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ABSTRACT: A simple, practical quantum chemical procedure is
presented for computing the energy position and the decay width
of autoionization resonances. It combines the L2-stabilized
resonance wave function obtained using the real-valued continu-
um-remover (CR) potential [Y. Sajeev Chem. Phys. Lett. 2013, 587,
105−112] and the Feshbach projection operator (FPO)
partitioning technique. Unlike the conventional FPO partitioning
of the total wave function into its resonant space and
background space components, an explicit partitioning of the
total wave function into its interaction region and noninteraction
region components is obtained with the help of real-valued continuum-remover potential. The molecular system is initially confined
inside a CR potential which removes the electronic continuum of the molecular system in which its resonance state is embedded
and, thus, unravels the space component of the resonance wave function as a bound, localized eigenstate of the confined system.
The eigenfunctions of the molecular Hamiltonian represented in the{ − }1 space constitute a complementary, orthogonal space.
A unique partition is obtained when the level-shift of the space function due to its coupling with the space is zero, and the
resonance width is computed using these unique partitioned spaces. This new procedure, which we refer to as CR-FPO formalism, is
formally very simple and straightforward to implement, yet its applications to the resonance state of a model Hamiltonian and to the
doubly excited resonance states of atomic and molecular systems at the full-CI level are very accurate as compared to the alternative,
very precise L2 methods. In addition, the CR-FPO formalism is implemented in the multireference configuration interaction
(MRCI) method, and uses it for calculating the energy position and the autionization decay width of 2Πg shape resonance in N2

−.

The ability to initiate reaction dynamics through the
resonant attachment of low energy electrons (LEE) to

molecules has opened up a new and promising line of
experimental possibilities for state-specific and site-selective
chemical reactions and molecular manipulations.1−10 The
resonant attachment causes fascinating chemistry through the
formation of autoionizing transient states, also known as
resonance states. The chemical reactions of resonance states
play important roles in many areas of research, including
radiobiology, astrochemistry and materials chemistry.11 For
example, the negative ion resonance states of biomolecules,
which are responsible for long lasting biomolecular damages
when the biological cells are exposed to high energy ionizing
radiation, are of considerable interest in radiation chemis-
try.10,12−16 The vital role of chemical reactions of electronic
resonance states in the chemical evolution that occurs in the
atmosphere and in the interstellar medium is also being
increasingly recognized.17−19

As the electronic resonance states have been emerging as a
fascinating facet for controlling and catalyzing chemical
reactions, direct and easy ways to compute them become
more crucial. Because of the transient nature of the resonance
states, their direct computation using conventional quantum
chemistry methods is not possible.20 Nevertheless, there has

been a tremendous effort to extend the conventionally used
bound-state based quantum chemistry approaches, that is, L2

methods, for computing electronic resonance states.20−33 The
Feshbach projection operator (FPO) formalism34,35 has been
developed as one such method, and has produced excellent
results for electronic resonance states of atoms and small
molecules.36−40 However, due to practical challenges, the FPO
formalismalthough it is very powerful for the description of
electronic resonanceshas not evolved as a successful approach
to exploit all the advancements offered by the bound-state
quantum chemistry codes.
In this paper, we report that the FPO formalism becomes

completely adaptable to all available ab initio many-electron
wave function methods for a unique choice of the projectors Q
and P, which occur in the formalism. This paper is organized as
follows. Section 1 examines the FPO formalism as it is being
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developed for an isolated resonance, and reviews the practical
difficulties associated with its implementation within the
framework of L2 methods. In section 2, we introduce a new
computationally viable FPO formalism. Section 3 illustrates the
usefulness and numerical accuracy of the new FPO formalism.
Finally, implementation of the new FPO formalism at the
multireference level is presented in section 4. Conclusions are
given in section 5.

1. FPO FORMALISM FOR THE COMPUTATION OF AN
ISOLATED RESONANCE

Here, we shall briefly recall the basic definitions of the FPO
formalism for the simplest case, that is, an isolated resonance,
that are necessary for introducing our new, improved approach
to it. A more detailed discussion of FPO formalism can be found
elsewhere (see refs 36−41). The FPO formalism is based on the
partitioning of a function space into two subspaces, the resonant
space and the background scattering space. Two orthogonal

complementary projection operators defined on these subspaces
(i.e., Q and P operators), project out the close-in many-body
part and the background scattering continuum part of the total
resonance wave function.

Ψ + Ψ = ΨH Q P E( ) (1)

Operating from the left with Q and P, respectively, the
Schrödinger equation yields two coupled equations

Ψ + Ψ = ΨH H EQQ Q QP P Q (2a)

Ψ + Ψ = ΨH H EPP P PQ Q P (2b)

where, in the shorthand notations, ΨQ = QΨ, ΨP = PΨ, HPP =
PHP, HPQ = PHQ, etc. Equations 2a and 2b can be formally

decoupled by eliminating ΨQ to obtain an explicit effective
operator equation for ΨP

Ψ = − Ψ−E H H( )Q QQ QP P
1

(3a)

[ + − − ]Ψ =−H H E H H E( ) 0PP PQ QQ QP P
1

(3b)

For an isolated resonance (i.e., Q = |ΨQ⟩ ⟨ΨQ|, and ΨQ is an
eigenfunction of HQQ with eigenvalue EQ), eq 3b can be written
as

− Ψ = −
|Ψ ⟩⟨Ψ |

−
ΨH E

H H

E E
( )PP P

PQ Q Q QP

Q
P

(4)

Letting χE to be a solution of the homogeneous equation

χ− =H E( ) 0PP E (5)

eq 4 can be solved using the spectral representation of the
standing-wave Greens’ function for eq 5. By comparing the
solution of eq 4 to the Breit-Wigner resonance formula, the
width of an isolated resonance decaying into a single open
channel is obtained as

π χΓ = |⟨Ψ | | ⟩|E H( ) 2 Q QP E
2

(6)

Γ(E) is related to the local Siegert decay width

Γ = Γ E( )res (7)

where resonance energy, Eres, is given by

= + Δ = + ⟨Ψ | − |Ψ ⟩−E E E H E H H( )res Q Q Q QP PP PQ Qres
1

(8)

