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Abstract— Parallel tracking and mapping (PTAM) as a time-

efficient framework for simultaneous localization and mapping

(SLAM) has been becoming popular in recent years. However,

in this paper, we vigilantly point out that the favorite parallel-

pipeline design realized by recent proposed SLAM algorithms

may lead to inaccurate state estimates which, as a consequence,

cannot always guarantee the performance of the estimators in

real application. This is mainly due to the imperfect design for

processing loop-closure measurements which accidentally vio-

lates the Markov assumption for probabilistic SLAM problem.

To address this issue, a novel estimator design is proposed that

holds the advantage of parallel processing, while striving to be

consistent with the Markov property of the batch probabilistic

SLAM estimator, therefore, termed Markov parallel tracking and
mapping (MPTAM). Especially, the experiments on challenging

visual-inertial datasets are employed to further demonstrate the

improvements of proposed estimator in terms of accuracy and

efficiency, as compared with the state-of-the-art SLAM system.

I. INTRODUCTION AND RELATED WORK

Simultaneous localization and mapping (SLAM) has been
studied for almost three decades since its pioneer work (e.g.,
[1], [2], [3]) was proposed around the 1990s, and has always
been the core technology of many different robotic/computer
vision applications, such as the visual-inertial navigation, 3D
reconstruction, augmented/virtual reality (AR/VR), and also
autonomous driving. Generally speaking, the primary goal of
the SLAM is to learn about the states of the robot itself and
its surrounding environment (e.g., a map about the places the
robot has visited and its trajectory in this map). However, as
those states in general are not directly observable we have to
infer them based on some observations which usually come
from the sensors equipped by the robot, in which the wheel
odometer, camera, and inertial measurement unit (IMU) are
most commonly used in real application. Moreover, in order
to extract usable information about the state from the noisy
sensor measurements, the probabilistic distributions are used
to model these observations (e.g., assuming Gaussian noise).
Then, based on that and some prior knowledge (in terms of
probability distribution) about the state, we can characterize
the SLAM result as a posterior probability which is formed
following Bayes rule [4]. In particular, the maximum of this
probability corresponds to an (optimal) inference of the state
which is named maximum a posteriori (MAP) estimate. We
should note that the above approach is practical for SLAM
because of a Markov assumption [5] which specifies that the
state is a complete summary of the past such that its posterior
distribution is sufficient to represent the history of the robot.
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As a result, the corresponding Markov property is embedded
in the MAP estimator designed for SLAM application.

It is well known that under certain assumptions, finding
the MAP state estimate for SLAM can be cast as a nonlinear
least-squares problem, which is also referred to as bundle
adjustment (BA) in the literature and whose solution can be
found in a batch form [6], [7]. However, the processing cost
of batch estimator is increasing as more measurements are
included for the estimation, and may eventually become in-
tolerable for real-time processing even using an incremental
approximation [8], [9]. In order to achieve efficiency against
ever-increasing computational complexity, the filtering and
the fixed-lag smoothing methods are proposed, which focus
on the estimation over only a bounded-size, sliding window
of recent states by marginalizing out the past states and mea-
surements (e.g., [10], [11], [12], [13], [14], [15], [16], [17]).
While those methods achieve constant processing cost and
real-time performance, they suffer an ever-increasing drift in
the exploration due to the inability to perform global adjust-
ment which is usually triggered by loop closure (e.g., some
features in the map are observed from the current location of
the robot). Regarding such limitation, some approaches are
further proposed by investigating the partition methods about
batch SLAM formulations [18], [19]. Based on their ideas, a
batch estimator is divided into two conditionally independent
parts, each of which can be solved by a single thread. While
those solutions take advantage of multi-thread computation,
the tasks in their different threads are not always decoupled.
Especially, when loop closure occurs either the exchange of
information [18] or the transition between modes [19] needs
to be performed in those solutions in order to have accurate
state estimates. Note that, by solving the SLAM as a single
problem, those solutions follow the Markov assumption, and
as a result, the optimality of their estimation results is up to
the approximations adopted for efficiency.

