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A B S T R A C T   

Machine learning methods have been extensively used to study the dynamics of complex fluid flows. One such 
algorithm, known as adaptive neural fuzzy inference system (ANFIS), can generate data-driven predictions for 
flow fields, but has not been applied to natural geophysical flows in large-scale rivers. Herein, we demonstrate 
the potential of ANFIS to produce three-dimensional (3D) realizations of the instantaneous flood flow field in 
several large-scale, virtual meandering rivers. The 3D dynamics of flood flow in large-scale rivers were obtained 
using large-eddy simulation (LES). The LES results, i.e., the 3D velocity components, were employed to train the 
learnable coefficients of an ANFIS. The trained ANFIS, along with a few time-steps of LES results (precursor data) 
were then used to produce 3D realizations of flood flow fields in large-scale rivers with geometries other than the 
one the ANFIS was trained with. We also used the trained ANFIS to generate 3D realizations of river flow at a 
discharge other than that the ANFIS was trained with. The flow field results obtained from ANFIS were validated 
using separate LES runs to assess the accuracy of the 3D instantaneous realizations of the machine learning 
algorithm. An error analysis was conducted to quantify the discrepancies among the ANFIS and LES results for 
various flood flow predictions in large-scale rivers.   

1. Introduction 

Recent advances in high-performance computing have enabled re
searchers to carry out high-fidelity flow simulation of large-scale rivers 
using the computational fluid dynamics (CFD) method [1–8]. Yet due to 
the complex bathymetry, large scale, and high Reynolds number for 
flood flows in natural rivers, such high-fidelity simulations are expen
sive and require extensive computational resources. As a result, 
data-driven machine-learning methods have been extensively applied to 
study the fluid dynamics of complex flows [9–18]. For example, Hanna 
et al. [19] used an artificial neural network (ANN) and random forest 
regression (RFR) to predict the computational error associated with 
low-resolution CFD. Bakhtiari and Ghassemi [16] used feedforward 
neural networks (FNN) to predict hydrodynamic coefficients of a pro
peller as a function of blade number and the ratio of blade thickness to 
Marine cycloidal propeller diameter. Ti et al. [20] used ANN to correlate 
wake characteristics of wind turbines with the inflow parameters. 
Duraisamy et al. [21] studied the potential of machine-learning to 
improve the accuracy of closure models for turbulent and transition 
flows. Tracey et al. [22] demonstrated the potential of machine-learning 

algorithms to enhance and/or replace the traditional turbulence models 
such as Spalart-Allmaras. Ling et al. [23] employed a novel ANN ar
chitecture, i.e. the tensor basis neural network, to improve the accuracy 
and performance of Reynolds-averaged Navier Stokes (RANS)-based 
turbulence modelling. Singh et al. [24] used neural network to enhance 
the Spalart–Allmaras model in a RANS solver to predict strong adverse 
pressure-gradient flow over airfoils. Zhu et al. [25] constructed a new 
turbulent model using radial-basis-function neural network in order to 
directly map the turbulent eddy viscosity using the mean flow variables 
at high Reynolds number. Using the gene-expression programming al
gorithm, Zhao et al. [26] developed an explicit Reynolds-stress model 
directly implemented into RANS equations. 

Data-driven machine-learning algorithms have also been applied to 
develop reduced-order models (ROM) for flow field prediction. For 
example, Mohan and Gaitonde [27] employed proper orthogonal 
decomposition (POD) and Long short-term memory (LSTM) architecture 
to develop a ROM for turbulent flow control. Lui and Wolf [28] devel
oped a flow field predictive method using deep feedforward neural 
network (DNN). Data-driven methods have also been employed to pro
duce super-resolution realizations. For example, Deng et al. [29] utilized 
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a super-resolution generative adversarial network (SRGAN) and 
enhanced-SRGAN (ESRGAN) to augment the spatial resolution of 
measured turbulent flows. Using a convolutional neural network (CNN) 
and hybrid downsampled skip-connection/multi-scale (DSC/MS) model, 
Fukami et al. [15,30] generated high-resolution flow fields from coarse 
flow field data. They also examined the performance of four machine 
learning methods (i.e., multilayer perceptron, random forest, support 
vector regression, and extreme learning machine) in a number of 
regression problems for fluid flows [31]. Liu et al. [32] developed the 

static convolutional neural network (SCNN) and the novel multiple 
temporal paths convolutional neural network (MTPC) to conduct 
super-resolution reconstruction of turbulent flows from direct numerical 
simulation (DNS). Zhang et al. [33,34] developed reduced-order models 
based on the convolutional neural networks to predict the turbulence 
statistics in large-scale meandering river [33] and the wake flow of wind 
turbines [34]. 

The adaptive neural fuzzy inference system (ANFIS) [35] is a com
bination of fuzzy logic and ANN. It has been widely applied in hydraulics 

Fig. 1. Schematic of an Adaptive-Network-Based Fuzzy Inference System (ANFIS) architecture for two inputs and one output.  

Fig. 2. The experimental flume of Abhari et al. [50] used to validate the LES model. (a) shows the top view of the flume with a 90◦ bend. Measurement cross-sections 
of 30◦, 60◦, 90◦ are marked with dash lines. Flow field measurements are done along the dashed line at 30◦, 60◦, and 90◦ in (a). (b) shows the measurement 
cross-section, in which circles represent the probe locations. In (a), flow is from left to right. 
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and fluid mechanics for several regression-based problems. For example, 
Gholami et al. [36] employed ANFIS to predict axial velocity and flow 
depth in a 90◦ open-channel bend using the flow discharge as an input. 

