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Abstract: The present work mainly investigated the effect of extrusion temperatures on the mi-
crostructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected
to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated
that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased
with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C,
and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture.
The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 um
and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of
355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after
extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened tex-
ture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate
temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%.

Keywords: magnesium alloys; extrusion; dynamic recrystallization; microstructure; mechanical properties

1. Introduction

Magnesium (Mg) and its alloys have attracted great interest for potential applications
in the automotive and aerospace industries due to their low density and high specific
strength [1]. However, the poor formability at room temperature and insufficient mechani-
cal properties have severely limited their widespread applications.

Thermomechanical processing has been proven to be an effective method for improv-
ing the mechanical properties of Mg alloys through grain refinement and texture control,
especially severe plastic deformation (SPD) methods, such as equal channel angular press-
ing (ECAP) [2], multi-directional forging (MDF) [3], high-pressure torsion (HPT) [4], or
accumulative roll-bonding (ARB) [5]. However, these SPD processes are not suited for
continuous manufacturing. In comparison, extrusion processing is the most commonly
used, effective, and well-accepted method to enhance the mechanical properties of Mg
alloys. A variety of Mg alloys have been investigated via extrusion, including rare earth
(RE)-containing and RE-free alloys. After extrusion, RE-containing alloys obtained su-
perior mechanical properties, for example, Mg-1.5Zn-0.25Gd (wt.%) with an ultimate
tensile strength (UTS) of 417 MPa, tensile yield strength (TYS) of 395 MPa, and elonga-
tion (EL) of 8.3% [6]; also, Mg-1.8Gd-1.8Y-0.7Zn-0.2Zr (wt.%) with a UTS of 542 MPa,
TYS of 473 MPa, and EL of 8.0% [7]. However, due to the high cost and natural resource
scarcity of RE elements, RE-free Mg alloys would be much more competitive for large-scale
industry applications [8].

Most recently, Mg-Zn-Ca system alloys have received great attention because of their
good precipitation hardening and aging hardening effects [9,10], low cost and creep re-
sistance [11,12], as well as excellent biodegradability [13,14]. Du et al. [15] achieved high
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strength (UTS of 305 MPa, TYS of 292 MPa, and EL of 10.3%) in Mg-4.5Zn-1.1Ca (wt.%)
alloys after extrusion at 300 °C with an extrusion ratio of 12, which resulted in fine dynami-
cally recrystallized (DRXed) grains with strong basal texture. Tong et al. [16] investigated
Mg-5.3Zn-0.6Ca (wt.%) extruded at 300 °C with an extrusion speed of 0.1 mm/s show-
ing an excellent combination of strength and ductility with a UTS of 279 MPa, TYS of
220 MPa and EL of 21.4% owing to fine-grain and solid-solution strengthening. Simi-
larly, Zhang et al. [17] reported that, for Mg-1.0Zn-0.5Ca (wt.%) alloys, they obtained high
strength with a UTS of 300 MPa after extrusion at 310 °C because of grain refinement and
the appearance of a strong basal texture. In fact, the mechanical properties of extruded
Mg alloys are strongly dependent on the extrusion parameters, such as extrusion speed,
extrusion ratio, and extrusion temperature. Among them, extrusion temperature is the
most significant parameter that directly determines the resultant microstructure, texture,
and mechanical properties. Li et al. [18] studied Mg-3.0Zn-0.2Ca (wt.%) using an extrusion
ram speed of 17 mm/s at different temperatures (25 °C, 150 °C, 250 °C, and 300 °C),
and the results showed that the grain size of the DRXed region monotonically increased
with increasing extrusion temperature, but the change in the texture intensity was not
monotonic, it increased first then subsequently decreased.

Most of the previous works concentrated on the behavior of Mg-Zn-Ca alloys with
a highest extrusion temperature of 300 °C. But systematic investigations of the higher
extrusion temperature (>300 °C) behavior of Mg-Zn-Ca alloys have rarely been reported.
Therefore, in this work, the relationship between the use of high extrusion temperatures
(300-400 °C) and the microstructural evolution as well as the mechanical properties of
Mg-1.3Zn-0.5Ca (wt.%) were investigated.

