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Machine learning methods have been extensively used to study the dynamics of complex fluid flows. One such
algorithm, known as adaptive neural fuzzy inference system (ANFIS), can generate data-driven predictions for
flow fields, but has not been applied to natural geophysical flows in large-scale rivers. Herein, we demonstrate
the potential of ANFIS to produce three-dimensional (3D) realizations of the instantaneous flood flow field in
several large-scale, virtual meandering rivers. The 3D dynamics of flood flow in large-scale rivers were obtained
using large-eddy simulation (LES). The LES results, i.e., the 3D velocity components, were employed to train the
learnable coefficients of an ANFIS. The trained ANFIS, along with a few time-steps of LES results (precursor data)
were then used to produce 3D realizations of flood flow fields in large-scale rivers with geometries other than the
one the ANFIS was trained with. We also used the trained ANFIS to generate 3D realizations of river flow at a
discharge other than that the ANFIS was trained with. The flow field results obtained from ANFIS were validated
using separate LES runs to assess the accuracy of the 3D instantaneous realizations of the machine learning
algorithm. An error analysis was conducted to quantify the discrepancies among the ANFIS and LES results for

various flood flow predictions in large-scale rivers.

1. Introduction

Recent advances in high-performance computing have enabled re-
searchers to carry out high-fidelity flow simulation of large-scale rivers
using the computational fluid dynamics (CFD) method [1-8]. Yet due to
the complex bathymetry, large scale, and high Reynolds number for
flood flows in natural rivers, such high-fidelity simulations are expen-
sive and require extensive computational resources. As a result,
data-driven machine-learning methods have been extensively applied to
study the fluid dynamics of complex flows [9-18]. For example, Hanna
et al. [19] used an artificial neural network (ANN) and random forest
regression (RFR) to predict the computational error associated with
low-resolution CFD. Bakhtiari and Ghassemi [16] used feedforward
neural networks (FNN) to predict hydrodynamic coefficients of a pro-
peller as a function of blade number and the ratio of blade thickness to
Marine cycloidal propeller diameter. Ti et al. [20] used ANN to correlate
wake characteristics of wind turbines with the inflow parameters.
Duraisamy et al. [21] studied the potential of machine-learning to
improve the accuracy of closure models for turbulent and transition
flows. Tracey et al. [22] demonstrated the potential of machine-learning
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algorithms to enhance and/or replace the traditional turbulence models
such as Spalart-Allmaras. Ling et al. [23] employed a novel ANN ar-
chitecture, i.e. the tensor basis neural network, to improve the accuracy
and performance of Reynolds-averaged Navier Stokes (RANS)-based
turbulence modelling. Singh et al. [24] used neural network to enhance
the Spalart-Allmaras model in a RANS solver to predict strong adverse
pressure-gradient flow over airfoils. Zhu et al. [25] constructed a new
turbulent model using radial-basis-function neural network in order to
directly map the turbulent eddy viscosity using the mean flow variables
at high Reynolds number. Using the gene-expression programming al-
gorithm, Zhao et al. [26] developed an explicit Reynolds-stress model
directly implemented into RANS equations.

Data-driven machine-learning algorithms have also been applied to
develop reduced-order models (ROM) for flow field prediction. For
example, Mohan and Gaitonde [27] employed proper orthogonal
decomposition (POD) and Long short-term memory (LSTM) architecture
to develop a ROM for turbulent flow control. Lui and Wolf [28] devel-
oped a flow field predictive method using deep feedforward neural
network (DNN). Data-driven methods have also been employed to pro-
duce super-resolution realizations. For example, Deng et al. [29] utilized
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Fig. 1. Schematic of an Adaptive-Network-Based Fuzzy Inference System (ANFIS) architecture for two inputs and one output.

(a) 24m Flow
< > —
30°
r Y l
Inlet 0.6 m Zone I I Zone II
, |
) 5.5m
(b)
L1 L2 L3 L4 L5
1 1 1 1 1
0.17 m [0} o (] (] Q 90°
1 1 1 1 1
0.14 m Q@ Q Q Q @
1 1 1 1 1
0.10m © © © ) ®
1 1 1 1 1
0.06 m (] (] (] o ] 1.8m
1 1 1 1 1
1 1 1 1 1
Inner Wall 0.1 m 0.2m 0.3m 0.4m 0.5m  Outer Wall
v

Outlet

Fig. 2. The experimental flume of Abhari et al. [50] used to validate the LES model. (a) shows the top view of the flume with a 90° bend. Measurement cross-sections
of 30°, 60°, 90° are marked with dash lines. Flow field measurements are done along the dashed line at 30°, 60°, and 90° in (a). (b) shows the measurement
cross-section, in which circles represent the probe locations. In (a), flow is from left to right.

a super-resolution generative adversarial network (SRGAN) and
enhanced-SRGAN (ESRGAN) to augment the spatial resolution of
measured turbulent flows. Using a convolutional neural network (CNN)
and hybrid downsampled skip-connection/multi-scale (DSC/MS) model,
Fukami et al. [15,30] generated high-resolution flow fields from coarse
flow field data. They also examined the performance of four machine
learning methods (i.e., multilayer perceptron, random forest, support
vector regression, and extreme learning machine) in a number of
regression problems for fluid flows [31]. Liu et al. [32] developed the

static convolutional neural network (SCNN) and the novel multiple
temporal paths convolutional neural network (MTPC) to conduct
super-resolution reconstruction of turbulent flows from direct numerical
simulation (DNS). Zhang et al. [33,34] developed reduced-order models
based on the convolutional neural networks to predict the turbulence
statistics in large-scale meandering river [33] and the wake flow of wind
turbines [34].