Figure 1.A one-dimensional double barrier potential, which supports an one-electron resonant state, is shown in the top panel. The discrete eigenvalue
spectrum ofH as a function of the basis set scaling parameter α is shown in the middle panel. The energy position of the resonance is highlighted with a
blue background line. The two eigenfunctions that avoid each other and the eigenfunction of the stabilized region are shown, respectively, in the
bottom two panels.
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Starting with the FPO formalism, and as discussed formally by
O’Malley, the most simple and practical approach for an isolated
resonance state of a many-electron system would be to obtain an
explicit -partitioned representation of H.38

The state ΨQ representing resonance is only an approximate
eigenfunction of H; resonance decay occurs because of the off-
diagonal coupling elements HPQ.
Practical Difficulties in Implementing FPO Formalism

within the Bound-State Methods. In principle, a partitioned
matrix representation of H can be easily obtained using
conventional quantum chemical methods. Unfortunately,
resonance solutions are not possible to obtain directly from
such partitioned matrices. To illustrate the underlying practical
difficulties for the direct computation of resonance solutions
from such partitioned matrices, here we briefly consider the
stabilization method applied for the resonance solutions of a
one-electronmodel Hamiltonian. A stabilization plot is obtained
when the discrete continuum eigenvalues are plotted as a
function of the stabilization parameter, for example, the scaling
factor α for the exponents of the basis set.25,26,31 A resonance is
revealed in a stabilization plot as a pattern of energy stabilization
conjoined with avoided crossings. See Figure 1, where a typical
stabilization plot, which is obtained for an one-electron model
Hamiltonian is shown. The numerical details of this one-
electron problem will be discussed in section 3.
The discrete eigenvalue spectrum of H represented in a

standard L2 basis set may either belong to the stabilized region or
to the avoided crossing of the stabilization plot. Although the
resonance wave function is uniquely defined by its energy in the
stabilized region, the convenience of this uniqueness cannot be
directly exploited in the FPO formalism as the separability is
not intrinsic to the discrete spectrum corresponding to the
stabilized region. This is because the eigenfunction belonging to
the stabilized region is an approximation to the total wave
function Ψ.
In contrast to the stabilized region, the separability of

eigenfunctions is natural in the avoided crossings. Ideally, ΨQ is
one of the two discrete eigenfunctions of the avoided crossing
whose energy is close to Eres. The space can be easily
constructed as follows. The physical Hamiltonian H is
rediagonalized in the { − }1 space and for a different α value.
The eigenfunctions of this rediagonalization constitute the
space. Although the computational complexity is aggravated by
the use of two different α values, that is, one for space and one
for space, it ensures the coupling between HPP and HQQ, and
yields a partitioned representation of the physical Hamiltonian
as shown in eq 9. However, the ability of the discrete continuum
solution χn of the HPP block to represent χE poses serious
practical difficulties.
The function χE in eq 6 is an energy normalized scattering

function representing the background continuum at energy E.
The conventional bound state quantum chemistry codes are
inadequate for the explicit computation of χEwith correct energy

normalization, which is one of the crucial conditions for
numerical computation of decay width. A discrete continuum
solution χn computed using bound-state code can approximate
χE when E = ϵn, except for an overall normalization factor
because χn is unit-normalized, whereas χE is energy normalized.
Nevertheless, there are many nontrivial theoretical develop-
ments for computing a continuous approximation for Γ when
the calculations are performed in an L2 basis set, for example,
Stieltjes-moment-theory techniques and Gauss quadrature
approaches.36,42 This by no means exhausts the quest for the
development of new practical approaches that avoids the explicit
computation of χE or employing a continuous approximation for
Γ.

2. OUR METHOD: CR-FPO FORMALISM
Resonant-Background vs Inner-Outer Based

Partitioning. The stabilized region is computationally very
appealing due to its unique energy. As we discussed above, the
eigenfunctions in the stabilized region, however, are inadmis-
sible to resonant-background based QP-partitioning. In the
resonant-background based partitioning, the projected
wave functions are imperative to the asymptotic conditions

Ψ = Ψ = → ∞Q rlim lim 0 asQ (10)

Ψ = Ψ = Ψ → ∞P rlim lim asP (11)

By restraining eq 11, alternate definitions of partitioning are
permitted by the FPO formalism.37 Here, we propose new
requisites for the separability in the stabilized region.
An explicit partitioning of the physical space into the inner

interaction region and outer noninteraction region appears to be
an inexpensive way of obtaining a new asymptotic condition and
a new separability for the stabilized region. Therefore, we
modify the stabilization procedure, which we will soon discuss,
for the following explicit inner−outer partitioning conditions

Ψ = Ψ ≊ΨQlim lim innerQ
m

(12)

Ψ = Ψ =Qlim lim 0 outerQ
m

(13)

≊ = ⟨Ψ | |Ψ ⟩E E H( )res Q Q
m

Q
m

(14)

where the superscript “m” stands for our modified stabilization
procedure, ΨQ

m is the new stabilized wave function, and we
assume that the total energy is obtained solely from the many-
body effects in the interaction region of the Hamiltonian. A
unitary transformation of the { − }1 space yields us the
space that allows the decay of ΨQ

m from the inner region to the
outer region.

Construction of -Partitioned Representation of H.
There is no straightforward approach in the conventional
quantum chemistry method to obtain an inner−outer based
partitioning and the partitioned representation of H, as given in
eq 9. Therefore, a systematic restructuring of the conventional
quantum chemistry methods is necessary. In our approach, an
explicit inner−outer based -partitioned matrix representation
of H is achieved in the conventional quantum chemistry
framework through the following steps.
Step 1: Computation of ΨQ

m and { − }1 space.
The completeness of the basis set inside the interaction region

is essential to obtainΨQ
m that satisfies eq 12. A practical approach

to accomplish the completeness of the basis functions inside the
interaction volume is to saturate a standard Gaussian basis set
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with a set of even-tempered Gaussian primitives. However, if
such a saturated set is employed, the application of the Rayleigh-
Ritz variational principle to compute ΨQ

m state of a many-
electron system will collapse to its discrete continuum
representations.43

The real-valued continuum remover (CR) method, which we
proposed in 2013, offers the calculation of ΨQ

m using saturated
basis sets.43 Here, the asymptotic one-body potential of H, that
is, the noninteraction region of H, is modified using an artificial
real-valued confinement potential.

