VR), autonomous
driving to even the unmanned planet exploration. Especially,
in order for computational efficiency, a VIO is usually realized
by either extended Kalman filter (EKF) or fixed-lag smoothing
(FLS) which optimizes over a bounded-size sliding window of
recent states by marginalizing the past states periodically, for
which a complete review of the recent efforts can be found in [2].
Regarding the primary function of VIO, that is, to output the
poses of the sensing platform in the (unknown) environments,
most proposed approaches solved this problem from a global
perspective where fixed, global (world) frame, which is usually
aligned with the gravity, is chosen as the navigation reference
such that the absolute pose can be estimated with respect to it

Manuscript received 24 February 2022; accepted 15 June 2022. Date of
publication 15 July 2022; date of current version 29 July 2022. This letter
was recommended for publication by Associate Editor U. Frese and Editor S.
Behnke upon evaluation of the reviewers’ comments. This work was supported
by the University of Delaware College of Engineering and the NSFIIS-1924897.
(Corresponding author: Zheng Huai.)

The authors are with the Robot Perception and Navigation Group, Department
of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
(e-mail: zhuai @udel.edu; ghuang@udel.edu).

Digital Object Identifier 10.1109/LRA.2022.3191209

and Guoquan Huang

, Senior Member, IEEE

directly. Therefore, we can term them the world-centric VIO.
A well known issue for such approaches is the observability
mismatch between original and linearized systems which has
been identified by different works using linear and nonlinear
analyses (e.g., [3], [4]). As a result, many remedies have also
been proposed for fixing it (e.g., [5]-[8]), however, most by
trading off the accuracy or efficiency of the systems. From
another perspective, inspired by the human behaviors in reality,
we reformulated the VIO problem in local [1], where the body
frame of robot was used as instantaneous navigation frame of
reference. Instead, the relative pose between every two locations
of robot is estimated, and the current pose with respect to the start
(body) frame can always be recovered by incrementally merging
new relative pose estimates. Regarding those properties, our
approach is termed the robocentric VIO. We proved in [1]
that the observability mismatch issue does not exist for our
proposed robocentric model, thus improving the consistency of
VIO estimator fundamentally. Therefore, in this paper, we are
going to take such advantage into our new estimator design and
further extend its application.

As we summarized in [2], most VIO algorithms are based
on EKF or FLS which correspond to the covariance-based or
the information-based estimation. Unfortunately, in the sense
of sliding-window estimation, either covariance or information
matrix of the estimator may become dense inevitably because
of the marginalization operation. As a result, neither approach
has distinguishable computational advantage. To improve this
aspect, a practical idea should be to reduce the number of entries
involved in the matrix computations. To this end, the square-root
expression is employed in our design. We should note that the
square-root formulation had been adopted early in [9] to solve a
batch estimator. Moreover, based on that the square root informa-
tion matrix was proposed in [10] with QR factorization-based
incremental update scheme that made the proposed approach
feasible for real-time application. As only a half-size information
matrix is used in the computation, the memory cost is reduced.
The condition number for estimator is also square rooted by
using the square-root expression, thus improving the numerical
stability. Most importantly, QR factorization makes the update
incremental as the measurements come in, which bounds the
amount of computation needed at every timestep. Therefore,
such approach is also very suitable for the resource-constrained
applications [11], [12].

It should be noted that, as a multi-sensor system, the VIO
performance highly relies on the accuracy of the values of the
following parameters including: a) The rotation and translation
between camera and IMU, which is known as the camera-IMU
extrinsic parameters, and b) A remaining time offset between
the respective timestamps of camera and IMU measurements
caused by the sensor latency. Although we can calibrate these
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parameters offline (e.g., [13]), their estimated values may still
contain unknown errors, which are relevant to the calibration
setups or methods. Beside, the true values of those parameters
may be varying in the environment because of the temperature
change or platform vibration. Therefore, the ability of refining
or calibrating those parameters online becomes crucial in real
applications (e.g., [14], [15]). Specifically, in this paper, we
will incorporate the information from both IMU and camera
measurements for doing online spatiotemporal calibration.

The main contributions of the paper include:

e We derive a novel square-root robocentric formulation
for the sliding-window visual-inertial estimation, where
online calibration is used to deal with unknown errors in
both spatial and temporal sensor calibration parameters.
Especially, our proposed estimator is formulated based on a
least-squares minimization problem, for which we present
in details the cost function formed by the terms derived
with our robocentric IMU and camera models.

® We perform extensive evaluations using both challenging
benchmark dataset and field sensor data from our large-
scale real-world experiment, showing that our developed
R-VIO?2 achieves very competitive accuracy and superior
time efficiency when comparing with the state-of-the-art
visual-inertial navigation methods. Especially, to further
benefit the research community, we open source our code
at https://github.com/rpng/R-VIO?2.

