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ABSTRACT

Hyperspectral images encode rich structure that can be ex-

ploited for material discrimination by machine learning al-

gorithms. This article introduces the Active Diffusion and

VCA-Assisted Image Segmentation (ADVIS) for active mate-

rial discrimination. ADVIS selects high-purity, high-density

pixels that are far in diffusion distance (a data-dependent met-

ric) from other high-purity, high-density pixels in the hyper-

spectral image. The ground truth labels of these pixels are

queried and propagated to the rest of the image. The ADVIS

active learning algorithm is shown to strongly outperform its

fully unsupervised clustering algorithm counterpart, suggest-

ing that the incorporation of a very small number of carefully-

selected ground truth labels can result in substantially supe-

rior material discrimination in hyperspectral images.

Index Terms— Active Learning, Diffusion Geome-

try, Hyperspectral Imagery, Image Segmentation, Semi-

supervised Machine Learning.

1. INTRODUCTION

Hyperspectral images (HSIs) are high-dimensional remotely-

sensed images that encode rich information about a scene [1].

Despite storing reflectance in a hundred or more spectral

bands, HSIs typically encode intrinsically low-dimensional

structure that can be exploited by machine learning algo-

rithms for image segmentation [2, 3, 4]. While HSIs are an

important data source for material discrimination, their use

for this task is complicated by at least two key factors. First,

the number of pixels in typical HSIs can be very large, ren-

dering manual labeling and analysis infeasible [1]. Second,

the spatial resolution of HSIs is often coarse, so any one pixel

may correspond to a spatial region that contains multiple ma-

terials [2]. Thus, efficient machine learning algorithms that

rely on few expert annotations or labels are needed to capture

the latent material structure in HSIs.
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This article introduces the Active Diffusion and VCA-

Assisted Image Segmentation (ADVIS) algorithm for mate-

rial discrimination in HSIs using Vertex Component Analy-

sis (VCA) [5]. ADVIS is an active learning algorithm based

on the unsupervised Diffusion and VCA-Assisted Image Seg-

mentation (D-VIS) clustering algorithm. D-VIS is closely

related to Diffusion and Volume maximization-based Image

Clustering (D-VIC), which has been shown to perform well

at material discrimination on benchmark HSIs [2]. We show

that incorporating just a few carefully-chosen expert labels in

ADVIS substantially improves algorithm performance.

The rest of this article is structured as follows. In Sec-

tion 2, background is provided on HSI segmentation, diffu-

sion geometry, spectral unmixing, and D-VIS. In Section 3,

the ADVIS algorithm for active material discrimination is in-

troduced. Section 4 contains numerical experiments where

ADVIS is compared against D-VIS on real HSI data. In Sec-

tion 5, we conclude and discuss future work.

2. BACKGROUND

2.1. Hyperspectral Image Segmentation

An HSI segmentation algorithm partitions pixels of an HSI

X = {xi}ni=1 ⇢ RD
(interpreted as a point cloud, where n is

the number of pixels and D is the number of spectral bands)

into groups {Xk}Kk=1 sharing key commonalities (e.g., com-

mon materials) [6]. Unsupervised HSI segmentation (also

called clustering) algorithms do not rely on ground truth

labels to obtain the partition {Xk}Kk=1. In contrast, semi-
supervised and active learning HSI segmentation algorithms

rely on the ground truth labels of a few pixels to partition X .

2.2. Diffusion Geometry

To exploit the intrinsic low-dimensionality of HSIs, graph-

based HSI segmentation algorithms identify HSI pixels as

nodes in an undirected graph [7]. Edges between pixels are

encoded in an adjacency matrix W 2 Rn⇥n
, where Wij = 1

if xj is one of the N nearest neighbors of xi and Wij = 0
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otherwise. Define P = D�1W, where D is the diagonal ma-

trix with Dii =
Pn

j=1 Wij . The matrix P can be identified as

the transition matrix for a Markov diffusion process on HSI

pixels. Assuming P is reversible, aperiodic, and irreducible,

there is a unique ⇡ 2 R1⇥n
satisfying ⇡P = ⇡.

Diffusion distances enable direct comparisons between

pixels in the context of the diffusion process encoded in P [7].

Define the diffusion distance at time t � 0 between pixels

xi, xj 2 X by Dt(xi, xj) =
qPn

k=1[(P
t)ik � (Pt)jk]2/⇡k.

For datasets with well-separated and highly coherent classes,

the within-class diffusion distance is bounded away from the

between-class diffusion distance across a broad range of t [8].

Thus, diffusion distances are a useful tool for HSI segmenta-

tion. Diffusion distances can be related to the eigendecompo-

sition of P via Dt(xi, xj) =
pPn

k=1 |�k|2t[( k)i � ( k)j ]2,

where {(�k, k)}nk=1 are the right eigenvalue-eigenvector

pairs of P [7]. For t sufficiently large, eigenvectors with

|�k|t ⇡ 0 can be discarded, yielding a low-cost, accurate

approximation of diffusion distances.