2. Materials and Methods

Alloys with a composition of Mg-1.3Zn-0.5Ca (wt.%) (hereafter, identified as ZX10)
were fabricated by melting high purity Mg (99.97%, US Magnesium, Salt Lake, UT,
USA) and Zn (99.999%, Alfa Aesar, Ward Hill, MA, USA) and Ca (99.5%, Alfa Aesar,
Ward Hill, MA, USA) at 730 °C and casting into a pre-heated steel permanent mold with a
diameter of 40 mm in an argon-filled glove box as was done previously for other Mg-based
alloys [19]. Cylinders, 38.0 mm in diameter and 50.0 mm in height, were machined from
the ingots after being homogenized at 320 °C x 20 h + 430 °C x 24 h and being quenched
into water. In turn, these homogenized cylinders were extruded at 300 °C, 350 °C, and
400 °C using an indirect extrusion method with an extrusion ratio of 9.37, and a ram speed
of 0.1 mm/s. The cross-section of the extruded bar is 11 mm x 11 mm.

The microstructure was characterized using optical microscopy (OM, Axiolmager
m2m, Carl Zeiss, Jenna, Germany), scanning electron microscopy (SEM, Hitachi, SUS000,
Tokyo, Japan), an equipped energy dispersive X-ray spectroscopy (EDS) detector (X-MaxIN 50,
Oxford Instruments, High Wycombe, UK), and an electron backscattered diffraction (EBSD)
detector (Symmetry TM, Oxford Instruments. High Wycombe, UK). For the as-extruded
ZX10 alloy, the observation position for microstructure analysis was selected to be at the cen-
ter of the sample parallel to the extrusion direction (ED). The metallographic samples were
prepared by standard mechanical grinding with SiC papers from 30 um to 1 um grit size
and final polishing with 0.05 um grit Al,O3 suspension. The polished samples were then
etched using etchant (10 mL acetic acid + 4.2 g picric acid + 10 mL water + 70 mL ethanol)
for OM observation. The samples for EBSD were first polished in the same manner as for
OM,, followed by further polishing in the ion mill (Fischione Instruments, Model1061 SEM
Mill, Export, PA, USA) for 25 min with the parameters of 3 kV and 3° tilt angle. EBSD
measurements were performed at 15 kV and 20 pA with a step size of 0.5-1.5 pm. The
EBSD data were post-processed by Aztec Crystal software (version 2.0) [20] and MTEX
Matlab Toolbox (MTEX 5.7.0) [21]. The grain size and volume fraction of the DRXed and
secondary phases were statistically calculated by Image Pro-Plus software. To ensure
adequate statistics, at least four images were used for the calculation.



Crystals 2021, 11, 1228

A R A AR M TR IR ) i P AL e R ATy AR M)y Ao S Y A AV TR

ware. To ensure adequate statistics, at least four images were used for the calculation.
The mechanical properties of ZX10 alloy were evaluated using an Instron 5569 uni-
versal testing machine with a tensile strain rate of 0.001 s~'. Dog-bone shape tensile speci-
mens of 3 mm thick and 15 mm gauge section were cut from the as-extruded alloy sar3n(Pfles
along the ED. The tests were repeated for three specimens to ensure the accuracy an
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reliability of the tensile results, and then the average values were calculated. After the
tests, the fractured surfaces of the specimens were further investigated by OM and SEM.
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Figure 2 shows optical micrographs of the homogenized ZX10 alloy. It can be seen
that the grain size was still around 300 pm, and the second phase particles, formed in the
as-cast state, were mostly dissolved into the Mg matrix, leaving a very limited number
of particles at the grain boundaries and inside the grains. This is because Mg,Ca has a
very high melting point (714 °C [24]), and is often difficult to completely dissolve into the
Mg matrix.

