

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer

types and demonstrate how these specs support modular

client reasoning in a new framework we call Compass.

1.1 Strong and Compositional Functional

Correctness for RMC Libraries

An omnipresent challenge in RMC verification is the fact that,
unlike in the SC setting, there is no canonical way to specify
full functional correctness of a library that may expose re-
laxed behaviors.While linearizability [34] is the de facto stan-
dard correctness condition for concurrent libraries, it does
not extend to many highly concurrent libraries, including
those in RMC: these libraries tend to have less synchroniza-
tion or control, and it may be that a linearization is extremely
difficult to construct (e.g., Herlihy-Wing queue [34]) or that
the library has no useful sequential behaviors (e.g., exchang-
ers [31, 63]). Therefore, various linearizability-like criteria
have been proposed as alternatives [3, 9, 10, 20, 29, 33, 36, 57],
especially for relaxed memory [4, 8, 21, 25, 26, 35, 45, 62].
These works essentially share one basic idea in relaxing lin-
earizability: instead of requiring a total order on a library’s
operations, one requires only that operations respect some
partial orders. These works, however, have little support for
modular client reasoning. In this paper, we aim to improve
the proposed relaxations of linearizability with Hoare-style

specs to support better modular reasoning about clients who
rely on strong correctness guarantees of RMC libraries.

Accordingly, we take as our starting point one of the key
proof techniques for achieving strong specs and modular
client reasoning in (SC) CSLs: logical atomicity [13, 39, 40, 67].
Logically atomic specs are similar to standard Hoare-style
specs, except that they additionally provide the abstraction
that the specified operation takes effect atomically. In partic-
ular, they give the client atomic access to the exact, up-to-date
abstract state of the data structure at the moment in time
when the operation occurs, thus enabling the client to build
a concurrent protocol governing how the data structure is
used (how the abstract state may evolve). If the client wants
to compose multiple data structures, they can build a more
complex protocol governing multiple abstract states, all the
while enjoying the benefits of separation logics.

Logical atomicity has been applied mostly in the SC set-
ting, and only recently did Mével and Jourdan [53] demon-
strate its use to give stronger CSL specs for RMC libraries.
Unsurprisingly, the application of the technique needs to
account for relaxed behaviors: Mével and Jourdan needed to
combine logical atomicity with the tracking of some synchro-
nization information among library operations, reminiscent
of the partial orders from the relaxations of linearizability.
But they only needed limited synchronization tracking, be-
cause their logic, Cosmo [54], is sound only for the Multicore
OCaml memory model [24], and they only gave one spec for
a concurrent queue and verified one client.
To see concretely the limitations of Cosmo, consider the

example in Figure 1, which shows a Message-Passing (MP)

enq(q, 41); while (∗acqflag == 0){};

enq(q, 42); deq(q) deq(q)

flag :=rel 1 // return 41 or 42, not empty

Figure 1. A Message-Passing (MP) client with Queues

client of queues in a weaker memory model. Here, the queue
is accessed concurrently by 3 threads: the left-most thread
performs 2 enqueues (enq), the middle one performs a de-
queue (deq), and the right-most thread waits for the signal
by the left-most thread through flag and then performs a de-
queue. A weak implementation of dequeue can return empty

even though the queue is not empty, due to contention. How-
ever, in this example, the right-most thread cannot get an
empty dequeue result, because (1) at most one enqueue could
have been consumed concurrently by the middle thread, and
(2) due to the release-acquire synchronization through flag,
the thread has synchronized with the two enqueues.
Unfortunately, the Cosmo spec only exposes internal (to

the implementation) synchronizations among operations,
without taking into account how additional external syn-
chronizations created by the client (such as the synchroniza-
tion through flag) can affect the behaviors of dequeues. It
therefore cannot exclude the possibility that the right-most
thread’s dequeue returns empty.

1.2 Contributions

In this paper, we generalize Mével and Jourdan’s approach
by combining logical atomicitywith richer partial orders
inspired by the relaxations of linearizability, so that we can
give stronger specs for more weakly consistent libraries,
in a more relaxed memory model. But, given the plethora
of partial orders from those relaxations of linearizability,
which one should we use? We believe the event-graph based
criteria proposed by Raad et al. [62] (łYacovetž) are the most
general, because in that framework a verifier can give a
library stronger or weaker specs by choosing the partial
orders they prefer and by stating suitable library-specific
consistency conditions on the partial orders. Therefore, in this
work, we decided to encode Yacovet criteria in our separation
logic and enhance them further with logical atomicity.
We evaluate the flexibility of this approach with several

styles of specs. First, we combine the Cosmo-style specsÐ
which we call the LATabsso style (ğ2.3) because it tracks ab-
stract states and the synchronized-with (so) relation between
operationsÐwith Yacovet-inspired event-graphs to track the
larger happens-before (hb) relation. We call this the LATabs

hb
spec style (ğ3.1), which suffices to verify the MP example in
Figure 1. We then consider the LAT

hb
(ğ3.2) and LAThist

hb
(ğ3.3)

styles, a weakening and a strengthening of LATabs
hb

, respec-

tively. LAThist
hb

strengthens LATabs
hb

with a linearizable history

793

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

to give tighter specs for stronger implementations. Mean-
while LAT

hb
abandons abstract states so as to be satisfiable by

weaker implementations, and is the most faithful encoding of
Yacovet criteria. We demonstrate the strength, satisfiability,
and support for client reasoning of our specs with multiple
mechanized libraries and client verifications.
Our technical contributions are as follows.

• We develop Compass, a new specification framework
built atop the iRC11 separation logic [17], which is
sound for the ORC11 [17] memory modelÐa variant
of RC11 [48] that has non-atomic, release-acquire, and
relaxed accesses, and fences, and forbids load-buffering
behaviors, i.e., po ∪ rf is acyclic.

• As in Cosmo, specs in Compass reuse the general
definition of logically atomic triples from Iris. How-
ever, to state useful specs and verify implementations
against them, we need several other extensions to
iRC11 (ğ5): objective invariants, view-explicit modal-

ities, and atomic points-to assertions. These constructs
exist in simple forms in Cosmo, but for the weaker
memory model of ORC11 we need a more extensive
interface for them, and correspondingly, a more intri-
cate model to establish their soundness.

• With Compass, we give strong functional specs, in
the styles mentioned above, for a variety of library
types, including queues (ğ3.1, ğ3.2), stacks (ğ3.3), and
exchangers (ğ4.2). In the context of RMC separation
logics, our exchanger specs are the first ever proposed,
while our other specs are stronger than existing ones.

• We verify several implementations of stacks, queues,
and exchangers against their corresponding specs. We
demonstrate the usefulness and compositionality of
our specs through several client verifications, includ-
ing a verification of an RMC elimination stack (ğ4.1)
that composes a stack and an exchanger modularly,
relying solely on their Compass specs.

• All of our specs, library verifications, and client veri-
fications, as well as the Compass framework and the
iRC11 extensions, are mechanized in Iris [37, 38, 40,
44], in Coq.1 We report the first mechanized RMC veri-
fications of exchanger [63], elimination stack [32], and
the Herlihy-Wing queue [34].While these verifications
required significant manual effort, their sizes suggest
that they are still manageable: our library verifications
are between 1.5KLOC and 3.0KLOC long, with a me-
dian of 2.1KLOC, while our client verifications are
between 0.1KLOC and 0.5 KLOC long, with a median
of 0.2KLOC.

In the interest of space and comprehensibility, we do not
present in detail all of our contributions. Instead, after re-
viewing some background in ğ2, we present instances of our
specs for queues in ğ3 and the compositional verification

1Available as supplementary materials accompanying this paper [18].

of the elimination stack in ğ4. In ğ5, we briefly discuss the
extensions to iRC11 needed by Compass. We conclude with
related and future work in ğ6.

2 Background: Separation Logic Specs for
Strong Memory Models

Strong memory models provide strong guarantees about the
ordering of memory operations, making it easier to write
clearly correct library implementations. Weaker (more re-
laxed) memory consistency models offer more opportunities
for more efficient implementations, which, on the other hand,
may provide weaker guarantees to clients. In this section
we review existing specs in stronger memory models, and
in ğ3 we will present several of our specs in the weaker
ORC11 model, with the Queue data structure as an example
(Figure 2). We review, in ğ2.1, the traditional Hoare-triple-
based specs for sequential queues; in ğ2.2, logical atomic-

ity [13, 39, 67] and its uses to give strong specs for concur-
rent SC queues; and in ğ2.3, how Cosmo [53] extends those
specs for RMC with thread views.

2.1 Sequential Specifications for Queues

The separation logic sequential specs for queues are given as
Seq-Enq and Seq-Deq (Figure 2). Program logics typically give
specs for a program 𝑒 as Hoare triples of the form {𝑃 } 𝑒 {𝑄} ,
where 𝑃 is called the precondition and 𝑄 the postcondition.
The intuitive interpretation of a triple is that if the program
state satisfies 𝑃 before the execution of 𝑒 , then after 𝑒 finishes
executing, the state satisfies 𝑄 .2 Assertions like 𝑃 and 𝑄

specify either properties of the current global program state
(in traditional Hoare logic), or ownership of parts of the state
required for the code to run (in separation logic).
For example, Seq-Enq specifies that an enqueue function

call enq(q, v) can run safely as long as it has Queue(q, vs),
an abstract separation logic assertion that represents full
ownership of the queue object q (an instance of the data
structure). An implementation can define Queue(q, vs) as
arbitrary resources that it specifically needs. But from the
perspective of clients, Queue(q, vs) is abstract because it
asserts that q’s current state can be seen abstractly as a list
of values vsÐthat is, the queue’s elements are currently vs,
ordered by the list order. Seq-Enq then says that enq(q, v)
requires and consumes q’s ownership at the beginning of the
call, and at the end of the call it returns the ownership with
the updated abstract state vs++ [v], reflecting the operation’s
effects: v has been enqueued to the end of q. Conversely, by
Seq-Deq, a dequeue deq(q) also consumes q’s ownership and,
if the queue is not empty, returns the head value v of vs and
gives back the ownership with only its tail vs′. (The notation

2In this paper, we focus on partial correctness, where the triple interpreta-

tion only requires that𝑄 holds afterwards if 𝑒 terminates. We do not yet

consider total correctness, where 𝑒 is also required to terminate. Our partial

correctness does, however, ensure that 𝑒 is safe to execute.

794

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer

{v. 𝑄} denotes the postcondition as a predicate over the
returned value v.) Otherwise, if q is empty, deq(q) returns
empty (𝜖) and the fact that the abstract stateÐboth before
and after the operationÐis empty (vs = []).

That an operation is allowed to consume the queue own-
ership for the whole duration of its execution is what makes
the specs sequential: a group of threads cannot access the
ownership Queue(q, vs) concurrently in order to perform
concurrent enqueues and/or dequeues. To have strong specs
for such fine-grained concurrency, we need logical atomicity.

2.2 SC Specifications with Logical Atomicity

In fine-grained concurrency, a concurrent object’s ownership
is shared for concurrent accesses, and contention is most
commonly resolved by atomic read-modify-write (RMW) in-
structions, such as compare-and-swap (CAS). In this case,
even if a concurrent object’s operation involves multiple
steps of computation, it łtakes effectž atomically during a
single one of those steps. This is the intuition of logical atom-

icity: from the perspective of clients, the operation appears

to be atomically updating the object exactly around a single
atomic instructionÐoften called the commit or linearization
point of the operation.