2.3. Spectral Unmixing

HSIs are often recorded at a coarse spatial resolution, so a

single pixel may correspond to a spatial region that contains

multiple materials [5, 9, 10]. Spectral unmixing algorithms

may be used to estimate the proportions of materials within

each pixel [5, 10]. Mathematically, if m is the number of

materials in the scene, linear spectral unmixing algorithms

learn two matrices, A 2 Rn⇥m
(called abundances) and

U = (u1 u2 . . . um)> 2 Rm⇥D
(called endmembers) such

that xi ⇡
Pm

j=1 Aijuj for each xi 2 X . Each ui is the intrin-

sic spectral signature of a material, and the rows of A encode

the relative abundances of materials in HSI pixels [5, 10]. The

purity of the pixel xi, defined by ⌘(xi) = max1jm Aij ,

will thus be large for pixels that predominantly contain just

one material and small elsewhere [2].

2.4. Diffusion and VCA-Assisted Image Segmentation

D-VIS (Algorithm 1) is an unsupervised material discrimina-

tion algorithm, meaning no expert labels are used to obtain an

HSI segmentation. D-VIS operates in two main stages. In the

first, D-VIS learns an estimate for pixels that are exemplary

of all underlying material classes (called class modes) and as-

signs these pixels unique labels. D-VIS propagates the labels

of class modes to non-modal pixels in its second stage.

D-VIS first performs spectral unmixing of X to calculate

⌘(x), using HySime to learn m [9] and VCA to learn end-

members [5, 11]. This differs slightly from D-VIC, which

relies on Alternating Volume Maximization to learn end-

members [2, 10]. Next, D-VIS calculates empirical density:

p(x) =
P

y2NNN (x) exp(�kx�yk22/�2
0), where NNN (x) is

the set of N nearest neighbors of x in X and �0 > 0 is a den-
sity scale that controls the interaction radius between pixels.

Algorithm 1: Diffusion and VCA-Assisted Image

Segmentation (D-VIS)

Input: X (HSI), N (# neighbors), K (# classes)

�0 (density scale), t (diffusion time),

Output: Ĉ (HSI segmentation)

1 Compute ⌘(x), using HySime [9] to estimate m and

VCA [5, 11] for spectral unmixing;

2 For each x 2 X , compute ⇣(x) = 2p̄(x)⌘̄(x)
p̄(x)+⌘̄(x) ;

3 Sort X according to Dt(x) = ⇣(x)dt(x) in

non-increasing order. Denote this sorting

{xmk}nk=1. Label Ĉ(xmk) = k for 1  k  K;

4 In order of non-increasing ⇣(x), for each unlabeled

x 2 X , assign the label Ĉ(x) = Ĉ(x⇤), where

x⇤ = argmin
y2X

{Dt(x, y)|⇣(y) � ⇣(x) ^ Ĉ(y) > 0};

D-VIS incorporates pixel purity and empirical data density

into a single measure of pixel quality ⇣(x) = 2p̄(x)⌘̄(x)
p̄(x)+⌘̄(x) ,

where p̄(x) = p(x)
maxy2X p(y) and ⌘̄(x) = ⌘(x)

maxy2X ⌘(y) . Thus,

⇣(x) is the harmonic mean of pixel purity and density, nor-

malized so that each is on the same scale. Note ⇣(x) will

be large for pixels that are modal (with high p-value) and

representative of a single material class (with high ⌘-value).

The second main function used for mode detection is

dt(x) =

8
<

:

max
y2X

Dt(x, y) x = argmin
y2X

⇣(y),

min
y2X

{Dt(x, y)|⇣(y) � ⇣(x)} otherwise,

which returns the diffusion distance at time t between x
and its Dt-nearest neighbor of higher density and purity for

pixels that are not ⇣-maximizers. Maximizers of Dt(x) =
⇣(x)dt(x) are high-density, high-purity pixels that are far in

diffusion distance at time t from other high-density, high-

purity pixels, making them reasonable choices as exemplars

for underlying material class structure. The K maximiz-

ers of Dt(x) are assigned unique labels and are treated as

class modes. Non-modal labels are assigned in order of non-

increasing ⇣(x) according to the label of their Dt-nearest

neighbor that is already labeled and has a higher ⇣-value.