II. SQUARE-ROOT MAP STATE ESTIMATOR

In this section, we briefly introduce the square-root estimator
for a maximum-a-posteriori (MAP) estimation problem. Espe-
cially, we have a vector of the states to be estimated, x, with
the measurements, Z.! The prior knowledge about x is usually
modeled by a Gaussian distribution p(x). Then, based on those,
the posterior distribution of x can be expressed as

p(x|Z) o p(x)p(Z]x) = p(x) [ p(zilx)

Z; ez

ey

where the priori of x follows A/ (%, ), and z; = h;(x) + n;
with h;(-) the measurement model and n; a zero-mean white
Gaussian noise following AV(0, ;). To find MAP estimate of
x which corresponds to the maximum of p(x|Z), here we can
equivalently minimize the negative logarithm of (1):

x* = arg min — log p(x|2)
X

= argmin [x — %4 + Y |z ~h(x)[5, @

Z; €z

where we have employed the notation |e||3 = e' A 'e, that is
the squared Mahalanobis norm of e with its covariance A. To
solve this problem which is usually nonlinear because of h(-),
we linearize its cost function at X so as to have

Cl+%) ~ [I%][G + D llzi — hy(%) — Hix|[3,

z, €2

= %6 + [ Hx — efl5;

3

Tn what follows, X is used to denote the estimate of x, with X £ x — X the
corresponding error (or correction) to this estimate. I, and 0,, are the n x n
identity and zero matrices, respectively. The left superscript if shown denotes
the frame of reference with respect to which a vector is expressed.
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where we have stacked all of the Jacobians H; and residuals
e; = z; — h;(X) to have H and e, with X a (block) diagonal
matrix of ;. As a result, instead of an optimal estimate of x,
we find an optimal update to its current estimate X, as

x% = argmin C(X + X) 4)

X

where the superscript ¢ means this solution is optimal up to
the linearization errors. It should be noted that, using (upper

triangular) Cholesky factors of €2 and ¥, we can convert (3)
into linear least-squares form for better numerical stability:

C= CPrior + CMeasuremenls = ||R)~<||2 + ||J)~( - I‘”2 (5)

where R = Q1/2 (i.e., the square root information matrix),
while for J and r we have J; = 2;1/2Hi and r; = 2;1/2ei
with respect to each measurement, z;. More importantly, by
noticing that R is upper-triangular, this cost function is able
to be updated using QR factorization [16]:

2

2 N
=3I = o5 )5~ B
-I3Te-o LI =T L1
0 r 0 €
= [ R x| | - el = 7 4 el ®)
After discarding ||€||? as it is irrelevant to X, we have
x? = arg m)%nC’EE =R® 'y® (7

which can be efficiently found via back substitution, and the
state estimate can be updated as: x¥ = x + x%. Especially,
the iterations over (3)—(7) can also be used to further reduce
the linearization errors. For real applications, usually the sensor
measurements are received by the estimator in the order of
their timestamps. Therefore, Givens rotations can be used for
in-place update in (6) to improve real-time performance of the
estimator [10], [11]. In this paper, we are going to take those
above advantages in our robocentric estimator design.

III. SQUARE-ROOT ROBOCENTRIC VIO

In this section, we present our new square-root robocentric
VIO algorithm (R-VIO2). Specifically, we explain in details the
inertial and visual cost terms derived from the IMU and camera
models, respectively, as well as the a priori cost term that evolves
with the change of navigation frame of reference.

A. State Vector

To model the system more precisely than [1], we use the
following vector to describe the state at (image) timestep k:

T T T1T7
X = [ng Xp, ka] (8)
where xg, = [£.g" frpl BrgT]T is the global state with &g

(4 x 1 unit quaternion [17]) and *pg (3 x 1 Euclidean co-
ordinate) the orientation and position of global frame {G}
with respect to the robocentric frame of reference { Ry} (i.e.,
coincident with IMU frame {I} at timestamp ;) and f*g a
unit vector of local gravity in {Ry}; xp, = [Fq" “p; ta]"
comprises of online calibration parameters with ¢q and “p;
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the rotation and translation between camera frame {C'} and
IMU frame {1}, and ¢, the difference between the receiving
timestamps of camera and IMU measurements at timestep &
(e.g., the IMU measurement paired with image k should be the
one at timestamp tj + t4); and both xg, and xp, are of zero
kinematics. Specifically, xyy, is a sliding window of the relative
IMU poses between recent N timesteps including k:

.
XWy, = [X'L—l;l e XLN—Q XLN—l} (9)
Xun o = [1.1q" Fip ] for i=k—N+2:k—1,
Xun = [f1@" PR, v by bj] (10)

where x,, saves the orientation and position of {R,} with

respect to {R,,_1}, while x,,,_, additionally keeps the IMU
velocity 7*v expressed in {I;,}, and biases, b, and by, .