Fl_gure 1. %EEQ t1ca1 mlcros%‘aphs of the as-cast ZX10 lloy and (c e) EDS anal 51s of as-cast ZX10
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Figure 3. Optical micrographs without etching of the as-extruded ZX10 alloy showing the distribu-
tion of second phase precipitates: (a) 300 °C, (b) 350 °C, and (c) 400 °C. The precipitates were marked
by red arrows.
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3.3. Microstructural Evolution during Extrusion

Figure 7 shows optical micrographs from a sample extrusion processed at 400 °C that
was interrupted. The section of the sample still in the extrusion die, at different positions
below the die exit, reveals the early stages of the microstructural evolution during the
overall extrusion process. It can be seen that the microstructure exhibited a gradual change
along the flow of the material, showing the changing strain field from the entrance to the
exit in the die (from the bottom to the top of the image). In addition, clearly visible large
unDRXed grain regions, as indicated by red arrows, were elongated along the material’s
flow direction, which still existed after passing through the die exit. Besides, from the
microstructures at a higher magnification (Figure 7b—d), a typical bimodal microstructure
can be obviously observed, which was composed of large unDRXed and fine DRXed
grains. At 10 mm below the die exit (Figure 7b), fine grains with a size of less 5 um were
observed with small DRXed fraction, indicating the onset of DRX. At 5 mm below the die
exit (Figure 7c), the DRXed fraction increased with increasing deformation strain, while
the DRXed grain size remained almost the same. Near the die exit (Figure 7d), the region
had a grain size of less than 2 um, and it appears that DRX was almost completed with
only a few elongated unDRXed grains being left.
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3.3. Microstructural Evolution During Extrusion

Figure 7 shows optical micrographs from a sample extrusion processed at 400 °C that
was interrupted. The section of the sample still in the extrusion die, at different positions



grains. At 10 mm below the die exit (Figure 7b), fine grains with a size of less 5 um were
observed with small DRXed fraction, indicating the onset of DRX. At 5 mm below the die
exit (Figure 7c), the DRXed fraction increased with increasing deformation strain, while
the DRXed grain size remained almost the same. Near the die exit (Figure 7d), the reglon
had a grain size of less than 2 um, and it appears that DRX was almost comple?e(f with
only a few elongated unDRXed grains being left.
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The room temperature tensile engineering stress—strain curves and mechanical prop-
erties of the homogenized and as-extruded ZX10 alloy are given in Figure 10. The detailed
mechanical properties are listed in Table 1. From Figure 10a, it can be seen that the mechan-
ical properties of as-extruded ZX10 alloy had obtained great improvement compared to
that of homogenized state. Typically, high UTS (~355 MPa) and TYS (~284 MPa) as well
as medium EL (~5.7%) were achieved at an extrusion temperature of 300 °C. Figure 10b
shows that the UTS and TYS decreased monotonically for higher extrusion temperatures,
while the EL increased monotonically. Furthermore, Figure 11 provides a comparison of
TYS among the ZX10 alloy in the present work and other low alloying Mg-Zn-Ca alloys.

It can be seen that the as-extruded ZX10 alloy in the present work, especially for the case
of 300 °C, resulted in a higher TYS than any of the other Mg-Zn-Ca alloys [17,25-27],
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It can be seen that the as-extruded ZX10 alloy in the present work, especially for the
of 300 °C, resulted in a higher TYS than any of the other Mg-Zn-Ca alloys [17,25-27
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Figure 11. The comparison of tensile yield strength (TYS) among the present ZX10 alloy ex-
truded at different temperatures and other low-alloying Mg-Zn-Ca, AZ and ZK series, and RE-
containing alloys.

