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Abstract

A myriad of empirical and phenomenological constitutive models that describe different observed rheologies of complex
fluids have been developed over many decades. With each of these constitutive models' strength in recovering different rheo-
logical responses, algorithms that allow the data to automatically select the appropriate constitutive relations are of great
interest to rheologists. Here, we present a rheology-informed neural network (RhINN) that enables robust model selection
based on available experimental data with minimal user intervention. We train our RhINN on a series of experimental data
for different complex fluids and show that it is capable of finding the appropriate model with the lowest number of fitting
parameters for each data set. Finally, we show that uniform selection of a handful of data over the entire accessible shear
rates does not affect the RhINN's accuracy, while providing a specific range of data (and omitting the rest) results in an
erroneous model determination.

Keywords Rheology-informed neural network - Data-driven constitutive modeling - Physics-informed machine learning -

Complex fluid meta-modeling

Introduction

The quest for modeling the rate-dependent stress response
of complex fluids to an applied deformation is as old as
rheology itself (Bingham 1916; Morrison 2001; Bird et al.
1987). The goal is to provide a closed-form mathematical
expression describing the correspondence between the stress
and deformation. Hence, with various types of rheological
responses, many empirical and phenomenological consti-
tutive models have also been developed (Soleymanzadeh
et al. 2018; Fuchs and Ballauff 2005; Arora et al. 2017;
Barthés-Biesel and Acrivos 1973). Of particular practical
use are empirical models that describe the rate-dependence
of shear viscosity as a simple scalar quantity, referred to as
generalized Newtonian fluid (GNF) models. For instance,
some of these classical GNF models that were developed to
describe different polymeric liquids' steady-state flow curves
(Bird 1965) include power law, Bingham, Herschel-Bulkley,
and Carreau-Yasuda models (Morrison 2001; Herschel and
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Bulkley 1926). These models, although practically useful,
are strictly limited to the steady-state response of common
rate-dependent systems and cannot describe the memory
or elastic effects or multi-component systems that show
more complex behaviors. Thus, models with added levels
of complexity have been developed over time to recover
the rich rheology of different materials. For instance, a
series of thixotropic elasto-visco-plastic (TEVP) models
have been developed to describe the long-time transients,
static and dynamic yield stresses measured, and hysteretic
effects in time-dependent materials with a fading memory
of deformation history (Dimitriou and McKinley 2014; De
Souza Mendes 2011; Larson 2015; Larson and Wei 2019;
Armstrong et al. 2016; Joshi 2022). When solved for the
quasi-steady-state response, these models also recover a
non-monotonic flow curve (over a limited range of shear
rates) with the shear stress decreasing as a function of shear
rate, and two (static and dynamic) yield stress values that
cannot be recovered using GNFs.

Regardless of the type of material, the common prac-
tice in describing the material rheology is to interrogate its
response through rheometry and then seek models that can
best simulate the observed behavior. By simply looking at a
material's steady-state stress (or viscosity) versus shear rate
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curve, a seasoned rheologist can discard a handful of mod-
els irrelevant to that particular sample. However, even the
steady-state flow curve of the shear viscosity versus applied
deformation rate can be complex in most complex fluids,
making the model selection a non-trivial task. Thus, frame-
works that aid in model selection can be of great practical
use. For instance, different TEVP models described above
can be used to model different types of behavior observed in
thixotropic materials. Nonetheless, the number of necessary
parameters to recover a specific behavior can significantly
differ from one model to another, resulting in an entirely
different set of experiments required for parameterizing the
model. Hence, time- and cost-effective tools that can auto-
matically differentiate between the models and their result-
ing rheologies and identify the one with the least number
of parameters without loss of accuracy are of great interest.

Machine learning (ML) algorithms can make a trans-
formative leap in this area. These frameworks can explore
massive design spaces (Karniadakis et al. 2021), handle
real-time tasks (Ritto and Rochinha 2021), identify multi-
dimensional correlations (Sun and Barnard 2019; Sun et al.
2013), and manage ill-posed problems (Gao et al. 2022).
ML frameworks can be categorized into supervised, semi-
supervised, and unsupervised learning (Brunton et al. 2020).
Neural networks (NNs) as means to correlating the com-
plex relations between the inputs and outputs by forming
a data-driven framework have been widely used in semi-
supervised (e.g., deep reinforcement learning (Arulkumaran
et al. 2017)) and unsupervised (e.g., dimensionality reduc-
tion through self-organizing maps (Kohonen 2001)) tasks.
However, neural networks are most recognized (and used) in
supervised learning problems. While purely data-driven NN
models may fit observations very well, the prediction step
might become unrealistic and result in reduction of the over-
all generalization performance (Karniadakis et al. 2021).