As such, a client should need to provide ownership of the
concurrent object only at the operation’s commit point, and
can expect the update to happen right after that point. This
idea is encoded in logically atomic triples (LATs) [13, 39, 40,
67], of the form ⟨𝑃⟩ 𝑒 ⟨𝑄⟩ , with angle brackets ⟨ ⟩ instead of
curly braces. The intuitive interpretation is also a bit more
subtle than normal Hoare triples: ⟨𝑃⟩ 𝑒 ⟨𝑄⟩ means that there
exists a commit point (instruction) c by which 𝑒 atomically

consumes 𝑃 , transforms it, and returns 𝑄 .
Using LATs, we can give strong specs like SC-Enq and SC-

Deq (Figure 2) to fine-grained concurrent SC queues. Here we
use red font-face to denote the gradual changes in the specs.
One obvious change is the aforementioned angle brackets ⟨ ⟩.
Less obvious is the quantification of vs in the precondition
⟨vs.Queue(q, vs)⟩: this is a special form of universal quan-
tification that signifies the possibility that the queue may be
modified concurrently. Specifically, it signifies that during
the specified enqueue/dequeue operation, other threads may
be changing the state vs of the queue arbitrarily, up until the
commit point of the operation, when it atomically updates
the state to what is described in the postcondition. For exam-
ple, SC-Enq says that enq(q, v) can withstand arbitrary con-
current updates to the state vs of q, up until the commit point
when it atomically transforms Queue(q, vs) (where vs is the
state at that instant) to the new state Queue(q, vs ++ [v]).
In contrast, the sequential spec Seq-Enq implicitly quanti-
fies over vs with a normal universal quantifier (∀vs) at the
outside: this allows the implementation to assume exclusive
ownership ofQueue(q, vs) for an arbitrary but unchanging
vs, thereby prohibiting concurrent interference.

Last but not least, we add a local precondition isQueue(q),
another abstract assertion that encodes persistent separation
logic facts about the queue, e.g., facts about its head and tail
pointers. These facts are persistent in the sense that they are
freely duplicable, and they are local in the sense that they are
to be provided at the beginning of a call, so that operations
can use them for the whole execution, more conveniently
than Queue(q, vs) which is neither duplicable nor local.
Intuitively, it should be clear that ⟨𝑃⟩ 𝑒 ⟨𝑄⟩ is a stronger

spec than {𝑃 } 𝑒 {𝑄} , seeing as the former permits concurrent
interference whereas the latter does not. But how does a
client actually make use of these LATs to arbitrate concurrent
accesses to a shared resource likeQueue(q, vs)? To that end,
we need one more ingredient from CSLs: invariants.

Logical atomicity and invariants. Invariants can be
seen as logical, global spaces where resources can be stored
for concurrent accesses. The catch is that accesses must be
(physically) atomicÐi.e., take place during a single step of
computationÐand invariants must be re-established after
each access, so that they indeed hold invariantly (i.e., after
each step). The standard access rule for invariants is given in
Inv-Acc: a physically atomic instruction c can access and rely
on I , in addition to 𝑃 , for its execution, as long as it restores I
afterwards. The assertion I asserts the existence of I in the
global invariant space. (The łlaterž modality ⊲ is an artifact
of the step-indexed model of Iris, which we will gloss over.)

Inv-Acc

{⊲ I ∗ 𝑃 } c {⊲ I ∗𝑄} 𝑐 atomic

I ⊢ {𝑃 } c {𝑄}

LAInv-Acc

⟨⊲ I ∗ 𝑃⟩ 𝑒 ⟨⊲ I ∗𝑄⟩

I ⊢ ⟨𝑃⟩ 𝑒 ⟨𝑄⟩

The LAT invariant access rule LAInv-Acc strengthens Inv-

Acc, as it relaxes the restriction of łaccessing around atomic
instructionsž to łaccessing around logically atomic expres-
sionsž. With this rule, clients can build protocols to use and
combine libraries with LAT specs. For example, with an
invariant that ties together two queues by a relation 𝑅, i.e.,
∃vs1, vs2 .Queue(q1, vs1) ∗Queue(q2, vs2) ∗ 𝑅(vs1, vs2) , we
can use LAInv-Acc with SC-Enq and SC-Deq to verify clients
that use the two queues and adhere to the łprotocolž 𝑅. For
example, 𝑅 may require that vs1 and vs2 are disjoint, or even
more specifically, that one queue contains only odd numbers
and the other contains only even numbers.
In summary, with logical atomicity and invariants, one

can give stronger modular specs for fine-grained concurrent
libraries. Furthermore, LAT specs can be seen as giving ab-
stract operational semantics to a library’s operations. As such,
the library should be linearizable, i.e., there is a total order
of its operations according to which the concurrent object
appears to behave sequentially. In fact, Birkedal et al. [7] re-
cently showed formally that, in SC, logical atomicity implies
linearizability. It is therefore an important tool to achieve
full functional correctness and modular client reasoning.

795

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

2.3 RMC Specifications with Views

However, linearizability and logical atomicity do not directly
extend to relaxed memory. In RMC, a total order of oper-
ations (the linearization) might not exist, or if it does ex-
ist, it may not be very useful. In contrast to the SC model
where every atomic instruction is synchronized with every
other atomic instruction, in RMC an atomic instruction may
only be synchronized with some other instructions. It is the
partially-ordered synchronizationsÐformally defined as the
happens-before (hb) relationÐbetween operations that really
matter for their correctness, not the total order. In the terms
of logical atomicity, this means that an update to the state
by the commit of an operation 𝑜 may only be meaningful
to operations that are synchronized with 𝑜 . Consequently,
LAT specs for RMC libraries have to additionally account for
hb. To see how to write these specs, we need to introduce
per-thread views, an approximation of hb that is typically
found in operational semantics and program logics for RMC
memory models [17, 41, 42, 47, 51, 54, 59, 61, 66, 68].

Views: an approximation of happens-before. The idea
of views comes from the fact that in RMC, threads may
observe the effects of writes to physical memory locations
differently, depending on what kind of memory instructions
they have performed. To model such differences, each thread
is equipped with a local view, often formally defined as a map
frommemory locations to timestamps: View ::= Loc → Time.
The timestamps are indices into an ordering of the writes to a
location.3 A thread’s local view records its observationsÐthe
writes to memory that the thread has observed, e.g., synchro-
nized with. By performing memory instructions, a thread
updates its local view (its observations), and it performs
synchronizations by sending its view to other threads. This
can be seen more concretely in the following Compass rules
(simplified) for release writes and acquire reads.4

Rel-Write

{⊒𝑉 ∗ ℓ ↦→ ℎ} ℓ :=rel v {
(). ∃𝑡 ∉ ℎ,𝑉 ′ .𝑉 (ℓ) < 𝑡 ∗

𝑉 ⊔ {ℓ ↦→ 𝑡} ⊑ 𝑉 ′ ∗

⊒𝑉 ′ ∗ ℓ ↦→ ℎ[𝑡 ↦→(v,𝑉 ′)]
}

Acq-Read

{⊒𝑉 ∗ ℓ ↦→ ℎ} ∗acqℓ {
v. ∃𝑡 .𝑉 (ℓ) ≤ 𝑡 ∗ ℎ(𝑡) = (v,𝑉 ′) ∗

⊒(𝑉 ⊔𝑉 ′) ∗ ℓ ↦→ ℎ }
Both rules concern (1) a persistent fact ⊒𝑉 (read łseen
𝑉 ž) that the executing thread 𝜋 ’s current local view is at
least 𝑉 , and (2) the atomic points-to ownership ℓ ↦→ ℎ of the
location ℓ that the thread is writing to/reading from. The

atomic points-to includes a history ℎ (∈ Time
fin
−⇀ Val×View)

3Timestamps are typically just natural numbers, but can be more complex

depending on the memory model. And depending on the complexity of the

model or the operations, a thread may also need several local views.
4Both rules are given in normal Hoare triples, but they can also be given in

LATs, because the instructions are physically atomic.

of ℓ that, unlike the traditional separation logic points-to

(ℓ ↦→ v), is a set of write events that may still be visible to
some threads, and that are ordered by the timestamp order.
Rel-Write says that a release write extends the history ℎ

with a new element (v,𝑉 ′) at a fresh timestamp 𝑡 . The view
𝑉 ′ is the thread 𝜋 ’s view after the instruction, as encoded
in ⊒𝑉 ′, and 𝑉 ′ includes the view 𝑉 before the instruction
and the timestamp 𝑡 of the write itself. The view inclusion

relation is a partial order on views that is derived from the
timestamp order, formally 𝑉1 ⊑ 𝑉2 ::= ∀ℓ .𝑉1 (ℓ) ≤ 𝑉2 (ℓ).
Furthermore, 𝑉 ′ is also the view of the write event inserted
into the history (as in ℎ[𝑡 ↦→(v,𝑉 ′)]), reflecting the semantic
behavior that 𝜋 releases its observations (its local view 𝑉)
through the write. Another thread, say 𝜌 , can perform an
acquire read from that write event, and by Acq-Read, acquires
the write event view 𝑉 ′ into its local view, as in ⊒(𝑉 ⊔𝑉 ′).
As such, the release-acquire synchronization between 𝜋 ’s
release write and 𝜌’s acquire read is reflected in the logic
by 𝜋 ’s sending its view 𝑉 to 𝜌 . Intuitively, any operation
that happens-before 𝜋 ’s release write is observed in 𝑉 ′, and
therefore also observed by 𝜌’s acquire read.

The release-acquire rules demonstrate how view transfers
approximate the synchronized-with (so) relation, the part
of hb that records inter-thread synchronizations. The other
part of hb is the program order (po) relation that records the
intra-thread order, and is approximated in view inclusion by
the fact that a thread’s view only grows as it runs.
Views and view inclusion are a useful abstraction of hb

and have formed the backbone of several CSLs for RMC [17,
41, 54, 68]. These logics use views mainly to prove the sound-
ness of their rules, and try to hide views at the user level as
much as possible to regain the simplicity of traditional SC
logics. However, hiding views weakens the logics, and views
appear to be inevitable in order to achieve strong LAT specs,
as Mével and Jourdan demonstrate with their Cosmo specs.

Cosmo specs for queues. Abs-So-Enq and Abs-So-Deq (in
Figure 2) are a simplified version of Cosmo specs for multi-
producer multi-consumer queues. They differ from the SC
specs in the extra tracking of views (in red in Figure 2):
(1) the specs take the łseen viewž assertion ⊒𝑉 as a local

precondition (that is, outside of the LAT precondition and
needed at the beginning of the call); and (2) the abstract
state is no longer just a list of values, but a list of value-view
pairs, where the view component of a pair is the view of the
enqueue operation (after its commit point). Similar to the
release-acquire rules, the views in the abstract state support
view transfers between matching enqueue-dequeue pairs: by
Abs-So-Enq, an enqueue releases its local view𝑉 at its commit
point, and by Abs-So-Deq, the matching dequeue acquires
𝑉 into its local view, also at its respective commit point.
Effectively, they expose the so relation between matching
enqueue-dequeue pairs via views in the abstract state. This

796

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer

Seq-Enq

{Queue(q, vs)} enq(q, v) {().Queue(q, vs ++ [v])}
Seq-Deq

{Queue(q, vs)} deq(q) {v. (vs = [] ∗ v = 𝜖 ∗Queue(q, [])) ∨
(
∃vs′ . vs = v :: vs′ ∗Queue(q, vs′)

)
}

SC-Enq

isQueue(q) ⊢ ⟨vs.Queue(q, vs)⟩ enq(q, v) ⟨().Queue(q, vs ++ [v])⟩
SC-Deq

isQueue(q) ⊢ ⟨vs.Queue(q, vs)⟩ deq(q) ⟨v. (vs = [] ∗ v = 𝜖 ∗Queue(q, [])) ∨
(
∃vs′ . vs = v :: vs′ ∗Queue(q, vs′)

)
⟩

Abs-So-Enq

isQueue(q) ∗ ⊒𝑉 ⊢ ⟨vs.Queue(q, vs)⟩ enq(q, v) ⟨() .Queue(q, vs ++ [(v,𝑉)])⟩
Abs-So-Deq

isQueue(q) ∗ ⊒𝑉 ⊢ ⟨vs.Queue(q, vs)⟩ deq(q) ⟨v. (v = 𝜖 ∗Queue(q, vs)) ∨
(
∃vs′,𝑉 ′ . vs = (v,𝑉 ′) :: vs′ ∗Queue(q, vs′) ∗ ⊒𝑉 ′)⟩