4. Discussion
Fighfe Mictés¢raotnparison of tensile yield strength (TYS) among the present ZX10 alloy extruded
at differentrfeppepsarean drtivrotostaaping Mg-£it(istdaad ©iserisHodnid S Eraensaining
alloggge precipitates [29-31] and extrusion parameters [1]. Previous works have shown that

large precipitates (>1 pm) could be used in promoting recrystallization via the mechanism
4. Discussion

4.1. Microstructure

Generally speaking, the DRX behavior of Mg alloys is related to the following factors:
laroe precipitates [29-311 and extrusion parameters [11 Previous works have shown that
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of particle-stimulated nucleation (PSN) [32,33]. Kim et al. [34] reported that the volume
fraction of the DRXed region was linearly proportional to the volume fraction of large
precipitates (>1 um). In this case, the second phase, with a size of 1~3 um existed aftgf19

ovtvnci{\n (pignvo Q), anr] tho Vn]umo Fvantinns were n.ROO - 1 ")'70 - anrq 1 ‘AQO for tha a"ny

extruded at 300 °C, 350 °C, and 400 °C, respectively. Figure 12 shows the relationship
between the volume fraction of DRXed region and large particles. which has a non-linear

100
Extruded at 400 °Cm

w
o
T

70 |
60 s Extruded at 350 °C
50

| |
40 Extruded at 300 °C

Volume fraction of DRXed region (%)

30 1 . ! . 1 . 1 : ! . 1 .
0.6 0.8 1.0 12 14 16 1.8

Volume fraction of large particles (%)

Figure 12. The relationship between volume fraction of the DRXed region and the volume fraction of
large precipitates (>1 pm).
Figure 12. The relationship between volume fraction of the DRXed region and the volume fraction
of large pre ggggée(gjtm.been reported that the DRXed grain size of the Mg alloys is strongly

related to the Zenner-Hollomon parameter, Z = ¢ exp (%) [35-37], where ¢ is the strain
Ml i the AU fsosrele it ieR S B Rt M RiitBe sRs sapstanbyind Trivihsty

1 Cgefm{ ation templglraltlure. Then the retlatlofskuéf betwggl %’g ]é)}?(e grain, stetillnd tthe_
related {Q the iSRS [ANIMED PABISISTedked 5 1R, bop) 55—/, where £7is the strain
rate, Q is the activation energy for lattice diffusion of Mg, R is the gas constant, and T is
the deformation temperature. Then the réfibonsfp between the DRXed grain size&hd

the Ze‘%%g S&Ofsn the BRXed %tr%rf gll}gemelxspcﬁeesgslggnassiig%’)g’pg(]hent, and A is a constant. It is

clearly seen that the DRXed grains sizgjmcreaseqwith increasing extrusion temperaturq()
In thig case, the DRXed grain sizes 'for thle extrusion temperature of 300 °C, 350 °C and )
wheresgdordsibe PRYad Zraimsizel puisthe gidaisias cRRaRsth, anchd\bis expeaisianth b is
clearlytiseénctbastinth ORRXegr giresire size inaseddes tivitindreastagingrextonsionpentpsrature.
In this caserthd RXeth gralion sizey fal ttieel2kX-heloniterafibraterexisni860 2X185016¢ dudng00
°C wetheleStrpion preasssis Fenicrrsspicirs pf thecarpiesittmpe axpmnd]harthe
increaSgCHRRIA G i rbesion disisastt Bg%@lfﬁ%?é%@ihg ERaRsithe mpisiaggrylts are
sh in Figure 13. It can be seen Bh%IPF. maps fl 1gure 1f3a Ge)it fBe HnDl’éXed
I additon, ) oF ergf) Heveaﬁ?ﬁﬁ ?{% chaviorof t casextrided alloy during
rains were detormed.along the to form gflo ate rlams from the bottom to fhe exit
the extiusion processing, the tITﬁCI‘Q[StI’UFtU es of th8 s m?) es at 0 m mm.an m,
. [©) e die, an e é(;rys allization Iraction graduadlly mcreased withi many .ﬁne e
directly. hlow dhefhieiomditorsigrers yethdds StbPmbRa enelyEie Lesutagre
shownyinnBiguoR X341 6ams be seepeliam the ifrmepedBigsradde mahthatiRyamnbRXed
grainsgneteadlefoiraded| dgddiel FRHordsuni el enigatedegr alosd robnitiegohedtoin dmthadxit
of the die, and the recrystallization fraction gradually increased with many fine DRXed
grains. From the misorientation angle along the point to origin indicated by the arrow AB
in the unDRXed grains, it can be seen that the misorientation angle in the unDRXed grains
gradually increased. Especially, the misorientation angle along AB in Figure 13a can reach
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as high as 32°. In addition, a large number of sub-grain boundaries can be observed in the
Crystals 2021, 11, x unDRXed grains, as well as a large number of sub-grains or substructures were surrounded 12 of 19