The adaptive neural fuzzy inference system (ANFIS) [35] is a com-
bination of fuzzy logic and ANN. It has been widely applied in hydraulics
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Fig. 3. Measured (circles) and LES computed (solid lines) streamwise velocity (u) profiles at different cross-sections and along the lines L1 to L5 of Fig. 2.
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Fig. 4. Measured (circles) and LES computed (solid lines) spanwise velocity (v) profiles at different cross-sections and along the lines L1 to L5 of Fig. 2.

and fluid mechanics for several regression-based problems. For example,
Gholami et al. [36] employed ANFIS to predict axial velocity and flow
depth in a 90° open-channel bend using the flow discharge as an input.

Qasem et al. [37] optimized ANFIS to predict the minimum flow velocity
to prevent sediment deposition in open-channel flows. Samandar [38]
and Moharana and Khatua [39] used ANFIS to predict Manning’s
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Fig. 5. Schematics (planforms) of the virtual rivers, Channels 1 to 4, from the
top view. The three virtual bridge piers in “Channel 1 with bridge piers” are
cylindrical in shape with a diameter of 2 m and placed at identical distances of
25 m away from each other at the apex of Channel 1. The scale of each river is
shown with a horizontal bar, while details of geometrical and hydrodynamic
characteristics of the rivers are shown in Table 1.

Table 1

Geometrical and hydrodynamic characteristics of the virtual rivers, Channels 1
to 4. H, B, and L are the mean-flow depth, width, and the total length, respec-
tively. S is the sinuosity. Uy is the mean-flow velocity that is associated with the
flood flow. Re and Fr are Reynolds and Froude numbers, both calculated based
on the mean-flow depth and the bulk velocity.

Channel 1 Channel 2 Channel 3 Channel 4
H (m) 3.3 3.3 3.3 3.3
B (m) 100 100 100 100
L (m) 2110 4580 5361 8790
s 1.76 3.83 2.71 1.46
U, (ms™ 1) 2.04 2.04 2.04 2.04
Fr 0.36 0.36 0.36 0.36
Re 6.74 x 107 6.74 x 107 6.74 x 107 6.74 x 107

Table 2
Description of test Cases 1 to 6. LES results of Channel 1 with Re number of 6.74
x 10° constitute the training set of our ANFIS machine-learning algorithm.

Test case Test-bed Re number
Training set Channel 1 6.74 x 10°
Test Case 1 Channel 1 6.74 x 10*
Test Case 2 Channel 1 6.74 x 107
Test Case 3 Channel 2 6.74 x 10°
Test Case 4 Channel 3 6.74 x 10°
Test Case 5 Channel 4 6.74 x 10°
Test Case 6 Channel 1 with piers 6.74 x 10°

roughness coefficient of channels for uniform open-channel flows.
ANFIS has been widely applied to predict flow discharges of rivers under
base and flood flow conditions [40-43]. For example, Pasaie et al. [40]
used ANFIS to predict the flow discharge in compound open channels.
Rezaeianzadeh et al. [41] compared the accuracy of ANN, ANFIS, and
two regression models in forecasting the maximum daily flood flow
based on precipitation and shows that ANFIS’s predictions are relatively
more accurate than the other methods. He et al. [42] examined the
ability of ANFIS, ANN, and support vector machine (SVM) to predict the
flow rate in rivers based on antecedent data, and their analysis showed
similar performance for the examined methods. Firat and Turan [43]
compared ANFIS, feed forward neural networks (FFNN), and autore-
gressive (AR) methods in forecasting monthly flow rate of rivers and
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Table 3

Computational details of the background grid system of the four virtual rivers,
Channels 1 to 4. Ny, Ny, and N.are the number of computational grid nodes in
streamwise, spanwise, and vertical directions, respectively. Ax, Ay, and Az are
the special resolution in streamwise, spanwise, and vertical directions, respec-
tively. z* is the vertical resolution in the wall unit and At is the temporal
resolution.

Channel 1 Channel 2 Channel 3 Channel 4

N, x 2201 x 4613 x 6251 x 10713 x
Ny x 121 x 21 121 x 21 121 x 21 121 x 21
N,

Ax (m) 0.96 0.99 0.86 0.82

Ay (m) 0.83 0.83 0.83 0.83

Az (m) 0.17 0.17 0.17 0.17

z+ 13000 13000 13000 13000

At (s) 0.08 0.08 0.08 0.08

found that the performance of ANFIS is better than for the other
methods. Overall, ANFIS is reported to be an efficient machine-learning
algorithm for predicting intricate nonlinear regression between an input
and output signals.