In contrast to that, another approach termed parallel track-
ing and mapping (PTAM) splits a single SLAM problem into
two sub-problems: i) motion tracking and ii) map building,
and solves them using two parallel pipelines [20], which has
become popular recently. Its advantage is straightforward as
the above pipelines are decoupled and can run independently,
thus leading to time efficient solution. Inspired by that, most
recent SLAM algorithms are designed with a high-frequency
front end for estimating the most recent poses and observed
features of the robot, and a relative low-frequency back end

for jointly optimizing the past states in the map (e.g., [21],
[22], [23], [24], [25], [26]). Typically, the estimation in the
front end is formulated as a sliding-window visual(-inertial)
odometry (VO/VIO), while the batch optimization is formed
in the back end like a BA problem. However, we should note



that the following practices are adopted in those algorithms:
a) loop-closure measurements are used by the front end for
relocalization, where the observed map features are assumed
to be perfectly known due to incomplete prior information,
and b) the back end performs batch optimization over only
a (heuristically) selected subset of the past states (e.g., the
keyframes [20]), where the current states being estimated in
the front end are excluded. Both of them violate the Markov
assumption. Especially, the former causes the inconsistency
issue as pointed out in [19], whereas in the latter the current
states cannot be optimized with the past states together such
that the loop-closing result is not jointly optimal. Thus, the
accuracy of those algorithms cannot always be guaranteed.

To overcome the above issues, in this paper, we propose
an exact parallel estimator that performs MAP estimation in
both pipelines, however, following the Markov assumption.
Especially, by noting that those issues are tightly related to
the processing of loop-closure measurements, we introduce
the following design for each pipeline: i) The front end is not
responsible for relocalization, but focuses on the estimation
about the current (sliding-window) states, and ii) The loop-
closure measurements are fused by the back end for global
optimization which includes both the past (i.e., marginalized
by the front end) and the current (i.e., estimated in the front
front end) states. According to that, the front end performs
pure VO/VIO which does not include any past state, thus the
relevant inconsistency issue is avoided. On the other hand,
the back end needs to be capable of tracking the correlation
between the past and current states, which, not like the batch
optimization, should be performed at the same frequency as
the front end. For this purpose, an asynchronous solution is
developed based on the information-based MAP estimation.
As a result, global optimization can be performed as a batch
MAP estimator, and the global optimality of loop-closing re-
sult can be guaranteed (up to some essential approximation).
As a summary, we highlight our main contributions:

• Inspired by PTAM, we propose a new parallel solution
for the probabilistic SLAM problem. In particular, both
pipelines are realized by the MAP estimators, while the
Markov assumption is followed in our solution so as to
realize an optimal parallel SLAM formulation. As both
the time efficiency of PTAM and the Markov property
of MAP estimation are kept in our solution, we term it
Markov parallel tracking and mapping (MPTAM).

• Based on that, we implement our visual-inertial SLAM
system and evaluate its performance. Especially, com-
pared with the state-of-the-art visual-inertial approach,
our system achieves better performance on both bench-
mark dataset and another challenging long-term dataset.

II. PROBABILISTIC SLAM FORMULATION

In this section, we first introduce the probabilistic SLAM
problem and then present its batch solution. Especially, we
have the state vector x comprising the pose of the robot and
the positions of the observed features at every timestep.1 In

1In what follows, x̂ is used to denote the estimate of x, and x̃ , x� x̂
is the corresponding (optimal) correction to this estimate.

addition, we assume that the measurements come from both
visual (e.g., a camera) and inertial (e.g., an IMU) sensors.2

On the probabilistic SLAM problem, at every timestep we
want to find the MAP estimate of x, given current available
measurements, Z , and a prior p(x). Especially, the posterior
probability of x can be expressed as

p(x|Z) _ p(x)p(Z|x) = p(x)
Y

zi2Z
p(zi|x) (1)

where the prior follows N (x̂,⇤), and for each measurement
we have zi = hi(x)+ni, with hi(·) the measurement model
and ni ⇠ N (0,⌃i) the zero-mean white Gaussian noise. The
MAP estimate corresponds to the maximum of p(x|Z), and
we can find it by minimizing the negative logarithm of (1):

x
⇤ = argmin

x
� log p(x|Z)

