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Abstract
A myriad of empirical and phenomenological constitutive models that describe different observed rheologies of complex 
fluids have been developed over many decades. With each of these constitutive models' strength in recovering different rheo-
logical responses, algorithms that allow the data to automatically select the appropriate constitutive relations are of great 
interest to rheologists. Here, we present a rheology-informed neural network (RhINN) that enables robust model selection 
based on available experimental data with minimal user intervention. We train our RhINN on a series of experimental data 
for different complex fluids and show that it is capable of finding the appropriate model with the lowest number of fitting 
parameters for each data set. Finally, we show that uniform selection of a handful of data over the entire accessible shear 
rates does not affect the RhINN's accuracy, while providing a specific range of data (and omitting the rest) results in an 
erroneous model determination.

Keywords  Rheology-informed neural network · Data-driven constitutive modeling · Physics-informed machine learning · 
Complex fluid meta-modeling

Introduction

The quest for modeling the rate-dependent stress response 
of complex fluids to an applied deformation is as old as 
rheology itself (Bingham 1916; Morrison 2001; Bird et al. 
1987). The goal is to provide a closed-form mathematical 
expression describing the correspondence between the stress 
and deformation. Hence, with various types of rheological 
responses, many empirical and phenomenological consti-
tutive models have also been developed (Soleymanzadeh 
et al. 2018; Fuchs and Ballauff 2005; Arora et al. 2017; 
Barthés-Biesel and Acrivos 1973). Of particular practical 
use are empirical models that describe the rate-dependence 
of shear viscosity as a simple scalar quantity, referred to as 
generalized Newtonian fluid (GNF) models. For instance, 
some of these classical GNF models that were developed to 
describe different polymeric liquids' steady-state flow curves 
(Bird 1965) include power law, Bingham, Herschel-Bulkley, 
and Carreau-Yasuda models (Morrison 2001; Herschel and 

Bulkley 1926). These models, although practically useful, 
are strictly limited to the steady-state response of common 
rate-dependent systems and cannot describe the memory 
or elastic effects or multi-component systems that show 
more complex behaviors. Thus, models with added levels 
of complexity have been developed over time to recover 
the rich rheology of different materials. For instance, a 
series of thixotropic elasto-visco-plastic (TEVP) models 
have been developed to describe the long-time transients, 
static and dynamic yield stresses measured, and hysteretic 
effects in time-dependent materials with a fading memory 
of deformation history (Dimitriou and McKinley 2014; De 
Souza Mendes 2011; Larson 2015; Larson and Wei 2019; 
Armstrong et al. 2016; Joshi 2022). When solved for the 
quasi-steady-state response, these models also recover a 
non-monotonic flow curve (over a limited range of shear 
rates) with the shear stress decreasing as a function of shear 
rate, and two (static and dynamic) yield stress values that 
cannot be recovered using GNFs.

Regardless of the type of material, the common prac-
tice in describing the material rheology is to interrogate its 
response through rheometry and then seek models that can 
best simulate the observed behavior. By simply looking at a 
material's steady-state stress (or viscosity) versus shear rate 
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curve, a seasoned rheologist can discard a handful of mod-
els irrelevant to that particular sample. However, even the 
steady-state flow curve of the shear viscosity versus applied 
deformation rate can be complex in most complex fluids, 
making the model selection a non-trivial task. Thus, frame-
works that aid in model selection can be of great practical 
use. For instance, different TEVP models described above 
can be used to model different types of behavior observed in 
thixotropic materials. Nonetheless, the number of necessary 
parameters to recover a specific behavior can significantly 
differ from one model to another, resulting in an entirely 
different set of experiments required for parameterizing the 
model. Hence, time- and cost-effective tools that can auto-
matically differentiate between the models and their result-
ing rheologies and identify the one with the least number 
of parameters without loss of accuracy are of great interest.

