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ABSTRACT

Hyperspectral images encode rich structure that can be ex-
ploited for material discrimination by machine learning al-
gorithms. This article introduces the Active Diffusion and
VCA-Assisted Image Segmentation (ADVIS) for active mate-
rial discrimination. ADVIS selects high-purity, high-density
pixels that are far in diffusion distance (a data-dependent met-
ric) from other high-purity, high-density pixels in the hyper-
spectral image. The ground truth labels of these pixels are
queried and propagated to the rest of the image. The ADVIS
active learning algorithm is shown to strongly outperform its
fully unsupervised clustering algorithm counterpart, suggest-
ing that the incorporation of a very small number of carefully-
selected ground truth labels can result in substantially supe-
rior material discrimination in hyperspectral images.

Index Terms— Active Learning, Diffusion Geome-
try, Hyperspectral Imagery, Image Segmentation, Semi-
supervised Machine Learning.

1. INTRODUCTION

Hyperspectral images (HSIs) are high-dimensional remotely-
sensed images that encode rich information about a scene [1].
Despite storing reflectance in a hundred or more spectral
bands, HSIs typically encode intrinsically low-dimensional
structure that can be exploited by machine learning algo-
rithms for image segmentation [2, 3, 4]. While HSIs are an
important data source for material discrimination, their use
for this task is complicated by at least two key factors. First,
the number of pixels in typical HSIs can be very large, ren-
dering manual labeling and analysis infeasible [1]. Second,
the spatial resolution of HSIs is often coarse, so any one pixel
may correspond to a spatial region that contains multiple ma-
terials [2]. Thus, efficient machine learning algorithms that
rely on few expert annotations or labels are needed to capture
the latent material structure in HSIs.
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This article introduces the Active Diffusion and VCA-
Assisted Image Segmentation (ADVIS) algorithm for mate-
rial discrimination in HSIs using Vertex Component Analy-
sis (VCA) [5]. ADVIS is an active learning algorithm based
on the unsupervised Diffusion and VCA-Assisted Image Seg-
mentation (D-VIS) clustering algorithm. D-VIS is closely
related to Diffusion and Volume maximization-based Image
Clustering (D-VIC), which has been shown to perform well
at material discrimination on benchmark HSIs [2]. We show
that incorporating just a few carefully-chosen expert labels in
ADVIS substantially improves algorithm performance.

The rest of this article is structured as follows. In Sec-
tion 2, background is provided on HSI segmentation, diffu-
sion geometry, spectral unmixing, and D-VIS. In Section 3,
the ADVIS algorithm for active material discrimination is in-
troduced. Section 4 contains numerical experiments where
ADVIS is compared against D-VIS on real HSI data. In Sec-
tion 5, we conclude and discuss future work.

2. BACKGROUND

2.1. Hyperspectral Image Segmentation

An HSI segmentation algorithm partitions pixels of an HSI
X = {z;}7, C RP (interpreted as a point cloud, where n is
the number of pixels and D is the number of spectral bands)
into groups {X k}le sharing key commonalities (e.g., com-
mon materials) [6]. Unsupervised HSI segmentation (also
called clustering) algorithms do not rely on ground truth
labels to obtain the partition {X;}/ ;. In contrast, semi-
supervised and active learning HSI segmentation algorithms
rely on the ground truth labels of a few pixels to partition X.

2.2. Diffusion Geometry

To exploit the intrinsic low-dimensionality of HSIs, graph-
based HSI segmentation algorithms identify HSI pixels as
nodes in an undirected graph [7]. Edges between pixels are
encoded in an adjacency matrix W € R™*", where W;; = 1
if x; is one of the N nearest neighbors of z; and W;; = 0
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otherwise. Define P = D™!'W, where D is the diagonal ma-
trix with D;; = Z?:1 W, ;. The matrix P can be identified as
the transition matrix for a Markov diffusion process on HSI
pixels. Assuming P is reversible, aperiodic, and irreducible,
there is a unique 7 € R1*" satisfying 7P = 7.

Diffusion distances enable direct comparisons between
pixels in the context of the diffusion process encoded in P [7].
Define the diffusion distance at time ¢ > 0 between pixels

x5 € X by Di(w,25) = \/ fet [(PY)ir — (P*) 1] /7.
For datasets with well-separated and highly coherent classes,
the within-class diffusion distance is bounded away from the
between-class diffusion distance across a broad range of ¢ [8].
Thus, diffusion distances are a useful tool for HSI segmenta-
tion. Diffusion distances can be related to the eigendecompo-
sition of P via Dy (x4, %) = /3y M2 [(¥r)i — ()12
where {(\x,¥r)}7_, are the right eigenvalue-eigenvector
pairs of P [7]. For t sufficiently large, eigenvectors with
Akt =~ 0 can be discarded, yielding a low-cost, accurate
approximation of diffusion distances.