= argmin
x
kx� x̂k2⇤ +

X

zi2Z
kzi � hi(x)k2⌃i

(2)

where we have used the notation kek2⌦ = e
>
⌦

�1
e, that is

the squared Mahalanobis norm of e with the covariance ⌦.
Note that, in general, (2) is a nonlinear problem, thus we

can linearize its cost function at x̂ to facilitate the solution:

C(x̂+ x̃) ' kx̃k2⇤ +
X

zi2Z
kzi � hi(x̂)�Hix̃k2⌃i

= kx̃k2⇤ + kHx̃� ek2⌃ (3)

where we have stacked all of the Jacobians Hi and residuals
ei = zi�hi(x̂) to have H and e, with ⌃ a diagonal matrix
having the (block) entries ⌃i. Therefore, instead of finding
the optimal estimate of x directly, we solve for the optimal
update to the current estimate x̂:

x̃
� = argmin

x̃
kx̃k2⇤ + kHx̃� ek2⌃ (4)

where the superscript � means this solution is optimal up to
the linearization errors. Note also that, with the (upper trian-
gular) square root matrices of ⇤ and ⌃, we can convert (4)
into linear least-squares form for better numerical stability:

x̃
� = argmin

x̃
kIx̃k2 + kJx̃� rk2 (5)

where I = ⇤
�1/2 (i.e., the square root information matrix),

and for J and r we have Ji = ⌃
�1/2
i Hi and ri = ⌃

�1/2
i ei

with respect to each measurement zi. As a result, the cost
function in (5) can be reshaped using QR factorization [29]:
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
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
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(6)

By leaving k✏k2 as the least-squares residual, we have

x̃
� = argmin

x̃
kI�x̃� r

�k2 = I��1
r
� (7)

2Here we assume that the visual measurements correspond to the pinhole
camera model [27], and the inertial measurements to the IMU preintegration
model [15], [28], in order for a uniform expression in the following context.



(a) Front-end optimization (CF ) (b) Back-end optimization (CB)

Fig. 1: An overview of our proposed MPTAM estimator.

which can be efficiently found via back substitution, and the
state estimate is then updated as: x̂� = x̂+ x̃

�. We should
note that when Z includes loop-closure measurements, J has
(non-zero) sub-blocks that correspond to the earlier observed
features and the current pose, for which some particular case
can have the complexity of the QR factorization quadratic to
the number of states (i.e., all the columns in I are involved).
Noting that the sparsity of I plays a dominant role for the ef-
ficiency of the estimator in that case, some approach like the
variable reordering [8], [9] or information sparsification [30],
[31] can be used. However, as the dimension of I grows, the
computational efficiency of those approaches may adversely
impact the performance of the estimator [9], [31]. Therefore,
for large-scale SLAM problem an optimal batch solution may
still be too computationally expensive to obtain in real time.

III. DESCRIPTION OF PARALLEL ESTIMATOR

Inspired by the functional decoupling for PTAM, we split
the SLAM process into two pipelines running in parallel: a)
The front end estimates the most recent states by performing
exact sliding-window VIO, while b) The back end performs
batch optimization over the entire state when loop closure is
detected. Both pipelines are realized by the MAP estimators
which still use the same measurements as the batch estimator.
Specifically, following the chronological order, we partition
x into the previous states, xp, and current states, xc (i.e., the
states within the current sliding window): x = [x>

p x
>
c ]

>.

A. Front end

For sliding-window estimator, after the estimation at cur-
rent timestep is finished the earliest states in the window are
marginalized out of C before next timestep. Especially, with
the square root information form we can consistently realize
that by only keeping the information factor corresponding to
the current states (see Figure 1a). As a result, every timestep
after marginalization the information matrix of the front end
is I�cc =: IF , and for next timestep its cost function becomes

CF = kIF x̃ck2 + kJx̃c � rk2 (8)

Similar to (6), by minimizing CF , we obtain x̃
�
c = I�F

�1
r
�,

and the current state estimate is updated as: x̂�
c = x̂c + x̃

�
c .

Especially, there are different consistent methods that can be
used to realize this pipeline (e.g., [11], [12], [16], [32], [33]).
Also, to reduce the workload of developing a SLAM system,
the open-sourced algorithms can be directly integrated to or

modified for this pipeline, as long as they can provide real-
time state estimates (e.g., [13], [16], [17], [34]), which will
be shown with our SLAM system used for the experiments.