Despite the extensive assessments of ANFIS for regression-based
predictions, no prior study has focused on ANFIS as a machine-
learning algorithm to generate 3D realizations of large-scale river flow
field under flood conditions. In this study, we employ the ANFIS
machine-learning algorithm to predict the 3D velocity field of large-
scale rivers under flood conditions in which flow fully fills the chan-
nel. The large-eddy simulation (LES) method is used to produce the
training dataset required to train the machine-learning algorithm.
Additionally, separately conducted LES will be used to evaluate the
performance of the ANFIS in predicting the 3D velocity field of the
rivers. The LES results of the model were also validated using a series of
experimental data. The capability of the developed ANFIS machine-
learning algorithm was examined at different Reynolds numbers and
river geometries. Importantly, the ANFIS algorithm holds great potential
for predicting flow fields in natural rivers because it is several orders of
magnitude less expensive than a comparable simulation using LES.

This paper is organized as follows. In Section 2 we present the
description of the ANFIS machine-learning algorithm. Then, in Section 3
we present the CFD model used to simulate the flow dynamics of the
meandering rivers and a validation study to examine the accuracy of the
CFD model for open-channel flow predictions. In Section 4, we present
the test cases, and computational details of the simulated cases are
presented in Section 5. Section 6 presents the results of this study.
Finally, in Section 7 we conclude with the findings of the paper.

Fig. 6. Selected training data nodes in domain. Blue dots represent the selected
grid nodes.
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between the LES results and the ANFIS algorithm. u;gs, vigs, and wygs, are LES computed velocity components, and uangis, Vanris, and Wangis are obtained via ANFIS.
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Fig. 8. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time ts. (a) shows the contours of velocity magnitude (U / Uy,) at the
free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the three
dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

2. Description of ANFIS machine-learning algorithm

The Adaptive-Network-Based Fuzzy Inference System (ANFIS) is a
fuzzy inference system implemented in the framework of adaptive net-
works [35]. It constructs a mapping from input data to output data based
on “IF-THEN” rules. Take a two-input case, for example, the ith rule is: if
x; is A; and x; is B;, then f; = pix; + ¢ixz + r;, where A; and B; are the
fuzzy set, p;, q; and r; are learnable parameters, f; is the result of the ith
rule. The architecture of ANFIS is similar with a 5-layer neural network
(see Fig. 1, only two inputs are shown here for simplicity), but each layer
has a specific function. Consider an ANFIS with n inputs x;, X, ..., X5, the
functions of each layer are introduced as follows. Layer 1 defines
membership functions for each input. The membership function spec-
ifies the degree to which the input x; belongs to the fuzzy set A;. This
process is called fuzzification. The membership function chosen here is
bell-shaped function:

1
\2 by
1+ [(—”) }
ij

where y; is a membership function of fuzzy set A and ay, by, c;; are shape
parameters, which should be manually initialized with reasonable
values, and will be justified during the learning process. The index i
indicates the ith input, and j indicates the jth membership function for
each input. The number of membership functions is set up manually and
can vary from each input. Layer 2 implements the “AND” operation by
multiplying the results of membership functions from different inputs.
For each node in layer 2, we have:

Oy = ll/\j(xi) = (1)

0y =1J; :ﬂAj(xl) X ﬂBj(xZ) X P‘Cj(xz) X 2)

where pp; and p¢; are membership functions of the fuzzy set B and C,
respectively. Layer 3 has a full connection with layer 2. It normalizes the
results of layer 2 by calculating the ratio of II; to the sum of all II, as
follows:

I
05 =1l = =
2

Layer 4 implements the “THEN” operation. Every node in this layer
calculates the linear combination of all inputs and then times the
normalized weight II; from layer 3:

3

O4i = i(pux) +piXa + ... + PinXn + 1)

where p; and r; are the learnable parameters fine-tuned during the
training process. Finally, layer 5 is the output layer. It simply sums all
the outputs from layer 4, as follows:

05 == Z 04,‘ (4)

In this work, we employ a hybrid learning method, as follows: (1)
during the training process, the parameters aj, by, c; for each member-
ship function in layer 1 and py, r; in layer 4 are updated by the back-
propagation method and then (2) the least-squares estimate method is
used to determine the parameters in layer 4 to accelerate the
convergence.
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Fig. 9. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 2 at time ts. (a) shows the contours of velocity magnitude (U / Uy,) at the
free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the three
dashed lines of L, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

3. The CFD model

The CFD model solves the instantaneous, incompressible, spatially-
filtered Navier-Stokes equations in curvilinear coordinates. The non-
dimensional form of the equations, in compact tensor notation, read
as follows [44]:

oui
J—=
og

1"U';€?'(,i‘ li( ﬁ%),li(@),lﬁ)
T 7 agj(Ujul)eragf”Jaz;k 208\ ) ) ©

where J= |d(£}, &2, £%) /d(x1,x2,X3)| is the Jacobian of the geometric
transformation from Cartesian coordinates {x;} to generalized curvi-

0 %)

linear coordinates {£'}, & = d¢'/dx; are the transformation metrics, u; is
the ith Cartesian velocity component, Ut = (& /J)uy, is the contravariant
volume flux, gk = fff%‘ are the components of the contravariant metric
tensor, p is the pressure, p is the fluid density, y is the dynamic viscosity
of the fluid, and z; is the sub-grid stress tensor for LES [45]. The sub-grid
stress 7; are modeled using the Smagorinsky sub-grid scale (SGS) model
[46]. The governing equations are discretized in space on a hybrid
staggered/non-staggered grid arrangement using second-order accurate
central differencing for the convective terms and second-order accurate,
three-point central differencing for the divergence, pressure gradient,
and viscous-like terms [47]. The time derivatives are discretized using a
second-order backward differencing scheme [45]. The discrete flow
equations are integrated in time using an efficient, second-order accu-
rate fractional step methodology coupled with a Jacobian-free,

Newton-Krylov solver for the momentum equations and a GMRES solver
enhanced with the multigrid method as a preconditioner for the Poisson
equation.