Machine learning (ML) algorithms can make a trans-
formative leap in this area. These frameworks can explore 
massive design spaces (Karniadakis et al. 2021), handle 
real-time tasks (Ritto and Rochinha 2021), identify multi-
dimensional correlations (Sun and Barnard 2019; Sun et al. 
2013), and manage ill-posed problems (Gao et al. 2022). 
ML frameworks can be categorized into supervised, semi-
supervised, and unsupervised learning (Brunton et al. 2020). 
Neural networks (NNs) as means to correlating the com-
plex relations between the inputs and outputs by forming 
a data-driven framework have been widely used in semi-
supervised (e.g., deep reinforcement learning (Arulkumaran 
et al. 2017)) and unsupervised (e.g., dimensionality reduc-
tion through self-organizing maps (Kohonen 2001)) tasks. 
However, neural networks are most recognized (and used) in 
supervised learning problems. While purely data-driven NN 
models may fit observations very well, the prediction step 
might become unrealistic and result in reduction of the over-
all generalization performance (Karniadakis et al. 2021).

Therefore, physics-informed learning is needed, where 
the physical domain knowledge is included in every train-
ing step (Wang et al. 2017) to improve the performance of 
a learning algorithm. Physics-informed neural networks 
(PINNs), as a recent example of this learning methodology, 
have shown remarkable performance by leveraging the input 
data using governing physics equations to further augment 
the prediction accuracy (Raissi et al. 2019; Raissi et al. 2020; 
Penwarden et al. 2022; Zhu et al. 2021; Cai et al. 2022; 
Cuomo et al. 2022). Recently, we have reported a number 
of rheology-informed neural networks (RhINNs) that share 
roots with PINNs but adhere to rheological intuitions in their 
architecture (Mahmoudabadbozchelou and Jamali 2021; 
Mahmoudabadbozchelou et al. 2021; Mahmoudabadbozch-
elou et al. 2022).

Generally, in RhINNs, predictions can be made in two 
ways: first, we may use the framework in a forward direction 
with known boundary and initial conditions as input data to 

solve a constitutive model in a spatiotemporal domain. On 
the other hand, one might need to interpret data gathered 
from a rheometer (or numerical analysis) to recover the hid-
den rheology of a sample. In this case, only a handful of data 
will be used in an inverse platform along with a constitutive 
model with yet-to-be-determined parameters. The ultimate 
goal here is to unravel the hidden rheology of a sample by 
confining those fitting parameters.

Here we report on a RhINN platform capable of choosing 
the most accurate and efficient constitutive model (describ-
ing a particular rheological behavior) from a set of input 
data. In particular, we asked the following question: Can a 
handful of scattered data from a sample help us identify and 
choose the best model representing that specific sample with 
minimal user intervention? The goal is to develop a frame-
work in which (i) the data automatically finds the best model 
with minimal user input (such as priors and bounds), and (ii) 
model parameters are accurately recovered. In other words, 
we seek to provide a platform that can include any rheo-
logical constitutive equation of interest, regardless of their 
complexity (e.g., tensorial forms of fully resolved non-linear 
viscoelastic models) and recover the material constants via a 
completely automated procedure. Thus, the algorithm must 
automatically test several constitutive equations against the 
given ground-truth/provided data. However, as a proof of 
concept, the solution of multiple GNF models, as well as 
more complex thixotropic visco-plastic (TVP) models for 
quasi-steady-state flow curve, is used here for the develop-
ment of the platform. Upon establishing the performance of 
this ML platform, we systematically remove the included 
data to interrogate the efficiency and accuracy of the algo-
rithm in finding the appropriate model.

Problem setup and methodology

Constitutive models

As previously described, several constitutive equations can 
be chosen to represent a complex fluid's steady-state shear 
stress response. Here, we select nine (9) different models 
with a different number of parameters to be embedded 
into our neural network. The goal is to provide a relation-
ship between the shear stress, σ (or viscosity, η), and the 
imposed shear rate, 𝛾̇ . These nine models, along with their 
shear stress/viscosity form and parameters, are summarized 
in Table 1.

Rheology‑informed neural network

The NN interacts with the constitutive models in two itera-
tive steps: first, all models' initial (or previous) parameters 
are fed into the NN, and a loss function is calculated (the 
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upward green arrow in Fig. 1). Second, through a feed-for-
ward back-propagation algorithm, the NN will correct its 
parameters along with all the fitting parameters enumerated 
in Table 1 to minimize the loss function (the downward blue 
arrow in Fig. 1).