Therefore, physics-informed learning is needed, where
the physical domain knowledge is included in every train-
ing step (Wang et al. 2017) to improve the performance of
a learning algorithm. Physics-informed neural networks
(PINNs), as a recent example of this learning methodology,
have shown remarkable performance by leveraging the input
data using governing physics equations to further augment
the prediction accuracy (Raissi et al. 2019; Raissi et al. 2020;
Penwarden et al. 2022; Zhu et al. 2021; Cai et al. 2022;
Cuomo et al. 2022). Recently, we have reported a number
of rheology-informed neural networks (RhINNSs) that share
roots with PINNs but adhere to rheological intuitions in their
architecture (Mahmoudabadbozchelou and Jamali 2021;
Mahmoudabadbozchelou et al. 2021; Mahmoudabadbozch-
elou et al. 2022).

Generally, in RhINNs, predictions can be made in two
ways: first, we may use the framework in a forward direction
with known boundary and initial conditions as input data to
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solve a constitutive model in a spatiotemporal domain. On
the other hand, one might need to interpret data gathered
from a rheometer (or numerical analysis) to recover the hid-
den rheology of a sample. In this case, only a handful of data
will be used in an inverse platform along with a constitutive
model with yet-to-be-determined parameters. The ultimate
goal here is to unravel the hidden rheology of a sample by
confining those fitting parameters.

Here we report on a RhINN platform capable of choosing
the most accurate and efficient constitutive model (describ-
ing a particular rheological behavior) from a set of input
data. In particular, we asked the following question: Can a
handful of scattered data from a sample help us identify and
choose the best model representing that specific sample with
minimal user intervention? The goal is to develop a frame-
work in which (i) the data automatically finds the best model
with minimal user input (such as priors and bounds), and (i7)
model parameters are accurately recovered. In other words,
we seek to provide a platform that can include any rheo-
logical constitutive equation of interest, regardless of their
complexity (e.g., tensorial forms of fully resolved non-linear
viscoelastic models) and recover the material constants via a
completely automated procedure. Thus, the algorithm must
automatically test several constitutive equations against the
given ground-truth/provided data. However, as a proof of
concept, the solution of multiple GNF models, as well as
more complex thixotropic visco-plastic (TVP) models for
quasi-steady-state flow curve, is used here for the develop-
ment of the platform. Upon establishing the performance of
this ML platform, we systematically remove the included
data to interrogate the efficiency and accuracy of the algo-
rithm in finding the appropriate model.

Problem setup and methodology
Constitutive models

As previously described, several constitutive equations can
be chosen to represent a complex fluid's steady-state shear
stress response. Here, we select nine (9) different models
with a different number of parameters to be embedded
into our neural network. The goal is to provide a relation-
ship between the shear stress, ¢ (or viscosity, #), and the
imposed shear rate, y. These nine models, along with their
shear stress/viscosity form and parameters, are summarized
in Table 1.

Rheology-informed neural network
The NN interacts with the constitutive models in two itera-

tive steps: first, all models' initial (or previous) parameters
are fed into the NN, and a loss function is calculated (the
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Table 1 Different constitutive models implemented into the neural network to determine the hidden rheology of different samples

Model Shear stress/viscosity form Parameters
Power law (PL) (Morrison 2001) o =Ky" K, n
Herschel-Bulkley (HB) (Herschel and Bulkley 1926) o =o0,+Ky" oy, K, n
Bingham (BH) (Morrison 2001) 0 ife <o 1g» Oy,
— =% )

= Mo+ 07 ifo > o,
Carreau-Yasuda (CY) (Morrison 2001) 0= + (1 = 1) [1 + (H)a] wl Neos Mo 4G, 11
Three-component (TC) (Caggioni et al. 2020) o\ 3 Oys Vs g

0'—6)+0'),<L) + Tl 7

Ye

TCC (Mahmoudabadbozchelou et al. 2021) —0.5 oy Veres ks ¥,

Casson (Macosko 1994)