mechanism (cDRX) [40-42], low-angle grain boundaries can continuously absorb more

moving dislocations with increasing strain, and can gradually transform into high-angle
angle-gsaimbawndatieanand dinakiy-trangfopp ds newasrsysiallirad-graing Hhegefore, it
canhécdnt astedbiba prdyRXplayidearita dingerolerivithepestessiaz Rroegksyof ZX10 alloy.
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Figutiguse EBSIBTRsiehulistahthiritergitted die sampltecatrdetbdt #0800°C difttifferpasipositieny (b0 (meéh S(@d) 8aam, and
(e, f)(@Frhbeloclovhehdidiextitf dey)ate IPF maps aandd lsld) Hratbelind peopretidéshsiisongntaiiantatiple alogle hlong the
arrowrdB AlBshenn (a,@e€)e)-

4.2. Texture

As described in Section 3.4, a basal fiber texture was formed in the as-extruded ZX10
alloy. Much of the research has proved that the basal {0001} plane and the <1010> direc-
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4.2. Texture

unDRXed\fégﬁéﬂbedflwﬁgqm)%ﬁv@@mmﬂm Hee ﬁ%ﬁhﬁﬂﬂ\lﬂkﬁ&rﬁﬁ@gi%@ﬁ@—%] S
ilar 1%% t%‘%ﬁiérzog Ep fﬁ@ﬁ%ﬂ&g&;}g%& Lty sﬁ} %@1@3@%@6 t%gt%ﬂ jé'%lty of
unDRKeil i, W SRS NRAC 1B} DBt E R ACRIFSALR (he ] Lallgy extrug
at 30h&sin Shawbstheragtaabhasalofeadusasiatensitycebdhg erasisidedbdadR alloy v
mainlyedieter shidieeHoyeleniplRiXieedrbai dresbd egb énxcliregroensliein dreartbiotednegions
of Mg alloys was much higher than that in DRXed regions [46—48]. Similar results are also
43. rved i ure zthat shows that the texture intensity of the unDRXed area was much
fg e than t at & DRXed area in the ZX10 alloy extruded at 300 °C. In short, the actual
Aes;aiﬁsauﬁeedtamﬁﬁoﬁthna& BxtasddieZox ruisopny tematy tetesninetdgsecDitKed 300 °C
400 °egikes Py adingasdtefrorer I8¢ MPa to 220 MPa, while the EL improved from 5.7%

15.1%. ;Ggnerally ﬁBﬁ%jngf for Mg alloys with relatively low alloying content, the 1

chanical Rropertisssof hiedlastically.deformed samplg.are relatedstadhessize-of DR
graingand thethasaldestidi®ed from 284 MPa to 220 MPa, while the EL improved from

Bifttly,16h8orélatioribhipeddtydenNiYBlayzdvidRXetvghalonsilleyiag doatamathzed by
Hall= lp%qlaﬁl(cﬁl —H’?E‘iﬁ[ﬂ%&féﬁ‘msucally deformed sample are related to the size of DRXed

grains and the basal texture.
Firstly, the relationship between &}/ S:ar@]oDlRXk(S‘}(g‘f&{ﬁ size can be analyzed by the
Hall-Petch (H-P) equation [49]:
where oy is the tensile yield strength, cois a materlal s constant for the onset strength

dislocation movement, ky is the stferigtfehiks! coefficient (a constant specific® each

terlam@?@od gr}hlé%}éﬁg%ﬁygﬁ@ggtﬁrélr}ss&%aterlal s constant for the onset strength
F@guﬂ@olétlshws&h@ﬂa,lhsﬂeé@heﬁ@ﬂmﬁm%}u@ffmreth@exmuﬂﬂdp&xmcaéka_y with ¢