The curvilinear immersed boundary method (CURVIB) is employed
to handle the complex geometry of the computational domain of the
large-scale meandering rivers (see Section 5) [48]. In the context of the
CURVIB method, the grid nodes in the computational domain are clas-
sified into three categories: background grid nodes in the fluid phase,
external nodes in the solid domains, and immersed boundary (IB) nodes,
which are fluid nodes near the solid/water interfaces. The governing
equations are solved in background grid nodes, while all the external
nodes are blanked out from the computation. The boundary conditions
are specified at IB nodes using the wall-modeling approach within the
CURVIB framework [49].

3.1. CFD model validation

To validate the CFD model, we simulated a turbulent open-channel
flow in a 90° bend, which was experimentally studied by Abhari et al.
[50]. The experiment was carried out in a 18.6 m long, 0.6 m wide, and
0.7 m deep rectangular flume (Fig. 2). The inner and outer bend radii of
the flume are 1.5 m and 2.1 m, respectively. The mean-flow depth and
flow discharge are 0.2 m and 0.03 m>s~?, respectively, which results in a
mean-flow velocity of 0.25 m s~ and Reynolds number of 5 x 10*. A
programmable electromagnetic liquid velocimeter (P-EMS) velocimeter
was used to measure the streamwise and spanwise components of the
velocity field within the bend.

The computational domain, which has the same geometry as the
experimental flume, was split into two zones. The first zone (zone I)
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Fig. 10. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 3 at time ts. (a) shows the contours of velocity magnitude (U / Up) at
the free surface of Channel 2 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

includes a 2.4 m long straight channel upstream that was discretized
with 921 x 227 x 104 computational grid nodes in the streamwise,
spanwise and vertical directions, respectively. The second zone (zone II)
consists of the rest of the channel, which was discretized with 3545 x
227 x 104 computational grid nodes in the streamwise, spanwise and
vertical directions, respectively. Both grids were stretched in vertical
and spanwise directions so that the first node off the wall is located at a
zTof about 20. A precursor LES was performed in the zone I (i.e., the
straight approach channel) to obtain a fully-developed turbulent flow
field [1]. In the precursor LES, the periodic boundary condition was
employed in the streamwise direction. Then, the instantaneous
fully-developed turbulent velocity field at the outlet cross plane of zone I
was saved and used to describe the inlet boundary condition of zone II
At the outlet of zone II, we employ the Neumann boundary condition for
the velocity field and turbulence quantities. The free surface in both
parts was treated as a rigid-lid [51]. A non-dimensional time step (=
At%, where At is the physical time-step, Uy is the mean-flow velocity,
and H is the mean-flow depth) of 0.002 was used, and LES was continued
until a converged solution was obtained.

The velocity field was measured at cross-sections of 30°, 60°, and
90°. As each cross-section, five velocity profiles, which are marked as L1,
L2, L3, L4, and L5 in Fig. 2b, were measured and used for comparison
with the LES results. In Figs. 3 and 4, we plot the measured and LES-
computed time-averaged velocity field along the L1, L2, L3, L4, and
L5 lines of Fig. 2b. As seen, the LES results for the three velocity com-
ponents are in good agreement with measurements.

4. Virtual large-scale meandering river test-beds and the test
cases

Four different river reaches (Channels 1 to 4) are modeled to
represent a variety of planform geometries found in meandering rivers
(Fig. 5). Table 1 presents the geometrical and hydrodynamic charac-
teristics of the virtual rivers. All four channels are constructed at scales
typical of natural rivers, with channel width fixed at 100 meters,
channel depth fixed at 3.3 meters, and a width-to-depth ratio of
approximately 30 that is common in single-thread channels [52].
Channel bends have been distinguished between simple bends with a
single dominant sense of curvature, and compound bends that that have
multiple arcs of distinct curvature [53,54]. Therefore, we constructed
channels with one or more bends to reflect these shapes. Sinuosity,
radius of curvature, and total channel length vary across these four
cases.