Vo= o+ Vi 7o

i . . k* + 7~

TVP (Mahmoudabadbozchelou and Jamali 2021) o =0,A+n,7 1Ao7, Ao = fEeves o, kT, K, nm,

Steady-state IKH (Dimitriou and McKinley 2014) c=n7+ <+ Nk o =5 ky, kess ky
P q ky+koy 9

These nine models have between two and five fitting parameters each, which will be trained along with the NN variables and biases to reduce
the total loss. TCC, TVP, and IKH stand for three-component Carreau, thixotropic visco-plastic, and isotropic kinematic hardening, respectively

upward green arrow in Fig. 1). Second, through a feed-for-
ward back-propagation algorithm, the NN will correct its
parameters along with all the fitting parameters enumerated
in Table 1 to minimize the loss function (the downward blue
arrow in Fig. 1).

The schematic illustration of the RhINN architecture is
detailed in Fig. 2. Since the only output of interest here is the
(quasi) steady-state solutions of simple constitutive models,
the only meaningful input to the NN would be the shear rate,
y. However, the ultimate goal is to develop a unified toolbox
consisting of all rheological models under one umbrella.
Therefore, a model' was built by sub-classing a Tensor-
Flow Keras model (Blechschmidt and Ernst 2021) and
implementing a functional application programming inter-
face (API), in which a unique loss function is calculated for
each rheological model. The total loss function (¢") for each
constitutive model (7) is defined as:

¢ =+ ¢, (1)
where:
i i 1S (L i)
d)d = MSE(O-p’th) = ;l Z (O-p, kK 6gt,k> (2)
k=1

is the loss corresponding to the discrepancies between the
ground-truth (a;t) and the predicted shear stress, a[’; for each
constitutive model (which is based on the mean squared
error, MSE), n is the total number of given data (¢ — y data
points for each sample), and:

! https://github.com/procf/RhINNs

T

¢} = Res' = 1 2 <Res;)2 3)

an p=1

is the residual (Res) calculated from each constitutive model,
and ng, is the number of artificial function points (shear rate
points) that we use to calculate the residual. For instance,
and for the case of the power-law model, d’} in 3 would be

Ly (ap - Ky'p”)z, where K and n are calculated by the

n p=1

IGN, Yy is the shear rate based on the artificial points, and o,
is the NN prediction of the shear stress. After the loss cal-
culation, through back-propagation, the NN variables,
biases, and model parameters are corrected to reduce and
eventually minimize the total loss.

The usual issue of fitting bias at high shear stress lev-
els (in contrast to lower ones) was resolved by scaling the
shear stress in our ¢ — y data, training the model and then
re-scaling the shear stress back into its original value after
the training step. Thus, logarithmic shear stress values were

RhINN

A¢

Constitutive models

Input (y) —> Output (o)

Fig. 1 The overall model-selector RhINN architecture implemented
in this work. Embedded constitutive models interact with the RhINN
platform in two ways. Model parameters are used to calculate losses,
followed by optimization of the NN variables and biases, along with
model parameters, to minimize the calculated loss
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Fig.2 Schematic illustration of |

the RhINN architecture. Here, [
only three constitutive models
and three hidden layers for each
model are shown for aesthetic
purposes. Each constitutive
model has a corresponding data
discrepancy (¢,) and function
residual (gbf). This fact is also
stressed by color-coding the
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used (instead of their absolute values) to mitigate the bias at
high shear stresses of the flow curve. This way, the model
accuracy in low shear rates is also preserved.

