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ABSTRACT

Ash dieback (Hymenoscyphus fraxineus) is an introduced
fungal disease that is causing the widespread death of ash
trees across Europe. Remote sensing hyperspectral images
encode rich structure that has been exploited for the detec-
tion of dieback disease in ash trees using supervised machine
learning techniques. However, to understand the state of
forest health at landscape-scale, accurate unsupervised ap-
proaches are needed. This article investigates the use of the
unsupervised Diffusion and VCA-Assisted Image Segmen-
tation (D-VIS) clustering algorithm for the detection of ash
dieback disease in a forest site near Cambridge, United King-
dom. The unsupervised clustering presented in this work has
high overlap with the supervised classification of previous
work on this scene (overall accuracy = 71%). Thus, unsuper-
vised learning may be used for the remote detection of ash
dieback disease without the need for expert labeling.

Index Terms— Clustering, Diffusion, Forestry, Graphs,
Hyperspectral Images, Unsupervised Machine Learning.

1. INTRODUCTION

Ash dieback disease, caused by the Hymenoscyphus fraxineus

ascomycete, poses a major threat to the health of European
forests and ash-dependent biota [1]. To aid epidemiologists
and forest managers in the modeling and mitigation of ash
dieback disease, healthy and infected trees must be identi-
fied at landscape-scale [2]. Recent years have brought signifi-
cant advances in methods for passive remote sensing of forest
pathogens [3, 4]. For example, remote sensing hyperspec-
tral images (HSIs) are high-dimensional images that encode
rich structure that can be exploited by machine learning algo-
rithms for the detection of diseases in forests [2, 3, 4]. While
HSIs may be used for disease detection, the large volume of

⇤Corresponding Author; email: JM.Murphy@Tufts.edu
This work was partially funded by the US National Science Foundation
grants NSF-DMS 1924513, NSF-CCF 1934553, and NSF-DMS 1912737.

HSI data generated over forests makes manual labeling (gen-
erally required for supervised learning) infeasible. Thus, un-
supervised machine learning algorithms are needed to pro-
duce accurate disease mappings of forests using HSIs.

This article implements the unsupervised Diffusion and
VCA-Assisted Image Segmentation (D-VIS) on an HSI gen-
erated over a forest in Madingley Village, near Cambridge,
United Kingdom [2]. D-VIS is closely related to Diffusion
and Volume maximization-based Image Clustering (D-VIC),
which has been shown to successfully recover ground truth
labels from benchmark HSIs [5]. We compare an unsuper-
vised D-VIS clustering to a disease mapping generated by a
supervised Random Forest (RF) [2]. High levels of overlap
were observed between unsupervised and supervised parti-
tions, indicating that unsupervised learning—and D-VIS, in
particular—may be used to detect ash dieback disease in Eu-
ropean forests even when no ground truth labels are available.

The rest of this article is structured as follows. In Section
2, background material is provided on HSI segmentation, dif-
fusion geometry, spectral unmixing, and the D-VIS clustering
algorithm. In Section 3, the Madingley HSI is described, and
disease mappings obtained by D-VIS are presented. We con-
clude and suggest directions for future work in Section 4.

2. BACKGROUND

2.1. Hyperspectral Image Segmentation

Let X = {xi}ni=1 ⇢ RD be the set of HSI pixel spectra,
where n and D indicate the number of pixels and bands, re-
spectively. HSI segmentation algorithms partition an HSI into
clusters of pixels {Xk}Kk=1 [6, 7]. Ideally, any two pixels in
the same cluster will be similar, but two pixels from different
clusters will be dissimilar [6]. Supervised HSI segmentation
algorithms rely on some fraction of the image’s ground truth
labels to obtain a partition of X . Conversely, unsupervised

HSI segmentation algorithms (also called HSI clustering al-
gorithms) require no ground truth labels to partition X [6].
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2.2. Diffusion Geometry

Graph-based HSI clustering algorithms treat each pixel as a
node in an undirected graph [8]. The edges between pixels
can be encoded in an adjacency matrix W 2 Rn⇥n, where
Wij = 1 if xj is one of the N `2-nearest neighbors of xi and
Wij = 0 otherwise. Define P = D�1W, where D 2 Rn⇥n is
the diagonal degree matrix defined by Dii =

Pn
j=1 Wij . We

identify P as the transition matrix for a Markov diffusion pro-
cess on HSI pixels. Assuming P is irreducible and aperiodic,
there is a unique ⇡ 2 R1⇥n satisfying ⇡P = ⇡ [8].

Diffusion distances enable the comparison of HSI pixels
in the context of the diffusion process encoded in P [8, 9].
Define Dt(xi, xj) =

qPn
k=1((P

t)ik � (Pt)jk)2/⇡k to be
the diffusion distance between xi and xj at time t � 0 [8]. For
datasets with highly coherent and well-separated latent cluster
structure, the maximum within-cluster diffusion distance is
bounded away from the minimum between-cluster diffusion
distance across a large range of t [9, 10]. As such, diffusion
distances can be used to learn latent structure in HSIs.