Qasem et al. [37] optimized ANFIS to predict the minimum flow velocity 
to prevent sediment deposition in open-channel flows. Şamandar [38] 
and Moharana and Khatua [39] used ANFIS to predict Manning’s 

Fig. 3. Measured (circles) and LES computed (solid lines) streamwise velocity (u) profiles at different cross-sections and along the lines L1 to L5 of Fig. 2.  

Fig. 4. Measured (circles) and LES computed (solid lines) spanwise velocity (v) profiles at different cross-sections and along the lines L1 to L5 of Fig. 2.  
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roughness coefficient of channels for uniform open-channel flows. 
ANFIS has been widely applied to predict flow discharges of rivers under 
base and flood flow conditions [40–43]. For example, Pasaie et al. [40] 
used ANFIS to predict the flow discharge in compound open channels. 
Rezaeianzadeh et al. [41] compared the accuracy of ANN, ANFIS, and 
two regression models in forecasting the maximum daily flood flow 
based on precipitation and shows that ANFIS’s predictions are relatively 
more accurate than the other methods. He et al. [42] examined the 
ability of ANFIS, ANN, and support vector machine (SVM) to predict the 
flow rate in rivers based on antecedent data, and their analysis showed 
similar performance for the examined methods. Firat and Turan [43] 
compared ANFIS, feed forward neural networks (FFNN), and autore
gressive (AR) methods in forecasting monthly flow rate of rivers and 

found that the performance of ANFIS is better than for the other 
methods. Overall, ANFIS is reported to be an efficient machine-learning 
algorithm for predicting intricate nonlinear regression between an input 
and output signals. 

Despite the extensive assessments of ANFIS for regression-based 
predictions, no prior study has focused on ANFIS as a machine- 
learning algorithm to generate 3D realizations of large-scale river flow 
field under flood conditions. In this study, we employ the ANFIS 
machine-learning algorithm to predict the 3D velocity field of large- 
scale rivers under flood conditions in which flow fully fills the chan
nel. The large-eddy simulation (LES) method is used to produce the 
training dataset required to train the machine-learning algorithm. 
Additionally, separately conducted LES will be used to evaluate the 
performance of the ANFIS in predicting the 3D velocity field of the 
rivers. The LES results of the model were also validated using a series of 
experimental data. The capability of the developed ANFIS machine- 
learning algorithm was examined at different Reynolds numbers and 
river geometries. Importantly, the ANFIS algorithm holds great potential 
for predicting flow fields in natural rivers because it is several orders of 
magnitude less expensive than a comparable simulation using LES. 

This paper is organized as follows. In Section 2 we present the 
description of the ANFIS machine-learning algorithm. Then, in Section 3 
we present the CFD model used to simulate the flow dynamics of the 
meandering rivers and a validation study to examine the accuracy of the 
CFD model for open-channel flow predictions. In Section 4, we present 
the test cases, and computational details of the simulated cases are 
presented in Section 5. Section 6 presents the results of this study. 
Finally, in Section 7 we conclude with the findings of the paper. 

Fig. 5. Schematics (planforms) of the virtual rivers, Channels 1 to 4, from the 
top view. The three virtual bridge piers in “Channel 1 with bridge piers” are 
cylindrical in shape with a diameter of 2 m and placed at identical distances of 
25 m away from each other at the apex of Channel 1. The scale of each river is 
shown with a horizontal bar, while details of geometrical and hydrodynamic 
characteristics of the rivers are shown in Table 1. 

Table 1 
Geometrical and hydrodynamic characteristics of the virtual rivers, Channels 1 
to 4. H, B, and L are the mean-flow depth, width, and the total length, respec
tively. S is the sinuosity. Ub is the mean-flow velocity that is associated with the 
flood flow. Re and Fr are Reynolds and Froude numbers, both calculated based 
on the mean-flow depth and the bulk velocity.   

Channel 1 Channel 2 Channel 3 Channel 4 

H (m) 3.3 3.3 3.3 3.3 
B (m) 100 100 100 100 
L (m) 2110 4580 5361 8790 
S 1.76 3.83 2.71 1.46 
Ub (m s−1) 2.04 2.04 2.04 2.04 
Fr 0.36 0.36 0.36 0.36 
Re 6.74 × 107 6.74 × 107 6.74 × 107 6.74 × 107  

Table 2 
Description of test Cases 1 to 6. LES results of Channel 1 with Re number of 6.74 
× 106 constitute the training set of our ANFIS machine-learning algorithm.  

Test case Test-bed Re number 

Training set Channel 1 6.74 × 106 

Test Case 1 Channel 1 6.74 × 104 

Test Case 2 Channel 1 6.74 × 107 

Test Case 3 Channel 2 6.74 × 106 

Test Case 4 Channel 3 6.74 × 106 

Test Case 5 Channel 4 6.74 × 106 

Test Case 6 Channel 1 with piers 6.74 × 106  

Table 3 
Computational details of the background grid system of the four virtual rivers, 
Channels 1 to 4. Nx, Ny, and Nzare the number of computational grid nodes in 
streamwise, spanwise, and vertical directions, respectively. Δx, Δy, and Δz are 
the special resolution in streamwise, spanwise, and vertical directions, respec
tively. z+ is the vertical resolution in the wall unit and Δt is the temporal 
resolution.   