For each sample, all nine constitutive models are called,
and the Adam optimizer is allowed to perform 60,000 itera-
tions with a learning rate of 1 X 10™, which yields ~ 306s
of total calculation on average to finish on a MacBook Pro
(M1 Max, 64 GB RAM). The program is based on Tensor-
Flow 2.7.0, and sample swap occurs with minimal user
intervention. The number of neurons per layer and the num-
ber of layers used within an NN are commonly referred to as
its hyperparameters. The role of these hyperparameters was
investigated by changing the number of hidden layers from 1
to 16 (1, 2, 4, and 16) and by setting the number of neurons to
10, 25, and 50. For all values of layer and neuron count, negli-
gible variation was seen in the total error for each constitutive
equation (¢"). Thus, to find a suitable compromise between the
computational cost and accuracy, four hidden layers, with 25
neurons (nodes) in each layer, were chosen for our RhINN. A
tanh activation function is employed for all hidden layers and
all models. A ReLU activation function was also tested, but
tanh activation function exhibited better overall stability due
to the data normalization mentioned above. NN variables and
biases are initialized using the glorot normal method.
The nine models summarized in 1 have 31 fitting parameters
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total, all of which are initialized to unity with a small noise to
prevent instability in the first few iterations. The parameters
are allowed to vary without any constraint, thus keeping the
platform generalizable to any other rheological data set. The
unconstrained nature of our algorithm has important conse-
quences, as will be explained in sections “RhINN: convergence
and benchmark”-“Model selection and recovered parameters.”

Experimental data

In order to test and validate our proposed architecture, we used
experimental data from the literature for a variety of materials
and rheological characterizations. These samples, along with their
descriptions, are summarized in Table 2. Here, we used data of
solutions of partially hydrolyzed polyacrylamide with 1600 x
10* molecular weight (HPAM) at two different concentrations
of 1000 mg L' and 2000 mg L' (Huang et al. 2019), suspen-
sion of ® = 3% carbon black dispersed in a mineral oil (Dages
et al. 2021), a heavy mineral oil with a paraffin wax at two dif-
ferent concentrations of 5% and 10% (Dimitriou and McKinley
2014), a complex colloid/worm-like micellar (WLM) mixture
at three different concentrations of salt in the background fluid
(Mahmoudabadbozchelou et al. 2021), colloidal gelatin particles
in distilled water with two volume fractions of 0.2 and 0.05, (Nair
et al. 2019), a worm-like micellar solution of 100 mM CTAB and
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Table 2 Experimental samples used in this work to test our RhINN platform

No. Type Description
1 Polymer solution Partially hydrolyzed polyacrylamide (HPAM), 1000 mg L' (Huang et al. 2019)
2 Polymer solution Partially hydrolyzed polyacrylamide (HPAM), 2000 mg L' (Huang et al. 2019)
3 Carbon black gel 3 % carbon black in a mineral oil (Dages et al. 2021)
4 Waxy oil Heavy mineral oil with a 5% paraffin wax (Dimitriou and McKinley 2014)
5 Waxy oil Heavy mineral oil with a 10% paraffin wax (Dimitriou and McKinley 2014)
6 Colloidal and WLM mixture A complex colloid/WLM mixture, salt level 1 (Mahmoudabadbozchelou et al. 2021)
7 Colloidal and WLM mixture A complex colloid/WLM mixture, salt level 2 (Mahmoudabadbozchelou et al. 2021)
8 Colloidal and WLM mixture A complex colloid/WLM mixture, salt level 3 (Mahmoudabadbozchelou et al. 2021)
9 Colloidal gel Colloidal gelatin particles in distilled water, volume fraction (®) = 0.2 (Nair et al. 2019)
10 Colloidal gel Colloidal gelatin particles in distilled water, @ = 0.05 (Nair et al. 2019)
11 Worm-like micellar solution A worm-like micellar solution of A NaSal surfactants in DI water (Cardiel et al. 2013)
12 Polymer melt Low-density polyethylene melt at 423 K (Dunstan 2019)
13 Polymer melt Low-density polyethylene melt at 463 K (Dunstan 2019)
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Sample no. 2 1 Sampleno. 5 | | Tt

= . = = 8 e
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Fig.3 Collection of steady-state experimental data digitized and re-
plotted from the literature: a solutions of partially hydrolyzed poly-
acrylamide with 1600 x 10* molecular weight (HPAM) at two dif-
ferent concentrations of 1000 mg L' and 2000 mg L™ (Huang et al.
2019), b suspension of ® = 3% carbon black dispersed in a mineral
oil (Dages et al. 2021), ¢ a heavy mineral oil with a paraffin wax at
two different concentrations of 5% and 10% (Dimitriou and McKinley

32 mM NaSal surfactants in DI water (Cardiel et al. 2013), and
low-density polyethylene melts at two temperatures of 423 K and
463 K (Dunstan 2019). These samples are referred to with their
assigned numbers in 2 hereafter.