2.3. Spectral Unmixing

HSIs are usually generated at a relatively coarse spatial reso-
lution (often with a spatial resolution as high as 10 m) [7]. As
such, in many scenarios (e.g., disease mapping in forests),
a single pixel may correspond to a spatial region con-
taining multiple materials. If m is the number of ma-
terials present in the scene, the goal of a linear spectral

unmixing algorithm is to find two nonnegative matrices,
A 2 Rn⇥m and U = (u1, u2, . . . , um)> 2 Rm⇥D such
that xi ⇡

Pm
j=1 Aijuj for each xi 2 X [11, 12]. Ideally,

the rows of U will encode the intrinsic spectral signatures
associated with materials in the scene, while the rows of A
encode the relative frequency that those materials appear in
a given pixel. Information about material abundance can be
summarized using pixel purity, defined for each xi 2 X by
⌘(xi) =

max1jm AijPm
j=1 Aij

. The function ⌘(x) will be nearly 1
if the spatial region corresponding to the pixel x contains
predominantly one material, and ⌘(x) will be small for mixed
pixels containing many materials [5, 13].

2.4. Diffusion and VCA-Assisted Image Segmentation

In its first stage, D-VIS (Algorithm 1) locates K pixels that
exemplify underlying structure in the HSI. To locate these
cluster modes, D-VIS first calculates ⌘(x) using HySime [14]
to learn m and VCA [12, 15] to learn A and U. This dif-
fers slightly from D-VIC, which relies on Alternating Volume
Maximization to learn U [5, 11]. Next, D-VIS calculates
density: p(x) =

P
y2NN(x,N) exp(�kx � yk22/�2

0), where
NN(x,N) is the set of N `2-nearest neighbors of x in X and
�0 > 0 is a density scale that controls interactions between

Algorithm 1: Diffusion and VCA-Assisted Image
Segmentation (D-VIS)

Input: X (HSI), K (# clusters), N (# neighbors),
�0 (density scale), t (diffusion time)
Output: Ĉ = {Xk}Kk=1 (clustering)

1 Calculate ⌘(x) by implementing HySime [14] to
estimate m and VCA [12, 15] to estimate U and A;

2 Calculate ⇣(x) using density p(x) (see Section 2.4);
3 Label cluster modes Ĉ(xmk) = k for 1  k  K,

where {xmk}Kk=1 are the K maximizers of
Dt(x) = ⇣(x)dt(x); dt(x) is as in Section 2.4;

4 In order of non-increasing ⇣(x), assign unlabeled
points x 2 X the label Ĉ(x) = Ĉ(x⇤), where
x⇤ = argmin

y2X
{Dt(x, y)|⇣(y) � ⇣(x) ^ Ĉ(y) > 0};

points. The functions p(x) and ⌘(x) are combined into a sin-
gle measure ⇣(x) = 2p̄(x)⌘̄(x)

p̄(x)+⌘̄(x) , where p̄(x) = p(x)
maxy2X p(y)

and ⌘̄(x) = ⌘(x)
maxy2X ⌘(y) . As the harmonic mean of pixel pu-

rity and density, ⇣(x) will be large if and only if x is both
modal (i.e., close to its N `2-nearest neighbors) and represen-
tative of a single material in the scene (i.e., high-purity).

Cluster modes are identified in D-VIS as the maximizers
of Dt(x) = ⇣(x)dt(x), where

dt(x) =

8
<

:

min
y2X

{Dt(x, y)|⇣(y) � ⇣(x)} x = argmin
y2X

⇣(y),

max
y2X

Dt(x, y) otherwise.

The function dt(x) outputs the diffusion distance at time t be-
tween x and its diffusion distance-nearest neighbor of higher
⇣-value. Thus, Dt-maximizers are high-density, high-purity
pixels that are far in diffusion distance at time t from other
high-density, high-purity pixels. As such, these K points
are suitable exemplars for the materials in the scene. Cluster
modes are given unique labels, and each non-modal x 2 X
is, in order of non-increasing ⇣(x), given the label of its Dt-
nearest neighbor of higher ⇣-value that is already labeled.

3. UNSUPERVISED ASH DIEBACK DETECTION

3.1. Madingley Hyperspectral Image

This article presents the implementation of D-VIS on hy-
perspectral data collected by a human-crewed aircraft over
a 512m ⇥ 356m region of temperate deciduous forest near
Madingley, on the outskirts of Cambridge, United Kingdom,
in August 2018 [2]. Spectral reflectance was recorded using
a Norsk Elektro Optikk hyperspectral camera (Hyspex VNIR
1800) at a spectral resolution of 3.26 nm across wavelengths
410-1001 nm and at a high spatial resolution of 0.32 m. Thus,
reflectance at a total of D = 186 spectral bands was recorded
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for 1816835 pixels in a scene with spatial dimensions of
1601⇥ 1113. QUick Atmospheric Correction [7] was imple-
mented to remove atmospheric effects on pixel spectra, and
spectral signatures were normalized to prevent differences in
illumination from corrupting classification results [2].