The schematic illustration of the RhINN architecture is 
detailed in Fig. 2. Since the only output of interest here is the 
(quasi) steady-state solutions of simple constitutive models, 
the only meaningful input to the NN would be the shear rate, 
𝛾̇ . However, the ultimate goal is to develop a unified toolbox 
consisting of all rheological models under one umbrella. 
Therefore, a model1 was built by sub-classing a Tensor-
Flow Keras model (Blechschmidt and Ernst 2021) and 
implementing a functional application programming inter-
face (API), in which a unique loss function is calculated for 
each rheological model. The total loss function (ϕi) for each 
constitutive model (i) is defined as:

where:

is the loss corresponding to the discrepancies between the 
ground-truth ( �i

gt
 ) and the predicted shear stress, �i

p
 for each 

constitutive model (which is based on the mean squared 
error, MSE), n is the total number of given data ( 𝜎 − 𝛾̇ data 
points for each sample), and:
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is the residual (Res) calculated from each constitutive model, 
and nfp is the number of artificial function points (shear rate 
points) that we use to calculate the residual. For instance, 
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NN, ̇𝛾p is the shear rate based on the artificial points, and σp 
is the NN prediction of the shear stress. After the loss cal-
culation, through back-propagation, the NN variables, 
biases, and model parameters are corrected to reduce and 
eventually minimize the total loss.

The usual issue of fitting bias at high shear stress lev-
els (in contrast to lower ones) was resolved by scaling the 
shear stress in our 𝜎 − 𝛾̇ data, training the model and then 
re-scaling the shear stress back into its original value after 
the training step. Thus, logarithmic shear stress values were 
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(
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Table 1   Different constitutive models implemented into the neural network to determine the hidden rheology of different samples

 These nine models have between two and five fitting parameters each, which will be trained along with the NN variables and biases to reduce 
the total loss. TCC​, TVP, and IKH stand for three-component Carreau, thixotropic visco-plastic, and isotropic kinematic hardening, respectively

Model Shear stress/viscosity form Parameters

Power law (PL) (Morrison 2001)  𝜎 = K𝛾̇n K, n 
Herschel-Bulkley (HB) (Herschel and Bulkley 1926)  𝜎 = 𝜎y + K𝛾̇n σy, K, n
Bingham (BH) (Morrison 2001)

 
𝜂 =

{

∞ if𝜎 ≤ 𝜎y

𝜂
0
+

𝜎y

𝛾̇
if𝜎 > 𝜎y 

η0, σy 

Carreau-Yasuda (CY) (Morrison 2001)  𝜂 = 𝜂∞ +
(

𝜂0 − 𝜂∞
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]

n−1

a   �∞, �0, �, a, n 

Three-component (TC) (Caggioni et al. 2020)
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TCC (Mahmoudabadbozchelou et al. 2021)
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Casson (Macosko 1994)  
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TVP (Mahmoudabadbozchelou and Jamali 2021)  𝜎 = 𝜎y𝜆0 + 𝜂s𝛾̇ + 𝜂p𝜆0𝛾̇ , 𝜆0 =
k+
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Steady-state IKH (Dimitriou and McKinley 2014)  𝜎 = 𝜂p𝛾̇ +
c

q
+
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  �p,

c

q
, k1, k3, k2 

Fig. 1   The overall model-selector RhINN architecture implemented 
in this work. Embedded constitutive models interact with the RhINN 
platform in two ways. Model parameters are used to calculate losses, 
followed by optimization of the NN variables and biases, along with 
model parameters, to minimize the calculated loss1  https://​github.​com/​procf/​RhINNs

https://github.com/procf/RhINNs
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used (instead of their absolute values) to mitigate the bias at 
high shear stresses of the flow curve. This way, the model 
accuracy in low shear rates is also preserved.