All data collected are plotted in a series of flow curves
in Fig. 3, indicating a total range of over six decades for
the variation of the viscosity and shear rate. Since one has

1077107% 1072 107 10° 10" 10° 10°
Shear Rate, ¥ [s7]

2014), d a complex colloid/worm-like micellar mixture at three dif-
ferent concentrations of salt in the background fluid (Mahmoudabad-
bozchelou et al. 2021), e colloidal gelatin particles in distilled water
with two volume fractions (®) of 0.2 and 0.05 (Nair et al. 2019), f
a worm-like micellar solution of 100 mM CTAB and 32 mM NaSal
surfactants in DI water (Cardiel et al. 2013), and g low-density poly-
ethylene melts at two temperatures of 423K and 463K (Dunstan 2019)

to ensure that the NN retains a robust model recovery irre-
spective of the range of input parameters or stresses, the
range of collected data here presents a suitable benchmark
for our developed RhINN platform.

Once the RhiNN starts the course of finding the model
parameters and minimizing the loss functions accordingly,
the choice between two (or more) competing constitutive
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models can become tricky or misleading. This is because
for some materials, multiple models, especially with an
increasing number of parameters, can recover the same set
of behavior. Therefore, a reliable figure of merit for model
selection is essential in ensuring that models are appropri-
ately chosen. To this end, we used the total error for each
model, ¢’ divided by the maximum shear stress of that par-
ticular sample (o-rin ) as the selection metric, meaning that
the model with the lowest ¢ /o’ (in Pa™) can best describe
the rheological phenomenon. Moreover, if two (or more)
models have ¢ /o’ smaller than 5 x*Pa™', the model with
a smaller number of fitting parameters is selected. This is to
ensure that a given rheological measurement is described
through the simplest and most accurate constitutive model
without resorting to unnecessary complexities within the
model itself. Although other model selection heuristics, such
as Bayesian inference criterion (Freund and Ewoldt 2015)
or adaptive parallel tempering (Armstrong et al. 2017), have
been successfully employed, we used the MSE norm (2, 3),
as widely selected in physics-informed learning.

Results and discussion
RhINN: convergence and benchmark

For any NN problem, it is vital to assess whether the NN
can successfully minimize the losses. To this end, ¢' /6’
as a function of the iteration number is plotted in Fig. 4 for
sample no. 2 (see Table 2). As seen in this figure, ¢/ /o’
(or the total error, ¢') plateaus after ~ 35,000 iterations for
sample no. 2. However, the program is allowed to iterate for
another 25,000 iterations to ensure that all errors for differ-
ent models have reached an acceptable steady-state accuracy.
While loss functions are presented for this collected sample,
similar trends are observed for all different materials/sam-
ples studied throughout this work.

Another crucial step is to see where RhINN stays
compared to other numerical and probabilistic alterna-
tives. Thus, we benchmarked our algorithm with two
other methods, i.e., trust region reflective, TRF (as imple-
mented in SciPy v1.7.3,aPython package), and a
Bayesian Inference Criterion (BIC) method (using PyMC3
v3.11.5). We also used the current RhINN platform
without adding the residuals from the constitutive models
to see if including the physics is advantageous or not. In
other words, we set 3 equal to zero, which converts RhINN
to a purely statistical neural network, i.e., deep neural net-
work, DNN. We benchmarked our method for both accu-
racy (in terms of root mean square (RMS) of prediction
errors from the experimental data over the maximum shear
stress, o,,,,) and the computing time (parameter recovery
runtime in s), and the results are presented in Table 3. As
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Fig.4 Total error divided by the maximum shear stress (¢'/c’ ) his-
tory as a function of the iteration number for the 2000 mgL™! polymer
solution sample (no. 2) for all constitutive models. After ~ 35,000
iterations, ¢’ /ain . for this sample (as well as other samples) pla-
teaus. However, the program is allowed to run for 60,000 iterations to
ensure accuracy

Table3 Error (in terms of root mean square (RMS) of predic-
tion errors from the experimental data over the maximum shear
stress,o,,) and runtime (in s) comparison of our developed model
(RhINN) with a trust region reflective (TRF) method and a Bayesian
Inference Criterion (BIC) method