∑̂ = ̂ + ̂H H Wm

i
i

allelectrons

(15)

As a result of the confinement, the many discrete continuum
representations ofΨQ

m are removed in the eigenvalue spectrum of
Hm and, therefore, the name continuum remover potential.
Here, ΨQ

m is directly obtained as a localized, bound state
eigenfunction of Hm and satisfies eq 12. Therefore, it is also an
easy way to achieve an explicit inner−outer based
partitioning in practical calculations.
We have been using asymptotically defined quadratic

potential of the form

̂ = ̂ + ̂ + ̂W W x W y W z( ) ( ) ( ) (16)

ς
λ ς ς ς ς

ς ς
̂ =

+ | | | | >

| | ≤
W( )

( ) ,

0,
o o

o

2l
m
ooo
n
ooo (17)

as the continuum remover confinement potential, where λ is the
strength of the potential and ςo is the asymptotic region at which
the potential is turned on to a nonzero value. A numerically
integrable form of this potential is also in use.

ς λς ς ς ς ς̂ = [ − + − − ]W( ) 1 0.5(tanh( ) tanh( ))o o
2

(18)

In preference to the infinite well potential, one may use a finite
well potential which can shift the autoionization threshold above
the resonance state

ς
ς ς ς ς̂ = −

+
+

−
−

+ς ς−W
d

e e
( )

2
1

tanh( )
(1 )

tanh( )
(1 )

o o
Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ (19)

where the d is the depth of the well potential. For the sake of
convenience, we label the two variants of the CR potentials given
in eq 18 and eq 19 (see Figure 2) as CR-A and CR-B,

respectively. Most importantly, these variants of the CR
potentials can be used in conjunction with all the L2-based
quantum chemical method with relatively modest computa-
tional effort and, therefore, all the quantum chemical techniques
developed for the bound state problem are also immediately
available to the computation ofΨQ

m. One may note that, as in the
spirit of the continuum-remover potential used here, one-
electron artificial shift potentials were used earlier for separating
the resonance states from the underlying continuum.44,45 Unlike
these potentials, the form of the continuum-remover potentials
allows us to easily define them outside the interaction region of
the physical Hamiltonian, and is therefore ideal for the
computation of molecular resonances.
The modified Hamiltonian, Hm, is first represented in a

chosen basis set. Its discrete eigen solutions can be easily
computed using conventional ab initio quantum chemical
methods. Here, ΨQ

m is obtained as a bound state localized in
the interaction region of H, and the eigen spectrum is naturally
partitioned as and { − }1 spaces.43

Step 2: Construction of the space.
Removing the confinement potential, which results in the

dissemination of the{ − }1 space eigenfunctions, yields the
space. In practice, the physical Hamiltonian H (without the
confinement) is first represented in the { − }1 space, and the
resulting matrix { 1 − Q }H{ 1 − Q } is a dense matrix. Its
diagonal representation gives us the U matrix and, thus, the
space.

{ − } { − } = =†

μ

μ

∂ ∂ ∏ ∂
μ

E

E

E

U Q H Q U E( 1 1 )

0 0

0 0

0 0

P

P

P

P

n

1

2

i

k

jjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzz
(21)

Step 3: Construction of -partitioned H.
The matrix representation of physical Hamiltonian in the

{ ⊕ } space forms the partitioned matrix

We refer this approach of obtaining inner−outer based
-partitionedH using a real-valued continuum-remover potential
as continuum-remover Feshbach Projection Operator (CR-
FPO) formalism. The following are the six major practical
advantages of the CR-FPO formalism:

1. A unique partitioning.
In numerical calculationΔ = 0 corresponds to a unique
partitioning.Figure 2. CR-A (gray) and the CR-B (red) potentials.
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∑ ∑Δ =
−

≊
−

=
H H

E E

H H

E E
0

i

QP PQ

P i

QP PQ

Q Pres

i i

i

i i

i (23)

Since, Eres = EQ, the CR method can also be considered as
a L2 stabilization method.

2. Siegert width.
WhenΔ = 0, the relaxation ofΨQ to the space results

in the so-called L2 stabilized total wave function Ψ.
Therefore, the relaxation of ΨQ to Ψ should carry the
information on Siegert width.
For Δ = 0 cases, our numerical calculations on a model

potential and the doubly excited state of helium, where
the exact results are known, show that the quantity that
accounts for the dissipation of ΨQ

m to the space

∑πΓ ≈ | |H2
i

QP
2

i
(24)

is nothing but the Siegert decay width. This can be further
understood as follows. As shown in eq 21, the space is
obtained from the { − }1 space by removing the CR
potential and by doing a unitary transformation.

∑ψ ψ ψ ψ| ⟩ = | ⟩ { } ∈ { } ∈ { − }μ μU 1
i

i
m

i
m

(25)

Since the spatial confinement enforced by the CR
potential is removed, the unitary transformation allows
the relaxation of { − }1 space from the interaction
region toward the asymptote setup by the finite basis set.
Therefore, when ΨQ

m, which is localized inside the
interaction region and having energy EQ = Eres, is coupled
to the newly constructed space through the physical
Hamiltonian, a decay equivalent to Siegert decay occurs
to the outer region via dissipation through the space.
See the Supporting Information for an alternate view on
the Siegert width occurring due to the unitary trans-
formation.