B. Back end

In order to include all the states for global adjustment, the
correlation between xp and xc is taken into account which is
updated in real time in the back-end pipeline. To coordinate
this high-frequency operation with the low-frequency batch
optimization, an asynchronous update scheme is developed
where reverse chronological variable ordering is adopted to
reform the information factor, such that the QR factorization
for tracking the state correlation and the back substitution for
computing batch correction can be performed concurrently.

The back-end information matrix is denoted as R which,
regardless of the order of variables, is equivalent to I in (5).
Accordingly, the information factor CB can be expressed as

CB = kRx̃0k2 =

������


Rcc Rcp

Rpp

� "
x̃
0
c

x̃
0
p

#������

2

(9)

where the superscript 0 means reverse chronological order. In
particular, if we further denote Rcc =: RF , Rcp =: RFB and
Rpp =: RB , and consider the existence of residual during the
estimation, then CB can be divided into two parts:

CB = kRF x̃
0
c + RFBx̃

0
p � rFBk2 (10)

CB = kRBx̃
0
p � rBk2 (11)

where, as illustrated in Figure 1b, CB is used for updating
the correlation with the current sliding-window states, which
we term information augmentation; while CB is prepared for
the batch optimization until loop-closure measurements are
included for update. In what follows, we use a LEGO Brisk-
like representation to visualize the QR factorization over the
information factors. Also, in our examples a sliding window
which contains the pose of the robot and its observed features
at current timestep only is used, for the sake of introduction.

1) Information augmentation: Once x̂
�
c is obtained from

the front end, we update CB by using the same measurements
whose factor kJI x̃

0 � rIk2 is linearized at x̂ = [x̂>
p x̂

�
c
>]>

(see the example in Figure 2). Especially, for CB we have

CB = kRF x̃
0
c + RFBx̃

0
p � rFBk2 + kJI x̃

0 � rIk2

=

������


JI(c) 0

RF RFB

� "
x̃
0
c

x̃
0
p

#
�


rI
rFB

�������

2

= kR�
F x̃

0
c + R�

FBx̃
0
p � r

�
FBk

2 + kJ�
I(p)x̃

0
p � r

�
I k

2

= C�
B + C�

I (12)

for which the following QR factorization has been applied:

JI(c)
RF

�
= Q

"
0

R�
F

#
,

"
J
�
I(p)

R�
FB

#
= Q>


0

RFB

�
,

"
r
�
I

r
�
FB

#
= Q

>

rI
rFB

�

To improve the consistency of estimation [35] and reduce the
computation, C�

I will not be used to update CB but dropped
(see Figure 2a). Meanwhile, CB is augmented by the factor
that corresponds to the states marginalized by the front end,
which does not need extra computation (see Figure 2b).



(a) Left: at timestep j, CB is updated by the factor kJI x̃
0 � rIk2:

i) motion prediction and feature initialization (gray) and ii) feature
observations w/o loop closure (cyan). Right: after QR factorization,
the intermediate term C�

I (cyan) is dropped (marked with ’⇥’).

(b) The factor in CB which corresponds to the out-of-window state
xi (yellow) is moved to CB , which does not incur any computation.

Fig. 2: Back end (Information augmentation).

2) Global optimization: Once detecting loop-closure mea-
surements, we use them to update CB with the other measure-
ments that have been used in the front end together, and start
global optimization (see the example in Figure 3). Similar to
the information augmentation, those measurements form the
factor kJLx̃

0 � rLk2, and we use it to first update CB :

CB = kRF x̃
0
c + RFBx̃

0
p � rFBk2 + kJLx̃

0 � rLk2

=

������


JL(c) JL(p)

RF RFB

� "
x̃
0
c

x̃
0
p

#
�

rL
rFB

�������

2

= kR�
F x̃

0
c + R�

FBx̃
0
p � r

�
FBk

2 + kJ�
L(p)x̃

0
p � r

�
Lk

2

= C�
B + C�

L (13)

for which we have applied the following QR factorization:

JL(c)

RF

�
= Q

"
0

R�
F

#
,

"
J
�
L(p)

R�
FB

#
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
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"
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�
L
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Note that C�
L needs to be factorized in CB in order to trigger

the batch optimization (see Figure 3a). Especially, this step
can be finished via another QR factorization (see Figure 3b):