Abs-Hb-Enq

SeenQueue(q,G0,M0) ∗ ⊒𝑉 ⊢

⟨G, vs.Queue(q, vs,G)⟩ enq(q, v) ⟨
(). ∃G′ ⊒ G,M′ ⊇ M0,𝑉

′ ⊒ 𝑉 .Queue(q, vs ++ [(v,𝑉 ′)],G′)

∗ SeenQueue(q,G′,M′) ∗ ⊒𝑉 ′ ∗ ∃e ∉ G. e ∈ M′ ∧ G′
= G

[
e ↦→(Enq(v),𝑉 ′,M′)

]⟩
Abs-Hb-Deq

SeenQueue(q,G0,M0) ∗ ⊒𝑉 ⊢

⟨G, vs.Queue(q, vs,G)⟩ deq(q) ⟨
v. ∃vs′,G′ ⊒ G,M′ ⊇ M0,𝑉

′ ⊒ 𝑉 .Queue(q, vs′,G′) ∗ SeenQueue(q,G′,M′) ∗ ⊒𝑉 ′

∗ ∨




(
v = 𝜖 ∧ vs′ = vs ∧ ∃d ∉ G. d ∈ M′ ∧ G′

= G
[
d ↦→(Deq(𝜖),𝑉 ′,M′)

])

(
∃𝑉e . vs = (v,𝑉e) :: vs

′ ∧ ∃e,Me, d ∉ G.G(e) = (Enq(v),𝑉e,Me) ∧ (e,) ∉ G.so ∧𝑉e ⊑ 𝑉 ′

∧Me ∪ {e, d} ⊆ M′ ∧ G′
= G

[
𝑑 ↦→(Deq(v),𝑉 ′,M′)

]
∧ G′ .so = {(e, d)} ∪ G.so

) ⟩
Abs-Hb-Queue-Consistency

Queue(q, vs,G) ⊢ QueueConsistent(vs,G)

𝑉 ∈ View ::= Loc → Time

e ∈ EventId ::= N

QueueEvent ::= Enq(v) | Deq(v) | Deq(𝜖)

M ∈ LogView ::= ℘(EventId)

Event ::= QueueEvent × View × LogView

G ∈ Graph ::= (EventId → Event, ℘(EventId × EventId))

QueueConsistent(vs,G) :=

∧




∀(e, d) ∈ G.so. ∃v.G(e) .type = Enq(v) ∧ G(d) .type = Deq(v) ∧ . . .

(Queue-Matches)

∀(e, d) ∈ G.so, e′ .G(e′) .type = Enq() → (e′, e) ∈ G.lhb →

∃d′ . (e′, d′) ∈ G.so ∧ (d, d′) ∉ G.lhb (Queue-FIFO)

∀d, e.G(d) .type = Deq(𝜖) → G(e) .type = Enq() →

(e,) ∉ G.so → (e, d) ∉ G.lhb (Queue-EmpDeq)

. . .

Figure 2. Specifications of Queue operations, from stronger to weaker memory consistency models.

is why we call them LATabsso style. (The complete Cosmo specs
also track so among enqueues and among dequeues.)

Abstract state and read-only operations. However, by
using just the abstract state, the specs do not specify behav-
iors of read-only operations that do not modify the abstract
state. For example, in Abs-So-Deq, a failing empty dequeue
is a read-only operation, and the LATabsso specs do not give us
any new facts about vs. This is weaker than in the SC model,
where SC-Deq says that dequeues fail with 𝜖 only if the state
vs is truly empty (at the commit point).
Realistically, an RMC spec cannot be quite as strong as

the SC spec: recall that in RMC effects can appear to threads
differently, so it may be that the thread 𝜋 sees the queue
as empty and returns 𝜖 , but the queue is in fact not empty,
because a fresh enqueue by another thread 𝜌 has not become
visible to 𝜋 yet. But we can do better than the empty case of

Abs-So-Deq, which gives the client no useful information. In
the next section (ğ3), we present specs that expose more of
the hb relation, enough to cover read-only operations such
as failing dequeues. Using those specs, we can verify the
MP client in Figure 1: by combining the queue’s richer hb
relation with the client’s external hb relation, we prove that
the right-most thread’s dequeue cannot return empty.

3 Richer Partial Orders for Stronger Specs
in a Weaker Memory Model

We now present several of our logically atomic specs that,
by exposing richer partial orders that can be combined with
external synchronizations, can stay reasonably strong and
yet still satisfiable by more relaxed implementations in the
weakerORC11memory model. In ğ3.1 we present the LATabs

hb

style which generalizes the LATabsso style, and its instance for

797

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

queues, which suffices to verify the MP client in Figure 1. In
ğ3.2 and ğ3.3, we present the LAT

hb
and LAThist

hb
spec styles, a

weakening and a strengthening of LATabs
hb

, respectively.

3.1 Graph-Based Specs to Encode Partial Orders

The LATabs
hb

style extends the LATabsso style by exposing a greater
part of hb. An instance for queues is given in Abs-Hb-Enq,
Abs-Hb-Deq, and Abs-Hb-Queue-Consistency (Figure 2). That
these specs are stronger than those of Cosmo can be seen
easily by ignoring the added red parts. The main improve-
ment of this instance is in Abs-Hb-Deq’s failure case, where
the caller sees the queue as empty. Here, the spec provides
more information about how the resulting read-only empty

dequeue operation is ordered with other operations in hb.
As read-only operations have no effects on the abstract

state, we need a new component G to identify and relate
them to other operations. The component G ∈ Graph is a
general construction inspired by the declarative specs of
Yacovet [62]. Yacovet works on whole-program execution

graphs, and abstracts them into per-library event graphs of
operations, where every operation is uniquely identified by
an event. A Yacovet spec for a library encodes the order-
ing between events in a graph as partial orders that must
satisfy some library-specific consistency conditions. Here, we
encode Yacovet specs with the event graph component G.
The main differences with Yacovet are that (1) G records
only the library events that have happened so far, not com-
plete executions; and (2) our specs are stated as separation
logic LATs, so each operation can access the current, up-to-
date event graph G and only needs to extend G with the
operation’s event and to maintain the graph’s consistency.
The (simplified) types of event graphs are given in the

bottom left of Figure 2. A graph G is a pair of (1) a function
that maps each event id e ∈ EventId to event data of type
Event, and (2) a set of event id pairs that encodes the so

relation. We use G(e) to denote the event data for e in G, and
G.so to denote the so relation of G.
The type Event is a tuple of (1) an event type (type), (2)

a physical view (view), and (3) a logical view (logview). In
Figure 2 we give an instance of the event type for queues: the
events can be an enqueue event of v (Enq(v)), a successful
dequeue event of v (Deq(v)), or a failing (empty) dequeue

event (Deq(𝜖)). An event’s physical view is the view at the
commit point of the operation that the event represents,
and is needed in the logic to interact with other memory
instructions. The event’s logical view is also recorded at
the commit point of its operation, and is a set of events for
all library operations that happen-before the operation in
question. If an event e is in the logical view of another event
d, i.e., e ∈ G(d).logview, we say that e happens before d.
Technically, it is the commit instruction of e’s operation that
happens before the commit instruction of d’s operation.

Intuitively, we use the logical view construction as an
approximation of the hb relation between library operations,
just as the physical view construction is an approximation of
hb betweenmemory instructions. The difference is that while
physical views approximate hb globally between memory
instructions, logical views only approximate hb locally for
the library in question. As such, our logical views correspond
to the local happens-before lhb relation of a library object
introduced by Yacovet. Henceforth we use e ∈ G(d).logview

and (e, d) ∈ G.lhb interchangeably.
The LATabs

hb
style extends LATabsso following a simple pattern:

(1) the abstract state is accompanied by the graph that tracks
all operations committed so far, and (2) at each operation’s
commit point, in addition to a potential update of the abstract
state, a fresh event e representing the operation is added to
the graph. For example, in Abs-Hb-Enq, when an enqueue of
v commits, the current graph G of q is extended atomically
with a fresh event e whose type is Enq(v), into G′: G ⊑ G′.

Local assertions for logical views. The partial orders
are also extended at e’s commit point to relate it to other
operations. In Abs-Hb-Enq, G′ .lhb extends G.lhb by setting
G′ (e).logview = M′, the set containing all operations that
happen before e. M′ includes M0Ðthe local logical view of
the calling thread, which tracks the operations that happen-
before the enq call. This tracking of thread-local logical views
is done by a new persistent assertion SeenQueue(q,G0,M0),
where G0 is a snapshot of the current G (G0 ⊑ G), and to-
gether with M0 they accumulate (a lower bound on) the
information about operations that the thread has synchro-
nized with. For instance, after the call, the thread receives
SeenQueue(q,G′,M′) with the latest snapshot G′ and a new
logical view M′, reflecting that the thread has synchronized
with more operations (M0 ⊑ M′), including the operation e

that it has just executed (e ∈ M′). By taking SeenQueue as a
local precondition, the specs can specify that the operation’s
behavior can depend on what has happened before itÐwe
will shortly see how that allows us to use Abs-Hb-Deq to
verify the MP client in Figure 1.

Compared to the LATabsso style, in LATabs
hb

each library type
has a local logical view assertion like SeenQueue that plays
a double role: (1) to track the thread-local logical view (as
explained above) and also (2) to track persistent facts about
the object like the isQueue(q) assertion in Abs-So-Enq. The
logical view assertion plays the same role for logical views
as the łseen viewž assertion ⊒𝑉 does for physical views: the
tracked current local view can be published into the łpublic
domainž (i.e., the shared graph for logical views, the shared
location history or abstract state for physical views) so that
it can be consumed by other threads.

Consistency conditions. The LATabs
hb

style specifies prop-
erties of the abstract state and the partial orders through the
library’s consistency conditions. The consistency conditions

798

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer

are invariant, i.e., should be maintained by all operations,
and are specific to each library type.
For example, an excerpt ofQueueConsistent, the consis-

tency conditions for the queue library type, is given at the
bottom right of Figure 2. It requires, among other things,
that enqueues and dequeues must follow the first-in-first-
out principle (FIFO, Queue-FIFO), stated in a fashion that is
not too strong for RMC (more about that below). The fact that
QueueConsistent is maintained by all operations is encoded
in Abs-Hb-Queue-Consistency: the queue ownership asser-
tion Queue(q, vs,G), which is consumed and reproduced
around the commit point, always implies consistency. So
whenAbs-Hb-Enq andAbs-Hb-Deq extend (vs,G) to new state
(vs′,G′), the operations can assumeQueueConsistent(vs,G)

and must then re-establishQueueConsistent(vs′,G′).
More specifically, if deq succeeds with a value v, Abs-

Hb-Deq tells the client that G′ .so extends G.so with a new
pair (e, d) where d is the new successful event added by
the dequeue operation and e is an existing enqueue event
that d dequeues from. Therefore, through Abs-Hb-Queue-

Consistency, the spec additionally says that (e, d) satisfies,
among other things,5 (1) Queue-Matches: the return value
v of the dequeue d must match the value enqueued by e;
and (2) Queue-FIFO: if there is another enqueue event e′ that
happens before e, then e′ must already have been dequeued
by some d′ ((e′, d′) ∈ G.so), and our d cannot happen before
d′ ((d, d′) ∉ G.lhb). (The consistency conditions on enqueue
events are elided, so we will not discuss them.)