77.8 Mikterialt dad=-066 /NP thd praragregsedrsiteat the oy and d were in good agreement w
the H-D Fé%ér‘ﬁ%ﬁ% "?othﬁ E&Hﬁ@t Bﬂ&af&@&fﬁmaﬁ%%ifesgf %%%é%ﬁﬂ%mdmve

d g g a. It can be seen th%t the oy and d were in good agreement
ecreﬁsthnl%eo[—l relafi EA%S[‘;% k& %&rﬁclregglenags DRXed Will be conducive
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= Experimental data
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Figure 14. Hall-Petch plots of the oy against d~1/2 for the extruded ZX10 alloy.

Figure 14. Hall-Petch plots of the 6y against d'/2 for the extruded ZX10 alloy.

Secondly, it has been reported that the strong basal texture in the extruded Mg all

is beneficial for enhancing the strength of the alloys when tensioned along the ED [1,!
CA +thoe hioclh hacal faoviiira 1rvfonrncitvr Af thoe aviri1idad ZY10 Aallaxvr mvvaxr alea 1aad +A T
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Secondly, it has been reported that the strong basal texture in the extruded Mg alloys ]
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So, the hlgh basal texture 1nten51ty of the extruded ZXlO alloy may also lead to hlgh
strength. As mentioned in Section 3.4, the pole intensity of basal texture decreased with

exthlsiod gprieadeerementrinfibre 0¥ SGritbbiriCreadisy t€nvierhtuee X 8]43.8elated
depid &?sl@éﬁﬁféﬁqﬁdﬁ@d&ﬂﬁlﬁﬂ?grﬁeﬁe&%ﬁieﬁem@mr%%wm%lﬂﬁéeeﬁ%catlon‘
s1t§efi(tﬁu51 eterr\}%%ra uref%lsonenhatf% &] 5] 52‘(]3 was retrieved from dEto th data, ¥

crement 1n mperature 1s also relate

11
quaRtiEess b&%ﬁ?ﬂ%c%IMEQ%l@tﬁﬁw i W%rgﬂﬁf&teﬁﬂgﬁlw&kh%%?ed to
fingehsiet lnfreavestgnaigbbeitapoinkssmmd valless abevea thresbsdif, hutere exc
frometiiéienfeedneioge [53]>r’Ehe%AMW@@&@mmmﬂdthm@KMnﬁdlues giy
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10d&ﬁ!@?ﬁg}g@ﬁ%ﬂq@%ﬁgw&@g&e&d@éw&%@&g%d and dislocation strengthening

was gradually weakened.
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Fi igure 15. KAM value distributions (a), and average KAM values (b) of the as-extruded ZX10 alloz; under different
igure g(;i

KM c‘éi’d&i&é&‘%@é@&%ﬁ%@sﬁ%ﬁf}ﬁﬁverage KAM values (b) of the as-extruded ZX1

alloy under different con

ditions calculated based on EBSD analysis.

In addition, the effect of texture on TYS and EL can also be explained by Schmid factor

CHnRich 6B erwesseed 8t fdtture on TYS and EL can also be explained by Schmi
tor (SF), which can be expressed as, [54]: oy x m ®)

where TcRrss is the critical resolved shear sﬂ-*éﬁ(inSsy)Yaﬁa Mis the Schmid factor, which

an be expressed as 0S 0 B,,where oc is t bet een sh rect
WS RS I el P SR S R A S S SR actor,
ca@@@rﬁa&pcre%swlea&agm TipQdterts (0O, Wherexdsithe gﬂ twegsnthaslipidirectio
thevinkds leh dh&duten i Yondehaghdr[Fis The Suhghellﬁeitwe:hmshp@ia‘nmmmbﬁtﬁ thds of ex
forkfeeTslpAdat Klgdey §t&#§’@009’}t%1020§%5%ﬂ§ﬁ§éf?\ﬁétté@mﬁigélﬁg%é(}”ﬂ%alue \