Channels 1 to 3 were constructed as Kinoshita curves using a com-
mon geometric model for the centerlines of meandering rivers [55,56]

O(s) = Opsin (?) + 6‘(3) ([Ycos (?) — Jysin (?) ) (2]

where 0 is the local direction of the channel centerline, s is position
along the centerline, 1 is bend wavelength, 6, is the peak angular
amplitude, J; is a skewness coefficient and Jyis a flatness coefficient. For
Channels 1 to 3, meander bend wavelength was fixed at 12 channel
widths [57]. Channel 1 represents a single, symmetrical bend (6p = 80°,
Js = 0, and Jy = 0). This case is modeled with and without bridge piers.
Channel 2 is a higher-amplitude, upstream-skewed, asymmetric bend
(6o =110°, J;=0.05, and Jy = 0). Channel 3 is formed by combining two
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Fig. 11. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 4 at time ts. (a) shows the contours of velocity magnitude (U / Up) at
the free surface of Channel 3 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

bend shapes in series: a symmetric, compound bend (“I” type in Brice,
1974), followed by a straight reach with a length of 5 channel widths,
and then an asymmetric bend equivalent to that in Channel 2. The
compound bend is constructed using a mirrored direction sequence (6o
=100°, J;= 0, and Jy= 0.12). In contrast to these Kinoshita curves, some
meander bends have distinct geometries imposed by confining valley
margins that limit bend amplitude (Howard, 1996). Channel 4 repre-
sents this condition using three consecutive confined meanders modeled
after a bend on the Beaver River, Alberta, Canada [55,58].

To examine the potential of the proposed ANFIS algorithm for
generating 3D realizations of the turbulent flow in large-scale rivers,
herein, we study six test cases, which are described in Table 2. It should
be noted that the converged LES results of the flood flow in Channel 1
with the Re number of 6.74 x 10° are employed to train the ANFIS al-
gorithm, and thus we denote these LES results as “training set.” Test
Cases 1 and 2 include Channel 1 with the Re numbers of 6.74 x 10* and
6.74 x 107, respectively. Various Re numbers are created by increasing
the bulk velocity of the flood flow in Channel 1. Test Cases 3, 4, and 5
include Channel 2, 3, and 4, respectively, with Re number of 6.74 x 106.
Test Case 6 includes Channel 1 with three bridge piers, described in
Fig. 5 and Re number of 6.74 x 10°.

5. Computational details

The computational domains of the virtual rivers, Channels 1 to 4, are
created to match the geometries shown in Fig. 5. The background

structured grid system for each river, therefore, contains the fluid
(water) phase of that river. While the side-walls and the flatbed of each
channel are created using unstructured triangular grid systems and
immersed into the water phased using the CURVIB approach. Details of
each grid system used to model the flood flow of the virtual rivers are
presented in Table 3.

LESs of the flood flows in the large-scale virtual rivers are carried out
using periodic boundary conditions in the streamwise direction, while
the free surface of the rivers is described using the rigid-lid assumptions.
For each river, the flow rate of the flood flow is prescribed at the inlet
cross-section (see Table 1). The LES of each river is continued until the
flow field statistically converges. We identified convergence by moni-
toring the evolution of the total kinetic energy of the flow of each river.
The so-obtained fully converged LES results are used to train and vali-
date the ANFIS machine-learning algorithm.

6. Results and discussions

ANFIS has been shown to have a great potential in predicting time-
series of variables for fluid dynamics applications [59-63]. To explore
this potential, we consider an evenly-distributed discrete time series of
variables f(1) f(2), ..., f(t). ANFIS is very well suited to create a mapping
from known previous variables (e.g., f(t — 3), f(t — 2),f(t — 1), and f(t))
onto an unknown future variable (e.g., f(t + 1)). Instantaneous turbu-
lent flow fields obtained from LES with a constant time-step size, At, are
even-distributed discrete time-series, as well. Using this characteristic,
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Fig. 12. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 5 at time ts. (a) shows the contours of velocity magnitude (U / Up) at
the free surface of Channel 4 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

in this work, we will use ANFIS to forecast 3D turbulent flow velocity
components (Cartesian) of u, v, and w at the time-step t +1 using the LES
results at time-steps t, t— 1, t — 2, and t— 3. Ideally, if the predicted
variables are recycled as inputs in the future times, ANFIS should be able
to keep forecasting the next time-steps forever. Data-driven machine--
learning algorithms, however, are essentially based on curve-fitting
methods, and the error in each step of prediction accumulates and/or
magnifies. In practice, such accumulation of error eventually leads to the
restriction of the predictive ability of machine-learning algorithms.

In this paper, we train an ANFIS using the training set (Table 2) to
predict flood flow velocity field of the six test cases (Table 2), i.e., the
large-scale virtual rivers. The instantaneous LES results of the flood flow
in the test-bed of Channel 1 with the Re number of 6.74 x 10° constitute
our training set to fine-tune the learnable coefficients of the ANFIS
machine-learning algorithm. We also ran separately LESs to generate
CFD-based instantaneous flood flow velocity fields for the six test cases
to validate the ANFIS predictions and to examine the accuracy of its
predictions. We utilized three different statistical error indices, such as
coefficient of determination (Rz), mean absolute error (MAE), root mean
square error (RMSE), and mean absolute relative error (MARE) to
evaluate the accuracy of the ANFIS predictions. These statistical error
indices are defined as follows [64]:

N 2
Dici ('l’i(ANFls) - 'l’i(LEs))
— 2
Z;\/:] (Wi(ANF/S) - Wi(ANF/s))

R=1- (8)

N
doin !Wi(ANFIS) - Wi(LES)!
N

MAE = (C)]

10

N 2\ 0.5

RMSE — (Zil(Wi(A]I\\;FIS) 'I/) > 10)

MARE — l i |W[(ANFIS) - W[(LES)| an
NS

Vi(LES)

where y;anps) s the predicted value using the ANFIS machine-learning
algorithm, vy 5 is the value obtained using the LES model, ¥ anps) is
the mean predicted value using the ANFIS, and N is the total number of
samples, i.e., the total number of computational nodes to discretize the
flow domains of the large-scale rivers.