2.3. Spectral Unmixing

HSIs are often recorded at a coarse spatial resolution, so a
single pixel may correspond to a spatial region that contains
multiple materials [5, 9, 10]. Spectral unmixing algorithms
may be used to estimate the proportions of materials within
each pixel [5, 10]. Mathematically, if m is the number of
materials in the scene, linear spectral unmixing algorithms
learn two matrices, A € R™*™ (called abundances) and
U= (uj ug ... um)T € R™*P (called endmembers) such
that x; ~ Z;n:l A;ju; for each x; € X. Each u; is the intrin-
sic spectral signature of a material, and the rows of A encode
the relative abundances of materials in HSI pixels [5, 10]. The
purity of the pixel z;, defined by n(x;) = maxi<;<m Ayj,
will thus be large for pixels that predominantly contain just
one material and small elsewhere [2].

2.4. Diffusion and VCA-Assisted Image Segmentation

D-VIS (Algorithm 1) is an unsupervised material discrimina-
tion algorithm, meaning no expert labels are used to obtain an
HSI segmentation. D-VIS operates in two main stages. In the
first, D-VIS learns an estimate for pixels that are exemplary
of all underlying material classes (called class modes) and as-
signs these pixels unique labels. D-VIS propagates the labels
of class modes to non-modal pixels in its second stage.
D-VIS first performs spectral unmixing of X to calculate
1(z), using HySime to learn m [9] and VCA to learn end-
members [5, 11]. This differs slightly from D-VIC, which
relies on Alternating Volume Maximization to learn end-
members [2, 10]. Next, D-VIS calculates empirical density:
P(@) = e nnn (o) XP(— e —yll3/03), where NNy () is
the set of IV nearest neighbors of x in X and oy > 0 is a den-
sity scale that controls the interaction radius between pixels.

Algorithm 1: Diffusion and VCA-Assisted Image
Segmentation (D-VIS)

Input: X (HSI), NV (# neighbors), K (# classes)
o (density scale), ¢ (diffusion time),
Output: C (HSI segmentation)
1 Compute 7(z), using HySime [9] to estimate m and
VCA [5, 11] for spectral unmixing;
2 For each z € X, compute ((x) = ;7532(&)) 5
3 Sort X according to Dy (z) = ((x)d:(z) in
non-increasing order. Denote this sorting
{Zm, }i_,. Label C(xp,, ) = kfor1 < k < K;
4 In order of non-increasing ¢(x), for each unlabeled
z € X, assign the label C(x) = C(z*), where

z* = al;gerﬁin{Dt(x,y)IC(y) > ((x) A C(y) >0}

D-VIS incorporates pixel purity and empirical data density

i ~ i i — 2p(2)n(z)

into a single measul(re) of pixel quality ((z) (_) FOFOL
— _ plxT — n\x

where p(x) = m and n(x) = m ThuS,

¢(x) is the harmonic mean of pixel purity and density, nor-
malized so that each is on the same scale. Note ((x) will
be large for pixels that are modal (with high p-value) and
representative of a single material class (with high n-value).
The second main function used for mode detection is

tmasx Dy(z, ) r = argmin (y),
dt(x) = yex yeXx
min{ Dy (e.1)/C(5) > C(a)}  othervise
Yy

which returns the diffusion distance at time ¢ between x
and its D;-nearest neighbor of higher density and purity for
pixels that are not {-maximizers. Maximizers of D;(x) =
¢(x)d;(x) are high-density, high-purity pixels that are far in
diffusion distance at time ¢ from other high-density, high-
purity pixels, making them reasonable choices as exemplars
for underlying material class structure. The K maximiz-
ers of D;(x) are assigned unique labels and are treated as
class modes. Non-modal labels are assigned in order of non-
increasing ((z) according to the label of their D;-nearest
neighbor that is already labeled and has a higher (-value.

3. ACTIVE DIFFUSION AND VCA-ASSISTED
IMAGE SEGMENTATION

Though HSI segmentation can be performed without the aid
of ground truth labels, incorporating the labels of just a few
carefully-chosen pixels may significantly improve the predic-
tive capacity of an HSI segmentation algorithm. Active learn-
ing algorithms query the ground truth labels (denoted Ci7) of
B € N (called the budget) pixels. It is typically desired that
these pixels exemplify underlying class structure, as queried
points’ labels are propagated to unlabeled pixels. It has been
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Algorithm 2: Active Diffusion and VCA-Assisted
Image Segmentation (ADVIS)

Input: X (HSI), K (# classes), N (# neighbors),
o9 (density scale), ¢ (diffusion time), B (budget)
Output: C (HST segmentation)