the extyusion t ratu 0 e V e e to imited
lead%% lito éfic LC ﬁlh :hrglcul{v: gi?r allst][‘a u 1ontﬁlslt tograms of tl

en(t)o th @j r 10n 1 ating thatitwa itiate a large number o

extﬁ}ﬁgﬁfi{%@@ %@LM@%%WWW%@%@rsrsmwe Htigyre 16.°
theeex}témaltemqseﬂathn‘ﬁ)ms@mi(t thepualivelp fhawavas ol g2 tuede the li

extierit3Bfatlde0 B Mspleetipe bharlﬂ&?@at shisterits ware difffrddtingintdtiatdingd e ge num
bagﬁf@ﬁifs‘%eeﬁY’ﬁeMdﬁé@péfd’ﬁg @By, Fbsulting in higher TYS and lower EL. /
extrusion temperature increased to 350 °C and 400 °C, respectively, the value of m
ually rose to 0.32 and 0.35, respectively, and basal slip systems were easier to in
leading to a decrease in the TYS and an improvement of the EL.
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Figure 17 shows optical micrographs and SEM observations of fractured surfaces of
the astagutRIdd xawsiRptisalmicragaaphsandas EVirobservatienmafifracsurDexestaces of
thei ansebirtdedc K X albeiisfidshotin DR gd re didm S viviionéo gey adttaingd théhears®RXed
segriohphone Mpith prasipigiigivleddits RN edorggilonEIMKipoed), atthoaghweeecoarse
gbeeirvd phemend ghem prutigitatg shat faalisteibrgevhalnesehed #BI(Kighe o8y nrrseea s were
bpiing MennariRersead ek thavrevenedrthatdb aclongatita Pt e deddince of
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kighst theckiogeohDiked ofgion3Rezd leep tbahigiltde favgatibhe Fonalhy asitiadion of twin-
FiguzeBub, whitte diadles seere gpeabsesinde ibea {55 tBe) thean fraftoyeaxadeiied at 400
pEsistaHe ighest fraction of DRXed regions revealed the highest elongation. Finally, as
shown in Figure 17b,d,f), the dimples were also observed, indicating that the main frac-

ture mode is a plastic fracture.
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e>&l‘1\’i &th&hﬁ&%@ﬁ@é&%%&ﬁds@@e@&?@ém@ size of DRXed regions increased as
the extrgsiondemperapina dnqsaased) V300 sGvard Wy ifaimically precipitated along
th@ plargéopreliipitides ¢hk ampohMghGhivergrdsinatiyidaldyepredipittteihadeasgnihe ex-
trusidrudicedgorpetadarerount of which gradually increased with increasing extrusion tem-
eraturf3) A strong basal fiber texture was formed in the presence of as-extruded Mg-1.3Zn-

0. ?5?&%‘??8@8&5‘51&?3&“%&%&%}% %ﬁﬁeﬁé?&&’dth%‘?ﬁ%efﬁ@é’e%%?% SRRSRISRIZE 37n-

0. 5&) %)ri%-,eg%? ’&%li)r% ef it té%m?y]aecfeagee%f With i increasing extrusion temperature due
to the increased volume fraction of DRXed regions;

(4) A mechanical property with a UTS of 355 MPa, TYS of 284 MPa and EL of 5.7%
was achieved in the Mg-1.3Zn-0.5Ca alloy extruded at 300 °C. With a further increase of
temperature, the UTS and TYS decreased, accompanied by an improvement of EL.
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(4) A mechanical property with a UTS of 355 MPa, TYS of 284 MPa and EL of 5.7%
was achieved in the Mg-1.3Zn-0.5Ca alloy extruded at 300 °C. With a further increase of
temperature, the UTS and TYS decreased, accompanied by an improvement of EL.
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