Channel 1 Channel 2 Channel 3 Channel 4 

Nx ×

Ny ×

Nz 

2201 ×

121 × 21 
4613 ×

121 × 21 
6251 ×

121 × 21 
10713 ×

121 × 21 

Δx (m) 0.96 0.99 0.86 0.82 
Δy (m) 0.83 0.83 0.83 0.83 
Δz (m) 0.17 0.17 0.17 0.17 
z+ 13000 13000 13000 13000 
Δt (s) 0.08 0.08 0.08 0.08  

Fig. 6. Selected training data nodes in domain. Blue dots represent the selected 
grid nodes. 

Z. Zhang et al.                                                                                                                                                                                                                                   



Computers and Fluids 246 (2022) 105611

5

Fig. 7. Comparing the predictive capabilities of the trained ANFISu, ANFISv, and ANFISw algorithms with that of the LES model for prediction of the three velocity 
components of the flood flow in Channel 1 at time t5 for the randomly selected 10,000 computational nodes. Black lines indicate the location of the perfect match 
between the LES results and the ANFIS algorithm. uLES, vLES, and wLES, are LES computed velocity components, and uANFIS, vANFIS, and wANFIS are obtained via ANFIS. 
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2. Description of ANFIS machine-learning algorithm 

The Adaptive-Network-Based Fuzzy Inference System (ANFIS) is a 
fuzzy inference system implemented in the framework of adaptive net
works [35]. It constructs a mapping from input data to output data based 
on “IF-THEN” rules. Take a two-input case, for example, the ith rule is: if 
x1 is Ai and x2 is Bi, then fi = pix1 + qix2 + ri, where Ai and Bi are the 
fuzzy set, pi, qi and ri are learnable parameters, fi is the result of the ith 
rule. The architecture of ANFIS is similar with a 5-layer neural network 
(see Fig. 1, only two inputs are shown here for simplicity), but each layer 
has a specific function. Consider an ANFIS with n inputs x1, x2, …, xn, the 
functions of each layer are introduced as follows. Layer 1 defines 
membership functions for each input. The membership function spec
ifies the degree to which the input xi belongs to the fuzzy set Ai. This 
process is called fuzzification. The membership function chosen here is 
bell-shaped function: 

O1i = μAj(xi) =
1

1 +

[(
xi−cij

aij

)2
]bij

(1)  

where μAj is a membership function of fuzzy set A and aij, bij, cij are shape 
parameters, which should be manually initialized with reasonable 
values, and will be justified during the learning process. The index i 
indicates the ith input, and j indicates the jth membership function for 
each input. The number of membership functions is set up manually and 
can vary from each input. Layer 2 implements the “AND” operation by 
multiplying the results of membership functions from different inputs. 
For each node in layer 2, we have: 

O2i = Πi = μAj(x1) × μBj(x2) × μCj(x3) × ⋯ (2)  

where μBj and μCj are membership functions of the fuzzy set B and C, 
respectively. Layer 3 has a full connection with layer 2. It normalizes the 
results of layer 2 by calculating the ratio of Πi to the sum of all Π, as 
follows: 

O3i = Πi =
Πi

∑
Π

(3) 

Layer 4 implements the “THEN” operation. Every node in this layer 
calculates the linear combination of all inputs and then times the 
normalized weight Πi from layer 3: 

O4i = Πi(pi1x1 + pi2x2 + … + pinxn + ri)

where pij and ri are the learnable parameters fine-tuned during the 
training process. Finally, layer 5 is the output layer. It simply sums all 
the outputs from layer 4, as follows: 

O5 =
∑

O4i (4) 

In this work, we employ a hybrid learning method, as follows: (1) 
during the training process, the parameters aij, bij, cij for each member
ship function in layer 1 and pij, ri in layer 4 are updated by the back- 
propagation method and then (2) the least-squares estimate method is 
used to determine the parameters in layer 4 to accelerate the 
convergence. 

Fig. 8. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time t5. (a) shows the contours of velocity magnitude (U / Ub) at the 
free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the three 
dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 
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3. The CFD model 

The CFD model solves the instantaneous, incompressible, spatially- 
filtered Navier-Stokes equations in curvilinear coordinates. The non- 
dimensional form of the equations, in compact tensor notation, read 
as follows [44]: 

J
∂Uj

∂ξj = 0 (5)  

1
J

∂Ui

∂t
=

ξi
l

J

(

−
∂

∂ξj

(
Ujul

)
+

1
ρ

∂
∂ξj

(

μ gjk

J
∂ul

∂ξk

)

−
1
ρ

∂
∂ξj

(
ξi

lp
J

)

−
1
ρ

∂τlj

∂ξj

)

(6)  

where J = |∂(ξ1, ξ2, ξ3) /∂(x1, x2, x3)| is the Jacobian of the geometric 
transformation from Cartesian coordinates {xi} to generalized curvi
linear coordinates {ξi}, ξi

l = ∂ξi/∂xl are the transformation metrics, ui is 
the ith Cartesian velocity component, Ui = (ξi

m /J)um is the contravariant 
volume flux, gjk = ξi

lξ
k
l are the components of the contravariant metric 

tensor, p is the pressure, ρ is the fluid density, μ is the dynamic viscosity 
of the fluid, and τij is the sub-grid stress tensor for LES [45]. The sub-grid 
stress τij are modeled using the Smagorinsky sub-grid scale (SGS) model 
[46]. The governing equations are discretized in space on a hybrid 
staggered/non-staggered grid arrangement using second-order accurate 
central differencing for the convective terms and second-order accurate, 
three-point central differencing for the divergence, pressure gradient, 
and viscous-like terms [47]. The time derivatives are discretized using a 
second-order backward differencing scheme [45]. The discrete flow 
equations are integrated in time using an efficient, second-order accu
rate fractional step methodology coupled with a Jacobian-free, 

Newton-Krylov solver for the momentum equations and a GMRES solver 
enhanced with the multigrid method as a preconditioner for the Poisson 
equation. 