For each sample, all nine constitutive models are called, 
and the Adam optimizer is allowed to perform 60,000 itera-
tions with a learning rate of 1 × 10-4, which yields ∼ 306s 
of total calculation on average to finish on a MacBook Pro 
(M1 Max, 64 GB RAM). The program is based on Tensor-
Flow 2.7.0, and sample swap occurs with minimal user 
intervention. The number of neurons per layer and the num-
ber of layers used within an NN are commonly referred to as 
its hyperparameters. The role of these hyperparameters was 
investigated by changing the number of hidden layers from 1 
to 16 (1, 2, 4, and 16) and by setting the number of neurons to 
10, 25, and 50. For all values of layer and neuron count, negli-
gible variation was seen in the total error for each constitutive 
equation (ϕi). Thus, to find a suitable compromise between the 
computational cost and accuracy, four hidden layers, with 25 
neurons (nodes) in each layer, were chosen for our RhINN. A 
tanh activation function is employed for all hidden layers and 
all models. A ReLU activation function was also tested, but 
tanh activation function exhibited better overall stability due 
to the data normalization mentioned above. NN variables and 
biases are initialized using the glorot_normal method. 
The nine models summarized in 1 have 31 fitting parameters 

total, all of which are initialized to unity with a small noise to 
prevent instability in the first few iterations. The parameters 
are allowed to vary without any constraint, thus keeping the 
platform generalizable to any other rheological data set. The 
unconstrained nature of our algorithm has important conse-
quences, as will be explained in sections “RhINN: convergence 
and benchmark”-“Model selection and recovered parameters.”

Experimental data

In order to test and validate our proposed architecture, we used 
experimental data from the literature for a variety of materials 
and rheological characterizations. These samples, along with their 
descriptions, are summarized in Table 2. Here, we used data of 
solutions of partially hydrolyzed polyacrylamide with 1600 × 
104 molecular weight (HPAM) at two different concentrations 
of 1000 mg L-1 and 2000 mg L-1 (Huang et al. 2019), suspen-
sion of Ф = 3% carbon black dispersed in a mineral oil (Dagès 
et al. 2021), a heavy mineral oil with a paraffin wax at two dif-
ferent concentrations of 5% and 10% (Dimitriou and McKinley 
2014), a complex colloid/worm-like micellar (WLM) mixture 
at three different concentrations of salt in the background fluid 
(Mahmoudabadbozchelou et al. 2021), colloidal gelatin particles 
in distilled water with two volume fractions of 0.2 and 0.05, (Nair 
et al. 2019), a worm-like micellar solution of 100 mM CTAB and 

Fig. 2   Schematic illustration of 
the RhINN architecture. Here, 
only three constitutive models 
and three hidden layers for each 
model are shown for aesthetic 
purposes. Each constitutive 
model has a corresponding data 
discrepancy (ϕd) and function 
residual (ϕf). This fact is also 
stressed by color-coding the 
stress prediction and the loss 
function for each constitutive 
model. The ground-truth shear 
stress, σgt, is the same for all 
constitutive models. The sum-
mation of ϕd and ϕf for each 
constitutive model is fed into 
the NN, and NN variables and 
biases are adjusted to minimize 
the total error
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32 mM NaSal surfactants in DI water (Cardiel et al. 2013), and 
low-density polyethylene melts at two temperatures of 423 K and 
463 K (Dunstan 2019). These samples are referred to with their 
assigned numbers in 2 hereafter.

All data collected are plotted in a series of flow curves 
in Fig. 3, indicating a total range of over six decades for 
the variation of the viscosity and shear rate. Since one has 

to ensure that the NN retains a robust model recovery irre-
spective of the range of input parameters or stresses, the 
range of collected data here presents a suitable benchmark 
for our developed RhINN platform.

Once the RhiNN starts the course of finding the model 
parameters and minimizing the loss functions accordingly, 
the choice between two (or more) competing constitutive 