B. IMU Term

We propose a preintegrated IMU cost term, for which our
robocentric motion model proposed in [1] is used to process
IMU measurements between image k and k + 1. Especially,
the relative motion estimate from {Ri} to {Rpt1}, Xuy =

FH1ET RipgT Iyl BT T T
i Pr, ., bgk+1 baHl] , is computed and

appended to the sliding window in X, so that we have the
: : : .5 (T T T

estimate of intermediate state: X, = (%G, %Xp, Xy,,,|'-To
incorporate the corresponding measurement information, we
construct a minimal state vector y;, = [xg, X7,]" with x7, =
[rq" ®+pj v b b, T, which includes all the states that
are used in the IMU propagatlon. Referring to [18], the error-
state transition matrix ®;, ; can be computed by using the
IMU measurements in [ty + tq, tx+1 + tg], aligned with the
corresponding image time interval, such that

DPriik= H

TE[tp+ta, try1+tal

(1)

(I)TJrl,T

Based on that, we have yj 11 = ®y11 xyr + Npt1,6, Where

Yi+1 = [X(, Xy ) andng, g is the preintegrated noise vec-

tor, which can further be expressed in details as:2

Xg, Io 09><15:| [igk] [ngﬂ
- = R+ 12)
|:XU)N:| |:<I’g @7 XTy nry (
®g = [015x3 01543 Pg.
b =[Py P, Py Pp, Pp,] (13)

We should note that x7, does not exist in the actual state vector
Xk 1> thus (12) has not been a valid relationship yet. However,
by further examining the entries in X7, we should immediately
find that 5’,30 = 03y, and * P, = 0351. This allows us to
replace X7, with x,,,_, that exists in the error state X ;.
Therefore, a valid relationship can be derived as

Xuy = HgXxg, + Hyp 1 Xwy , + 071 (14)
Hg = &g,
Hy,, , = [015:3 O1505 @, P, Pp,] (15)

2For the error quaternion we quantify it using its associated 3-dimension error
angle 60 (i.e., 67 ~ [%69T 1]T), therefore, we use ®g not P [19].

9963

Accordingly, the residual of our IMU cost term is given by

e =Hrxy + 1z (16)

H; = [Hg O15¢7 [O1506(v-2) Huy, —Iis]] (A7)

Next, to get the associated covariance of the preintegrated
noise ny 1%, we perform covariance propagation along with
(11), however, starting from the initial value 3, j, = 024:

Tk =P @0, +GQGT (18)

where G and Q are the IMU noise Jacobian and covariance
matrices, respectively [1]. It is easy to verify that 354 ; is in
the following form with 37 the covariance matrix of nz:

09y 09><15:|

19
Oi509 X7 (19)

Yhtik = [
Now, with (16) and X7, we can give out the square-root
expression of our preintegrated IMU cost term as

Cmu = [T rXpqr — 11l (20)

I =51y, v =% =050 QD

C. Camera Term

To build a relationship between the camera measurements
and the current state (e.g., Xj1), let us investigate the case
where a landmark L is observed from a series of images S (e.g.,
{1,..., N + 1}). Following the perspective projection model,
the i-th (¢ € &) measurement of L can be given by

o it + 1) |
T bt ta) Lﬁ(tﬂd)] i 22
Cipp = [wi(t+ta) yilt+ta) z(t+ta)]  (23)

where n; ~ N(02,1,02, I5) is the image noise, and “ py, is the
position of landmark in the corresponding camera frame {C;},
while here we explicitly align it with the actual pose of camera
at image timestamp ¢ by taking into account ¢,.

Note that, if we know the position of L in its first camera
frame, €1 pL, and the rotation and translation between {C;}
and {C;}, ¢ C and “pc,, then “py, can be given by

C;

'L =1C%pL+“pg, 24)
for which we can use relative poses in Xy to compute?
ic=9cqicfcl (25)
“pc, =7C"pr, + (15— 1C)° (26)
In particular, we express “'py, in an inverse-depth form [20]:
1
Gipr=———u(p(t+tg), vt +1t 27
PL= ) (Pt +ta), Y(t +ta)) 27
cos P(t + tq) sin(t + tq)
u= sin o(t + tq) (28)
cos Pt + tq) cos(t + tq)

where u is the directional vector of “*p; with ¢ and ) the
elevation and azimuth angles in {C}}, respectively, while p

3206 £ C(4q) is the 3 x 3 rotation matrix derived from quaternion % .

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 17,2022 at 17:32:06 UTC from IEEE Xplore. Restrictions apply.