3. Absence of a uniquely represented χEres.
As Lippmann and O’Malley pointed out, one of the

most important consequences of Δ = 0 is thatΨQ andΨP
are degenerate and orthogonal.39 However, since we have
chosen the stabilized region of the stabilization plot, a
unique representation of χΨ ≡P Eres

, similar to that of ΨQ
m,

is absent in the discrete spectrum. In other words a unique
partitioning (i.e.,Δ = 0) and the absence of χEresthe

two characteristics of the stabilized regionare central to
the CR-FPO formalism. When Δ ≠ 0, the inner−outer
partition is not achieved perfectly and one or many of the
discrete functions of space poorly approximates χE. It is
worth to note that, although Δ = 0 is central to the CR-
FPO formalism, in the cases when Δ ≠ 0, one could still
use the Stieltjes-moment theory technique or similar
methods to extract a continuous approximation for Γ
from a discrete representation of the continuum.36,42 It is
important to note that, although a separability is
discussed in the original formulation of the CR potential
method43 and its subsequent applications,46 unlike the
CR-FPO formalism here, the attained separability
was not based on an explicit inner−outer based partition,
and moreover, the Δ = 0 condition was not imposed.

Therefore, in those cases a continuous approximation for
Γ is necessary to extract the Siegert width.

4. Since the method utilizes L2 basis functions exclusively, its
implementation requires only existing atomic and
molecular quantum chemistry codes.

5. Although the asymptotic condition of χEres as appears in eq
11 is a strict condition, by noting the fact that the integrals
contributing to Γ and Δ become nonzero only inside the
inner region where ΨQ

m is non-negligible, the inner−outer
QP-partitioning allows us to overlook the asymptotic
condition of χEres as given in eq 11. Moreover, as discussed

above, whenΔ = 0, a unique representation of χEres itself is
absent.

6. Because of the inner−outer QP partitioning, the numeri-
cally accurate energy position and width can be obtained
using a finite L2 basis set that satisfies the completeness
inside the interaction volume. Additionally, the real-
valued continuum-remover potential helps to achieve a
faster convergence of the ab initio calculation of ΨQ

m by
removing the basis set artifices such as the oscillatory
divergence47 and nonphysical stabilizations.48

3. NUMERICAL TESTS
In this section we describe a practical implementation of the CR-
FPO formalism within the framework of bound state methods
and we present numerical results. To demonstrate that the
proposed CR-FPO formalism works, and in order to test its
numerical accuracy, the new formalism is first applied to a one-
dimensional model Hamiltonian

̂ = − + − +−H
x

x
1
2

d
d

(0.5 0.8) e 0.8x
2

2 0.1 2

(26)

for which the exact results for the resonance position and the
width are known.49 Therefore, it has been widely used as a test
case for new computational procedures.49−51 Further, the new
procedure is applied to the calculation of the lowest doubly
excited 1S resonance state of helium and the lowest doubly
excited 1Σg

+ resonance state of molecular hydrogen. As being the
most fundamental systems that autoionize and are best suited as
benchmark cases for theoretical treatments of autoionization
phenomena, these autoionization states have received a great
deal of attention.40,48,52−55

3.1. Computational Details. For the three test cases, the
respective Hamiltonians are represented in a Gaussian basis set,
and an exact diagonalization procedure (full CI method) is
followed. The implementation of the CR-FPO approach for the
exact diagonalization procedure is simple and straightforward.
We begin our formal treatment of the CR-FPO formalism by
constructing a finite dimensional matrix representation of the
modified electronic Hamiltonian H m = H (x) + W (x) in a basis
set. The space and the { − }1 space are obtained as
eigenfunctions of Hm, where the space is identified as
eigenfunctions of Hm which are “stable” against the variation of
the continuum-remover potential strength λ or depth d of the
confinement potential. The space is constructed as explained
in Step 2 of section 1.
A flow diagram depicting the computational procedure is

shown in Figure 3. The width and the energy positions are
computed forΔ = 0, which is achieved by varying the strength λ
(or depth d) of the continuum-remover potential. In cases when
Δ is not converging to zero, scaling the exponents of the diffused
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basis functions and choosing a different basis set are practical
alternatives, and α in the flow diagram represents this step. Once
theΔ = 0 condition is achieved, the energy position becomes the
expectation value of the physical Hamiltonian for the space
wave function. Therefore, the energy position is not directly
dependent on the continuum-remover potential. The energy
position becomes independent of the potential if the space
wave function is completely localized inside the interaction
region, that is, when the continuum-remover potential is defined
outside the interaction. For a complete basis set, once the
continuum-remover potential is defined outside the interaction
region, the width will converge with respect to the optimal turn-
on points (ς0) of the potential, that is, ς

Γd
d 0

= 0. However, since the

space wave functions span both the interaction and the
noninteraction regions, for a finite basis set, one needs to find the
optimal ς0 for computing the width. For a finite basis set, a cusp

condition in the Γ versus ς0 plot, where =
ς
Γ 0d

d 0
, identifies the

optimal width. Alternatively, a cusp condition corresponding to
the λ (or depth d) of the continuum-remover potential can also

be used, that is, =
λ
Γ 0d
d

, to get the optimal turn-on points.

3.2. Results. 3.2.1. One-Dimensional Model Hamiltonian.
The one-dimensional model Hamiltonian (eq 26) serves as an
ideal test case to demonstrate the basic ideas of the CR-FPO
formalism. An even-tempered one-electron Gaussian basis set

ϕ{ = }−
=

−
ei

x
i

1000(0.701703846 )
1,to40

i 1 2

(27)

is used for representing the model Hamiltonian.
Since the spacewave function is an optimal projection of the

total wave function inside the model potential well, the Δ = 0
condition is also easily achieved by varying the parameters used
in the continuum-remover potential (see Figure 4). Our

numerical results are summarized in Table 1, where our results
are also compared with the result obtained using continuum
remover complex absorbing potential48 (see Supporting
Information for more details) and also with the exact results.
The very good agreement between our numerical results and the
exact results gives us a great confidence in theCR-FPO approach
to expand the formalism for atomic and molecular systems.

3.2.2. The Lowest Doubly Excited States of Helium and
Molecular Hydrogen. As discussed in the previous section,
because of the explicit use of inner−outer partitioning, the CR-
FPO formalism relies only on the ability of the basis set to span
the inner region, that is, the interaction region. Therefore, even a
compact Gaussian basis set, which is locally complete inside the
interaction region, is expected to produce accurate results. To
test the performance of CR-FPO formalism over different
choices of basis sets, we have performed two sets of calculations
for helium: one with a standard Gaussian basis set saturated with
even-tempered primitive Gaussians and the second with a
compact Gaussian basis set which is augmented with only a few
number of even-tempered primitive Gaussians. A saturated basis
set is used for computing the lowest 1Σg

+ resonance state of H2
molecule. The exponents of these basis sets are given in the
Supporting Information.
Numerical results for the 1S resonance state of the helium

atom obtained using the CR-FPO formalism and other methods
are summarized in Tables 2 and 3. The results obtained from
CR-FPO formalism and various theoretical methods for the 1Σg

+

Figure 3. A flow diagram for the computation of resonance energy
position and width.