Weaker but flexible. The Queue-FIFO condition appears
weaker than what one might expect, i.e., (d′, d) ∈ G.lhb,
but such a condition only works for strongly synchronized
(e.g., SC) implementations. As stated, Queue-FIFO is also sat-
isfiable by implementations that have little synchronization
between dequeues. In fact, we have verified that Queue-FIFO

is satisfiable by a fairly relaxed implementation (similar to
the weak version in [62]) of the Herlihy-Wing queue [34].
The implementation ensures lhb only between matching
enqueue-dequeue pairs, but not among enqueues or among
dequeues. (As one might guess, enqueues use release opera-
tions, and dequeues use acquire ones.)
Nonetheless, Queue-FIFO is still flexible enough that, for

example, if a client decides to use the queue in an SC fashion
by adding sufficient external synchronization, the client can
know that lhb is total, i.e., (d′, d) ∈ G.lhb ∨ (d, d′) ∈ G.lhb,
and can thus exclude the right-hand side of the disjunction
and regain the stronger FIFO condition with (d′, d) ∈ G.lhb.
This demonstrates the benefits of more detailed partial or-
ders: by specifying ordering between operations with more
complex but seemingly weaker conditions, we can (1) re-
quire only minimal ordering from implementations, and at
the same time (2) allow clients the flexibility to strengthen

5For example, an element can only be dequeued once.

the specs by combining the library’s exposed internal order-
ing with the client-generated external ordering.

Message-Passing client verification. When a call to deq
returns empty (𝜖), consistency demands that the added empty
dequeue event d satisfies Queue-EmpDeq, which is sufficient
to verify the MP client (Figure 1). Intuitively, Queue-EmpDeq

says that there cannot be another enqueue e which happens
before d but has not been dequeued in GÐif there were, then
the dequeue would have successfully returned some element
from the queue. The verification of MP depends on the fact
that both enqueue events e1 and e2 done by the left-most
thread, of which at most one can be consumed by the middle
thread, happen before the dequeue of the right-most thread.
By Queue-EmpDeq the dequeue cannot be an empty one and
must dequeue from e1 or e2 and return either 41 or 42.
The proof sketch of this example in Compass is given

in Figure 3. Following the pattern mentioned at the end of
ğ2.2, we put the ownership Queue(q,) in an invariant to
enforce a concurrent protocol on the queue, using a dequeue
permission called deqPerm that can be defined with Iris ghost
state [38]. One dequeue permission deqPerm(1) is needed
to perform one successful dequeue. This requirement can
be seen in the invariant: deqPerm(size(G.so)) counts the
number of successful dequeues, and a successful dequeue
will extend G.so by 1, so anyone who successfully dequeues
needs to put in a deqPerm(1) to re-establish the invariant.
For our particular example, we also implement deqPerm
such that there are only two deqPerm(1)’s (i.e., deqPerm(2))
in the whole system. We then give one permission to each
consumer thread before they run. Initially the queue is set to
be empty, and all threads are given a persistent observation
SeenQueue(q, ∅, ∅) of the initial empty state.

The verification of the left-most thread is straightforward:
for each enqueue, we use LAInv-Acc to open the invariant
and then use Abs-Hb-Enq. Afterwards the thread has two en-
queue events {e1, e2} in its logical view, and the write to flag
releases SeenQueue(q,G1, {e1, e2}) to the right-most thread.
The verification of the middle thread uses LAInv-Acc and
Abs-Hb-Deq, and if the dequeue succeeds, deqPerm(1) can
be given up to re-establish the client invariant. Finally, in
the verification of the right-most thread, the acquire read of
1 from flag receives SeenQueue(q,G1, {e1, e2}) from the left-
most thread. We then use LAInv-Acc and Abs-Hb-Deq to per-
form the dequeue, withM0 := {e1, e2}. Before re-establishing
the invariant, we inspect the resulting dequeue d3. If it is a
successful dequeue, we can put deqPerm(1) in the invariant
and finish. If d3 is an empty dequeue, we derive a contradic-
tion. As there are only two deqPerm(1) permissions in the
whole system, of which one is owned by the current (right-
most) thread, when we open the invariant we know that the
most up-to-date (right before d3) graph G can have at most
one dequeue: size(G.so) ≤ 1. Furthermore, the thread has
observed two enqueues, so in G there must be at least one

799

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Invariant: ∃vs,G.Queue(q, vs,G) ∗ deqPerm(size(G.so)) ∗ size(G.so) ≤ 2 ∗ . . .

{SeenQueue(q, ∅, ∅) ∗ ⊒𝑉1} {SeenQueue(q, ∅, ∅) ∗ {SeenQueue(q, ∅, ∅) ∗ deqPerm(1) ∗ ⊒𝑉3}

⟨Queue(q,) ∗ . . .⟩ enq(q, 41); ⟨Queue(q,) ∗ . . .⟩ deqPerm(1) ∗ ⊒𝑉2} while (∗acqflag == 0){};

⟨Queue(q,) ∗ . . .⟩ enq(q, 42); ⟨Queue(q,) ∗ . . .⟩ ⟨Queue(q,) ∗ . . .⟩ deq(q) {SeenQueue(q,G1, {e1, e2}) ∗ deqPerm(1) ∗ ⊒𝑉3}

{SeenQueue(q,G1, {e1, e2}) ∗ . . .} ⟨Queue(q,) ∗ . . .⟩ ⟨Queue(q,) ∗ . . .⟩ deq(q) ⟨Queue(q,) ∗ . . .⟩

flag :=rel 1 {SeenQueue(q,G2, {d2}) ∗ . . .} {v. SeenQueue(q,G3, {e1, e2, d3}) ∗ v ∈ {41, 42}}

Figure 3. A proof sketch of Message Passing with queues.

enqueue that is not dequeued yet, which must be in {e1, e2}.
Due to SeenQueue(q,G1, {e1, e2}), both e1 and e2 happen be-
fore d3. By Queue-EmpDeq, we have our contradiction. □

3.2 Weaker Specs by Abandoning Abstract States

The LATabs
hb

specs are particularly strong and only satisfiable
by strong implementations, because one must be able to con-
struct the abstract state at commit points. For example, we
have verified that a purely release-acquire implementation
of the Michael-Scott queue [56] satisfies the LATabs

hb
specs

for queues (and therefore transitively the LATabsso specs). The
release-acquire memory model, though not as strong as the
SC or Multicore OCaml model, still provides sufficient syn-
chronization to construct the list of values vs in the queue.

However, it is extremely difficult to construct the abstract
state for the relaxed Herlihy-Wing queue implementation
mentioned above: it would require delicate reordering of
commit points on the fly, and sometimes require future-

dependent knowledge about dequeue operations. In fact, the
verification of the LAT specs in the SC memory model for
Herlihy-Wing queue relied on prophecy variables [39], whose
application in RMC is still an open research problem. In this
work we instead verify the relaxed Herlihy-Wing implemen-
tation against LAT

hb
specs, a weakening of the LATabs

hb
specs

where the abstract state is abandoned. In particular, our in-
stance of the LAT

hb
specs for queues is exactly the specs

Abs-Hb-Enq and Abs-Hb-Deq (Figure 2) without vs.
LAT

hb
specs may appear weak, but they can still take ad-

vantage of external synchronization information, i.e., the
argument in ğ3.1 about flexibility of the partial orders still
applies. Practically, they are sufficient to verify the MP client
in Figure 1. We can also use them to verify the following
single-producer single-consumer (SPSC) client of a queue:
{
SeenQueue(q, ,) ∗

𝑎𝑝 ↦→ [𝑎0, . . . , 𝑎𝑛−1] ∗ . . .

} {
SeenQueue(q, ,) ∗

𝑎𝑐 ↦→ [0, . . . , 0] ∗ . . .

}

produce(q, 𝑎𝑝 , 0, 𝑛) consume(q, 𝑎𝑐 , 0, 𝑛){
𝑎𝑝 ↦→ [𝑎0, . . . , 𝑎𝑛−1] ∗ . . .

}
{𝑎𝑐 ↦→ [𝑎0, . . . , 𝑎𝑛−1] ∗ . . .}

Here, there is only one thread performing enqueuesÐthe
producerÐand only one thread performing dequeuesÐthe
consumer. The producer reads the array 𝑎𝑝 for elements
with the indices in [0, 𝑛) and enqueues them in that order,

while the consumer keeps dequeueing for 𝑛 elements and
writes them in the indices [0, 𝑛) of the array 𝑎𝑐 in the de-
queueing order. The expected behavior is FIFO: in the end
the array 𝑎𝑐 should have the same elements as 𝑎𝑝 .

To verify this example, we use the LAT
hb

specs for queues
(i.e., Abs-Hb-Enq and Abs-Hb-Deq without abstract states) to
derive the stronger LAT

hb
-style specs for SPSC queues [18],

simply by building a concurrent SPSC client protocol. In this
derivation, thanks to logical atomicity, at every commit point
of a successful dequeue we can easily match it up with the
right enqueue and thus prove FIFO. With the SPSC LAT

hb
specs, the example’s verification is straightforward.

3.3 Stronger Specs with a Linearization

One may instead wish to specify stronger implementations
more tightly with stronger specs. For example, Yacovet pro-
poses strong specs where a library’s operations are lineariz-
able but with weaker synchronization requirements. We call
the encoding of these specs in Compass with logical atom-
icity the LAThist

hb
style, and it is a strengthening of the LATabs

hb

specs with a linearizable history H .6 An excerpt of the in-
stance for stacks is given in Figure 4. The linearizable history
H subsumes both the event graph G and the abstract state
vs: it not only tracks the partial orders between operations
but additionally gives them a total order to that can be inter-
preted to compute the abstract state.
to is a linearization of the operations and can be consid-

ered as a sequential specification. However, to has weaker
synchronization requirements than traditional linearizability
because it does not imply lhb, but only needs to respect lhb

(i.e., H .lhb ⊆ to). Additionally, to directly encodes the stack’s
LIFO property, as well as stricter behaviors of failing empty
pop operations, as required by Hist-Hb-Stack-Linearizable.
That is, to is a reordering (permutation) of H ’s operations,
satisfying interp(to, vs) for some abstract state vs, through
which we can look at a concurrent stack’s history as if it
were the history of a sequential stack, in the same fashion
as in classical linearizability: a successful push adds a new
element to the stack’s head, a successful pop removes and
returns the head element, and an empty pop only happens

6Note that the concept for histories of library operations is different from

that for histories of write events to locations in ğ2.3.

800

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer

Hist-Hb-Push
SeenStack(s,H0,M0) ∗ ⊒𝑉 ⊢

⟨H . Stack(s,H)⟩ push(s, v) ⟨() . Stack(s,H ++ [(Push(v), . . .)]) ∗ . . .⟩

Hist-Hb-Pop
SeenStack(s,H0,M0) ∗ ⊒𝑉 ⊢

⟨H . Stack(s,H)⟩ pop(s) ⟨v. Stack(s,H ++ [(Pop(v), . . .)]) ∗ . . .⟩

Hist-Hb-Stack-Linearizable
Stack(s,H) ⊢

∃to, vs.H .lhb ⊆ to ∧ to = permute(H) ∧ interp(to, vs) ∧ . . .

interp(to, vs) ::=

to = [] ∨
(
∃e, to′, vs′ . to = to′ ++ [e] ∧ interp(to′, vs′)

∧
(
(e = Push(v) ∧ vs = (v,) :: vs′)

∨ (e = Pop(v) ∧ vs′ = (v,) :: vs)

∨ (e = Pop(𝜖) ∧ vs = vs′ = [])
))

Figure 4. LAThist
hb

specs for łlinearizablež stacks (excerpt).

if the stack is truly empty. Note, however, that this is only
a perspective on historiesÐat the commit point of an empty
pop, the spec does not say that the stack is necessarily empty.

Beyond local-happens-before with logical views. We
have verified that the LAThist

hb
specs are satisfied by a relaxed

implementation of the Treiber stack [70]. One of the main
verification challenges is the construction of to. We wish to
construct to from the higher-level abstraction of the partial
orders on the stack’s operations, and avoid having to perform
RMC reasoning directly about memory locations in the pro-
cess. The exposed lhb relation, however, is not sufficient to
construct to because our RMC Treiber stack implementation
is fairly relaxed: push operations use release CASes and suc-
cessful pop operations use acquire CASes, and thus there are
only lhb edges between matching push-pop pairs. Looking
at the implementation, though, such a to is derivable from
the ordering of the CAS instructions done to the stack’s head
pointer by successful push and pop operations. Fortunately,
we can repurpose our logical view setup to expose not just
lhb, but the stronger partial order that includes both lhb and

the modification order on the stack’s head created by CASes.
We can then construct a to from this stronger order, without
having to deal with lower-level RMC reasoning.
Until now we have equated partial orders with lhb, but

here we see that this need not be the case, and that by using
logical views to expose a richer partial order we can verify
a fairly relaxed implementation against reasonably strong,
linearizability-style LAThist

hb
specs.