CB = kRBx̃
0
p � rBk2 + kJ�

L(p)x̃
0
p � r

�
Lk

2

= kR�
Bx̃

0
p � r

�
Bk

2 + k✏k2

= C�
B + k✏k2 (14)

At this point, the optimal update x̃
0�
p can be first obtained

by minimizing C�
B :

x̃
0�
p = argmin

x̃0
p

kR�
Bx̃

0
p � r

�
Bk

2 = R�
B
�1

r
�
B (15)

Note that during the processing of (14) and (15), C�
B is also

updated by new incoming measurements (see Figure 3b), as
in (12). Therefore, once having the result of (15), we further

(a) Left: at timestep k, CB is updated by the factor kJLx̃
0 � rLk2:

i) motion prediction and feature initialization (gray) and ii) feature
observations w/ loop closure (green). Right: after QR factorization,
the intermediate term C�

L (green) will be further processed in CB .

(b) Left: CB is augmented by the information factor corresponding
to xj (yellow), and ready for the QR factorization with C�

L . Right:
during the QR factorization on CB , CB is available to be updated
by the factors of new incoming measurements (e.g., at timestep l).

Fig. 3: Back end (Global optimization).

obtain the optimal update x̃
0�
c by minimizing C�

B :

x̃
0�
c = argmin

x̃0
c

kR�
F x̃

0
c + R�

FBx̃
0�
p � r

�
FBk

2

= R�
F
�1

(r�FB � R�
FBx̃

0�
p ) (16)

where both x̃
0�
p and x̃

0�
c can be efficiently found via back

substitution. After rearranging x̃
0�
p and x̃

0�
c in chronological

order, we have loop-closing correction: x̃� = [x̃�
p
>
x̃
�
c
>]>,

and global optimization can be performed as: x̂� = x̂+ x̃
�.

It should be noted that the immediate estimate x̂
�
c obtained

from the front end is further updated by loop closure (x̂�
c  

x̂
�
c + x̃

�
c , with slight abuse of notation), which, in another

word, demonstrates that global optimization in our solution
simultaneously improves the accuracy of both pipelines.

3) Resource-aware settings (optional): Although the back
end is allowed to run at a low processing speed, we prefer to
have loop-closing results as fast as possible so that the drifts
in the map can be corrected timely. As mentioned earlier the
sparsity of R dominates the efficiency of batch optimization,
thus we consider two approaches to improve its speed.

First, as suggested in [35], RB can be approximated as a
diagonally banded matrix which favors efficient factorization.
To this end, we can only keep the off-diagonal entries of RB

which are within a certain bandwidth (e.g., in Figure 2b the
bandwidth of RB is one (sliding) window) every time after
finishing global optimization.

Second, we should notice that the square-root information
form makes single-precision floating-point arithmetic avail-
able for numerical computation [14], where a 32-bit floating-
point value can be treated as zero if it is smaller than 10�7.
Thus, after QR factorization (e.g., Givens method [29]), some
parts of R may numerically approach to zero (e.g., the dotted
sub-blocks in Figure 2 and 3). By zeroing those parts after
QR factorization the sparsity of R is also improved.



(a) EuRoC dataset (Vicon room) (b) EuRoC dataset (Machine hall) (c) Vicon Loops dataset

Fig. 4: Loop-closure detection results of our system on each dataset (the correspondences are connected by blue lines).

TABLE I: Real-time pose accuracy (RMSE) and average computation time (of the front end) on EuRoC dataset.
VINS-Mono MPTAM

w/o loop closure w/ loop closure w/o loop closure w/ loop closure
Orientation Translation Orientation Translation Time Orientation Translation Orientation Translation Time