Figure 4. Discrete energy of the modified Hamiltonian in the{ − }1
space (top-left) and the energy of the physical Hamiltonian in the
space (top-right) as a function of the strength of the continuum-
remover potential (λ) are shown. The energy position of the space
wave function is highlighted using a blue color background line. The
lower panels show the total wave function obtained from the
stabilization method and its space projection obtained using the
continuum-remover potential.
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resonance state of H2 are listed in Table 4. Our results for
positions and widths are in good agreement with the accurate
results reported in the literature.
As expected, the CR-FPO formalism produces numerically

reliable results using both saturated and compact basis sets.
Most interestingly, for these finite Gaussian basis sets, the CR-
FPO formalism performed even better than the complex scaling
method. The methods such as complex scaling depend on
asymptotic quality of the basis set, whereas the inner−outer
partitioning allows the CR-FPO formalism to obtain the
resonance parameters using a basis set that satisfies the

completeness inside the inner region. This fact is also expected
to give greater computational advantages when CR-FPO
formalism is used in conjunction with the effective Hamiltonian
methods.56 Instead of the brute-force exact diagonalization
procedure, using a correlation operator, also known as the wave
operator, the effective Hamiltonian approaches solve the
eigenvalue problem in a smaller dimensional function space,
and obtain the exact energies as the eigenvalues.56 To check the
performance of the CR-FPO formalism within the effective
Hamiltonian approach, we have done a new set of calculations in
which we have used the discrete eigenstates of the physical

Table 1. Energy and Half-Width as a Function of the Turn-on Point xo of the Confinement Potentialsa

CR-A (eq 18) CR-B (eq 19)

xo (au) λ Eres (au) Γ/2 (au) xo (au) d Eres (au) Γ/2 (au)

5.00 0.08567 2.127120 0.017586 5.75 5.61700 2.127120 0.0170080
5.25 0.11648 2.127120 0.017352 6.00 8.57700 2.127120 0.016840
5.50 0.16530 2.127120 0.017301 6.25 13.42500 2.127120 0.016784
5.75 0.24375 2.127120 0.017384 6.50 21.38500 2.127120 0.016797
6.00 0.37090 2.127120 0.017556 6.75 34.47000 2.127120 0.016853
continuum-remover CAP (same basis set; xo = 5.50 au) 2.126355 0.0149037
exact (Ref 49) 2.127197 0.015447

aThe optimized values are in bold-italic font.

Table 2. Energy and Width of the Lowest 1S(2s2) Autoionizing Resonance State of Helium Using a Saturated Basis Seta,b

CR-A (eq 17) CR-B (eq 19)

ςo (au) λ Eres (au) Γ(au) ςo (au) d Eres (au) Γ(au)
9 1.92 −0.777144 0.005137 10 9.4 −0.777144 0.005983
10 5.01 −0.777144 0.005127 11 23.9 −0.777144 0.005157
11 13.6 −0.777144 0.005215 12 65.2 −0.777144 0.004960
12 38.8 −0.777144 0.005335 13 185 −0.777144 0.004999
complex scaling (same basis set) −0.777781 0.0041282
RFCAP (ref 54) −0.77529 0.00494
accurate (ref 40) -0.7788133 0.0045937

axo = y0 = zo = ςo.
bThe optimized resonance parameters are in bold-italic font.

Table 3. Energy and Width of Lowest 1S(2s2) Autoionizing Resonance State of Helium Using a Compact Basis Seta,b

CR-A (eq 17) CR-B (eq 19)

ςo (au) λ Eres (au) Γ (au) ςo (au) d Eres (au) Γ (au)

8 3.2 −0.776092 0.005838 9 7.49 −0.776092 0.010117
9 18.38 −0.776092 0.005685 10 23.4 −0.776092 0.006808
10 120 −0.776092 0.005956 11 97.5 −0.776092 0.005684
11 860 −0.776092 0.006279 12 482 −0.776092 0.005540
complex scaling (same basis set) −0.775737 0.00222
accurate (ref 40) −0.778813 0.0045937

axo = y0 = z0 = ςo.
bThe optimized resonance parameters are in bold-italic font.

Table 4. Energy Position and Width of Lowest 1Σg
+ Autoionizing Resonance State of H2

a,b

CR-A (eq 17) CR-B (eq 19)

ςo (au) λ Eres (au) Γ (au) ςo (au) d Eres (au) Γ (au)

4 0.098 0. 479681 0.021367 7 2.93 0. 479681 0.020128
5 0.37 0. 479681 0.019981 8 12 0. 479681 0.019408
6 1.75 0. 479681 0.020567 9 54 0. 479681 0.020161
7 8.9 0. 479681 0.023919 10 280 0. 479681 0.021504
complex back-rotation method (ref 52) 0.4618 0.0197
reflection-free CAP (ref 53) 0.4615 0.0227
continuum remover CAP (ref 48) 0.4648 0.0178

axo = y0 = z0 − R
2
= ςo; R = 1.4 au. bThe optimized resonance parameters are in bold-italic font.
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Hamiltonian diagonalized in the saturated Gaussian basis as the
electronic basis, that is, the full CI states are used as the basis set
for the CR-FPO formalism. The Hamiltonian represented in a
subset of full-CI states can be considered as an effective
Hamiltonian matrix, Heff. Our results are summarized in Tables
5 and 6, where the size of the effectiveHamiltonian is varied. The
CR-FPO method produces very accurate results even when the
size of the effective Hamiltonian is considerably small. To
further understand the computational benefit of the CR-FPO
over other methods, the results obtained from the complex
scaled effective Hamiltonian are also given in Table 5. Complex
scaling does not even produce complex stabilized points when
the size of the effective Hamiltonian matrix is small. It is also
worth noting that, throughout our numerical tests, the CR-B
variant, where the autoionization threshold is shifted above the
resonance states, of the CR potential is more consistent and
accurate.
Although the resonance states we have computed for the

model potential and the two electron systems are the lowest
resonance states, they are not the lowest eigenstates of the
respective symmetry block of the Hamiltonian matrix. There-
fore, computationally the CR-FPOmethod should also work for
other higher resonances. To verify the performance of the CR-
FPO method for higher resonance states, we computed two
resonances of the He atom belonging to the same symmetric
block of the Hamiltonian. The results are presented in Table 7.
These results clearly demonstrate that the CR-FPO method can
be used for computing higher resonances.