1 Compute n(z), using HySime [9] to estimate m and
VCA [5, 11] for spectral unmixing;

2p(z)(z) .

p(@)+n(z)’

3 Sort X by D;(z) = ((x)d;(z) in non-increasing
order. Denote this sorting{z,, }7_,. Assign
C(zm,) = Cor(xm,) for1 <k < B;

4 Let I = {iy,d9,...,ip} C {1,2,..., K} be the set
of classes without a labeled point. If I is nonempty,
labelé(m,n3+k) =qpforl <k <L

5 In order of non-increasing ¢(x), for each unlabeled
x € X, assign the label é( (x*), where

x)=C h
at = arfelﬂl(iﬂ{Dt(%y)K(y) > (@) A Cly) >0}

2 For each z € X, compute ((z) =

shown that active learning algorithms often substantially out-
perform their unsupervised counterparts [3, 4, 12, 13, 14, 15].

In this section, we introduce the Active Diffusion and
VCA-Assisted Image Segmentation (ADVIS) algorithm for
material discrimination (see Algorithm 2). ADVIS is similar
to the D-VIS clustering algorithm, with a crucial difference in
the manner in which class modes are labeled. ADVIS queries
the labels of the B pixels that maximize D, (). If any classes
remain unlabeled after the budget expires, ADVIS reverts to
unsupervised D-VIS mode estimation. By ensuring that class
modes are correctly labeled in its first stage, the ADVIS algo-
rithm improves all labeling downstream with computational
complexity identical to that of D-VIS.

4. NUMERICAL EXPERIMENTS

This section illustrates the efficacy of ADVIS by comparing it
against its unsupervised clustering counterpart (D-VIS) on the

Ground Truth Labels

Randomly Selected Pixel Spectra, Colored by Class
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Spectral Band Number

Fig. 1: Ground truth labels and randomly-selected pixel spec-
tra for the Salinas A HSI. The class indicated in purple (8-
week romaine) has high intra-class spectral variability.
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Fig. 2: Comparison of the performance of D-VIS and AD-

VIS as a function of budget, B. The performance of ADVIS

quickly overtakes the performance of D-VIS and monotoni-

cally increases as a function of B.

Salinas A benchmark HSI (Fig. 1). The Salinas A HSI was
generated using the Airborne Visible/Infrared Imaging Spec-
trometer sensor over Salinas Valley, CA, USA and encodes
D = 204 spectral bands across 83 x 86 pixels. D-VIS and
ADVIS were evaluated on labeled pixels of the Salinas A HSI
with parameters N = 320, 09 = 1.14 x 1073, and t = 25,
For ADVIS, the budget B ranged {10, 20, ...,100}. Perfor-
mance was measured using NM T (é ,Car): the normalized
mutual information between an estimated partition C and the
ground truth labels Cgr. Before labeling, pixel purity was
averaged across 100 runs to account for VCA’s stochasticity.

In Fig. 2, the performance of ADVIS is plotted against
the budget B. Fig. 3 visualizes a sample of learned parti-
tions. These results make clear that an active learning frame-
work with even a small budget offers a major improvement in
material discrimination. Indeed, though D-VIS erroneously
splits the purple class (8-week romaine) in two, ADVIS cor-
rectly groups these pixels with just B = 20 ground truth
labels. ADVIS labelings quickly converge to Cor as B in-
creases, and when B = 100, there is little difference between
the ground truth labels and the partition estimated by ADVIS.
Importantly, ADVIS does not rely on spatial information, so
much of the remaining error may be corrected in a spatially
regularized regime [15, 16, 17]. Nevertheless, it is clear that
the inclusion of a few carefully-chosen labels in ADVIS re-
sults in image segmentations of the Salinas A HSI that are
substantially close to its ground truth labels.

Software to replicate numerical experiments is available
on GitHub at https://github.com/sampolk/D-VIC.
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D-VIS Partition ADVIS Partition, B = 20

ADVIS Partition, B = 60 ADVIS Partition, B = 100

Fig. 3: Comparison of D-VIS and ADVIS on Salinas A. The
major error present in the unsupervised labeling (splitting 8-
week romaine) is corrected using just B = 20 label queries.

5. CONCLUSIONS

We conclude that an active learning framework that enables
the incorporation of a few ground truth labels for material dis-
crimination substantially improves the performance of an HSI
segmentation algorithm. We expect that ADVIS can be ex-
tended for multiscale HSI segmentation, wherein a hierarchy
of image segmentations is learned [8, 16]. In addition, AD-
VIS is likely to benefit from a modified, spatially-regularized
graph, wherein edges between pixels are restricted to spatial
nearest neighbors [15, 16, 17].
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