The curvilinear immersed boundary method (CURVIB) is employed 
to handle the complex geometry of the computational domain of the 
large-scale meandering rivers (see Section 5) [48]. In the context of the 
CURVIB method, the grid nodes in the computational domain are clas
sified into three categories: background grid nodes in the fluid phase, 
external nodes in the solid domains, and immersed boundary (IB) nodes, 
which are fluid nodes near the solid/water interfaces. The governing 
equations are solved in background grid nodes, while all the external 
nodes are blanked out from the computation. The boundary conditions 
are specified at IB nodes using the wall-modeling approach within the 
CURVIB framework [49]. 

3.1. CFD model validation 

To validate the CFD model, we simulated a turbulent open-channel 
flow in a 90◦ bend, which was experimentally studied by Abhari et al. 
[50]. The experiment was carried out in a 18.6 m long, 0.6 m wide, and 
0.7 m deep rectangular flume (Fig. 2). The inner and outer bend radii of 
the flume are 1.5 m and 2.1 m, respectively. The mean-flow depth and 
flow discharge are 0.2 m and 0.03 m3s−1, respectively, which results in a 
mean-flow velocity of 0.25 m s−1 and Reynolds number of 5 × 104. A 
programmable electromagnetic liquid velocimeter (P-EMS) velocimeter 
was used to measure the streamwise and spanwise components of the 
velocity field within the bend. 

The computational domain, which has the same geometry as the 
experimental flume, was split into two zones. The first zone (zone I) 

Fig. 9. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 2 at time t5. (a) shows the contours of velocity magnitude (U / Ub) at the 
free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the three 
dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 
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includes a 2.4 m long straight channel upstream that was discretized 
with 921 × 227 × 104 computational grid nodes in the streamwise, 
spanwise and vertical directions, respectively. The second zone (zone II) 
consists of the rest of the channel, which was discretized with 3545 ×
227 × 104 computational grid nodes in the streamwise, spanwise and 
vertical directions, respectively. Both grids were stretched in vertical 
and spanwise directions so that the first node off the wall is located at a 
z+of about 20. A precursor LES was performed in the zone I (i.e., the 
straight approach channel) to obtain a fully-developed turbulent flow 
field [1]. In the precursor LES, the periodic boundary condition was 
employed in the streamwise direction. Then, the instantaneous 
fully-developed turbulent velocity field at the outlet cross plane of zone I 
was saved and used to describe the inlet boundary condition of zone II. 
At the outlet of zone II, we employ the Neumann boundary condition for 
the velocity field and turbulence quantities. The free surface in both 
parts was treated as a rigid-lid [51]. A non-dimensional time step ( =

Δt Ub
H , where Δt is the physical time-step, Ub is the mean-flow velocity, 

and H is the mean-flow depth) of 0.002 was used, and LES was continued 
until a converged solution was obtained. 

The velocity field was measured at cross-sections of 30◦, 60◦, and 
90◦. As each cross-section, five velocity profiles, which are marked as L1, 
L2, L3, L4, and L5 in Fig. 2b, were measured and used for comparison 
with the LES results. In Figs. 3 and 4, we plot the measured and LES- 
computed time-averaged velocity field along the L1, L2, L3, L4, and 
L5 lines of Fig. 2b. As seen, the LES results for the three velocity com
ponents are in good agreement with measurements. 

4. Virtual large-scale meandering river test-beds and the test 
cases 

Four different river reaches (Channels 1 to 4) are modeled to 
represent a variety of planform geometries found in meandering rivers 
(Fig. 5). Table 1 presents the geometrical and hydrodynamic charac
teristics of the virtual rivers. All four channels are constructed at scales 
typical of natural rivers, with channel width fixed at 100 meters, 
channel depth fixed at 3.3 meters, and a width-to-depth ratio of 
approximately 30 that is common in single-thread channels [52]. 
Channel bends have been distinguished between simple bends with a 
single dominant sense of curvature, and compound bends that that have 
multiple arcs of distinct curvature [53,54]. Therefore, we constructed 
channels with one or more bends to reflect these shapes. Sinuosity, 
radius of curvature, and total channel length vary across these four 
cases. 