4. IMPLEMENTATION OF CR-FPO FORMALISM IN THE
MULTIREFERENCE CONFIGURATION INTERACTION
METHOD

In our implementation of CR-FPO formalism within the
multireference configuration interaction (MRCI) method, we
employ the effective Hamiltonian approach as discussed in
section 2, that is, we use the state vectors as the initial basis set to
set up the CR-FPO formalism. The benefit of an effective
Hamiltonian approach is that it allows us to work in a reduced
dimensional space, which leads to saving on computational time,
while still obtaining accurate results. For a given one-particle
atom-center basis set, the state vectors that span the domain of
the physical effective Hamiltonian are obtained from a standard
MRCI calculation. A suitable one-particle basis for computing
the state vectors is chosen with the help of a stabilization
method, which is done as follows:

• A series of scaled basis sets ranging from most-diffuse to
most-contracted are generated by augmenting a standard
parent basis set with an additional set of even-tempered
Gaussians and by scaling the exponent of the most diffuse
functions with a finite value.

• In the next step, we generate the stabilization curve for a
given system by computing and plotting the eigenvalues at
the MRCI level for the scaled basis sets. The stabilized
region is identified for the resonant state, and the
corresponding state-vectors are chosen for subsequent
CR-FPO calculations. One of the reasons for choosing a
basis set from the stabilization procedure is that the
energy position obtained from the stabilization method
can be used as a benchmark result to test the numerical
accuracy of the CR-FPO-MRCI result.

• The final CR-FPO approach is set up in the state vector
basis, and the procedure summarized in Figure 3 is
followed to estimate the optimum resonance parameters.

4.1. Computational Details. We have used the MRCI
method as implemented in the COLUMBUS quantum
chemistry code.58−61 The VCR used in the current work is an
infinite well potential of the form given in eq 16, and the VCR
integrals are imported from the OpenCAP software.62 We have

Table 5. Effect of the Size of Effective Hamiltonian Matrix on the 1S Resonance State of Heliuma

CR-A (eq 17) (ςo = 10 au) CR-B (eq 19) (ςo = 12 au) complex scaling

Heff size λ Eres (au) Γ (au) d Eres (au) Γ (au) Eres (au) Γ (au)

100 2.20 −0.777144 0.009814 52.75 −0.777144 0.004917
250 3.72 −0.777144 0.005395 54.67 −0.777144 0.004884
500 4.95 −0.777144 0.005110 64.80 −0.777144 0.004923 −0.77629 0.01595
FCI 5.01 −0.777144 0.005127 65.20 −0.777144 0.004960 −0.77778 0.00413

axo = y0 = z0 = ςo.

Table 6. Effect of the Size of Effective Hamiltonian Matrix on the 1Σg
+ Resonance State of Molecular Hydrogena

CR-A (eq 17) (ςo = 5 au) CR-B (eq 19) (ςo = 8 au)

Heff size λ Eres (au) Γ (au) d Eres (au) Γ (au)

25 1.35 −0.090289 0.015080 17.55 −0.090289 0.015695
50 0.414 −0.090289 0.015465 13.4 −0.090289 0.015498
100 0.403 −0.090289 0.015844 13.16 −0.090289 0.015897
250 0.373 −0.090289 0.017807 12.05 −0.090289 0.017530
500 0.371 −0.090289 0.018908 12.00 −0.090289 0.018447
FCI 0.370 −0.090289 0.019981 12.00 −0.090289 0.019408

a ς= = − =x y zo
R

o0 0 2
; R = 1.4 au.

Table 7. Energy andWidth of the First Three 1S Autoionizing
Resonance State of Helium Using a Saturated Basis Seta

CR-B (eq 19) (ςo = 12 au) ref 57

d Eres (au) Γ (au) Eres (au) Γ (au)

65.2 −0.777144 0.004960 −0.777867 0.00454
31.5 −0.616867 0.000173 −0.621927 0.00021
40.4 −0.589485 0.00143 −0.589894 0.00136

axo = y0 = z0 = ςo
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used Dunning’s augmented correlation-consistent triple-valence
zeta basis (aug-cc-pVTZ) as the one-electron parent basis,
which is further augmented with a set of evenly tempered
[2s2p2d] functions. The even-tempered Gaussians are gen-
erated according to the expression xi = xf i−1, where x is the
exponent of the most diffuse s, p, or d function in the parent
basis, xi is the new exponent of the even-tempered Gaussian and
f is kept at 0.50. The N−N bond distance is set at 2.077 au.
All the calculations for generating the stabilization plots for

N2
− are performed at the MRCI with single excitations (MRCIS)

level using an active space of 5 electrons in 8 orbitals, (5,8). The
active space includes the valence π and π* orbitals and a set of
two degenerate diffuse orbitals of symmetry corresponding to
that of the resonance state. Two sets of MRCIS calculations are
done using orbitals from a CASSCF solution with state-
averaging over 10 (SA-10) and 15 (SA-15) states, respectively.
The resonance position is reported as the difference between the
energies of the N + 1-electron resonance wave function and N-
electron target energy, that is, Eres

position = Eres
N+1− Etarget

N . The energy
of the neutral target state is computed at the MRCI level by
employing the same orbitals used to describe the negative ion
resonance state and a (4,8) active space.
4.2. Results-2Πg Resonance in N2