9964

is the inverse of depth along u. We denote A := [¢, %, p]".
C1 py is correlated with ¢4 because it is anchored on {C }. By
substituting (27) into (24) and normalize it by p, we have

p“pr =1Cu+p“pc, = hi(xp,xw,1)  (29)

and our inverse-depth measurement model is given by
e ’ ‘) S 30
z his L%J +mn;, 1€ (30)

The initial value recovery for A is as in [1], and after that we
linearize (30) at x and A for the measurement residual:

e; =z; — z; ~ H; pXxp + H; wxyw + Hi A +n;y

3D

(see Appendix for the derivations of H; », H; v and H;, ;). By
assuming all the measurements are independent, we have the
corresponding cost function of L:

CrL=|Hyx +Hx —e.l|3, (32)

H, = [0anrx9 Hp [Hy,y, O2nrxg Huy O2arx9]]

e, =z2—12 (33)

where we have stacked H; p, H; yy, H; », and e; of L for i =
1,...,M (M = |S]) to get H,, H, and ey, with the stacked
covariance matrix X, = o2, I, .

Note that A does not exist in the state vector. Therefore, to
derive a valid cost term of L, we must eliminate A from (32).
Note also that, in the general case M > 2, and hence H, is a
tall matrix whose QR decomposition can be given by

o

(34)
0201 -3)x3

- [ Q) |

where Q; and Q5 correspond to the range and nullspace of H,,
respectively, which we can use to refactor (32), so that

o=l s (] [Q] e
= QI Hyx + Rak — Qfec|3,
+ QI Hyx — Qgerl, ,
where ¥, ; = afmlg and X, 5 = afmIQM,g. As a result, we

extract the second component of C;, as camera cost term for L,
and convert it into the square-root form:

2

3L

(35)

(36)
(37

CCamera = HJCSC - rC||2
1T 1T
JC = aimQQ HX’ rc = UimQQ er

In practice, if more than one landmark are observed, we will
stack their Ccamera’s together into one single cost term.

Interestingly, we can also readily figure out the degenerate
cases of online calibration by investigating the expression of
Jacobian H; p. Especially, the zero column(s) in the Jacobian
matrix suggests that the sensor measurement(s) do not convey
any information about the corresponding state(s) [21]. Bearing
this in mind and noting that the primary factors in the Jacobian
expression are all related to the sensor motion, we find these
cases that can cause zero column(s) in Hp: A

Cl) No rotation (i.e., 1@ = 03,1 = {C = I3)
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C2) No translation (i.e., 7% = 03,51 = Clpci = 03,1)"
C3) Camera single-axis rotation (i.e., one of the columns in
I; — i C becomes 03,1)

where /1@ and 7 ¥ are the estimates of angular and linear
velocities of IMU, respectively. Thus, to calibrate both spatial
parameters, ?0 and ij, online, this, in general, requires at
least 4 degree-of-freedom (DOF) sensor motion where 3DOF
rotation is used to avoid C1 and C3, while 1DOF translation
is used to avoid C2 and recover the value of p. However, ¢4 is
calibratable as long as the sensor platform is in motion, that is,
1% # 0 or Iv # 0, as we will show in Section IV.

D. A Priori Term

In the MAP estimation, this term conveys the information of
state up to the current time. Especially, at timestep k + 1 the
prior information is given by

Crriork+1 = | RiXi > = | Rk 1 X011 (38)

where Ry11 = [Ry 0.x15] with v the dimension of Ry. An
optimal update of X ; can be solved by following (6)—(7):

Cr+1 = Crrior,k+1 + Cimu, k+1 + Ccamera,k+1 (39)
)Zfﬂ = arg min Cj41 (40)

Xi+1

Thus, X}, is updated as:’
X?+1 - Xkﬂ B 5(%-&-1 (41)

1) Composition: The changing of the navigation frame of
reference is the most distinguishing feature of our robocentric
VIO [1]. Here, once finishing the update, we shift the frame of
reference of X, from { Ry} to {Ri41} (e, {Try1}).

The state vector with respect to {Rj11} is Xx11. To have
Xj+1, we need to convert )2& of X)41 0 Xg, ,,, which can be

done by the following state composition with X7 _:

= e (42)
fretpe = G (b — b, ) @3)
Rk+1g _ Z+ICngg® (44)

Note that, such change of frame of reference does not affect xp
PPN N o _ 50

and xyy, that is, Xp, ,, = Xp_and Xy, ,, = X)), . In another

hand, we should note that after updating X, , 1:

Criy =Ry X ll® (45)

where the dimension of Rf 11 is v + 15. However, the square
root information matrix corresponding to Xx1 is Ry41, for
which we transform R, | according to the following lemma:

Lemma 1: Given the Jacobian matrix V = g;f;, the (block

upper-triangular) square root information matrices of x and
X, R and R (of the same size), satisfy R = RV
Proof: See Appendix. |

“#Note that this condition suggests zero parallax between the images such that
the estimate of p may not be able to converge (i.e., p — 0) with single camera,
and therefore will also have zero column(s) shown in Hp.