Channels 1 to 3 were constructed as Kinoshita curves using a com
mon geometric model for the centerlines of meandering rivers [55,56] 

θ(s) = θ0sin
(

2πs
λ

)

+ θ3
0

(

Jscos
(

6πs
λ

)

− Jf sin
(

6πs
λ

))

(7)  

where θ is the local direction of the channel centerline, s is position 
along the centerline, λ is bend wavelength, θ0 is the peak angular 
amplitude, Js is a skewness coefficient and Jf is a flatness coefficient. For 
Channels 1 to 3, meander bend wavelength was fixed at 12 channel 
widths [57]. Channel 1 represents a single, symmetrical bend (θ0 = 80◦, 
Js = 0, and Jf = 0). This case is modeled with and without bridge piers. 
Channel 2 is a higher-amplitude, upstream-skewed, asymmetric bend 
(θ0 = 110◦, Js = 0.05, and Jf = 0). Channel 3 is formed by combining two 

Fig. 10. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 3 at time t5. (a) shows the contours of velocity magnitude (U / Ub) at 
the free surface of Channel 2 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the 
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 
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bend shapes in series: a symmetric, compound bend (“I” type in Brice, 
1974), followed by a straight reach with a length of 5 channel widths, 
and then an asymmetric bend equivalent to that in Channel 2. The 
compound bend is constructed using a mirrored direction sequence (θ0 
= 100◦, Js = 0, and Jf = 0.12). In contrast to these Kinoshita curves, some 
meander bends have distinct geometries imposed by confining valley 
margins that limit bend amplitude (Howard, 1996). Channel 4 repre
sents this condition using three consecutive confined meanders modeled 
after a bend on the Beaver River, Alberta, Canada [55,58]. 

To examine the potential of the proposed ANFIS algorithm for 
generating 3D realizations of the turbulent flow in large-scale rivers, 
herein, we study six test cases, which are described in Table 2. It should 
be noted that the converged LES results of the flood flow in Channel 1 
with the Re number of 6.74 × 106 are employed to train the ANFIS al
gorithm, and thus we denote these LES results as “training set.” Test 
Cases 1 and 2 include Channel 1 with the Re numbers of 6.74 × 104 and 
6.74 × 107, respectively. Various Re numbers are created by increasing 
the bulk velocity of the flood flow in Channel 1. Test Cases 3, 4, and 5 
include Channel 2, 3, and 4, respectively, with Re number of 6.74 × 106. 
Test Case 6 includes Channel 1 with three bridge piers, described in 
Fig. 5 and Re number of 6.74 × 106. 

5. Computational details 

The computational domains of the virtual rivers, Channels 1 to 4, are 
created to match the geometries shown in Fig. 5. The background 

structured grid system for each river, therefore, contains the fluid 
(water) phase of that river. While the side-walls and the flatbed of each 
channel are created using unstructured triangular grid systems and 
immersed into the water phased using the CURVIB approach. Details of 
each grid system used to model the flood flow of the virtual rivers are 
presented in Table 3. 

LESs of the flood flows in the large-scale virtual rivers are carried out 
using periodic boundary conditions in the streamwise direction, while 
the free surface of the rivers is described using the rigid-lid assumptions. 
For each river, the flow rate of the flood flow is prescribed at the inlet 
cross-section (see Table 1). The LES of each river is continued until the 
flow field statistically converges. We identified convergence by moni
toring the evolution of the total kinetic energy of the flow of each river. 
The so-obtained fully converged LES results are used to train and vali
date the ANFIS machine-learning algorithm. 

6. Results and discussions 

ANFIS has been shown to have a great potential in predicting time- 
series of variables for fluid dynamics applications [59–63]. To explore 
this potential, we consider an evenly-distributed discrete time series of 
variables f(1) f(2), …, f(t). ANFIS is very well suited to create a mapping 
from known previous variables (e.g., f(t − 3), f(t − 2), f(t − 1), and f(t))

onto an unknown future variable (e.g., f(t + 1)). Instantaneous turbu
lent flow fields obtained from LES with a constant time-step size, Δt, are 
even-distributed discrete time-series, as well. Using this characteristic, 

Fig. 11. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 4 at time t5. (a) shows the contours of velocity magnitude (U / Ub) at 
the free surface of Channel 3 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the 
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 
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in this work, we will use ANFIS to forecast 3D turbulent flow velocity 
components (Cartesian) of u, v, and w at the time-step t +1 using the LES 
results at time-steps t, t − 1, t − 2, and t − 3. Ideally, if the predicted 
variables are recycled as inputs in the future times, ANFIS should be able 
to keep forecasting the next time-steps forever. Data-driven machine-
learning algorithms, however, are essentially based on curve-fitting 
methods, and the error in each step of prediction accumulates and/or 
magnifies. In practice, such accumulation of error eventually leads to the 
restriction of the predictive ability of machine-learning algorithms. 

In this paper, we train an ANFIS using the training set (Table 2) to 
predict flood flow velocity field of the six test cases (Table 2), i.e., the 
large-scale virtual rivers. The instantaneous LES results of the flood flow 
in the test-bed of Channel 1 with the Re number of 6.74 × 106 constitute 
our training set to fine-tune the learnable coefficients of the ANFIS 
machine-learning algorithm. We also ran separately LESs to generate 
CFD-based instantaneous flood flow velocity fields for the six test cases 
to validate the ANFIS predictions and to examine the accuracy of its 
predictions. We utilized three different statistical error indices, such as 
coefficient of determination (R2), mean absolute error (MAE), root mean 
square error (RMSE), and mean absolute relative error (MARE) to 
evaluate the accuracy of the ANFIS predictions. These statistical error 
indices are defined as follows [64]: 

R2 = 1 −

∑N
i=1

(
ψi(ANFIS) − ψi(LES)

)2

∑N
i=1

(
ψi(ANFIS) − ψi(ANFIS)

)2 (8)  

MAE =

∑N
i=1

⃒
⃒ψi(ANFIS) − ψi(LES)

⃒
⃒

N
(9)  

RMSE =

(∑N
i=1

(
ψi(ANFIS) − ψ

)2

N

)0.5

(10)  

MARE =
1
N

∑N

i=1

⃒
⃒ψi(ANFIS) − ψi(LES)

⃒
⃒

ψi(LES)

(11)  

where ψ i(ANFIS) is the predicted value using the ANFIS machine-learning 
algorithm, ψ i(LES) is the value obtained using the LES model, ψ i(ANFIS) is 
the mean predicted value using the ANFIS, and N is the total number of 
samples, i.e., the total number of computational nodes to discretize the 
flow domains of the large-scale rivers. 