Sample Method RMS /0. (Pa’ D) Runtime (s)
2 RhINN 0.144 14.75
TRF 0.143 0.56
BIC 0.145 14.42
DNN 28.441 11.18
8 RhINN 0.456 14.34
TRF 0.455 0.17
BIC 0.459 24.7
DNN 76.661 11.30
10 RhINN 2.166 13.75
TRF 2.157 0.08
BIC 2.240 14.61
DNN 2.948 10.95

The same RhINN architecture without imposing the constitutive mod-
els' losses (3) is also included as a reference and is denoted with deep
neural network, DNN. All three models are asked to recover param-
eters of the TCC model

can be seen in this table, RhINN's prediction accuracy is
comparable with the other two methods and is also com-
parable in the runtime with BIC. However, both RhINN
and BIC are outperformed by TRF in runtime. Moreover,
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relinquishing the proper physics is quite detrimental to the
model accuracy, as seen in the DNN cases. The critical
point here is that both TRF and BIC strictly rely on the
range of initial conditions (or priors for BIC) and prede-
termined constraints to converge. In other words, TRF and
BIC fail to converge when the four parameters of TCC are
left unbounded. However, RhINN can run and converge
without constraints on the parameter range. If more preci-
sion is needed, the predicted parameters by RhINN can be
fed into either TRF or BIC methods as initial conditions
(or priors) to improve the accuracy.

RhINNs: steady-state flow curve

The developed platform for parameter identification was
tested against the experimental data depicted in Fig. 3.
Here, as an example, the steady-state viscosity vs. shear rate
response for sample nos. 1, 5, 6, and 12 is shown in Fig. 5.
It is worth mentioning here that these shear stress predic-
tions are generated by inserting the recovered parameters
(Table 5) from our RhINN platform into the constitutive

Shear Rate, 7 [s7]

models listed in Table 1. Thus, these represent the best
fits that the NN predicts/recovers for any given data set.
Notably, we had shown previously that a combination of
experimental data as high fidelity input, and synthetically
generated data from constitutive models as the low fidelity
input, can result in accurate predictions of the flow curve
for different complex fluids (Mahmoudabadbozchelou et al.
2021). Nonetheless, here RhINNSs are used to find the best
model from input data and not to make predictions of the
flow curve. In Fig. 5, (a) for the polymer solution (sam-
ple no. 1) the Carreau-Yasuda model, (b) for the waxy oil
(sample no. 5) the IKH model, (c) for the colloid and WLM
mixture (sample no. 6) the Herschel-Bulkley model, and (d)
for the polymer melt (sample no. 12) the Carreau-Yasuda
model are found to best describe the flow curves. How-
ever, as briefly explained in the “Introduction” section, the
choice can become tricky when two models have an indis-
tinguishable agreement with the exact solution, making the
selection prone to error. Thus, our selected figure of merit,
ie., ¢'/ol, along with the number of fitting parameters,
is employed to facilitate the model selection.
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Table 4 Total error divided by the maximum shear stress (¢ /crfnax,
formulated in Table 1

in Pa’) after 60,000 iterations for samples shown in Fig. 3 and for models

9 1.36 x 107°  1.37x 107° 3.80 x 107> 1.45 x 10~°
10 8.19x 107 446 x 107*  6.78 x 107*  2.33 x 10~*
11 144 x 1072 1.33x 1073 1.64 x 1073 4.73 x 107*
12 249 x 1077 1.63 x 1077 1.02x 107%  8.00 x 107
13 3.14x 1077 231x 1077 118 x107% 5.17x 107

Sample | PL (2) HB (3) BH (2) CY (5) TC (3) TCC (4) Casson (2) TVP (5) IKH (5)

250 x 1077 2.35x 1077 3.33x 1075 2.30 x 10 1.50 x 1076 2.33x 107%  1.68 x 10°¢  3.09 x 10~7  1.90 x 10~°
2 9.55x 1078 643 x10°%  1.04 x 1076 7.56 x 10™%  4.06 x 1077 1.15x 1077 574x 1077 512x10°% 7.36 x 107
3 249 x 107 1.60 x 107° 533 x107° 9.55x 107 267 x107% 1.76x107¢ 1.22x10™° 4.19x 1075 4.19x107°
4 278 x 107 523 x107% 537 x107* 244 x 107 543 x107* 6.07x107* 1.12x 107 1.60 x 107* 1.12x 10~*
5 1.39x 1072 1.85x 107* 1.88x 107% 7.95x107° 278 x107* 212x107* 415x107* 485x107° 4.17 x 107°
6 1.60 x 107°  3.73 x 107¢ 3.50 x 107> 7.52x 107% 2,60 x 107> 9.00 x 1079 1.21 x 107° 6.52x 107 2.34 x 107°
7 311x 1074 1.77x107° 1.23x107% 144 x107° 3.71x107° 285x 107" 852x10°° 1.13x107° 6.41x107°
8 426 % 107° 3.98x107° 1.74x107* 1.59x107° 1.53x10~* 1.33x107° 1.23x10~* 1.02x 10 1.49 x 1074