5As the updating on quaternion is non-Euclidean (with the multiplication
operator @ [19]), we use H to represent a comprehensive state update.
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Using Lemma 1, with the Jacobian matrix V = g’:‘ﬁ:
Xk+1
Vg Ogxrie(n-1) Vux
V= Iriev—1)  Oriev—1)x15 (46)
Lis
k41~
85(9%1 k Cq k+?3 0
0xg, k1.
k q
- I; 03 039
an, .
Vi, = 9% 2 = I_RkHPGJ —IZ-HC(; 039 (48)
o | Frrrg] 03 039
we have Ry1 = R, , V', thatis
R, R:,. ] [Vg' -V;'"Vu,
Ryr1 = : . :
®
L RUJN I
Fpey—1 o Sys—1
R;V, R;,. —R;V5 Vi,
= : (49)

where V5 . Vg , and only the top-left and top-right blocks in
R corresponding to x¢g and x,,, , respectively, are altered.

2) Marginalization: To keep the length of sliding window
constant, we need to marginalize: a) the oldest relative pose
Xu,, and b) the IMU velocity 7*v and biases by, and by, in
Xwy_1» ffom Xyy, ;. To this end, we have another lemma:

Lemma 2: Given the state vector x =[x, x,]T, with its

square-root information factor C = |Rx — r||, where

R R r
R — mim mnr — m 50
D F e
a complete information factor of x,. only is | R, X, — r,.||%.

Proof: See Appendix.

According to Lemma 2, we put the states to be marginal-
ized into x,, while grouping the remaining ones in x,, such
that X, = [X), X]" (© means reordered). Meanwhile, the
columns in Ry, are reordered according to the state order
in X’ ,, which gives us R, ;. Next, a QR factorization is
performed to make R 1 upper-triangular again. Finally, we
finish marginalization with X1 = X, and Ri11 = R,..

IV. EXPERIMENTAL RESULTS

In this section, we are going to experimentally demonstrate
the performance of R-VIO2 using EuRoC benchmark [22] and
our own sensor platform. On EuRoC dataset, we compare with
VINS-Mono [23], a state-of-the-art visual-inertial navigation
algorithm,® and our previous work, R-VIO.” Note that VINS-
Mono enables relinearization by default, while R-VIO2 does
not do that in order to reveal its base performance. In the
real-world tests, we use large-scale trajectories to demonstrate
the effectiveness of online calibration for dealing with unknown

Shttps://github.com/HKUST-Aerial-Robotics/VINS-Mono
"https://github.com/rpng/R-VIO
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errors in spatial-temporal parameters. It is worth to point out
that thanks to the square-root formulation the single-precision
(float32) arithmetic is used by our C++ implementation of
R-VIO2, that is of resource-efficiency over the double-precision
(float64) ones used by the counterparts. All the tests run on a
laptop with Core 17-4710MQ 2.5 GHzx 8 CPU in real time.

A. EuRoC Dataset

This dataset contains 11 sequences which were collected by
a flying quadrotor equipped with a VI-sensor (200 Hz IMU, and
20 Hz dual cameras of 752x480 pixels). Especially, only the
left-camera images are used as visual inputs. For VINS-Mono,
we tested its odometry pipeline, and used its default settings
provided with the code for best performance. While, R-VIO
and R-VIO2 used the same settings, where a sliding window of
15 relative poses was kept, with 200 Shi-Tomasi features [24]
being tracked across the images. In particular, the feature tracks
longer than the size of window were split into sub-tracks for use,
while the sensor noise parameters directly used their raw values
provided by the dataset.

We first studied the performance of estimators on the global
pose (orientation and position) estimation. R-VIO was treated as
baseline for R-VIO?2 as it does not have online calibration (OC)
function, while for VINS-Mono we turned off its online calibra-
tion using configuration file and used that as baseline. Especially,
to test the convergence of online spatiotemporal calibration for
VINS-Mono and R-VIO2, we initialized their corresponding
parameters with the closet orthogonal rotation (for ¢8), zero
translation (for “p;) and zero offset (for tg). In contrast to
that, their baseline algorithms used the values provided by
the dataset for those parameters. We calculated the root mean
squared error (RMSE [25]) for pose estimates against ground
truth of all 11 sequences using the evaluation toolbox [26].% and
presented the results in Table I. We should note that, comparing
with the baseline algorithm, both VINS-Mono and R-VIO2
achieved improved accuracy with online spatiotemporal calibra-
tion. Note also that, R-VIO2 achieved very competitive accuracy
to VINS-Mono, even though the relinearization was not used.
For better illustration, we depict the estimated trajectories of
VINS-Mono (w. OC on) and R-VIO2 with ground truth in Fig. 1.
Table I also includes the comparison of the average runtime of
single-step estimation (excluding the image processing), which
reveals the superior computation speed of R-VIO and R-VIO2,
that is fens times faster than VINS-Mono. It is also impressive
to find that R-VIO2 is almost twice faster than EKF-based
R-VIO, for that there are two primary reasons: 1) Although
R-VIO2 has more states than R-VIO, the number of entries for
computation in its square root information matrix is merely half
of that in the covariance matrix of R-VIO, thus the memory
cost of R-VIO2 is lower than that of R-VIO; and 2) In-place
QR-based update combined with back substitution makes the
computational time complexity of R-VIO2 linear to the num-
ber of measurements and quadratic to the number of states.
Note that, R-VIO can achieve the same linear complexity with
the aid of extra QR-based model compression [1], however, the
complexity of EKF update is still cubic to the number of states.
Thanks to that, R-VIO2 is allowed to perform relinearization
while keeping the possibility of running at full (or even higher)
image rate (e.g., 10 iterations may cost ~30 milliseconds which