4 Compositional Verification of the
Elimination Stack

In this section, we briefly demonstrate the application of our
specs to verify an RMC implementation of the elimination
stack [32]. This verification is both a client verification and

a library verification: the elimination stack is a client that
composes an underlying base stack and an exchanger.

4.1 The Elimination Stack

The idea for the elimination stack (ES) comes from a sim-
ple observation: if a push is immediately followed by a pop,
then the stack appears unchanged, and that push and pop

are said to eliminate each other. The elimination mechanism
can be implemented with an exchanger (which in turn can be
implemented as an array of exchangers) that supports con-
current exchanges of data with arbitrary matching. A thread
simply calls exchange(x, v1) on the exchanger object x with
some value v1 ≠ ⊥. If the return value is ⊥, the exchange has
failed, but if it is some v2 ≠ ⊥, then the thread has success-
fully exchanged v1 for v2 with another thread. Additionally,
the two threads synchronize with each other,7 which from
the separation logic perspective supports resource exchanges
between the matching threads.
The ES try operations, which can fail due to contention,

can be implemented simply by composing the two libraries
without any extra synchronization, as follows:

try_push(s, v) ::= if try_push′ (s.base, v) then true

else exchange(s.ex, v) == SENTINEL

try_pop(s) ::= let v = try_pop′ (s.base) in

if v != FAIL_RACE then v else

let v′ = exchange(s.ex, SENTINEL) in

if v′ ∉ {SENTINEL,⊥} then v′

else FAIL_RACE

Each operation first tries the base stack’s corresponding op-
eration, and if that fails due to contention, it tries to use
the exchanger to match another operation without going
through the base stack. More specifically, try_push(s, v) calls
the base stack’s own try_push′ and returns true (signifying
success) if that succeeds. Otherwise, it calls exchange (on
s.ex) and returns true only if its exchange is successfully
matched with a pop operation, signified by the SENTINEL

value. Similarly, try_pop(s) calls the base stack’s try_pop′

and returns v only if try_pop′ did not fail due to contention
(FAIL_RACE). (try_pop returns empty 𝜖 if try_pop′ does.)
Otherwise, try_pop calls exchange with SENTINEL, and
only succeeds with the returned value v′ if it is matched
(v′ ≠ ⊥) with a push (v′ ≠ SENTINEL).

Verification results. Assuming the LAT
hb
-style specs for

the base stack and the exchanger (Figure 5), we have verified
that our relaxed ES implementation satisfies the same LAT

hb

7Technically, the two commit points of the matching exchanges are not

both in hb with each otherÐit is counterintuitive to have cycles in hbÐbut

it is the case that the beginning of one exchange call happens before the end

of its matching exchange call. We needed to extend our specs to account

for this subtlety, but, due to space constraints, we elide it from the specs

and from the discussion here.

801

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

specs as the base stack. The LAT
hb

specs for stacks are very
similar to those for queuesÐthe key difference is the change
from FIFO to LIFO in consistency. (Please see the full specs
in [18].) Since we have verified, separately, that our RMC
Treiber stack and exchanger implementations satisfy their
LAT

hb
specs, we easily get a closed-proof verification of an ES

built from those two implementations.We assumed the LAT
hb

specs for the base stack to demonstrate that the verification
does not rely on very strong properties, but, since the proofs
are modular enough, we conjecture that the same proofs can
be applied (with minor modifications) to show that, if the
base stack satisfies the stronger LAThist

hb
or LATabs

hb
specs, then

the ES implementation also satisfies the same stronger specs.

Compositional verification. The ES verification does
not involve RMC reasoning, because the implementation
does not add any new atomic instructions. The core work
is composing the base stack’s events and the exchanger’s
events into the ES events in a way that satisfies the con-
sistency conditions for stacks. This can be seen as a simu-
lation proof with a simple simulation relation: every base
stack operation is simulated by a corresponding ES oper-
ation, and successful matching exchange pairs between a
non-SENTINEL value and a SENTINEL value are simulated
by an ES push and an ES pop respectively. (Other exchange
events are ignored by the simulation.)

The non-trivial parts of the proof are where the simulation
needs to simulate commit points and maintain consistency:
whenever a base operation commits, the ES operation needs
to commit accordingly, and needs to re-establish the ES con-
sistency conditions using the consistency conditions of the
base stack and the exchanger. The re-establishment of consis-
tency relies crucially on the fact that eliminations are atomic:
the commits of ES push and pop events that originate from
a pair of matching exchanges need to be performed together
at once, so that the pushed element is popped immediately,
and no (commit points of) other concurrent ES operations
can observe the intermediate state where the ES push has al-
ready been committed but the ES pop has not. This atomicity
property of the exchange-based ES event pairs is crucially
needed for LIFO. We discuss how this property shows up in
the exchanger specs next.

4.2 Strong Specs for Exchangers

A simplified LAT
hb
-style spec for the exchange function is

shown in Hb-Exchange (Figure 5). The spec involves a lo-
cal logical view assertion SeenExchanges(x,G0,M0), and
an atomically shared ownership assertion Exchanger(x,G)

for the exchanger object x. At the commit point, the cur-
rent graph G is extended with a new event e1 with type
Exchange(v1, v2), where v2 is the returned value. If the ex-
change fails, the return value v2 is ⊥ and the event type is
Exchange(v1,⊥). If the exchange succeeds, it can only suc-
ceed together with another exchange identified by e2, and

the G.so relation is extended with the two events in both
directions ({(e1, e2), (e2, e1)}), signifying that they are syn-
chronized with each other.

The remaining part of the spec is to maintain the perspec-
tive that a matching pair of exchanges is committed atomically

together : it is important that there can be no interference be-
tween the two commits of the matching exchanges. In other
words, no other thread should be able to observe an incom-
plete state of the exchanger where one successful exchange
has been committed but its matching exchange has not. But
how can two commit points be atomic? This conflicts with the
intuitive interpretation of LATs that there exists a commit-
ting instruction c within each logical operation! To resolve
this conundrum, we need helping.

Helping for atomicity. Helping is a pattern where one
operationÐthe helperÐhelps to perform the commit (the
update to the shared state) of another operationÐthe helpee.
This means that the commit point of the helpee is not within
its own execution, but rather within the helper’s execution.
For the matching exchange pairs, the commit points coincide:
at the helper exchange’s commit point, it atomically performs
the helpee exchange’s commit and then its own commit. This
is materialized in the successful case of Hb-Exchange with
(1) a commit order (<) of the events and (2) the addition of a
local postcondition (in red, { . . . }) that only holds once the
function returns (rather than at the commit point).
The commit order < on events is the logical order in

which the events are committed to the shared graph G. In Hb-

Exchange, the commit order between a matching exchange
pair dictates who the helper is, and how each commit updates
the shared graph G. If the current exchange e1 is committed
before the other exchange e2, i.e., e1 < e2, then e2 is the helper.
Otherwise, if e2 < e1, then e1 is the helper.
Since the helper atomically performs the helpee’s up-

date and then its own update, it always knows the result
of the helpee’s update, while the helpee will only learn
about the helper’s update after both commits have been
completed. This is the asymmetry in Hb-Exchange: if e1 is
the helpee, it only adds itself to the current graph G: G′

=

G [e1 ↦→(Exchange(v1, v2),𝑉1,M
′)]; but if e1 is the helper, it

knows that the helpee’s event e2 must already be in the
current graph: G(e2) = (Exchange(v2, v1),𝑉2,M

′), and the
helper not only adds itself to the current graph G, but also
extends G.so with the pairs {(e1, e2), (e2, e1)}. The client
thread of the helper learns all of this information about
the updated G′ atomically right after the helper’s commit,
by which point it has also locally observed both e1 and
e2, via SeenExchanges(x,G′,M′) and {e1, e2} ⊆ M′. The
client thread of the helpee, on the other hand, right after its
own commit has only locally observed its own event e1, via
SeenExchanges(x,G′,M′ \ {e2}), because the helper commit
has not been performed yet and e2 has not been added to
G′. Only in the local postcondition (in { . . . }), after both

802

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer

Hb-Push

SeenStack(s,G0,M0) ∗ ⊒𝑉 ⊢ ⟨G. Stack(s,G)⟩ push(s, v) ⟨
(). ∃G′ ⊒ G,M′ ⊇ M0,𝑉

′ ⊒ 𝑉 . Stack(s,G′) ∗ SeenStack(s,G′,M′) ∗ ⊒𝑉 ′

∗ ∃e ∉ G. e ∈ M′ ∧ G′
= G

[
e ↦→(Push(v),𝑉 ′,M′)

] ⟩
Hb-Pop

SeenStack(s,G0,M0) ∗ ⊒𝑉 ⊢ ⟨G. Stack(s,G)⟩ pop(s) ⟨
v. ∃G′ ⊒ G,M′ ⊇ M0,𝑉

′ ⊒ 𝑉 . Stack(s,G′) ∗ SeenStack(s,G′,M′) ∗ ⊒𝑉 ′

∗
(
. . . ∧ G′

= G [d ↦→(Pop(𝜖), . . .)]
)
∨

(
. . . ∧ G′

= G [𝑑 ↦→(Pop(v), . . .)] ∧ . . .
)⟩

Hb-Exchange
SeenExchanges(x,G0,M0) ∗ v1 ≠ ⊥ ∗ ⊒𝑉0 ⊢
⟨𝑏,G. Exchanger(x,G)⟩ exchange(x, v1)

⟨
v2 . ∃G

′ ⊒ G,M′ ⊇ M0,𝑉1 ⊒ 𝑉0,𝑉2, e1 ∉ G, e2 . Exchanger(x,G
′) ∗ ⊒𝑉1 ∗ e1 ∈ M′ ∗ G′

= G
[
e1 ↦→(Exchange(v1, v2),𝑉1,M

′)
]

∗ ∨




v2 = ⊥ ∗ SeenExchanges(x,G′,M′) ∗ ExchangerConsistent(G′)

v2 ≠ ⊥ ∧ e1 < e2 ∗ e2 ∈ M′ ∗ SeenExchanges(x,G′,M′ \ {e2})

v2 ≠ ⊥ ∧ e2 < e1 ∗ e2 ∈ M′ ∗ SeenExchanges(x,G′,M′) ∗ ExchangerConsistent(G′)

∗ G(e2) = (Exchange(v2, v1),𝑉2,M
′) ∗ G′ .so = {(e1, e2), (e2, e1)} ∪ G.so

⟩
{
(v2 ≠ ⊥ ∧ e1 < e2) ⇒ ∃G′′ ⊒ G′ . SeenExchanges(x,G′′,M′) ∗ ExchangerConsistent(G′′)

∗ G′′ (e2) = (Exchange(v2, v1),𝑉2,M
′) ∗ G′′ .so = {(e1, e2), (e2, e1)} ∪ G′ .so}

Figure 5. LAT
hb
-style specs for stacks and exchangers (excerpt, simplified).

commits have been performed, can the helpee learn about
the new graph G′′ (e2’s G

′) that completes e1’s G
′ (e2’s G)

with e2 and the so pairs, and locally observe both events, via
SeenExchanges(x,G′′,M′).

Intermediate states. That matching exchange pairs are
committed atomically together is also reflected by the fact
that we do not always have consistency: the ownership
Exchanger(x,G) does not imply ExchangerConsistent(G).
Instead, we have ExchangerConsistent(G′) only with a com-
pleted graph G′, i.e., after the failure case or after the helper’s
commit. Between the helpee’s commit and the helper’s com-
mit, the exchanger is in an incomplete intermediate state.
As such, those intermediate states can appear in a client

invariant. However, it is important that the client needs to
handle such states only when it uses the exchanger, and that
other non-exchanger-related operations will never observe
those states. For example, the invariant of the elimination
stack needs to consider the intermediate state where a push
event created by a successful exchange is inserted into the
graph, but the matching pop event by the matching exchange
is not. A successful push using the base stack and running
concurrently with the exchange pair should not observe the
client invariant in such an intermediate state, because it
would not be able to prove LIFO then.