Table 2   Experimental samples used in this work to test our RhINN platform

No. Type Description

1 Polymer solution Partially hydrolyzed polyacrylamide (HPAM), 1000 mg L-1 (Huang et al. 2019)
2 Polymer solution Partially hydrolyzed polyacrylamide (HPAM), 2000 mg L-1 (Huang et al. 2019)
3 Carbon black gel 3 % carbon black in a mineral oil (Dagès et al. 2021)
4 Waxy oil Heavy mineral oil with a 5% paraffin wax (Dimitriou and McKinley 2014)
5 Waxy oil Heavy mineral oil with a 10% paraffin wax (Dimitriou and McKinley 2014)
6 Colloidal and WLM mixture A complex colloid/WLM mixture, salt level 1 (Mahmoudabadbozchelou et al. 2021)
7 Colloidal and WLM mixture A complex colloid/WLM mixture, salt level 2 (Mahmoudabadbozchelou et al. 2021)
8 Colloidal and WLM mixture A complex colloid/WLM mixture, salt level 3 (Mahmoudabadbozchelou et al. 2021)
9 Colloidal gel Colloidal gelatin particles in distilled water, volume fraction (Ф) = 0.2 (Nair et al. 2019)
10 Colloidal gel Colloidal gelatin particles in distilled water, Ф = 0.05 (Nair et al. 2019)
11 Worm-like micellar solution A worm-like micellar solution of A NaSal surfactants in DI water (Cardiel et al. 2013)
12 Polymer melt Low-density polyethylene melt at 423 K (Dunstan 2019)
13 Polymer melt Low-density polyethylene melt at 463 K (Dunstan 2019)

(a) (b) (c) (d)

(e) (f) (g)

Fig. 3   Collection of steady-state experimental data digitized and re-
plotted from the literature: a solutions of partially hydrolyzed poly-
acrylamide with 1600 × 104 molecular weight (HPAM) at two dif-
ferent concentrations of 1000 mg L-1 and 2000 mg L-1 (Huang et al. 
2019), b suspension of Ф = 3% carbon black dispersed in a mineral 
oil (Dagès et al. 2021), c a heavy mineral oil with a paraffin wax at 
two different concentrations of 5% and 10% (Dimitriou and McKinley 

2014), d a complex colloid/worm-like micellar mixture at three dif-
ferent concentrations of salt in the background fluid (Mahmoudabad-
bozchelou et al. 2021), e colloidal gelatin particles in distilled water 
with two volume fractions (Ф) of 0.2 and 0.05 (Nair et  al. 2019), f 
a worm-like micellar solution of 100 mM CTAB and 32 mM NaSal 
surfactants in DI water (Cardiel et al. 2013), and g low-density poly-
ethylene melts at two temperatures of 423K and 463K (Dunstan 2019)
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models can become tricky or misleading. This is because 
for some materials, multiple models, especially with an 
increasing number of parameters, can recover the same set 
of behavior. Therefore, a reliable figure of merit for model 
selection is essential in ensuring that models are appropri-
ately chosen. To this end, we used the total error for each 
model, ϕi divided by the maximum shear stress of that par-
ticular sample ( �i

max
 ), as the selection metric, meaning that 

the model with the lowest �i∕�i
max

 (in Pa-1) can best describe 
the rheological phenomenon. Moreover, if two (or more) 
models have �i∕�i

max
 smaller than 5 ×-4 Pa-1, the model with 

a smaller number of fitting parameters is selected. This is to 
ensure that a given rheological measurement is described 
through the simplest and most accurate constitutive model 
without resorting to unnecessary complexities within the 
model itself. Although other model selection heuristics, such 
as Bayesian inference criterion (Freund and Ewoldt 2015) 
or adaptive parallel tempering (Armstrong et al. 2017), have 
been successfully employed, we used the MSE norm (2, 3), 
as widely selected in physics-informed learning.

Results and discussion

RhINN: convergence and benchmark

For any NN problem, it is vital to assess whether the NN 
can successfully minimize the losses. To this end, �i∕�i

max
 

as a function of the iteration number is plotted in Fig. 4 for 
sample no. 2 (see Table 2). As seen in this figure, �i∕�i

max
 

(or the total error, ϕi) plateaus after ≈ 35,000 iterations for 
sample no. 2. However, the program is allowed to iterate for 
another 25,000 iterations to ensure that all errors for differ-
ent models have reached an acceptable steady-state accuracy. 
While loss functions are presented for this collected sample, 
similar trends are observed for all different materials/sam-
ples studied throughout this work.