As expected, the computational cost of LES for the selected test cases
(i.e., the large -scale rivers test-beds of Channels 1 to 4) is several times
higher than that of the ANFIS predictions. For example, the LES of a
single time-step of the flow field in Channel 1 of the test Case 1 takes
about 180 s to complete on a single CPU. In contrast, the required time
for the same computations with an ANFIS is approximately 24 s. This
comparison illustrates how advantageous such machine-learning algo-
rithms can be for predicting 3D realizations of the flow field in large-
scale natural rivers.

6.1. Training the ANFIS machine-learning algorithm

The training set data were obtained from fully converged LES results
of Channel 1 with Re number of 6.74 x 10° (Table 2). The computational
grid system of Channel 1 includes roughly 5.6 million grid nodes
(Table 3). To reduce the computational cost of the training process, we
randomly selected 10,000 computational nodes, out of roughly 5.6
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Fig. 13. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 6 at time ts. (a) shows the contours of velocity magnitude (U / Up) at
the free surface of Channel 1 (with three bridge piers) from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the
spanwise direction along the three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

Table 4

Statistical error indices for one time-step march in time predictions of the ANFIS
relative to the LES results for test Cases 1 to 6. R? is the coefficient of determi-
nation, MAE is the mean absolute error, RMSE is the root mean square error, and
MARE is the mean absolute relative error (see Eqs. (7) to (10)).

R? MAE RMSE MARE
Test Case 1 1.00 7.93 x 107° 1.38 x 107 7.18 x 107°
Test Case 2 1.00 8.86 x 107° 1.54 x 10°* 8.12 x10°°
Test Case 3 1.00 9.53 x 107° 1.87 x 1074 8.46 x 107°
Test Case 4 1.00 7.57 x 107* 217 x 1073 4,97 x 1075
Test Case 5 1.00 1.74 x 1074 5.41 x 1074 1.32x107°
Test Case 6 1.00 9.97 x 107° 2.05 x 1074 8.86 x 107°

million, to construct the training dataset. As a result, the training dataset
includes the streamwise, spanwise, and vertical velocity components on
these randomly selected computational nodes. As illustrated in Fig. 6,
the randomly selected computational nodes for the trained dataset are
homogeneously distributed throughout the domain. As shown in the rest
of this paper, the selected number of computational nodes was enough
for successful training of the machine-learning algorithm. The training
set data of the velocity field were selected from five successive time
steps, which are denoted as tj, ty, t3, t4, and ts. During the training
process of the ANFIS algorithm, the instantaneous velocity field at times
ty, ty, t3, and t4 were treated as the input arrays while the instantaneous
velocity field at t5 served as the target or the output array.

The training process can be done using either of the three velocity
components at times t; to ts. We trained three different ANFIS algo-
rithms, each using one of the velocity components. The trained ANFIS
algorithm using the streamwise, spanwise, and vertical velocity com-
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ponents are denoted as ANFIS,,, ANFIS,, and ANFIS,,, respectively. Then,
we check the predictive capabilities of each of those trained algorithms
by comparing their predicted velocity components

(i.e., all three velocity components of u, v, and w) at time ts with
those of the LES results. We note that two of the velocity components
were not introduced to the ANFIS algorithms during their training
process. The comparison between the three trained algorithms and the
LES results are shown in Fig. 7. This figure shows that the ANFIS, al-
gorithm displays the best performance among the three algorithms for
predicting not only v but also the other two velocity components of u and
w with excellent accuracy. The ranges of LES computed non-dimensional
streamwise, spanwise, and vertical velocity components (u/Up, v/Up,
w/ Uy, respectively) in Channel 1 are -0.2 <u < 1.8,-1.8 <v < 1.8, and
-0.3 < w < 0.3, respectively. Given the variation of the velocity com-
ponents, the good performance of the ANFIS, algorithm could be
attributed to the wide range of spanwise velocity component, which
spans the range of the streamwise and vertical velocity components.
Therefore, the range of the velocity component selected to train the
machine-learning algorithm clearly plays an important role in the per-
formance of the trained algorithm. As a result, all the test cases were
performed in the V model. Given the performance of the ANFIS, algo-
rithm, in the rest of this paper, we will use it to produce 3D realizations
of the flood flow field in all other test cases and denote it as the “trained
ANFIS”.