[deg] [m] [deg] [m] [ms] [deg] [m] [deg] [m] [ms]
V1 01 easy 6.30 0.08 6.07 0.14 69 6.25 0.10 5.67 0.09 13
V1 02 medium 3.27 0.11 2.92 0.08 50 3.67 0.09 2.23 0.08 9
V1 03 difficult 6.07 0.18 7.39 0.31 36 4.76 0.18 2.29 0.15 5
V2 01 easy 2.06 0.08 1.72 0.10 36 4.70 0.18 1.14 0.15 10
V2 02 medium 4.24 0.16 3.44 0.14 47 2.69 0.18 1.71 0.10 7
V2 03 difficult 3.21 0.27 3.09 0.20 28 3.78 0.40 2.92 0.38 3
MH 01 easy 1.20 0.15 1.09 0.16 68 4.58 0.28 2.41 0.24 11
MH 02 easy 1.20 0.18 1.32 0.22 64 5.61 0.45 3.50 0.41 6
MH 03 medium 1.55 0.19 1.78 0.11 65 4.93 0.30 1.14 0.16 11
MH 04 difficult 1.49 0.34 1.32 0.41 58 2.35 0.77 2.29 0.67 4
MH 05 difficult 0.69 0.30 0.69 0.27 61 5.10 0.69 1.14 0.46 10
The underlined value means the corresponding accuracy is not improved as expected after loop-closure corrections.

IV. EXPERIMENTAL RESULTS

To demonstrate the performance of our proposed MPTAM
in real application, we implement our visual-inertial SLAM
system based on our previous work, R-VIO [16], a sliding-
window filtering-based odometry algorithm written in C++.
Specifically, as the front end we modify it according to [36]
to jointly estimate the observed features in the sliding win-
dow. The implementation of the back end follows Section III-
B, where QR factorization is carried out using the algorithms
provided by Eigen [37]. In addition to that, the loop-closure
detector running with the front end is implemented using i)
DBoW2 [38] (place recognition), ii) BRIEF [39] (descriptor
matching), and iii) epipolar geometry-based outlier rejection
to provide loop-closure measurements. Also, the parameters
for loop-closure detection are the same for both systems.

We compare our MPTAM with the state-of-the-art VINS-
Mono [25]. Different with our system, the relinearization is
enabled by default in VINS-Mono such that the nonlinearity
of the SLAM formulation can be approximated better. Then,
the comparison in this section shall also release the priority
between a) compliance of the Markov property and b) use of
relinearization, for a SLAM estimator. Especially, two chal-
lenging visual-inertial datasets are used for our evaluation
(see Figure 4), and all the tests run on a laptop with Intel
Core i7-4710MQ 2.5GHz⇥8 CPU in real time.

A. EuRoC Dataset

As a benchmark for evaluating the performance of SLAM
estimator, this dataset provides calibrated camera (20Hz) and
IMU (200Hz) measurements which are recorded with a VI-
sensor on the micro aerial vehicle. Ground truth is captured
by the Vicon system and aligned with the coordinate of VI-
sensor. Especially, for MPTAM 200 features are tracked per
image, and the sliding window contains 15 recent poses and

at most 50 observed features, while for VINS-Mono we use
its default settings to guarantee the best performance.

For real-time applications, we focus more on the accuracy
of the front-end estimates. Especially, for a parallel estimator
this is able to be improved by performing global adjustment,
which, however, is realized by VINS-Mono and our MPTAM
in different ways: a) For VINS-Mono, its front-end estimates
are adjusted based on a map (in terms of keyframe) which is
refined by its back-end optimization with loop closure, while
b) For MPTAM, as mentioned in Section III-B.2, the states
estimated in both pipelines are corrected simultaneously by
doing global optimization. Therefore, we can also term them
a) non-probabilistic and b) probabilistic feedback schemes.

To compare the performance of these two approaches, for
both estimators we record pose estimates of their front ends
with and without loop-closure corrections at the same time.
The corresponding RMSE with respect to the ground truth
are computed and presented in Table I. We can clearly find
that in all the sequences the pose errors of proposed MPTAM
are decreased as expected with loop-closure corrections. In
contrast to that, such trend is not reflected from the results of
VINS-Mono. In particular, we should notice that over half of
the sequences its pose errors are unexpectedly increased after
having loop-closure corrections, although the relinearization
is performed by VINS-Mono for its both pipelines. It should
also be noted that our approach improves the accuracy of the
front end and still keeps its computational efficiency.