8https://github.com/uzh-rpg/rpg_trajectory_evaluation (posyaw alignment)
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TABLE I
COMPARISON OF ABSOLUTE POSE ACCURACY (RMSE) AND AVERAGE TIME COST ON EUROC DATASET

VINS-Mono (OC Off) R-VIO VINS-Mono (OC On) R-VIO2

Length Ori. Pos. Time Ori. Pos. Time Ori. Pos. Time Ori. Pos. Time

[m] [rad] [m] [ms] | [rad] [m] [ms] | [rad] [m] [ms] | [rad] [m] [ms]
VI1_01_easy 58.6 0.111 | 0.089 69 0.107 | 0.081 6 0.097 | 0.079 76 0.101 | 0.083 3
V1_02_medium 75.9 0.057 | 0.111 50 0.033 | 0.108 6 0.039 | 0.086 57 0.041 | 0.091 3
V1_03_difficult 79.0 0.107 | 0.189 35 0.022 | 0.121 5 0.088 | 0.201 42 0.040 | 0.089 2
V2_01_easy 36.5 0.037 | 0.088 35 0.039 | 0.158 5 0.028 | 0.071 69 0.040 | 0.117 3
V2_02_medium 83.2 0.074 | 0.160 47 0.031 | 0.163 5 0.044 | 0.123 55 0.034 | 0.114 3
V2_03_difficult 86.1 0.056 | 0.278 27 0.078 | 0.275 5 0.061 | 0.250 35 0.021 | 0.116 2
MH_01_easy 80.6 0.013 | 0.175 67 0.037 | 0.187 5 0.017 | 0.150 70 0.045 | 0.175 5
MH_02_easy 73.5 0.015 | 0.221 64 0.021 | 0.305 5 0.014 | 0.181 71 0.021 | 0.167 5
MH_03_medium 130.9 | 0.033 | 0.221 65 0.022 | 0.228 5 0.020 | 0.189 70 0.018 | 0.185 4
MH_04_difficult 91.7 0.014 | 0.371 58 0.033 | 0.284 6 0.018 | 0.285 67 0.019 | 0.248 3
MH_05_difficult 97.6 0.010 | 0.352 61 0.024 | 0421 6 0.016 | 0.305 65 0.017 | 0.318 3
Mean Value — 0.048 | 0.205 53 0.041 | 0.212 5 0.040 | 0.175 62 0.036 | 0.155 3

Fig. 1.

Estimated trajectories on EuRoC dataset: R-VIO2 (blue), VINS-Mono (red), and ground truth (black).

TABLE II
COMPARISON OF ONLINE CAMERA-IMU SPATIOTEMPORAL CALIBRATION PRECISION ON EUROC DATASET

VINS-Mono R-VIO2

A%G ACpr Aty A%(-) Ap; Aty

[x: deg, y: deg, z: deg] | [x: mm, y: mm, zz. mm] | [ms] | [x: deg, y: deg, z: deg] | [x: mm, y: mm, z: mm] | [ms]