1.34 x 1075
T28x 107 241 x107*  7.60 x 107*  4.69 x 107*  4.69 x 10~*
140 x 1073 9.74 x 107™* 120 x 107 1.22x 107%  1.15x 107°
8.74x 1077 3.24x 1077 9.17x 1077 246 x 1077 1.17x 1076
1.23x 1076 3.38x 1077 1.17x 107 2.89x 1077 1.38x107°

1.46 x 107°  2.35x107° 1.37x 10™° 1.42x107°

Smaller values correspond to a better agreement with the experimental (o,,) data, and the best model for each sample is highlighted in red. The

numbers next to the model names are the models' parameter count

Model selection and recovered parameters

From Table 4, it can be inferred that even for the samples
with the simplest viscosity behavior, two-parameter models,
e.g., power law, Bingham, and Casson, to a large extent,
fail to reduce the total error. Interestingly, the more com-
plex models do not necessarily attain lower error values.
For instance, the TCC model was developed explicitly for
sample nos. 6, 7, and 8. However, TCC does not yield the
lowest error for sample no. 6 (as shown in Fig. 5); instead,
the Herschel-Bulkley model has the lowest loss function.
This is because for the salt level presented in sample no. 6,
the second plateau observed for the system vanishes. Thus,
a simple yield stress constitutive model can describe the
behavior without the need for four different model param-
eters in the TCC equation. For samples with a unique shear-
thinning profile, e.g., the polymer melt (sample nos. 12 and
13) studied here, having more fitting parameters is indeed
helpful in finding the best model. That is why the Carreau-
Yasuda model, with five fitting parameters, can outperform
other constitutive models.

The entirety of recovered parameters from our RhINN
platform for different samples studied is summarized in
Table 5. In this routine, no constraint was imposed during
the training steps. Thus, we can logically anticipate that
some of these constitutive models have non-physical fit-
ting parameters. For instance, the Herschel-Bulkley model
predicts 6,=-1.008Pa for the worm-like micellar solution
(sample no. 11), which is unrealistic; however, for all the
selected models shown in red, all model parameters are
within a reasonable range.

Model selection for smaller data sets
From a practical perspective, obtaining the flow curves
presented in Fig. 5 needs individual stress growth tests

at varying shear rates, which can be time-consuming.
Thus, methods that can find the appropriate model (that

@ Springer

describes the observed rheology) with minimal experi-
mental measurements can be beneficial. Here, to inter-
rogate the applicability of RhINN model selection with
a smaller number of data provided, we systematically
reduced the size of available data for a particular sample
with different shear-thinning profiles, i.e., sample no. 8,
and reported on the model selection. In particular, we seek
to answer the following question: Between the range and
size of data, which one should be prioritized? To answer
this question, and in the first step, the given data were
split into three regions of low (0.01 to 0.16s™"), moderate
(0.2 to 4s), and high (5 to 100s") shear rates and were
used to train the RhINN with the parameters mentioned in
the “Rheology-informed neural network™ section, and the
results are shown in Fig. 6. These results suggest that by
sampling the given data in a specific region of shear rates
applied, only some of the constitutive models can capture
the flow curve within that specific data range; however,
even for those models determined, the parameters do not
necessarily remain valid when going to another range of
shear rates. For instance, in both the intermediate and
high shear rate regimes (Fig. 6b and c), the TVP model
results in the best description of the observed data. None-
theless, by looking at the TVP curves in Fig. 6b and c, it
is clear that the model parameters are significantly dif-
ferent for these two separate ranges of data provided. The
role that the range of provided data can play is even more
apparent in Fig. 6a, where the Carreau-Yasuda model is
recovered for the low shear rate regime. Note that for the
same sample and providing the entire range of data at
hand, the TVP model was found to be the best descrip-
tor of the flow curve (see Table 4). As such, for all three
shear rate regimes shown in Fig. 6, the RhINN platform
recovers a somewhat inaccurate set of model parameters,
although, for two regimes, the model selection remains
valid. This is expected, as the flow curve for sample
no. 8 shows a distinct set of behaviors at these differ-
ent regimes. As such, for a sample that does not show
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Fig.6 Comparison of the model predictions for steady-state flow
curve of the colloid/WLM mixture (sample no. 8), with different
parameters recovered from different ranges of shear rates. Here, the