B. Vicon Loops Dataset

As the traveling distances in EuRoC dataset are short (e.g.,
the longest sequence is only 130m), we further evaluate both
estimators on a long-term dataset [13], where a handheld VI-
sensor undergoes 6-DOF highly dynamic motion and travels
1200m in 14 minutes. The cameras run at 20Hz and an IMU
runs at 800Hz. Similar to EuRoC dataset, the ground truth is
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Fig. 5: Absolute pose error statistics in terms of extremum, median, 1st and 3rd quartiles, for Vicon Loops dataset.

Fig. 6: The estimated maps on Vicon Loops dataset: note that
in VINS-Mono the features are associated to the keyframes,
and not involved in its back-end (pose-graph) optimization.

provided by the Vicon system. Only the left-camera images
are used, for which 100 features are tracked (per image) by
both estimators. As loop closure can be detected frequently in
this dataset, the sliding window of MPTAM has been resized
to include 15 recent poses and at most 20 observed features.
By noting that the information matrix fill-ins resulting from
the frequent loop closures impact the efficiency of MPTAM,
we enable resource-aware options. In particular, three types
of bandwidth (1-, 2- and 4-window) are tested for RB . For
VINS-Mono, the same settings for EuRoC dataset are used,
except for the number of features to be tracked.

The final outputs along with the ground truth are shown in
Figure 6, where the map of our MPTAM consists of 16431
poses of the sensor and 11453 observed features. In order to
evaluate the accuracy of the estimators, we adopt the metric
proposed in [13]. According to that, the absolute pose errors
are grouped regarding different traveling distances which are
increased from the origin, such that the estimation accuracy
is able to be illustrated by the resultant error statistics. The
corresponding results with respect to 11 traveling distances
{60, 180, 300, 420, 540, 660, 780, 900, 1020, 1140, 1200} are
presented in Figure 5, where the evolution of pose errors has
been described by a series of box-plots. Based on the above
results, the followings can be pointed out for VINS-Mono:

• Non-probabilistic feedback does not always improve the
accuracy of the front end. Except for {60,180,300}, the
pose errors (medians) for its back end are going up that
is in response to a similar trend for its front end.

• Batch optimization in its back end leads to biased state
estimates. As the factors in the pose graph are weighted
equally, its result is prone to local minimum upon itera-

TABLE II: Pose estimation accuracy on Vicon Loops dataset
(w/ 1-, 2-, and 4-window bandwidths for RB in MPTAM).

VINS-Mono MPTAM
Number of loop-closure updates 445 372 / 382 / 381
Front end Orien. MAE [deg] 12.48 4.24 / 2.02 / 2.24

Trans. MAE [m] 0.82 0.37 / 0.32 / 0.26

Back end Orien. MAE [deg] 13.55 4.14 / 1.88 / 2.16

Trans. MAE [m] 0.60 0.35 / 0.30 / 0.26

tions, as is reflected by {660,780,900,1020,1140,1200}.
In contrast, for our proposed MPTAM we can find that

• Our probabilistic feedback lets the front end achieve the
same level of accuracy as the back end (the translation
errors (medians) are consistently smaller than 0.5m that
is 0.04% of the total traveling distance).

• The accuracy of loop closing can be guaranteed even by
the conservatively approximated global optimization. It
can be expected that by expanding the bandwidth of RB

our MPTAM shall realize higher accuracy.
The corresponding mean absolute errors (MAE) are given

in Table II which shows that as compared with VINS-Mono
our MPTAM achieves higher accuracy with less loop-closure
updates. In particular, the computation costs (in average) of
MPTAM are 19ms for the front end, and 0.63/0.79/1.09s for
the back end, with respect to the above bandwidth options.

V. CONCLUSION

Inspired by the functional decoupling principle of PTAM,
we propose the Markov parallel tracking and mapping (MP-
TAM ) for probabilistic SLAM. In contrast to the recent pro-
posed SLAM algorithms which perform parallel estimation,
in our solution, we explicitly follow the Markov assumption
that is the basis of the MAP solution of probabilistic SLAM
problem. Both pipelines of MPTAM are realized by the MAP
estimators, and the issues about i) estimation consistency and
ii) joint optimality for the loop-closing result, which exist in
the recent proposed SLAM algorithms have been addressed
by properly processing loop-closure measurements. Through
the experimental evaluation, we further validate our analysis
and demonstrate the superiority of our proposed MPTAM on
the accuracy and efficiency in real SLAM application.
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