−. The 2Πg shape
resonance of N2

− is one of the most well studied systems using
a variety of theoretical methods.63−69 The electron attachment
to the valence π* orbitals leads to the formation of a 2Πg shape
resonance. In this work, we report the results for the α = 1.4 basis
set for which the resonance state becomes stable and is
represented by a single discrete state (see Figure 5). For a given

choice of turn-on points of the continuum-remover potential,
the width and the energy positions are computed for Δ = 0,
which is achieved by varying the strength λ of the confinement
potential. Our numerical results obtained for various turn-on
points of the continuum-remover potential are tabulated in
Table 8. Further, optimum turn-on points (x0,y0 and z0) of the
VCR are identified by the corresponding cusp in the values for
resonance widths. See section 3.1 for a detailed discussion of
computing the energy position and width by varying the basis set
parameters and continuum-remover potential parameters. The
computed values for position andwidth at the optimized turn-on
points are 2.78 and 0.14 eV, respectively. Most importantly, for
the chosen basis set (α = 1.4) and the level of electron
correlation used (i.e., MRCIS), the energy position obtained
using CR-FPO formalism and the stabilization formalism are the
same.
For a meaningful comparison with the results obtained from

other theoretical methods, it is worth noting that the energy
position and the width in the case of the CR-FPO formalism
depends only on the accuracy of the underlying ab initio
quantum chemical method and corresponding treatment of
electronic correlation. In the standard ab initio quantum
chemical formalism, the energy position can either be computed
directly, that is, the energy position is directly obtained as an
eigenvalue of a modified energy operator, or by subtracting the
target state energy from the resonance state energy. Because of
the consistent treatment of electron correlation for both the
neutral target and the final resonance state, the methods that
compute the energy position directly and include higher levels of
excitation correlation are more reliable compared to any of the
indirect methods unless the indirect method also includes higher
levels of excitation correlation to overcome the inconsistent
treatment of electron correlation. To make the comparison
more meaningful, the literature reported values of resonance
parameters for the 2Πg resonance from the direct dif ference
methods, and indirect methods are tabulated in Table 9.
Considering the fact that our MRCI is not a direct energy
difference method, and only singles levels of excitation
correlation are included at the MRCI level, our results are in
agreement with the highly correlated direct methods within the
limits of the level of electron correlation used. Furthermore, on
the basis of the numbers reported in Table 8, the results also
converge faster with the size of the effective Hamiltonian. The
underestimation of width could be attributed to several factors
such as inclusion of only singles level excitation, deficiencies in
active space, and small size of the effective Hamiltonian. To test
our hypothesis about the importance of double excitations, we
have performed preliminary CR-FPO/MRCISD calculations
using an MRCI expansion with single and double excitations.

Figure 5. Stabilization curve for the 2Πg resonance inN2
− obtained at the

SA10-MRCIS(5,8)/aug-cc-pVTZ+[2s2p2d] level of theory.

Table 8. Energy Positions and Widths for the 2Πg Resonance in N2
− at MRCIS(5,8)/aug-cc-pVTZ+[2s2p2d] Level of Theorya

SA-10 SA-15

box size (au) Eres (eV) Γ (eV) λopt (au) Eres (eV) Γ (eV) λopt (au)

x0 = y0 = 2.76, z0 = 4.88 2.79 0.0945 0.00677 2.78 0.0936 0.00674
x0 = y0 = 3.76, z0 = 5.88 2.79 0.102 0.0139 2.78 0.102 0.0138
x0 = y0 = 4.76, z0 = 6.88 2.79 0.115 0.0325 2.78 0.115 0.0322
x0 = y0 = 5.76, z0 = 7.88 2.79 0.129 0.0881 2.78 0.128 0.0867
x0 = y0 = 6.76, z0 = 8.88 2.79 0.141 0.281 2.78 0.139 0.274
x0 = y0 = 7.76, z0 = 9.88 2.79 0.147 1.07 2.78 0.143 1.04
x0 = y0 = 8.76, z0 = 10.88 2.79 0.141 4.92 2.78 0.132 4.58

aThe optimized resonance parameters are in bold-italic font.
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These results show a significant improvement in the computed
width (see Table 10). These calculations are done using the

orbitals from a CASSCF method with state averaged over 10
states, and with the same active space as that of the MRCIS
method. Most importantly, the inclusion of the double
excitation increases the interaction volume compared to the
MRCI method. In other words, the artificial shrinking of the
interaction region due to the poor description of the space and

space wave functions is also one of the major reasons for the
underestimation of width in theMRCIS method. We would also
like to emphasize here that the results presented in Table 10 are
preliminary results, and further benchmarking of the CR-FPO/
MRCISD method will be performed in a future publication. A
more rigorous study on the dependence of resonance
parameters on active space, basis set, effective Hamiltonian
size, and electronic structure methods is required for an

appropriate comparison of our results with predictions in the
literature. Therefore, it is worth emphasizing that the primary
objective of implementing the CR-FPO within the MRCI
method at the singles levels of excitation correlation is solely to
demonstrate the feasibility of the new formalism to use in
conjunction with the standard ab initio codes.
As we have numerically demonstrated in the case of the

Feshbach resonances of He and H2, which are computed at the
full-CI level, a high numerical accuracy in the Eres

position and width
can also be achieved by including higher levels of excitation
correlation at the MRCI level.

5. CONCLUSIONS

By combining the Feshbach projection operator formalism and
the real-valued continuum-remover potential, a novel technique
is developed for computing the resonance energy and the width.
Unlike the conventional FPO partitioning of total wave function
into its resonant and nonresonant components, we
partition the total function into inner interaction region and
outer noninteraction region components. The real-valued
continuum-remover potential method helps us to project out a
unique interaction-region component of the total wave
functionfor which the level shift is zeroas the space
wave function without sacrificing the computational simplicity
inherent in the quantum chemical electronic structure codes.
This unique projection makes the direct computation of Siegert
width possible. The far superior performance of CR-FPO
formalism over other methods with compact Gaussian basis sets,
which is due to the inner−outer based partitioning, is a major
breakthrough. The fact that a few space states are sufficient
enough to introduce the relaxation of the space wave function
to the outer noninteraction region makes the CR-FPO
formalism one of the most desirable methods to employ within
the framework of bound state quantum chemical codes for the
computation of resonance energy and Siegert width.
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Table 9. Energy Position (Eres
position = Eres