significant changes at different shear rate regimes, such as
the Carbon black suspension (sample no. 3), model selec-
tion is relatively insensitive to the range of data provided.

Instead, one can choose to sample less number of
imposed shear rates over the entire range of shear rates
accessible with a rheometer/geometry. To test whether
model predictions by the RhINN platform remain reason-
able with loss of data, uniform sampling of initial data
is provided for the model selection process, and results
are presented in Fig. 7. For these test sets, input data are
reduced to one-half, one-quarter, and one-eighth in size
to find the extent to which RhINNs can select the appro-
priate model. For all three sets of data, not only is TVP
the consistent recovered constitutive model, but also the
model parameters remain reasonable and within a physi-
cal range for all models trained. These suggest that the
most important factor in data acquisition is to cover an

Shear Rate, 7 [s7}]

02 107! 10° 10! 102
Shear Rate, 7 [s7}]

10° 10 10°

initial data is equally divided into three regimes of a low, b interme-
diate, and c high shear rates and consequently fed into RhINN. For
each curve, the thicker lines indicate the best model fit for that range

extended range of shear rates instead of favoring a spe-
cific region of shear rates.

Conclusion and future work

In this work, a rheology-informed neural network (RhINN)
platform was developed and introduced to expeditiously select
appropriate constitutive model(s) based on available experi-
mental data. The proposed RhINN platform was found capable
of identifying the best constitutive model for the experimental
sample provided, spanning over six orders of magnitude in the
shear rate and the shear stress. To demonstrate the capability
of this platform, nine constitutive models representing a wide
range of rheological phenomena were embedded in our RhINN
platform, and a data set consisting of 13 steady-state flow curves
from different complex fluids was provided. Our results indicate

* Exact Three-component * Exact — Three-component * Exact — Three-component
102 — Power law —TCC 102 Power law TCC 102 Power law TCC
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Fig.7 Comparison of the model predictions for steady-state flow
curve of the colloid/WLM mixture (sample no. 8), with different con-
stitutive parameters recovered from different sizes of shear rate data.
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Shear Rate, % [s7}]

Shear Rate, % [s7!]

A reduced size of a one-half, b one-quarter, and ¢ one-eighth of the
entire initial data is used for the training process into the NN. For
each curve, the thicker lines indicate the best model fit for that range
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that the proposed RhINN architecture was capable of finding the
appropriate model with the lowest number of fitting parameters
for each data set with minimal user intervention. Thereupon,
we showed that a uniform selection of a significantly reduced
number of data over the entire accessible shear rates would not
affect the RhINN's accuracy, as opposed to providing a specific
range of data (and omitting the rest) which resulted in an errone-
ous model determination. Our findings suggest that data-driven
model selection for rheological constitutive models can be reli-
ably performed using RhINN platforms.

Nevertheless, there are other modern optimization methods
based on adaptive parallel tempering (Armstrong et al. 2016)
or Bayesian inference (Freund and Ewoldt 2015) that one may
adapt to perform the model selection task. In all fairness, our
developed platform, at its current state, does not claim to be
the fastest (or the most accurate) option in one's arsenal for
the model selection task, as explained in the “RhINN: conver-
gence and benchmark™ section. There are a few issues, e.g.,
unphysical parameter recovery and training runtime, that we
need to address. However, we posit that RhINNs, with their
powerful features such as automatic differentiation, straight-
forward scale-up, and robustness in unconstrained optimi-
zation, can complement other model selection techniques.
Future work can include the implementation of fully resolved
tensorial forms of non-linear viscoelastic models and vari-
ous functional descriptions of deformation tensors within the
neural network. By doing so, one can also recover the most
appropriate non-linear rheological features of a system from
a limited number of experimental data.
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