Another crucial step is to see where RhINN stays 
compared to other numerical and probabilistic alterna-
tives. Thus, we benchmarked our algorithm with two 
other methods, i.e., trust region reflective, TRF (as imple-
mented in SciPy v1.7.3, a Python package), and a 
Bayesian Inference Criterion (BIC) method (using PyMC3 
v3.11.5). We also used the current RhINN platform 
without adding the residuals from the constitutive models 
to see if including the physics is advantageous or not. In 
other words, we set 3 equal to zero, which converts RhINN 
to a purely statistical neural network, i.e., deep neural net-
work, DNN. We benchmarked our method for both accu-
racy (in terms of root mean square (RMS) of prediction 
errors from the experimental data over the maximum shear 
stress, �max ) and the computing time (parameter recovery 
runtime in s), and the results are presented in Table 3. As 

can be seen in this table, RhINN's prediction accuracy is 
comparable with the other two methods and is also com-
parable in the runtime with BIC. However, both RhINN 
and BIC are outperformed by TRF in runtime. Moreover, 

Fig. 4   Total error divided by the maximum shear stress ( �i∕�i

max
 ) his-

tory as a function of the iteration number for the 2000 mgL-1 polymer 
solution sample (no. 2) for all constitutive models. After ≈ 35,000 
iterations, �i∕�i

max
 for this sample (as well as other samples) pla-

teaus. However, the program is allowed to run for 60,000 iterations to 
ensure accuracy

Table 3   Error (in terms of root mean square (RMS) of predic-
tion errors from the experimental data over the maximum shear 
stress,�max ) and runtime (in s) comparison of our developed model 
(RhINN) with a trust region reflective (TRF) method and a Bayesian 
Inference Criterion (BIC) method

The same RhINN architecture without imposing the constitutive mod-
els' losses (3) is also included as a reference and is denoted with deep 
neural network, DNN. All three models are asked to recover param-
eters of the TCC model

Sample Method RMS∕�max(Pa-1) Runtime (s)

2 RhINN 0.144 14.75
TRF 0.143 0.56
BIC 0.145 14.42
DNN 28.441 11.18

8 RhINN 0.456 14.34
TRF 0.455 0.17
BIC 0.459 24.7
DNN 76.661 11.30

10 RhINN 2.166 13.75
TRF 2.157 0.08
BIC 2.240 14.61
DNN 2.948 10.95
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relinquishing the proper physics is quite detrimental to the 
model accuracy, as seen in the DNN cases. The critical 
point here is that both TRF and BIC strictly rely on the 
range of initial conditions (or priors for BIC) and prede-
termined constraints to converge. In other words, TRF and 
BIC fail to converge when the four parameters of TCC are 
left unbounded. However, RhINN can run and converge 
without constraints on the parameter range. If more preci-
sion is needed, the predicted parameters by RhINN can be 
fed into either TRF or BIC methods as initial conditions 
(or priors) to improve the accuracy.

RhINNs: steady‑state flow curve

The developed platform for parameter identification was 
tested against the experimental data depicted in Fig. 3. 
Here, as an example, the steady-state viscosity vs. shear rate 
response for sample nos. 1, 5, 6, and 12 is shown in Fig. 5. 
It is worth mentioning here that these shear stress predic-
tions are generated by inserting the recovered parameters 
(Table 5) from our RhINN platform into the constitutive 

models listed in Table 1. Thus, these represent the best 
fits that the NN predicts/recovers for any given data set. 
Notably, we had shown previously that a combination of 
experimental data as high fidelity input, and synthetically 
generated data from constitutive models as the low fidelity 
input, can result in accurate predictions of the flow curve 
for different complex fluids (Mahmoudabadbozchelou et al. 
2021). Nonetheless, here RhINNs are used to find the best 
model from input data and not to make predictions of the 
flow curve. In Fig. 5, (a) for the polymer solution (sam-
ple no. 1) the Carreau-Yasuda model, (b) for the waxy oil 
(sample no. 5) the IKH model, (c) for the colloid and WLM 
mixture (sample no. 6) the Herschel-Bulkley model, and (d) 
for the polymer melt (sample no. 12) the Carreau-Yasuda 
model are found to best describe the flow curves. How-
ever, as briefly explained in the “Introduction” section, the 
choice can become tricky when two models have an indis-
tinguishable agreement with the exact solution, making the 
selection prone to error. Thus, our selected figure of merit, 
i.e., �i∕�i

max
 , along with the number of fitting parameters, 

is employed to facilitate the model selection.