Our full exchanger spec (see our supplementary materi-
als [18]) supports this form of intermediate state reasoning:
when using the exchanger, the client need not maintain its
invariant for the intermediate state between the two com-
mits; it only needs to re-establish its invariant after both
commits. When not using the exchanger, the client invariant
is never in such intermediate states.

Strength of the specs. To the best of our knowledge, the
full exchanger spec is the first ever proposed CSL spec for
RMC exchangers. It is strong enough for the proof of the
elimination stack (ğ4.1), and we have also used it to derive a
spec that supports resource exchanges, where each exchange

call needs to provide the resources to be exchanged only at
its commit point, and only if the exchange succeeds.

5 Extensions to iRC11

In this section, we briefly explain the main extensions to
iRC11 needed to state and prove useful logically atomic
Compass specs. These extensions include objective invariants,
view-explicit modalities, and atomic points-to assertions. Our
supplementary materials and Coq development [18] provide
more details on these extensions.

5.1 Objective Invariants

Recall the rule LAInv-Acc in ğ2.2 which relates LATs and in-
variants: a logically atomic expression can access invariants
around its commit point. The rule is sound in SC, but is prob-
lematic in the logic of iRC11, as general invariants that can
contain arbitrary resources do not exist in iRC11. Intuitively,
when moving resources owned by a threadÐwhich are inter-
preted according to that thread’s local viewsÐinto the łpublic
domainž of an invariant, we have to pick the views used to
interpret those resources, now that they are no longer tied
to a thread. Following RSL, FSL, and GPS [22, 23, 41, 72, 73],
iRC11 sets the view for a shared resource to be a view of some
location’s write event, effectively restricting invariants to
single locations. That is, iRC11’s version of invariants cannot
contain arbitrary resources, but only ownership of a single

803

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

location and resources associated with its accesses. Unfortu-
nately, abstract ownership of a data structure typically con-
sists of multiple locations. For example, Queue(q,G) should
include ownership of all of the queue’s constituent memory
locationsÐits head and tail pointers, as well as its elements.
Single-location invariants thus are insufficient for Compass.

Another solution to the view conundrum is to require that
resources put inside invariants are always objective, in the
sense that they hold at any view, i.e., if I holds at some view
𝑉1, then it also holds at some other view 𝑉2. As such, we can
pick any view to interpret objective resources when moving
them from a thread into an invariant. This gives rise to ob-

jective invariants, an experimental, unpublished construct
of iRC11 that has proved useful in Cosmo to achieve strong
LAT specs. For Compass, we adopt objective invariants and
develop a complete, official interface for them in iRC11.
Objective invariants are sound for RMC, and yet have al-

most the same interface as SC invariants. In fact, they admit
both Inv-Acc and LAInv-Acc, so they can be combined with
LATs to achieve both strong functional correctness and mod-
ular client reasoning, in the way that we have explained in
ğ2 and ğ3. The only difference between objective invariants
and SC-logic invariants is in the invariant allocation rule.

OInv-alloc

objective(I)

⊲I ⇛ I

That is, if we have ⊲I, we can put it in an invariant as long as
we can show that it is objective, i.e., objective(I). The objec-
tive side-condition is where we are obliged to take care of the
relaxed memory effects. To make our Compass specs compat-
ible with objective invariants, we additionally require that
the abstract ownership of a data structureÐe.g.,Queue(q,G)

for queues or Stack(s,H) for stacksÐis objective.
But, how do we make sure that the abstract ownership of a

queue is objective? While many resources such as pure facts
and ghost ownership are view-independent and thus objec-
tive, most resources, including the usual points-to assertion,
are not, because their interpretations depend on the view
observations of the owner. In order to make them objective
or compatible with objectivity, we need the ability to briefly

perform explicit view reasoningÐwhich is hidden by the
logic of iRC11Ðwith the help of view-explicit modalities and
atomic points-to assertions.

5.2 View-Explicit Modalities

We have seen one such view-explicit modality in ğ2.3: the
seen-view assertion ⊒𝑉 says that its owner’s observations
are at least 𝑉 . Another important modality is the view-at

modality@𝑉 𝑃 which asserts that 𝑃 holds explicitly (at least)
at the view𝑉 . This means that the interpretation of 𝑃 is now
justified by the view 𝑉 and not by the owning thread’s local

view. The view-at modality has the following rules:

objective(@𝑉 𝑃)

VA-intro

𝑃 ⊢ ∃𝑉 . ⊒𝑉 ∗@𝑉 𝑃

VA-elim

⊒𝑉 ∗@𝑉 𝑃 ⊢ 𝑃

@𝑉 𝑃 is objective, because it no longer depends on the view
of the owner. The introduction rule VA-intro allows us to
freeze an owned resource 𝑃 at some view 𝑉 that we have
observed (⊒𝑉). Having done this, we can send @𝑉 𝑃 and
⊒𝑉 away on different routes: @𝑉 𝑃 can be put inside an
invariant, and ⊒𝑉 can be passed to another thread using
atomic operationsÐrecall Rel-Write and Acq-Read in ğ2.3.
Anyone who receives both parts can use VA-elim to regain 𝑃 .

Consequently, the view-at modality allows us to turn arbi-
trary resources into objective assertions with an explicit view
𝑉 , and move them into an objective invariant. The invariant
then needs to track these views carefully, e.g., by relating
them to the views of some location’s writes. Then when an-
other thread interacts with the invariant, it can relate those
views to its own seen-view assertions (⊒𝑉), eliminate the
view-at modality, and locally acquire the resources.

5.3 Atomic Points-To Assertion

To complete the story, we need stronger rules than Rel-Write

and Acq-Read that work with the atomic points-to assertions
stored under a view-at modality.

AT-Rel-Write
{⊒𝑉 ∗ ℓ ⊒sn ℎ0 ∗@𝑉𝑏 ℓ ↦→at ℎ} ℓ :=rel v

{
(). ∃𝑡 ∉ ℎ ⊇ ℎ0,𝑉

′ . max({𝑉 (ℓ)} ∪ dom(ℎ0)) < 𝑡 ∗

𝑉 ⊔ {ℓ ↦→ 𝑡} ⊑ 𝑉 ′ ∗ ⊒𝑉 ′ ∗

ℓ ⊒sn ℎ0 [𝑡 ↦→(v,𝑉 ′)] ∗@𝑉𝑏⊔𝑉 ′ (ℓ ↦→at ℎ[𝑡 ↦→(v,𝑉 ′)])
}

AT-Acq-Read

{⊒𝑉 ∗ ℓ ⊒sn ℎ0 ∗@𝑉𝑏 ℓ ↦→at ℎ}
∗acqℓ

{
v. ∃𝑡 ≥ 𝑉 (ℓ),𝑉𝑡 , ℎ

′,𝑉 ′ ⊒ 𝑉𝑡 . ℎ0 ⊆ ℎ′ ⊆ ℎ ∗ ℎ′ (𝑡) = (v,𝑉𝑡)

∗ max(dom(ℎ0)) ≤ 𝑡 ∗ ⊒𝑉 ′ ∗ ℓ ⊒sn ℎ
′ ∗@𝑉𝑏⊔𝑉 ′ℓ ↦→at ℎ}

In these rules, we do not require the ownership of atomic
points-to ℓ ↦→at ℎ locally. Instead, we need it only objectively,
under a view-at modality at some view 𝑉𝑏 , but together
with some local history observation ℓ ⊒sn ℎ0 stating that the
calling thread has observed a snapshot ℎ0 of the full history
ℎ (ℎ0 ⊆ ℎ). The history observation ensures that the thread
has made some basic observations about the location (e.g.,
that it has been initialized). After the access, the rules return
the atomic points-to, still under the view-at modality, at the
view𝑉𝑏 ⊔𝑉 ′ where𝑉 ′ is the calling thread’s new local view.

These stronger rules are compatible with atomic points-
to ownership stored inside an objective invariant, under a
view-at modality. For example, in our verification of the
Michael-Scott queue against the LAT

hb
specs for queues, we

can define the queue’s abstract ownership Queue(q,G) as
ownership of the head and tail pointers as well as the queue
elements, all under a view-at modality at some existentially

804

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer

quantified view 𝑉𝑏 . This makes Queue(q,G) an objective re-
source that can be shared concurrently, and yetQueue(q,G)

is still sufficient to allow atomic accesses on q’s memory loca-
tions. We therefore achieve the benefits of logical atomicity
even in the presence of relaxed memory effects.

As a final note, the view-explicit modalities and the atomic
points-to also exist and play a key role in Cosmo, albeit in
a much simpler form. The interface for our view-explicit
modalities and atomic points-to is much more extensive, in
order to support the various access modes of the weaker
ORC11 memory model. These details can be found in the
supplementary materials accompanying this paper [18].

6 Related and Future Work

Our specification styles build on extensive prior work in
relaxed correctness conditions, and in program logics for
fine-grained concurrent SC and RMC programs.

Relaxed correctness conditions. Various alternative cor-
rectness conditions to linearizability have been developed [20,
29, 33, 36, 58], particularly for distributed systems [3, 9, 10,
57] and relaxed memory [4, 8, 21, 25, 26, 35, 45, 62]. Most
of these were developed outside a program logic, directly
on complex low-level concurrency semantics, and with little
support for client reasoning or mechanization. As discussed
in ğ1.2, we believe the Yacovet approach [62] is the most
general of these. By enhancing Yacovet specs in Compass

with logical atomicity, we demonstrate that existing relaxed
correctness conditions can be used in combination with sep-
aration logic to achieve stronger and better modular client
reasoning as well as more foundational (mechanized) verifi-
cations. We consider it future work to encode more of these
relaxed correctness conditions in Compass.

SC program logics. Logical atomicity is just one CSL al-
ternative to linearizability. Another is to avoid identifying
commit points and instead reason directly about refinements

between a sequential łspecificationž program and the con-
current implementation program [28, 46, 52, 71]. However,
sequential specs are not always suitable as correctness con-
ditions (e.g., for exchangers), and non-sequential refinement
is still an open problem for RMC logics. Our work demon-
strates the usefulness of logical atomicity in RMC. As future
work, we consider adapting prophecy variables [1, 2, 39] to
our framework, as they may help simplify our specs.

FCSL [19, 64, 65] and the rely-guarantee-based Hoare log-
ics by Hemed et al. [31] and Khyzha et al. [43] support
specifying non-linearizable SC data structures with histories
by encoding histories as auxiliary (ghost) state and by expos-
ing partial, subjective views of the histories to clients. This
is similar to our construction of graphs or linear histories.
Compass can be seen as extending these logics with logical
atomicity and RMC.

RMC program logics. Dalvandi and Dongol [15, 16], in
parallel work, try to achieve the same goal of providing com-
positional specs and modular client reasoning for RMC data
structures. Their approach uses an Owicki-Gries-style Hoare
logic [14] for a more limited fragment of RC11 called RAR
(which only has release-acquire and relaxed accesses, not
non-atomics or fences). They specify libraries with view-
based, atomic abstract object semantics for the library’s op-
erations, treating the object methods as primitives of the
language. Client verifications rely on Hoare-triple specs de-
rived directly from the abstract object semantics. To verify
an implementation against a spec, they prove refinement,
showing that synchronizations (in the view semantics) of the
abstract object are simulated by synchronizations in the im-
plementation. Their approach therefore shares similar ideas
to ours (their specs are most similar to our LAThist

hb
specs). The

main limitation is in their simulation method: it applies only
to synchronization-free clients, i.e., those who synchronize
only through the library in question. This is because it is non-
trivial to characterize how external synchronizations affect
the simulation relation. Consequently, they cannot obtain
an end-to-end proof for clients that use external synchro-
nizations, e.g., the MP client in Figure 1. Furthermore, the
use of Owicki-Gries-style logic means that they have to deal
with additional interference freedom proofs. They report only
one mechanized library verification, for the Treiber stack,
with 12KLOC in Isabelle. In comparison, our mechanization
results are more extensive, and our Treiber stack verification
takes only 2.2KLOC in Iris, in Coq.