6.2. Prediction of one time-step march in time using the trained ANFIS
algorithm

To generate 3D realizations of the flood flow field of the test Cases 1
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Fig. 14. Error distribution of the ANFIS predictions relative to the LES results for test Case 2. (a) to (c) illustrate the number of computational nodes in the error-
velocity space for the streamwise (u), spanwise (v), and vertical (w) velocity components, respectively. (d) to (f) depict the distribution of the number of compu-
tational nodes as a function of their corresponding velocity range. (g) to (i) plot the distribution of computational nodes as a function of their error range.
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Fig. 15. Error distribution of the ANFIS predictions relative to the LES results for test Case 5. (a) to (c) illustrate the number of computational nodes in the error-
velocity space for the streamwise (u), spanwise (v), and vertical (w) velocity components, respectively. (d) to (f) depict the distribution of the number of compu-
tational nodes as a function of their corresponding velocity range. (g) to (i) plot the distribution of computational nodes as a function of their error range.
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Fig. 16. Schematics of the multiple time-step march-in-time predictions using ANFIS. !5 and yNFIS are the LES-computed and ANFIS predicted flow field at the
time t;, respectively.
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Fig. 17. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time t;o. (a) shows the contours of velocity magnitude (U / Uy,) at
the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

to 6 (Table 2), we first carried out LES of each test case to produce their domain at the first four times of t; to t4 are then stored as precursor input
fully converged velocity fields. Once fully converged, the LES of each data for the trained ANFIS to generate the 3D flow field data at the time
test case is continued for five time-steps to produce their 3D velocity ts. In the meantime, the LES flow field data at the time t5 will be later

field at times t, to, t3, t4, and ts. The 3D flow field data in the entire flow used to validate the ANFIS generate flow field at the time ts.
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Fig. 18. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time ty. (a) shows the contours of velocity magnitude (U / Uyp) at
the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

In Figs. 8-13, we plot the contours of instantaneous (at time ts) ve-
locity magnitude at the free surface of large-scale rivers in test Cases 1 to
6, respectively. The instantaneous results in these figures are obtained
from the trained ANFIS and the LES model. Additionally, in each of these
figures, we present the velocity magnitude profiles in spanwise di-
rections in order to make a quantitative comparison between the ANFIS
and LES model predictions. As seen, the ANFIS predictions for one time-
step closely resemble the LES results — even though the test cases
represent meandering river flows that are starkly different, in terms of
Reynolds number and/or river geometry, from the those in Channel 1 on
which the ANFIS was trained. Test Case 6, in particular, could be of
interest to study the impact of flood flow on the stability of bridge piers’
foundations. The ANFIS seems to enable computationally affordable
predictions of complex turbulent flood flow around the bridge piers in
this test case (Fig. 13). In other words, given the high cost of conducting
high-fidelity LES of the flood flow in large-scale rivers with wall-
mounted hydraulic structures [1-6], such machine-learning algorithms
can be a breakthrough for affordable predictions of scour around bridge
pier foundations in natural rivers.

Additional quantitative comparisons are made by computing the R?,
MAE, RMSE, and MARE of the ANFIS and LES model predictions for the
3D flow field of the six test cases (see Table 4). As seen in this table, the
ANFIS generates flow fields that fit the target LES results with excellent
accuracy. This indicates that, instead of fitting a solution at a specific set
of parameters, the trained ANFIS has successfully learned the non-linear
dynamics of the governing equations.

Furthermore, we plot in Figs. 14 and 15 the statistics of the entire
computational grid nodes for the two representative test cases of 2 and 5
in term of differential error between the ANFIS predictions and LES
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results, i.e., err = W nms — Wigs, Where y; represents the three velocity
components of u, v, and w obtained from LES model and the trained
ANFIS algorithm. As seen in Figs. 14(a—c) and 15(a—c), the distribution
of the number of computational nodes in error-velocity space shows that
most of the computational nodes correspond to an error of err ~ 1078, In
other words, regardless of the range of the velocity components, the
ANFIS predictions for most of the computational nodes contain negli-
gible level of errors. As seen in these figures, computational nodes with
higher velocity (in absolute value) at the two extreme ends of the dis-
tributions correspond to a broader range of errors (i.e., the expansion of
the data in vertical). At the same time, the distributions of computa-
tional nodes with high velocities at the two extreme ends of the data
seem more scattered in error because the total number of computational
nodes at the high-velocity range is limited. This observation appears to
be valid for all three velocity components.

6.3. Prediction of multi time-step march in time using the trained ANFIS
algorithm

In this section, we attempt to extend the prediction period of the
trained ANFIS to march in time beyond a single time-step. To do so, we
recycle the output(s) (predictions) of the ANFIS and use them as the
inputs to the ANFIS so it can predict new time steps recurrently. As
described in the previous section, for a single time-step march in time,
we use the LES results of the initial four time-steps, say t:55, t355, t.ES, and
tLBS, as inputs to the trained ANFIS to predict the 3D flow field at the fifth
time-step, i.e., 45, To extend the ANFIS predictions to the next time-
step forward, we recycle 2V and use it; along with the three prior time
steps of LES results, i.e., t55, £, and &FS; as inputs to the ANFIS to
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Fig. 19. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time t3g. (a) shows the contours of velocity magnitude (U / Up,) at
the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.
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Fig. 20. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time t4. (a) shows the contours of velocity magnitude (U / Uy,) at
the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity magnitude in the spanwise direction along the
three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the predictions of ANFIS.

Table 5

Statistical error indices for multiple time-step march-in-time predictions of the
ANFIS relative to the LES results for test cases 1. R? is the coefficient of deter-
mination, MAE is the mean absolute error, RMSE is the root mean square error,
and MARE is the mean absolute relative error (see Eqs. (7) to (10)).