Fig. 5   Viscosity behavior as a 
function of the shear rate for 
four experimental samples after 
60,000 iterations. a Polymer 
solution with a 1000 mg L-1 
concentration (sample no. 1); b 
10% waxy oil (sample no. 5), c 
a colloidal and WLM mixture, 
salt level 1 (sample no. 6); and 
d polymer melt at 423 K (sam-
ple no. 12). The best model for 
each sample is shown with full 
opacity and a thicker line, with 
predictions of all other models 
presented in the background for 
visual comparison

(a) (b)

(c) (d)
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Model selection and recovered parameters

From Table 4, it can be inferred that even for the samples 
with the simplest viscosity behavior, two-parameter models, 
e.g., power law, Bingham, and Casson, to a large extent, 
fail to reduce the total error. Interestingly, the more com-
plex models do not necessarily attain lower error values. 
For instance, the TCC model was developed explicitly for 
sample nos. 6, 7, and 8. However, TCC does not yield the 
lowest error for sample no. 6 (as shown in Fig. 5); instead, 
the Herschel-Bulkley model has the lowest loss function. 
This is because for the salt level presented in sample no. 6, 
the second plateau observed for the system vanishes. Thus, 
a simple yield stress constitutive model can describe the 
behavior without the need for four different model param-
eters in the TCC equation. For samples with a unique shear-
thinning profile, e.g., the polymer melt (sample nos. 12 and 
13) studied here, having more fitting parameters is indeed 
helpful in finding the best model. That is why the Carreau-
Yasuda model, with five fitting parameters, can outperform 
other constitutive models.

The entirety of recovered parameters from our RhINN 
platform for different samples studied is summarized in 
Table 5. In this routine, no constraint was imposed during 
the training steps. Thus, we can logically anticipate that 
some of these constitutive models have non-physical fit-
ting parameters. For instance, the Herschel-Bulkley model 
predicts σy=-1.008Pa for the worm-like micellar solution 
(sample no. 11), which is unrealistic; however, for all the 
selected models shown in red, all model parameters are 
within a reasonable range.

Model selection for smaller data sets

From a practical perspective, obtaining the flow curves 
presented in Fig. 5 needs individual stress growth tests 
at varying shear rates, which can be time-consuming. 
Thus, methods that can find the appropriate model (that 

describes the observed rheology) with minimal experi-
mental measurements can be beneficial. Here, to inter-
rogate the applicability of RhINN model selection with 
a smaller number of data provided, we systematically 
reduced the size of available data for a particular sample 
with different shear-thinning profiles, i.e., sample no. 8, 
and reported on the model selection. In particular, we seek 
to answer the following question: Between the range and 
size of data, which one should be prioritized? To answer 
this question, and in the first step, the given data were 
split into three regions of low (0.01 to 0.16s-1), moderate 
(0.2 to 4s), and high (5 to 100s-1) shear rates and were 
used to train the RhINN with the parameters mentioned in 
the “Rheology-informed neural network” section, and the 
results are shown in Fig. 6. These results suggest that by 
sampling the given data in a specific region of shear rates 
applied, only some of the constitutive models can capture 
the flow curve within that specific data range; however, 
even for those models determined, the parameters do not 
necessarily remain valid when going to another range of 
shear rates. For instance, in both the intermediate and 
high shear rate regimes (Fig. 6b and c), the TVP model 
results in the best description of the observed data. None-
theless, by looking at the TVP curves in Fig. 6b and c, it 
is clear that the model parameters are significantly dif-
ferent for these two separate ranges of data provided. The 
role that the range of provided data can play is even more 
apparent in Fig. 6a, where the Carreau-Yasuda model is 
recovered for the low shear rate regime. Note that for the 
same sample and providing the entire range of data at 
hand, the TVP model was found to be the best descrip-
tor of the flow curve (see Table 4). As such, for all three 
shear rate regimes shown in Fig. 6, the RhINN platform 
recovers a somewhat inaccurate set of model parameters, 
although, for two regimes, the model selection remains 
valid. This is expected, as the flow curve for sample 
no. 8 shows a distinct set of behaviors at these differ-
ent regimes. As such, for a sample that does not show 

Table 4   Total error divided by the maximum shear stress ( �i∕�i
max

 , in Pa-1) after 60,000 iterations for samples shown in Fig. 3 and for models 
formulated in Table 1

 Smaller values correspond to a better agreement with the experimental (σgt) data, and the best model for each sample is highlighted in red. The 
numbers next to the model names are the models' parameter count
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significant changes at different shear rate regimes, such as 
the Carbon black suspension (sample no. 3), model selec-
tion is relatively insensitive to the range of data provided.