As expected, the computational cost of LES for the selected test cases 
(i.e., the large -scale rivers test-beds of Channels 1 to 4) is several times 
higher than that of the ANFIS predictions. For example, the LES of a 
single time-step of the flow field in Channel 1 of the test Case 1 takes 
about 180 s to complete on a single CPU. In contrast, the required time 
for the same computations with an ANFIS is approximately 24 s. This 
comparison illustrates how advantageous such machine-learning algo
rithms can be for predicting 3D realizations of the flow field in large- 
scale natural rivers. 

6.1. Training the ANFIS machine-learning algorithm 

The training set data were obtained from fully converged LES results 
of Channel 1 with Re number of 6.74 × 106 (Table 2). The computational 
grid system of Channel 1 includes roughly 5.6 million grid nodes 
(Table 3). To reduce the computational cost of the training process, we 
randomly selected 10,000 computational nodes, out of roughly 5.6 

Fig. 12. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 5 at time t5. (a) shows the contours of velocity magnitude (U / Ub) at 
the free surface of Channel 4 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the 
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 
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million, to construct the training dataset. As a result, the training dataset 
includes the streamwise, spanwise, and vertical velocity components on 
these randomly selected computational nodes. As illustrated in Fig. 6, 
the randomly selected computational nodes for the trained dataset are 
homogeneously distributed throughout the domain. As shown in the rest 
of this paper, the selected number of computational nodes was enough 
for successful training of the machine-learning algorithm. The training 
set data of the velocity field were selected from five successive time 
steps, which are denoted as t1, t2, t3, t4, and t5. During the training 
process of the ANFIS algorithm, the instantaneous velocity field at times 
t1, t2, t3, and t4 were treated as the input arrays while the instantaneous 
velocity field at t5 served as the target or the output array. 

The training process can be done using either of the three velocity 
components at times t1 to t5. We trained three different ANFIS algo
rithms, each using one of the velocity components. The trained ANFIS 
algorithm using the streamwise, spanwise, and vertical velocity com

ponents are denoted as ANFISu, ANFISv, and ANFISw, respectively. Then, 
we check the predictive capabilities of each of those trained algorithms 
by comparing their predicted velocity components 

(i.e., all three velocity components of u, v, and w) at time t5 with 
those of the LES results. We note that two of the velocity components 
were not introduced to the ANFIS algorithms during their training 
process. The comparison between the three trained algorithms and the 
LES results are shown in Fig. 7. This figure shows that the ANFISv al
gorithm displays the best performance among the three algorithms for 
predicting not only v but also the other two velocity components of u and 
w with excellent accuracy. The ranges of LES computed non-dimensional 
streamwise, spanwise, and vertical velocity components (u/Ub, v/Ub, 
w/Ub, respectively) in Channel 1 are -0.2 < u < 1.8, -1.8 < v < 1.8, and 
-0.3 < w < 0.3, respectively. Given the variation of the velocity com
ponents, the good performance of the ANFISv algorithm could be 
attributed to the wide range of spanwise velocity component, which 
spans the range of the streamwise and vertical velocity components. 
Therefore, the range of the velocity component selected to train the 
machine-learning algorithm clearly plays an important role in the per
formance of the trained algorithm. As a result, all the test cases were 
performed in the V model. Given the performance of the ANFISv algo
rithm, in the rest of this paper, we will use it to produce 3D realizations 
of the flood flow field in all other test cases and denote it as the “trained 
ANFIS”. 

6.2. Prediction of one time-step march in time using the trained ANFIS 
algorithm 

To generate 3D realizations of the flood flow field of the test Cases 1 

Fig. 13. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 6 at time t5. (a) shows the contours of velocity magnitude (U / Ub) at 
the free surface of Channel 1 (with three bridge piers) from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the 
spanwise direction along the three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 

Table 4 
Statistical error indices for one time-step march in time predictions of the ANFIS 
relative to the LES results for test Cases 1 to 6. R2 is the coefficient of determi
nation, MAE is the mean absolute error, RMSE is the root mean square error, and 
MARE is the mean absolute relative error (see Eqs. (7) to (10)).   