V1_01_easy [+0.15, -0.10, —0.03] [ +49.5, +4.3, -10.9] +0.3 [-0.11, -0.17, -0.03] [+6.2, -10.2, -10.6] -3.5
V1_02_medium [+0.15, -0.15, —0.02] [+11.3, -0.4, -3.3] +0.1 [-0.05, -0.01, -0.07] [-5.3, -13.0, -9.9] -5.5
V1_03_difficult [+0.17, -0.13, —0.02] [+13.0, +1.5, -0.3] +0.2 [-0.17, -0.23, -0.00] [+1.0, —12.9, +2.8] -1.2
V2_01_easy [+0.14, +0.03, —0.03] [+10.7, -6.3, —10.4] +0.3 [+0.00, —0.07, -0.03] [-8.3, -10.9, -8.3] -1.0
V2_02_medium [+0.24, -0.00, —0.02] [ +8.8, 0.1, -0.5] +0.2 [-0.04, -0.25, -0.02] [-3.5, -10.3, +0.0] -1.0
V2_03_difficult [+0.26, +0.02, +0.04] [ +1.7, -3.0, +0.6] +0.3 [+0.04, -0.34, +0.07] [+0.7, -9.9, -3.5] -2.6
MH_01_easy [+0.06, -0.09, —0.02] [ 46.7, -6.3, -6.6] +0.1 [-0.08, -0.03, +0.00] [-6.9, -85, -5.8] —4.6
MH_02_easy [+0.06, —0.06, —0.07] [+12.4, +5.8, -7.7] +0.1 [-0.11, -0.18, -0.10] [+9.5, —12.4, +28.2] +0.2
MH_03_medium [+0.18, -0.11, —0.03] [ 49.1, 0.8, -9.9] +0.3 [-0.11, -0.25, -0.08] [+1.4, -13.6, -5.7] -1.0
MH_04_difficult [+0.13, -0.15, +0.01] [+19.1, +8.8, —=30.2] +0.0 [-0.20, -0.17, +0.03] [+0.0, —10.5, +2.2] -0.3
MH_05_difficult [+0.06, —-0.16, +0.00] [ 49.7, +0.5, -10.4] +0.3 [-0.20, -0.02, +0.06] [-0.3, -14.4, +13.5] +0.4

is less than the interval between two images), and will be one
direction of our future research. Such advantage is important
to the resource-constrained applications, such as the navigation
on drones and the AR/VR on smartphones, where the saved
time can be used for image processing, path planning, or scene
rendering.

Moreover, we compared the results of online calibration of
VINS-Mono and R-VIO2 with the fiducial value provided by
the dataset that came from an offline batch optimization [22].
As the camera and IMU were synchronized by hardware, the
expected value of t; was assumed close to zero. The estimation
differences were summarized in Table II where we used small-
scale units to fit their magnitudes. For A¢'8, we first computed
error rotation matrix, AICR, and then converted it into Euler

angles. Note that, the spatial calibrations of VINS-Mono and
R-VIO2 reached the same precision, however, the differences
between the temporal calibration results here, in our opinion,
stem from the different measures used for ¢4. For R-VIO2, we
relate ¢4 to the changes of the IMU (or camera) poses in 3D
space. While, for VINS-Mono, t; was related to the changes
of the feature locations in 2D image plane [23]. Nevertheless,
comparing with the IMU sampling interval (~5 milliseconds)
our results of ¢4 (Aty) are fairly consistent with the reality.

B. Real-World Experiment

We further performed tests using our own sensor platform
that included a Microstrain 3DM-GX3-35 IMU (500 Hz) and
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Fig. 2. Our sensor platform (w/ the images of environments).
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Fig. 3. Estimated trajectories over the map of UD campus.

one Point Grey Chameleon camera of 644 x482 pixels (20 Hz)
(see Fig. 2). We collected data by holding this sensor rig and
walking in the main campus of University of Delaware (UD) in
three different days, where our trajectories covered most daily
routes across the campus. Over 45-minute visual-inertial data
of three trajectories, each of which was about 1.5 kilometers,
was collected in real time, and the walking speed was about 1.5
meters per second. Especially, as most parts of trajectories were
very close to or crossed the buildings, GPS track became not
reliable. Instead, the Google map of campus was used as the
ground truth regarding its high precision.

As a common practice, we calibrated our sensor platform
using Kalibr® toolbox before collecting the data. Note that, in
the tests we used the corresponding result as the initial guess
for spatial and temporal parameters, because in such walking
scenario the sensors did not perform 6DOF motion very often
which may easily prevent convergence of online calibration, and
hence cause performance degradation. However, as there may
still be unknown errors in the offline calibration result, online
calibration can be used to refine those parameters. As before,
we let R-VIO2 track 200 features across the images, while the
sliding window was enlarged to include 20 relative poses. In
particular, we reran all the tests with R-VIO which used the
calibration result of Kalibr as true for comparison.