3. ACTIVE DIFFUSION AND VCA-ASSISTED
IMAGE SEGMENTATION

Though HSI segmentation can be performed without the aid

of ground truth labels, incorporating the labels of just a few

carefully-chosen pixels may significantly improve the predic-

tive capacity of an HSI segmentation algorithm. Active learn-
ing algorithms query the ground truth labels (denoted CGT ) of

B 2 N (called the budget) pixels. It is typically desired that

these pixels exemplify underlying class structure, as queried

points’ labels are propagated to unlabeled pixels. It has been
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Algorithm 2: Active Diffusion and VCA-Assisted

Image Segmentation (ADVIS)

Input: X (HSI), K (# classes), N (# neighbors),

�0 (density scale), t (diffusion time), B (budget)

Output: Ĉ (HSI segmentation)

1 Compute ⌘(x), using HySime [9] to estimate m and

VCA [5, 11] for spectral unmixing;

2 For each x 2 X , compute ⇣(x) = 2p̄(x)⌘̄(x)
p̄(x)+⌘̄(x) ;

3 Sort X by Dt(x) = ⇣(x)dt(x) in non-increasing

order. Denote this sorting{xmk}nk=1. Assign

Ĉ(xmk) = CGT (xmk) for 1  k  B ;

4 Let I = {i1, i2, . . . , iL} ⇢ {1, 2, . . . ,K} be the set

of classes without a labeled point. If I is nonempty,

label Ĉ(xmB+k) = ik for 1  k  L;

5 In order of non-increasing ⇣(x), for each unlabeled

x 2 X , assign the label Ĉ(x) = Ĉ(x⇤), where

x⇤ = argmin
y2X

{Dt(x, y)|⇣(y) � ⇣(x) ^ Ĉ(y) > 0};

shown that active learning algorithms often substantially out-

perform their unsupervised counterparts [3, 4, 12, 13, 14, 15].

In this section, we introduce the Active Diffusion and

VCA-Assisted Image Segmentation (ADVIS) algorithm for

material discrimination (see Algorithm 2). ADVIS is similar

to the D-VIS clustering algorithm, with a crucial difference in

the manner in which class modes are labeled. ADVIS queries

the labels of the B pixels that maximize Dt(x). If any classes

remain unlabeled after the budget expires, ADVIS reverts to

unsupervised D-VIS mode estimation. By ensuring that class

modes are correctly labeled in its first stage, the ADVIS algo-

rithm improves all labeling downstream with computational

complexity identical to that of D-VIS.

4. NUMERICAL EXPERIMENTS

This section illustrates the efficacy of ADVIS by comparing it

against its unsupervised clustering counterpart (D-VIS) on the
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Fig. 1: Ground truth labels and randomly-selected pixel spec-

tra for the Salinas A HSI. The class indicated in purple (8-

week romaine) has high intra-class spectral variability.

0 20 40 60 80 100
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93
ADVIS
D-VIS

Fig. 2: Comparison of the performance of D-VIS and AD-

VIS as a function of budget, B. The performance of ADVIS

quickly overtakes the performance of D-VIS and monotoni-

cally increases as a function of B.

Salinas A benchmark HSI (Fig. 1). The Salinas A HSI was

generated using the Airborne Visible/Infrared Imaging Spec-

trometer sensor over Salinas Valley, CA, USA and encodes

D = 204 spectral bands across 83 ⇥ 86 pixels. D-VIS and

ADVIS were evaluated on labeled pixels of the Salinas A HSI

with parameters N = 320, �0 = 1.14 ⇥ 10�3
, and t = 25.

For ADVIS, the budget B ranged {10, 20, . . . , 100}. Perfor-

mance was measured using NMI(Ĉ, CGT ): the normalized

mutual information between an estimated partition Ĉ and the

ground truth labels CGT . Before labeling, pixel purity was

averaged across 100 runs to account for VCA’s stochasticity.

In Fig. 2, the performance of ADVIS is plotted against

the budget B. Fig. 3 visualizes a sample of learned parti-

tions. These results make clear that an active learning frame-

work with even a small budget offers a major improvement in

material discrimination. Indeed, though D-VIS erroneously

splits the purple class (8-week romaine) in two, ADVIS cor-

rectly groups these pixels with just B = 20 ground truth

labels. ADVIS labelings quickly converge to CGT as B in-

creases, and when B = 100, there is little difference between

the ground truth labels and the partition estimated by ADVIS.

Importantly, ADVIS does not rely on spatial information, so

much of the remaining error may be corrected in a spatially

regularized regime [15, 16, 17]. Nevertheless, it is clear that

the inclusion of a few carefully-chosen labels in ADVIS re-

sults in image segmentations of the Salinas A HSI that are

substantially close to its ground truth labels.

Software to replicate numerical experiments is available

on GitHub at https://github.com/sampolk/D-VIC.
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Fig. 3: Comparison of D-VIS and ADVIS on Salinas A. The

major error present in the unsupervised labeling (splitting 8-

week romaine) is corrected using just B = 20 label queries.

5. CONCLUSIONS

We conclude that an active learning framework that enables

the incorporation of a few ground truth labels for material dis-

crimination substantially improves the performance of an HSI

segmentation algorithm. We expect that ADVIS can be ex-

tended for multiscale HSI segmentation, wherein a hierarchy

of image segmentations is learned [8, 16]. In addition, AD-

VIS is likely to benefit from a modified, spatially-regularized

graph, wherein edges between pixels are restricted to spatial

nearest neighbors [15, 16, 17].
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