R2 MAE RMSE MARE 

Test Case 1 1.00 7.93 × 10−5 1.38 × 10−4 7.18 × 10−5 

Test Case 2 1.00 8.86 × 10−5 1.54 × 10−4 8.12 × 10−5 

Test Case 3 1.00 9.53 × 10−5 1.87 × 10−4 8.46 × 10−5 

Test Case 4 1.00 7.57 × 10−4 2.17 × 10−3 4.97 × 10−5 

Test Case 5 1.00 1.74 × 10−4 5.41 × 10−4 1.32 × 10−5 

Test Case 6 1.00 9.97 × 10−5 2.05 × 10−4 8.86 × 10−5  
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Fig. 14. Error distribution of the ANFIS predictions relative to the LES results for test Case 2. (a) to (c) illustrate the number of computational nodes in the error- 
velocity space for the streamwise (u), spanwise (v), and vertical (w) velocity components, respectively. (d) to (f) depict the distribution of the number of compu
tational nodes as a function of their corresponding velocity range. (g) to (i) plot the distribution of computational nodes as a function of their error range. 
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Fig. 15. Error distribution of the ANFIS predictions relative to the LES results for test Case 5. (a) to (c) illustrate the number of computational nodes in the error- 
velocity space for the streamwise (u), spanwise (v), and vertical (w) velocity components, respectively. (d) to (f) depict the distribution of the number of compu
tational nodes as a function of their corresponding velocity range. (g) to (i) plot the distribution of computational nodes as a function of their error range. 
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to 6 (Table 2), we first carried out LES of each test case to produce their 
fully converged velocity fields. Once fully converged, the LES of each 
test case is continued for five time-steps to produce their 3D velocity 
field at times t1, t2, t3, t4, and t5. The 3D flow field data in the entire flow 

domain at the first four times of t1 to t4 are then stored as precursor input 
data for the trained ANFIS to generate the 3D flow field data at the time 
t5. In the meantime, the LES flow field data at the time t5 will be later 
used to validate the ANFIS generate flow field at the time t5. 

Fig. 16. Schematics of the multiple time-step march-in-time predictions using ANFIS. ψLES
i and ψANFIS

i are the LES-computed and ANFIS predicted flow field at the 
time ti, respectively. 

Fig. 17. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time t10. (a) shows the contours of velocity magnitude (U / Ub) at 
the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the 
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 
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In Figs. 8–13, we plot the contours of instantaneous (at time t5) ve
locity magnitude at the free surface of large-scale rivers in test Cases 1 to 
6, respectively. The instantaneous results in these figures are obtained 
from the trained ANFIS and the LES model. Additionally, in each of these 
figures, we present the velocity magnitude profiles in spanwise di
rections in order to make a quantitative comparison between the ANFIS 
and LES model predictions. As seen, the ANFIS predictions for one time- 
step closely resemble the LES results – even though the test cases 
represent meandering river flows that are starkly different, in terms of 
Reynolds number and/or river geometry, from the those in Channel 1 on 
which the ANFIS was trained. Test Case 6, in particular, could be of 
interest to study the impact of flood flow on the stability of bridge piers’ 
foundations. The ANFIS seems to enable computationally affordable 
predictions of complex turbulent flood flow around the bridge piers in 
this test case (Fig. 13). In other words, given the high cost of conducting 
high-fidelity LES of the flood flow in large-scale rivers with wall- 
mounted hydraulic structures [1–6], such machine-learning algorithms 
can be a breakthrough for affordable predictions of scour around bridge 
pier foundations in natural rivers. 

Additional quantitative comparisons are made by computing the R2, 
MAE, RMSE, and MARE of the ANFIS and LES model predictions for the 
3D flow field of the six test cases (see Table 4). As seen in this table, the 
ANFIS generates flow fields that fit the target LES results with excellent 
accuracy. This indicates that, instead of fitting a solution at a specific set 
of parameters, the trained ANFIS has successfully learned the non-linear 
dynamics of the governing equations. 

Furthermore, we plot in Figs. 14 and 15 the statistics of the entire 
computational grid nodes for the two representative test cases of 2 and 5 
in term of differential error between the ANFIS predictions and LES 

results, i.e., err = ψANFIS − ψLES, where ψ i represents the three velocity 
components of u, v, and w obtained from LES model and the trained 
ANFIS algorithm. As seen in Figs. 14(a–c) and 15(a–c), the distribution 
of the number of computational nodes in error-velocity space shows that 
most of the computational nodes correspond to an error of err ≈ 10−8. In 
other words, regardless of the range of the velocity components, the 
ANFIS predictions for most of the computational nodes contain negli
gible level of errors. As seen in these figures, computational nodes with 
higher velocity (in absolute value) at the two extreme ends of the dis
tributions correspond to a broader range of errors (i.e., the expansion of 
the data in vertical). At the same time, the distributions of computa
tional nodes with high velocities at the two extreme ends of the data 
seem more scattered in error because the total number of computational 
nodes at the high-velocity range is limited. This observation appears to 
be valid for all three velocity components. 

6.3. Prediction of multi time-step march in time using the trained ANFIS 
algorithm 

In this section, we attempt to extend the prediction period of the 
trained ANFIS to march in time beyond a single time-step. To do so, we 
recycle the output(s) (predictions) of the ANFIS and use them as the 
inputs to the ANFIS so it can predict new time steps recurrently. As 
described in the previous section, for a single time-step march in time, 
we use the LES results of the initial four time-steps, say tLES

1 , tLES
2 , tLES

3 , and 
tLES
4 , as inputs to the trained ANFIS to predict the 3D flow field at the fifth 

time-step, i.e., tANFIS
5 . To extend the ANFIS predictions to the next time- 

step forward, we recycle tANFIS
5 and use it; along with the three prior time 

steps of LES results, i.e., tLES
2 , tLES

3 , and tLES
4 ; as inputs to the ANFIS to 

Fig. 18. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time t20. (a) shows the contours of velocity magnitude (U / Ub) at 
the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the 
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 
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Fig. 19. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time t30. (a) shows the contours of velocity magnitude (U / Ub) at 
the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the 
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 
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predict the flow field at the time tANFIS
6 . As this process continues, soon all 

input. In other words, the flow field predictions of ANFIS at times tANFIS
n−3 , 

tANFIS
n−2 , tANFIS

n−1 , and tANFIS
n are used as inputs to march in time and generate 

the 3D flow field at the time tANFIS
n . This procedure is shown in Fig. 16. 