Time R? MAE RMSE MARE
tio 1.00 0.01 0.02 0.01
t20 0.93 0.06 0.09 0.06
t30 0.79 0.10 0.13 0.11
tao 0.63 0.13 0.14 0.16

predict the flow field at the time t4NIS. As this process continues, soon all
input. In other words, the flow field predictions of ANFIS at times 25,
tANEIS | (ANFIS | and tANFIS are used as inputs to march in time and generate
the 3D flow field at the time t4NS. This procedure is shown in Fig. 16.
This process can ideally continue recurrently for long periods to
generate 3D flow field realizations. However, as the march in time
continues, the ANFIS prediction error accumulates to a point where the
ANFIS predicted flow field deviates from the LES results.

The flow field predictions of ANFIS for test Case 1 at times t1, t20, t30,
and t49 are shown in Fig. 17 to Fig. 20, respectively, while their error
indices are presented in Table 5. As seen, the 3D flow field realizations of
ANFIS at times ty, tag, t30, and t4 are in reasonable agreement with
those of the LES models. However, it can be clearly seen that the dis-
crepancies between the ANFIS algorithm predictions and the LES-
computed flow velocity increase rapidly at times greater than tyg.
More specifically, comparing with the LES-computed velocity field, the
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ANFIS seem to overestimate the velocity field at instants of t3p, and t49.

Given the outstanding performance of ANFIS predicting the flow
field for 20 time-steps, it seems reasonable to use the trained ANFIS and
LES model recurrently to increase the accuracy of results and, at the
same time, reduce the cost of flow field predictions. We note that in this
recurrent approach, like the approach discussed above, it is not required
to re-train the ANFIS for each cycle of predictions. More specifically, the
trained ANFIS can be used for predicting the flow field until tyo. Then,
using the instantaneous results of ANFIS at tyo, LES model can be run to
simulate four time-steps, i.e., until time t,4. Subsequently, the four time-
steps of data from LES are used as the precursor (inputs) time-steps by
the ANFIS to predict 20 time-steps of the flow field, i.e., until t44. Ideally,
this recurrent procedure can continue for long enough periods of time to
generate enough data for a statistically converged time-averaged solu-
tion. We note that, since only four time-steps of LES are needed after
each 20 time-steps, the computational cost of LES will not be significant.
To demonstrate the promise of this recurrent approach, we conducted
LES of ANFIS-predicted flow field (for test Case 1) at time ty for four
time-steps. The four time-steps of LES generated flow field then were
used as the precursor inputs to the ANFIS to predict another 20 time-
steps of 3D flow field until t44. Then, four more time-steps of LES and
20 more time-steps of ANFIS were conducted to predict the 3D flow field
until tgg. In order to distinguish this approach from the direct ANFIS
approach, herein, we denote it as the LES-ANFIS hybrid method. Fig. 21
compares the so-predicted LES-ANFIS results at the time tgg with those of
LES. As seen in this figure, the proposed hybrid LES-ANFIS approach has
the potential to successfully generate 3D realization of the velocity field
of flood flow in the large-scale river for long periods of time.
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Fig. 21. Instantaneous LES results and ANFIS predictions for the 3D flow field of the test Case 1 at time tg using the LES-ANFIS hybrid method. (a) shows the
contours of velocity magnitude (U / Uy) at the free surface of Channel 1 from the top view. In (a), flow is from left to right. (b) shows the profiles of the velocity
magnitude in the spanwise direction along the three dashed lines of I, II, and III in (a). In (b), solid lines represent the LES results, while circles represent the

predictions of ANFIS.

7. Conclusion

The capabilities of an ANFIS machine-learning algorithm to predict
the 3D velocity field of four large-scale virtual rivers were examined.
The ANFIS was first trained using the LES results of one of the large-scale
rivers, i.e., Channel 1. Then, the accuracy of the trained ANFIS was
evaluated by comparing 3D flow field realizations with the LES results of
all four virtual rivers. Our study shows that the ANFIS can accurately
predict the 3D flow field of the four rivers in a single time-step predic-
tion. However, the performance of the ANFIS was reduced when it was
used for multiple time-step predictions. To overcome the shortcomings
of the ANFIS in multiple time-step predictions, we introduced a new
approach that involves the recurrent application of LES and ANFIS.
Although more expensive than the ANFIS predictions, the proposed
recurrent method is about six times less computationally expensive than
the LES, and its predictions for 3D realizations of flow field are highly
accurate.

The results of this study demonstrate the great potential of ANFIS to
learn the underlying physics for conducting affordable and yet reliable
predictions to generate 3D realizations of turbulent flood flow in large-
scale rivers. Specifically, trained using a small batch of LES-computed
flow field data, the ANFIS model could successfully predict flow fields
in different flow conditions and river geometries. Moreover, the
computational cost of the ANFIS predictions is significantly less than
that of numerically solving the Navier-Stokes equations with the LES
method. Finally, in a future study, we will apply the ANFIS machine-
learning algorithm to predict the time-averaged flow field and turbu-
lence statistics of the large-scale rivers under flood conditions.
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