Instead, one can choose to sample less number of 
imposed shear rates over the entire range of shear rates 
accessible with a rheometer/geometry. To test whether 
model predictions by the RhINN platform remain reason-
able with loss of data, uniform sampling of initial data 
is provided for the model selection process, and results 
are presented in Fig. 7. For these test sets, input data are 
reduced to one-half, one-quarter, and one-eighth in size 
to find the extent to which RhINNs can select the appro-
priate model. For all three sets of data, not only is TVP 
the consistent recovered constitutive model, but also the 
model parameters remain reasonable and within a physi-
cal range for all models trained. These suggest that the 
most important factor in data acquisition is to cover an 

extended range of shear rates instead of favoring a spe-
cific region of shear rates.

Conclusion and future work

In this work, a rheology-informed neural network (RhINN) 
platform was developed and introduced to expeditiously select 
appropriate constitutive model(s) based on available experi-
mental data. The proposed RhINN platform was found capable 
of identifying the best constitutive model for the experimental 
sample provided, spanning over six orders of magnitude in the 
shear rate and the shear stress. To demonstrate the capability 
of this platform, nine constitutive models representing a wide 
range of rheological phenomena were embedded in our RhINN 
platform, and a data set consisting of 13 steady-state flow curves 
from different complex fluids was provided. Our results indicate 

(a) (b) (c)

Fig. 6   Comparison of the model predictions for steady-state flow 
curve of the colloid/WLM mixture (sample no. 8), with different 
parameters recovered from different ranges of shear rates. Here, the 

initial data is equally divided into three regimes of a low, b interme-
diate, and c high shear rates and consequently fed into RhINN. For 
each curve, the thicker lines indicate the best model fit for that range

(a) (b) (c)

Fig. 7   Comparison of the model predictions for steady-state flow 
curve of the colloid/WLM mixture (sample no. 8), with different con-
stitutive parameters recovered from different sizes of shear rate data. 

A reduced size of a one-half, b one-quarter, and c one-eighth of the 
entire initial data is used for the training process into the NN. For 
each curve, the thicker lines indicate the best model fit for that range



Rheologica Acta	

1 3

that the proposed RhINN architecture was capable of finding the 
appropriate model with the lowest number of fitting parameters 
for each data set with minimal user intervention. Thereupon, 
we showed that a uniform selection of a significantly reduced 
number of data over the entire accessible shear rates would not 
affect the RhINN's accuracy, as opposed to providing a specific 
range of data (and omitting the rest) which resulted in an errone-
ous model determination. Our findings suggest that data-driven 
model selection for rheological constitutive models can be reli-
ably performed using RhINN platforms.

Nevertheless, there are other modern optimization methods 
based on adaptive parallel tempering (Armstrong et al. 2016) 
or Bayesian inference (Freund and Ewoldt 2015) that one may 
adapt to perform the model selection task. In all fairness, our 
developed platform, at its current state, does not claim to be 
the fastest (or the most accurate) option in one's arsenal for 
the model selection task, as explained in the “RhINN: conver-
gence and benchmark” section. There are a few issues, e.g., 
unphysical parameter recovery and training runtime, that we 
need to address. However, we posit that RhINNs, with their 
powerful features such as automatic differentiation, straight-
forward scale-up, and robustness in unconstrained optimi-
zation, can complement other model selection techniques. 
Future work can include the implementation of fully resolved 
tensorial forms of non-linear viscoelastic models and vari-
ous functional descriptions of deformation tensors within the 
neural network. By doing so, one can also recover the most 
appropriate non-linear rheological features of a system from 
a limited number of experimental data.
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