Several CSLs for RMC have been developed within Iris [17,
41, 54]. Our logic extends iRC11 and follows Cosmo in ex-
posing more view information in specs. Our key innovation
is the use of logical views on library operations, allowing us
to give stronger specifications that can describe interactions
with external synchronization. In retrospect, we believe that
views are a concise, compositional, and user-friendly tool
to describe the different kinds of synchronization that may
occur in and around a data structure, and thus are useful for
formulating full functional correctness specs under RMC.
Finally, as future work, we would like to apply the Com-

pass approach to more sophisticated RMC libraries such as
work-stealing queues [12, 50] and safe memory reclamation
schemes for lock-free data structures [27, 55].

Acknowledgments

Wewould like to thankAzalea Raad for helpful conversations.
This research was supported, in part, by European Research
Council (ERC) Consolidator Grants for the projects łRust-
Beltž and łPERSISTž, funded under the European Union’s
Horizon 2020 Framework Programme (grant agreements no.
683289 and 101003349, respectively), by a National Research
Foundation of Korea (NRF) grant, funded by the Korea gov-
ernment (MSIT) (grant no. 2020R1C1C1010015), and by a
(US) National Science Foundation grant (grant no. 1811894).

805

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

References
[1] Martín Abadi and Leslie Lamport. 1988. The Existence of Refinement

Mappings. In Proceedings of the Third Annual Symposium on Logic in

Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988.

IEEE Computer Society, 165ś175. https://doi.org/10.1109/LICS.1988.

5115

[2] Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement

Mappings. Theor. Comput. Sci. 82, 2 (1991), 253ś284. https://doi.org/

10.1016/0304-3975(91)90224-P

[3] Yehuda Afek, Guy Korland, and Eitan Yanovsky. 2010. Quasi-

Linearizability: Relaxed Consistency for Improved Concurrency. In

Principles of Distributed Systems - 14th International Conference,

OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Proceedings (Lec-

ture Notes in Computer Science, Vol. 6490). Springer, 395ś410. https:

//doi.org/10.1007/978-3-642-17653-1_29

[4] Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library ab-

straction for C/C++ concurrency. In The 40th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

’13, Rome, Italy - January 23 - 25, 2013. ACM, 235ś248. https:

//doi.org/10.1145/2429069.2429099

[5] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ concurrency. In Proceedings of the 38th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2011, Austin, TX, USA, January 26-28, 2011. ACM, 55ś66. https:

//doi.org/10.1145/1926385.1926394

[6] John Bender and Jens Palsberg. 2019. A formalization of Java’s con-

current access modes. Proc. ACM Program. Lang. 3, OOPSLA (2019),

142:1ś142:28. https://doi.org/10.1145/3360568

[7] Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem

Jaber, Kasper Svendsen, and Nikos Tzevelekos. 2021. Theorems for

free from separation logic specifications. Proc. ACM Program. Lang. 5,

ICFP (2021), 1ś29. https://doi.org/10.1145/3473586

[8] Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and

Hongseok Yang. 2012. Concurrent Library Correctness on the TSO

Memory Model. In Programming Languages and Systems - 21st Eu-

ropean Symposium on Programming, ESOP 2012, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS

2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. 87ś107.

https://doi.org/10.1007/978-3-642-28869-2_5

[9] Sebastian Burckhardt, AlexeyGotsman, Hongseok Yang, andMarek Za-

wirski. 2014. Replicated data types: specification, verification, optimal-

ity. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’14, San Diego, CA, USA, January

20-21, 2014. ACM, 271ś284. https://doi.org/10.1145/2535838.2535848

[10] Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. 2015. Spec-

ifying Concurrent Problems: Beyond Linearizability and up to Tasks

- (Extended Abstract). In Distributed Computing - 29th International

Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings

(Lecture Notes in Computer Science, Vol. 9363). Springer, 420ś435.

https://doi.org/10.1007/978-3-662-48653-5_28

[11] Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air

reads with event structures. Proc. ACM Program. Lang. 3, POPL (2019),

70:1ś70:28. https://doi.org/10.1145/3290383

[12] David Chase and Yossi Lev. 2005. Dynamic circular work-stealing

deque. In SPAA 2005: Proceedings of the 17th Annual ACM Symposium on

Parallelism in Algorithms and Architectures, July 18-20, 2005, Las Vegas,

Nevada, USA. ACM, 21ś28. https://doi.org/10.1145/1073970.1073974

[13] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.

2014. TaDA: A Logic for Time and Data Abstraction. In ECOOP 2014

- Object-Oriented Programming - 28th European Conference, Uppsala,

Sweden, July 28 - August 1, 2014. Proceedings (Lecture Notes in Computer

Science, Vol. 8586). Springer, 207ś231. https://doi.org/10.1007/978-3-

662-44202-9_9

[14] Sadegh Dalvandi, Simon Doherty, Brijesh Dongol, and Heike

Wehrheim. 2020. Owicki-Gries Reasoning for C11 RAR. In 34th

European Conference on Object-Oriented Programming, ECOOP 2020,

November 15-17, 2020, Berlin, Germany (Virtual Conference) (LIPIcs,

Vol. 166). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1ś

11:26. https://doi.org/10.4230/LIPIcs.ECOOP.2020.11

[15] Sadegh Dalvandi and Brijesh Dongol. 2021. Verifying C11-style weak

memory libraries. In PPoPP ’21: 26th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, Virtual Event, Republic

of Korea, February 27- March 3, 2021. ACM, 451ś453. https://doi.org/

10.1145/3437801.3441619

[16] Sadegh Dalvandi and Brijesh Dongol. 2021. Verifying C11-Style

Weak Memory Libraries via Refinement. CoRR abs/2108.06944 (2021).

arXiv:2108.06944 https://arxiv.org/abs/2108.06944

[17] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek

Dreyer. 2020. RustBelt meets relaxed memory. Proc. ACM Program.

Lang. 4, POPL (2020), 34:1ś34:29. https://doi.org/10.1145/3371102

[18] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen,

William Mansky, Jeehoon Kang, and Derek Dreyer. 2021. Accompa-

nying supplementary materials and Coq development of Compass.

Available at https://plv.mpi-sws.org/compass/.

[19] Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and

Anindya Banerjee. 2017. Concurrent Data Structures Linked in

Time. In 31st European Conference on Object-Oriented Programming,

ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 8:1ś8:30. https://doi.org/

10.4230/LIPIcs.ECOOP.2017.8

[20] John Derrick, Brijesh Dongol, Gerhard Schellhorn, Bogdan Tofan,

Oleg Travkin, and Heike Wehrheim. 2014. Quiescent Consistency:

Defining and Verifying Relaxed Linearizability. In FM 2014: Formal

Methods - 19th International Symposium, Singapore, May 12-16, 2014.

Proceedings (Lecture Notes in Computer Science, Vol. 8442). Springer,

200ś214. https://doi.org/10.1007/978-3-319-06410-9_15

[21] Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick.

2018. Making Linearizability Compositional for Partially Ordered

Executions. In Integrated Formal Methods - 14th International Con-

ference, IFM 2018, Maynooth, Ireland, September 5-7, 2018, Proceed-

ings (Lecture Notes in Computer Science, Vol. 11023). Springer, 110ś129.

https://doi.org/10.1007/978-3-319-98938-9_7

[22] Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11

Memory Fences. In Verification, Model Checking, and Abstract Inter-

pretation - 17th International Conference, VMCAI 2016, St. Petersburg,

FL, USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer

Science, Vol. 9583). Springer, 413ś430. https://doi.org/10.1007/978-3-

662-49122-5_20

[23] Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed

Concurrency with FSL++. In Programming Languages and Systems -

26th European Symposium on Programming, ESOP 2017, Held as Part

of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture

Notes in Computer Science, Vol. 10201). Springer, 448ś475. https://doi.

org/10.1007/978-3-662-54434-1_17

[24] Stephen Dolan, K. C. Sivaramakrishnan, and Anil Madhavapeddy.

2018. Bounding data races in space and time. In Proceedings of the

39th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018.

ACM, 242ś255. https://doi.org/10.1145/3192366.3192421

[25] Brijesh Dongol, Radha Jagadeesan, James Riely, and Alasdair Arm-

strong. 2018. On abstraction and compositionality for weak-memory

linearisability. In Verification, Model Checking, and Abstract Interpre-

tation - 19th International Conference, VMCAI 2018, Los Angeles, CA,

USA, January 7-9, 2018, Proceedings (Lecture Notes in Computer Sci-

ence, Vol. 10747). Springer, 183ś204. https://doi.org/10.1007/978-3-319-

73721-8_9

806

https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
https://doi.org/10.1145/3473586
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1007/978-3-662-48653-5_28
https://doi.org/10.1145/3290383
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.1145/3437801.3441619
https://doi.org/10.1145/3437801.3441619
https://arxiv.org/abs/2108.06944
https://arxiv.org/abs/2108.06944
https://doi.org/10.1145/3371102
https://plv.mpi-sws.org/compass/
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1007/978-3-319-73721-8_9
https://doi.org/10.1007/978-3-319-73721-8_9

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA H.-H. Dang, J. Jung, J. Choi, D.-T. Nguyen, W. Mansky, J. Kang, and D. Dreyer

[26] Michael Emmi and Constantin Enea. 2019. Weak-consistency speci-

fication via visibility relaxation. Proc. ACM Program. Lang. 3, POPL

(2019), 60:1ś60:28. https://doi.org/10.1145/3290373

[27] Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation. University

of Cambridge.

[28] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A

Mechanised Relational Logic for Fine-Grained Concurrency. In Pro-

ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-

puter Science, LICS 2018, Oxford, UK, July 09-12, 2018. ACM, 442ś451.

https://doi.org/10.1145/3209108.3209174

[29] Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M.

Kirsch, Michael Lippautz, Hannes Payer, Ali Sezgin, Ana Sokolova, and

Helmut Veith. 2016. Local Linearizability for Concurrent Container-

Type Data Structures. In 27th International Conference on Concurrency

Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada (LIPIcs,

Vol. 59). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 6:1ś6:15.

https://doi.org/10.4230/LIPIcs.CONCUR.2016.6

[30] MengdaHe, Viktor Vafeiadis, Shengchao Qin, and João F. Ferreira. 2018.

GPS+: Reasoning About Fences and Relaxed Atomics. Int. J. Parallel

Program. 46, 6 (2018), 1157ś1183. https://doi.org/10.1007/s10766-017-

0518-x

[31] Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. 2015. Modular

Verification of Concurrency-Aware Linearizability. In Distributed Com-

puting - 29th International Symposium, DISC 2015, Tokyo, Japan, October

7-9, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9363).

Springer, 371ś387. https://doi.org/10.1007/978-3-662-48653-5_25

[32] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A scalable

lock-free stack algorithm. In SPAA 2004: Proceedings of the Sixteenth

Annual ACM Symposium on Parallelism in Algorithms and Architectures,

June 27-30, 2004, Barcelona, Spain. ACM, 206ś215. https://doi.org/10.

1145/1007912.1007944

[33] Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin,

and Ana Sokolova. 2013. Quantitative relaxation of concurrent data

structures. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’13, Rome, Italy - January

23 - 25, 2013. ACM, 317ś328. https://doi.org/10.1145/2429069.2429109

[34] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A

Correctness Condition for Concurrent Objects. ACM Trans. Program.

Lang. Syst. 12, 3 (1990), 463ś492. https://doi.org/10.1145/78969.78972

[35] Radha Jagadeesan, Gustavo Petri, Corin Pitcher, and James Riely. 2013.