Fig. 3 shows the estimated trajectories that are overlaid on
the map of UD campus. All the results have been aligned
with their true trajectories (e.g., lanes and sidewalks) where
we collected the data, from the start point. We can find that
R-VIO2 outperforms R-VIO in the localization accuracy by

“https://github.com/ethz-asl/kalibr
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TABLE III
COMPARISON OF FINAL POSITION ERRORS (W/O AND W/ ONLINE
CALIBRATION) OF THE ESTIMATED TRAJECTORIES

Length / Close-loop drift in x-, y- and z-axis [m]
Duration R-VIO R-VIO2
T1 | 1.48km / 15m40s | [0.98, -3.70, -3.09] | [0.19, 0.18, -0.21]
T2 | 1.56km / 16m43s | [8.77, -10.94, -3.99] | [0.58, -5.43, -0.39]
T3 | 1.39km / 15m24s | [5.75, -7.48,-3.11] | [4.23, -4.00, 0.52]

performing online calibration, especially when we check the
coincidence of estimates with their true paths. Also, as we started
and ended collecting data at the same point, the final position
error (i.e., close-loop drift) equals to the estimate of the last
IMU position, as summarized in Table III. A zoomed subplot is
thus shown in Fig. 3, where the end points of R-VIO2 are much
closer to the start point of the trajectories. We also found that
there existed a 4-millisecond difference in ¢, before and after
the online calibration. Considering the IMU sampling interval
(~2 milliseconds), here R-VIO might have misused two IMU
measurements for motion prediction at every timestep, which
should be its main source of errors. However, this may be hard
to be noticed in practice when the duration of test was not long
enough. As a summary, the final position errors of R-VIO2 are
only 0.02%, 0.35% and 0.42% of the traveling distance for three
respective trajectories, and its single-step estimation only costs
4 milliseconds in average.

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed a new efficient approach
for realizing robocentric visual-inertial odometry which offers
consistent observability properties for probabilistic state esti-
mator. Our robocentric models, including IMU motion model
and camera measurement model, are applied for square-root
information-based state estimation. Especially, the visual and
inertial cost terms, as well as the a priori term are derived
for the corresponding MAP minimization problem. We also
take into account the influence of unknown parameter errors
in the relative spatial configuration and timing between sensors,
and compensate for it by performing spatiotemporal calibration
online. Extensive results of public benchmark dataset and our
large-scale real-world experiment demonstrate the competitive
accuracy and superior time efficiency of our novel algorithm,
R-VIO2, against the state-of-the-art counterparts. As a benefit
of computational efficiency, we are going to enable iteration in
R-VIO2 to reduce linearization errors and improve its accuracy.
We will further deploy R-VIO2 on the mobile platforms, such
as drones, smartphones and AR glasses, to investigate its appli-
cation in different resource-constrained scenarios.

APPENDIX

1) Jacobians W.r.t. xyy and A (See (31)): By treating xp as
constant and following the chain rule, we have!?

Oh; Oh;
Hi,l:Hi,proja_{7 Hi,W:Hi,projm (51
- (10 —hihih

10 |-] is a 3 x 3 skew-symmetric matrix derived from a 3 x 1 vector [19].
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35n g — ! CirCilcCsu+p(be — " Pr.)InC;
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W = —pfC;1C4, 1Cy, for n=2,...i.  (54)
2) Jacobians W.r.t. xp (See (31)): As a whole, we have
oh; dh;  8h;
Hip =Hipoj | 2676 27p: afd} ©5)

Similarly, we can compute the Jacobians of spatial parameters
by treating A as constant, so that

ahz i AN INEWa A i~ A N
picg = (iG] = PICTPi]) (T —1C) + /17 C;"Br, .
Oh; . i A

sop; — Pl —1C) (56)

Next, by noticing that Clp 1, and xyy are correlated with ¢4, we
compute the Jacobian of ¢, following the chain rule:

Oh; oh; ou  Oh; 0p oh; 0xyy
—_—= = — = — = = — = (57)
Oty ou Oty p Oty Oxy Oty
Oh; iy ou Oy .
a iC, i wxu (58)
oh; . op Cya o~

— K s —_— = 1 . 59
ap pey Oty vou (59)
OxXyy . . R N
o= el VL et ] 60

where 1@ = FC:1@w and ©1¥ = §C;11¥ represent the ro-
tational and translational velocities of {C }, respectively, and
1"4\7[” = Z,lchI"\Af, forn=2,...,N + 1.

3) Proof of Lemma 1: Given the covariance matrices, £2 and
A, of x and x, respectively, 2 = VAV T WithQ = (R'R) !
and A = (R'"R)"' =R 'R ", we have

Q=VR'R 'V = (RV )Y (RV )T
=[(RVHT(RV H = R'R)! (61)

where V is invertible because it is a full-rank square matrix.
Thus, the conclusion of Lemma 1 is immediate.
4) Proof of Lemma 2: Under the partition for R and r:

C =Ci1(Xm,X%Xy) + Ca(x,)

< < 2 < 2
= HRmmxm + Rmrxr - rmH + IlR’I‘TX’I‘ - rr” (62)
For X9, in the sense of back substitution, we will first solve

x by minimizing C3(%, ), and then solve x> by minimizing

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

C1(Xpm, X?). This means Ca = |R,,X,. — r,.||? includes all the
information for solving X, which concludes Lemma 2.
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