3.2. Supervised Classification of Ash Dieback Disease

To enable the detection of ash dieback disease in the Mad-
ingley scene, a Partial Least Squares Discriminant Analysis
(PLSDA) classifier was trained to locate pixels correspond-
ing to ash trees in the Madingley scene [2]. Ground truth
labels were collected for 166 tree crowns in the Madingley
region as well as 256 tree crowns from three other forest sites
near Cambridge [2]. Manually delineated and labeled tree
crowns from these four forest sites were separated into train-
ing (70%) and testing (30%) sets. The resulting species map-
ping was highly accurate, with an overall accuracy of 85.3%
on the testing dataset [2]. The ground truth labels and PLSDA
species mapping are visualized in Fig. 1.

Ash dieback disease was identified using a supervised
RF classifier [2]. The RF was trained to detect three disease
classes—infected, severely infected, and healthy—among
trees labeled ash in the PLSDA species mapping. Models
were trained and tested using the average pixel spectra of tree
crowns, where the testing set included 16 trees from each
disease class. The resulting RF classifier demonstrated strong
recovery of ash dieback disease in the Madingley scene, with
an overall accuracy of 77.1% [2].

3.3. Unsupervised Classification of Ash Dieback Disease

This section presents the results of unsupervised clustering
of the Madingley HSI using the D-VIS clustering algorithm.
Because ash trees affected by dieback often have a mosaic of
healthy and dead branches, the pixels corresponding to visi-
bly infected trees at the original 0.32 m spatial resolution may
resemble the pixels of healthy trees [2]. Therefore, to provide
a more holistic assessment of tree health (as opposed to that

Fig. 1: Ground truth labels and PLSDA species mapping for
the Madingley HSI [2]. Colors indicate different tree species.
The class marked in yellow corresponds to ash trees.

of the health of individual branches), the HSI was downsam-
pled to a spatial resolution of 1.28 m using bicubic interpola-
tion [16] so that each pixel covered multiple branches.

Pixels corresponding to species other than ash in the
PLSDA species mapping were discarded, leaving n = 72775
pixels across a 401 ⇥ 279 scene. D-VIS relied on a sparse
K-nearest neighbors graph with N = 150 edges per pixel,
a density scale �0 = 3.89 ⇥ 10�4, and t = 25. We set
K = 2 so that classes corresponded to healthy and dieback-
infected trees. After cluster analysis, majority voting was
implemented among pixels in each delineated tree crown,
yielding an unsupervised tree crown-level disease mapping.

For validation, the unsupervised D-VIS clustering was
compared against the supervised RF classification of ash
dieback disease obtained in prior work [2] after aligning la-
bels using the Hungarian algorithm. The two dieback classes
in the RF disease mapping (infected and severely infected)
were combined, yielding a single “dieback” class. A match-
ing matrix summarizing the overlap between the supervised
RF and unsupervised D-VIS labelings is provided in Table 1,
while disease mappings are visualized in Fig. 2. D-VIS and
RF disease mappings exhibited a high level of overlap, with
D-VIS achieving an overall accuracy of 71.0% and average
accuracy of 71.3%. Thus, unsupervised clustering algorithms
such as D-VIS may be used for the detection of ash dieback
disease using hyperspectral data, even when no ground truth
labels are available.

4. CONCLUSIONS

We conclude that the unsupervised D-VIS clustering algo-
rithm can successfully identify ash dieback disease from re-
mote sensing HSIs. Future work includes implementing the
pipeline developed in this article on additional forest regions
as further validation, as well as scaling up our approach to
be implemented on larger forests. Moreover, we expect the
unsupervised learning procedure outlined in this article to be
useful for the remote detection of other damaging agents in
forests and hope to consider this problem in future work. Fi-
nally, the performance of D-VIS is likely to improve upon
further modification (e.g., modifying for active learning [13,
17, 18] or adding spatial regularization [18, 19, 20]).

Healthy Dieback Producer’s Acc.
Healthy 27460 12895 68.0%
Dieback 8238 24182 74.6 %

User’s Acc. 76.9% 65.2%

Table 1: Matching matrix showing overlap between the unsu-
pervised D-VIS and supervised RF ash dieback mappings [2].
Rows summarize how pixels labeled by the RF in a fixed class
were classified by D-VIS. “Acc.” indicates Accuracy.
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Fig. 2: Supervised RF [2] and unsupervised D-VIS disease
mappings of the Madingley HSI. Significant overlap exists
between the two labelings, indicating that unsupervised meth-
ods such as D-VIS may be used for ash dieback disease map-
ping when no ground truth labels are available.
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