Quarantining Weakness - Compositional Reasoning under Relaxed

Memory Models (Extended Abstract). In Programming Languages and

Systems - 22nd European Symposium on Programming, ESOP 2013,

Held as Part of the European Joint Conferences on Theory and Prac-

tice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceed-

ings (Lecture Notes in Computer Science, Vol. 7792). Springer, 492ś511.

https://doi.org/10.1007/978-3-642-37036-6_27

[36] Radha Jagadeesan and James Riely. 2014. Between Linearizability and

Quiescent Consistency - Quantitative Quiescent Consistency. In Au-

tomata, Languages, and Programming - 41st International Colloquium,

ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part

II (Lecture Notes in Computer Science, Vol. 8573). Springer, 220ś231.

https://doi.org/10.1007/978-3-662-43951-7_19

[37] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016.

Higher-order ghost state. In Proceedings of the 21st ACM SIGPLAN

International Conference on Functional Programming, ICFP 2016, Nara,

Japan, September 18-22, 2016. ACM, 256ś269. https://doi.org/10.1145/

2951913.2951943

[38] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular

foundation for higher-order concurrent separation logic. J. Funct.

Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151

[39] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna

Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2020. The fu-

ture is ours: Prophecy variables in separation logic. Proc. ACM Program.

Lang. 4, POPL (2020), 45:1ś45:32. https://doi.org/10.1145/3371113

[40] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2015, Mumbai, India, January 15-17,

2015. ACM, 637ś650. https://doi.org/10.1145/2676726.2676980

[41] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Vik-

tor Vafeiadis. 2017. Strong Logic for Weak Memory: Reasoning About

Release-Acquire Consistency in Iris. In 31st European Conference on

Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,

Spain (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 17:1ś17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

[42] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A promising semantics for relaxed-memory concurrency.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, POPL 2017, Paris, France, January 18-20, 2017.

ACM, 175ś189. https://doi.org/10.1145/3009837.3009850

[43] Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew J. Parkin-

son. 2017. Proving Linearizability Using Partial Orders. In Program-

ming Languages and Systems - 26th European Symposium on Program-

ming, ESOP 2017, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April

22-29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201).

Springer, 639ś667. https://doi.org/10.1007/978-3-662-54434-1_24

[44] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan,

Derek Dreyer, and Lars Birkedal. 2017. The Essence of Higher-Order

Concurrent Separation Logic. In Programming Languages and Sys-

tems - 26th European Symposium on Programming, ESOP 2017, Held

as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-

ings (Lecture Notes in Computer Science, Vol. 10201). Springer, 696ś723.

https://doi.org/10.1007/978-3-662-54434-1_26

[45] Siddharth Krishna, Michael Emmi, Constantin Enea, and Dejan Jo-

vanovic. 2020. Verifying Visibility-Based Weak Consistency. In Pro-

gramming Languages and Systems - 29th European Symposium on Pro-

gramming, ESOP 2020, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April

25-30, 2020, Proceedings (Lecture Notes in Computer Science). Springer,

280ś307. https://doi.org/10.1007/978-3-030-44914-8_11

[46] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017.

A relational model of types-and-effects in higher-order concurrent

separation logic. In Proceedings of the 44th ACM SIGPLAN Symposium

on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017. ACM, 218ś231. https://doi.org/10.1145/3009837.

3009877

[47] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming

release-acquire consistency. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. ACM, 649ś662.

https://doi.org/10.1145/2837614.2837643

[48] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing sequential consistency in C/C++11. In Proceed-

ings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23,

2017. ACM, 618ś632. https://doi.org/10.1145/3062341.3062352

[49] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs. IEEE Trans. Computers 28,

9 (1979), 690ś691. https://doi.org/10.1109/TC.1979.1675439

[50] Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa

Nardelli. 2013. Correct and efficient work-stealing for weak memory

807

https://doi.org/10.1145/3290373
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.4230/LIPIcs.CONCUR.2016.6
https://doi.org/10.1007/s10766-017-0518-x
https://doi.org/10.1007/s10766-017-0518-x
https://doi.org/10.1007/978-3-662-48653-5_25
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/2429069.2429109
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-642-37036-6_27
https://doi.org/10.1007/978-3-662-43951-7_19
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-030-44914-8_11
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

models. In ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’13, Shenzhen, China, February 23-27,

2013. ACM, 69ś80. https://doi.org/10.1145/2442516.2442524

[51] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty,

Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promising 2.0:

Global optimizations in relaxed memory concurrency. In Proceedings

of the 41st ACM SIGPLAN International Conference on Programming

Language Design and Implementation, PLDI 2020, London, UK, June

15-20, 2020. ACM, 362ś376. https://doi.org/10.1145/3385412.3386010

[52] Hongjin Liang and Xinyu Feng. 2013. Modular verification of lin-

earizability with non-fixed linearization points. In ACM SIGPLAN

Conference on Programming Language Design and Implementation,

PLDI ’13, Seattle, WA, USA, June 16-19, 2013. ACM, 459ś470. https:

//doi.org/10.1145/2491956.2462189

[53] Glen Mével and Jacques-Henri Jourdan. 2021. Formal verification of

a concurrent bounded queue in a weak memory model. Proc. ACM

Program. Lang. 5, ICFP (2021), 1ś29. https://doi.org/10.1145/3473571

[54] Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2020. Cosmo:

a concurrent separation logic for multicore OCaml. Proc. ACM Program.

Lang. 4, ICFP (2020), 96:1ś96:29. https://doi.org/10.1145/3408978

[55] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation

for Lock-Free Objects. IEEE Trans. Parallel Distrib. Syst. 15, 6 (June

2004), 491ś504. https://doi.org/10.1109/TPDS.2004.8

[56] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Prac-

tical Non-Blocking and Blocking Concurrent Queue Algorithms. In

Proceedings of the Fifteenth Annual ACM Symposium on Principles of

Distributed Computing, Philadelphia, Pennsylvania, USA, May 23-26,

1996. ACM, 267ś275. https://doi.org/10.1145/248052.248106

[57] Gil Neiger. 1994. Set-Linearizability. In Proceedings of the Thirteenth

Annual ACM Symposium on Principles of Distributed Computing, Los

Angeles, California, USA, August 14-17, 1994. ACM, 396. https://doi.

org/10.1145/197917.198176

[58] Joakim Öhman and Aleksandar Nanevski. 2022. Visibility reasoning

for concurrent snapshot algorithms. Proc. ACM Program. Lang. 6,

POPL, 1ś30. https://doi.org/10.1145/3498694

[59] Anton Podkopaev, Ilya Sergey, and Aleksandar Nanevski. 2016. Oper-

ational Aspects of C/C++ Concurrency. CoRR abs/1606.01400 (2016).

http://arxiv.org/abs/1606.01400

[60] Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar,

and Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-

atomic axiomatic and operational models for ARMv8. Proc. ACM

Program. Lang. 2, POPL (2018), 19:1ś19:29. https://doi.org/10.1145/

3158107

[61] Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung Hwan

Lee, and Chung-Kil Hur. 2019. Promising-ARM/RISC-V: a simpler

and faster operational concurrency model. In Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. ACM,

1ś15. https://doi.org/10.1145/3314221.3314624

[62] Azalea Raad,MarkoDoko, Lovro Rozic, Ori Lahav, and Viktor Vafeiadis.

2019. On library correctness under weak memory consistency: Spec-

ifying and verifying concurrent libraries under declarative consis-

tency models. Proc. ACM Program. Lang. 3, POPL (2019), 68:1ś68:31.

https://doi.org/10.1145/3290381

[63] William Scherer, Doug Lea, and Michael Scott. 2005. A scalable

elimination-based exchange channel. (2005).

[64] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Speci-

fying and Verifying Concurrent Algorithms with Histories and Subjec-

tivity. In Programming Languages and Systems - 24th European Sympo-

sium on Programming, ESOP 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London,

UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science,

Vol. 9032). Springer, 333ś358. https://doi.org/10.1007/978-3-662-46669-

8_14

[65] Ilya Sergey, Aleksandar Nanevski, Anindya Banerjee, and Germán An-

drés Delbianco. 2016. Hoare-style specifications as correctness con-

ditions for non-linearizable concurrent objects. In Proceedings of the

2016 ACM SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, OOPSLA 2016, part

of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4,

2016. ACM, 92ś110. https://doi.org/10.1145/2983990.2983999

[66] Robert C. Steinke and Gary J. Nutt. 2004. A unified theory of shared

memory consistency. J. ACM 51, 5 (2004), 800ś849. https://doi.org/10.

1145/1017460.1017464

[67] Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent

Abstract Predicates. In Programming Languages and Systems - 23rd

European Symposium on Programming, ESOP 2014, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS

2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture Notes in

Computer Science, Vol. 8410). Springer, 149ś168. https://doi.org/10.

1007/978-3-642-54833-8_9

[68] Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and

Viktor Vafeiadis. 2018. A Separation Logic for a Promising Semantics.

In Programming Languages and Systems - 27th European Symposium

on Programming, ESOP 2018, Held as Part of the European Joint Con-

ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,

Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Sci-

ence, Vol. 10801). Springer, 357ś384. https://doi.org/10.1007/978-3-319-

89884-1_13

[69] Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying

read-copy-update in a logic for weak memory. In Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, Portland, OR, USA, June 15-17, 2015. ACM, 110ś120.

https://doi.org/10.1145/2737924.2737992

[70] R.K. Treiber. 1986. Systems Programming: Coping with Parallelism.

International Business Machines Incorporated, Thomas J. Watson Re-

search Center. https://books.google.lu/books?id=YQg3HAAACAAJ

[71] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying re-

finement and Hoare-style reasoning in a logic for higher-order con-

currency. In ACM SIGPLAN International Conference on Functional

Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013. ACM,

377ś390. https://doi.org/10.1145/2500365.2500600

[72] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navi-

gating weak memory with ghosts, protocols, and separation. In Pro-

ceedings of the 2014 ACM International Conference on Object Oriented

Programming Systems Languages & Applications, OOPSLA 2014, part of

SPLASH 2014, Portland, OR, USA, October 20-24, 2014. ACM, 691ś707.

https://doi.org/10.1145/2660193.2660243

[73] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic:

A program logic for C11 concurrency. In Proceedings of the 2013 ACM

SIGPLAN International Conference on Object Oriented Programming

Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,

Indianapolis, IN, USA, October 26-31, 2013. ACM, 867ś884. https:

//doi.org/10.1145/2509136.2509532

[74] Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Bar-

bier, Stephen Dolan, Shaked Flur, Jean Pichon-Pharabod, and Shu-

yu Guo. 2020. Repairing and mechanising the JavaScript relaxed

memory model. In Proceedings of the 41st ACM SIGPLAN Interna-

tional Conference on Programming Language Design and Implementa-

tion, PLDI 2020, London, UK, June 15-20, 2020. ACM, 346ś361. https:

//doi.org/10.1145/3385412.3385973

808

https://doi.org/10.1145/2442516.2442524
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3408978
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/197917.198176
https://doi.org/10.1145/3498694
http://arxiv.org/abs/1606.01400
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3290381
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/2983990.2983999
https://doi.org/10.1145/1017460.1017464
https://doi.org/10.1145/1017460.1017464
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/2737924.2737992
https://books.google.lu/books?id=YQg3HAAACAAJ
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3385412.3385973

	Abstract
	1 Introduction
	1.1 Strong and Compositional Functional Correctness for RMC Libraries
	1.2 Contributions

	2 Background: Separation Logic Specs for Strong Memory Models
	2.1 Sequential Specifications for Queues
	2.2 SC Specifications with Logical Atomicity
	2.3 RMC Specifications with Views

	3 Richer Partial Orders for Stronger Specs in a Weaker Memory Model
	3.1 Graph-Based Specs to Encode Partial Orders
	3.2 Weaker Specs by Abandoning Abstract States
	3.3 Stronger Specs with a Linearization

	4 Compositional Verification of the Elimination Stack
	4.1 The Elimination Stack
	4.2 Strong Specs for Exchangers

	5 Extensions to iRC11
	5.1 Objective Invariants
	5.2 View-Explicit Modalities
	5.3 Atomic Points-To Assertion

	6 Related and Future Work
	Acknowledgments
	References