This process can ideally continue recurrently for long periods to 
generate 3D flow field realizations. However, as the march in time 
continues, the ANFIS prediction error accumulates to a point where the 
ANFIS predicted flow field deviates from the LES results. 

The flow field predictions of ANFIS for test Case 1 at times t10, t20, t30, 
and t40 are shown in Fig. 17 to Fig. 20, respectively, while their error 
indices are presented in Table 5. As seen, the 3D flow field realizations of 
ANFIS at times t10, t20, t30, and t40 are in reasonable agreement with 
those of the LES models. However, it can be clearly seen that the dis
crepancies between the ANFIS algorithm predictions and the LES- 
computed flow velocity increase rapidly at times greater than t20. 
More specifically, comparing with the LES-computed velocity field, the 

ANFIS seem to overestimate the velocity field at instants of t30, and t40. 
Given the outstanding performance of ANFIS predicting the flow 

field for 20 time-steps, it seems reasonable to use the trained ANFIS and 
LES model recurrently to increase the accuracy of results and, at the 
same time, reduce the cost of flow field predictions. We note that in this 
recurrent approach, like the approach discussed above, it is not required 
to re-train the ANFIS for each cycle of predictions. More specifically, the 
trained ANFIS can be used for predicting the flow field until t20. Then, 
using the instantaneous results of ANFIS at t20, LES model can be run to 
simulate four time-steps, i.e., until time t24. Subsequently, the four time- 
steps of data from LES are used as the precursor (inputs) time-steps by 
the ANFIS to predict 20 time-steps of the flow field, i.e., until t44. Ideally, 
this recurrent procedure can continue for long enough periods of time to 
generate enough data for a statistically converged time-averaged solu
tion. We note that, since only four time-steps of LES are needed after 
each 20 time-steps, the computational cost of LES will not be significant. 
To demonstrate the promise of this recurrent approach, we conducted 
LES of ANFIS-predicted flow field (for test Case 1) at time t20 for four 
time-steps. The four time-steps of LES generated flow field then were 
used as the precursor inputs to the ANFIS to predict another 20 time- 
steps of 3D flow field until t44. Then, four more time-steps of LES and 
20 more time-steps of ANFIS were conducted to predict the 3D flow field 
until t68. In order to distinguish this approach from the direct ANFIS 
approach, herein, we denote it as the LES-ANFIS hybrid method. Fig. 21 
compares the so-predicted LES-ANFIS results at the time t68 with those of 
LES. As seen in this figure, the proposed hybrid LES-ANFIS approach has 
the potential to successfully generate 3D realization of the velocity field 
of flood flow in the large-scale river for long periods of time. 

Fig. 20. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time t40. (a) shows the contours of velocity magnitude (U / Ub) at 
the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the 
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS. 

Table 5 
Statistical error indices for multiple time-step march-in-time predictions of the 
ANFIS relative to the LES results for test cases 1. R2 is the coefficient of deter
mination, MAE is the mean absolute error, RMSE is the root mean square error, 
and MARE is the mean absolute relative error (see Eqs. (7) to (10)).  

Time R2 MAE RMSE MARE 

t10 1.00 0.01 0.02 0.01 
t20 0.93 0.06 0.09 0.06 
t30 0.79 0.10 0.13 0.11 
t40 0.63 0.13 0.14 0.16  
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7. Conclusion 

The capabilities of an ANFIS machine-learning algorithm to predict 
the 3D velocity field of four large-scale virtual rivers were examined. 
The ANFIS was first trained using the LES results of one of the large-scale 
rivers, i.e., Channel 1. Then, the accuracy of the trained ANFIS was 
evaluated by comparing 3D flow field realizations with the LES results of 
all four virtual rivers. Our study shows that the ANFIS can accurately 
predict the 3D flow field of the four rivers in a single time-step predic
tion. However, the performance of the ANFIS was reduced when it was 
used for multiple time-step predictions. To overcome the shortcomings 
of the ANFIS in multiple time-step predictions, we introduced a new 
approach that involves the recurrent application of LES and ANFIS. 
Although more expensive than the ANFIS predictions, the proposed 
recurrent method is about six times less computationally expensive than 
the LES, and its predictions for 3D realizations of flow field are highly 
accurate. 

The results of this study demonstrate the great potential of ANFIS to 
learn the underlying physics for conducting affordable and yet reliable 
predictions to generate 3D realizations of turbulent flood flow in large- 
scale rivers. Specifically, trained using a small batch of LES-computed 
flow field data, the ANFIS model could successfully predict flow fields 
in different flow conditions and river geometries. Moreover, the 
computational cost of the ANFIS predictions is significantly less than 
that of numerically solving the Navier-Stokes equations with the LES 
method. Finally, in a future study, we will apply the ANFIS machine- 
learning algorithm to predict the time-averaged flow field and turbu
lence statistics of the large-scale rivers under flood conditions. 
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