N+1 − Etarget
N ) and Width

of the 2Πg Resonance in N2
− from Selected Previous Works

selected works method
Eres
position

(eV) Γ (eV)

Direct
computation of
Eres
position

Meyer64 Optical
potential/
ADC(3)

2.534 0.536

Sajeev et al.65 CAP/FSMRCC 2.52 0.39

Sven et al.70 CAP/EP 2.58 0.55

Zuev et al.66 CAP/EOM-EA-
CCSD

2.571 0.255

Ghosh et al.71 CAP/EOM-EA-
CCSD

2.07 0.420

Thodika et al.72 OSM/EOM-EA-
CCSD

2.525 0.493

Das et al.67 CAP/EP-
MCSCF

3.117 0.313

Eres
position using
indirect
methods

Hazi et al.63 Stieltjes-moment
theory/

4.13 1.14

Static and
exchange

Hazi et al.63 Stieltjes-moment
theory/CIS

2.23 0.40

Chao et al.73 Stabilization/
MRCI

2.34 0.51

Sommerfeld et al.68 CAP/MRCISD 2.97 0.65

this work Stabilization/
MRCIS

2.78

this work CR-FPO/
MRCIS

2.78 0.143

this work CR-FPO/
MRCISD

2.87 0.636

Table 10. Energy Positions andWidths for the2Πg Resonance
in N2

− at MRCISD Level of Theorya

box size (au) Eres (eV) Γ (eV) λopt (au)

x0 = y0 = 6.76, z0 = 8.88 2.87 0.310 0.234
x0 = y0 = 7.76, z0 = 9.88 2.87 0.329 0.515
x0 = y0 = 8.76, z0 = 10.88 2.87 0.359 1.23
x0 = y0 = 9.76, z0 = 11.88 2.87 0.411 3.12
x0 = y0 = 10.76, z0 = 12.88 2.87 0.507 7.79
x0 = y0 = 11.76, z0 = 13.88 2.87 0.611 18.4
x0 = y0 = 12.26, z0 = 14.38 2.87 0.636 29.0
x0 = y0 = 12.76, z0 = 14.88 2.87 0.624 47.9
x0 = y0 = 13.26, z0 = 15.38 2.87 0.590 83.5
x0 = y0 = 13.76, z0 = 15.88 2.87 0.548 151

aThe optimized resonance parameters are in bold-italic font.
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method for autoionization widths. II. Atoms. Phys. Rev. A 1987, 36,
4187−4202.
(42) Reinhardt, W. P. L2 discretization of atomic and molecular
electronic continua: Moment, quadrature and J-matrix techniques.
Comput. Phys. Commun. 1979, 17, 1−21.
(43) Sajeev, Y. Real-valued continuum remover potential: An
improved L2-stabilization method for the chemistry of electronic
resonance states. Chem. Phys. Lett. 2013, 587, 105−112.
(44) Liebman, J. F.; Yeager, D. L.; Simons, J. A simple approach to
predicting resonance levels. Chem. Phys. Lett. 1977, 48, 227−232.
(45) Kaijser, P.; Simons, J. Shift-potential approaches for determining
shape resonances in atoms:2P Be− and Mg−. Phys. Rev. A 1980, 21,
1093−1099.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01096
J. Chem. Theory Comput. 2022, 18, 2863−2874

2873

https://doi.org/10.1126/science.287.5458.1658
https://doi.org/10.1126/science.287.5458.1658
https://doi.org/10.1088/1742-6596/185/1/012022
https://doi.org/10.1103/PhysRevLett.78.4410
https://doi.org/10.1103/PhysRevLett.92.168103
https://doi.org/10.1103/PhysRevLett.92.168103
https://doi.org/10.1103/PhysRevLett.92.168103
https://doi.org/10.1038/nchem.930
https://doi.org/10.1038/nchem.930
https://doi.org/10.1002/anie.201005129
https://doi.org/10.1002/anie.201005129
https://doi.org/10.1002/anie.201005129
https://doi.org/10.1002/anie.201204162
https://doi.org/10.1002/anie.201204162
https://doi.org/10.1002/anie.201204162
https://doi.org/10.1063/1.5032172
https://doi.org/10.1063/1.5032172
https://doi.org/10.1039/C4CP02701A
https://doi.org/10.1039/C4CP02701A
https://doi.org/10.1103/PhysRevLett.93.068101
https://doi.org/10.1103/PhysRevLett.93.068101
https://doi.org/10.1016/j.surfrep.2009.09.001
https://doi.org/10.1016/j.surfrep.2009.09.001
https://doi.org/10.1146/annurev-physchem-040513-103605
https://doi.org/10.1146/annurev-physchem-040513-103605
https://doi.org/10.1146/annurev-physchem-040513-103605
https://doi.org/10.1021/acs.jpclett.8b03256?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b03256?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b03256?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.9b03295?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.9b03295?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar0680769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar0680769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c03341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c03341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C7CS00443E
https://doi.org/10.1039/C7CS00443E
https://doi.org/10.1021/acs.chemrev.6b00480?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D0CC06641A
https://doi.org/10.1039/D0CC06641A
https://doi.org/10.1016/S0370-1573(98)00002-7
https://doi.org/10.1016/S0370-1573(98)00002-7
https://doi.org/10.1016/S0370-1573(02)00143-6
https://doi.org/10.1016/S0370-1573(02)00143-6
https://doi.org/10.1088/0953-4075/26/23/021
https://doi.org/10.1088/0953-4075/26/23/021
https://doi.org/10.1016/j.cplett.2012.03.104
https://doi.org/10.1016/j.cplett.2012.03.104
https://doi.org/10.1063/1.1727912
https://doi.org/10.1063/1.1727912
https://doi.org/10.1103/PhysRevA.1.1109
https://doi.org/10.1103/PhysRevA.1.1109
https://doi.org/10.1016/0009-2614(83)87093-6
https://doi.org/10.1016/0009-2614(83)87093-6
https://doi.org/10.1016/0009-2614(83)87093-6
https://doi.org/10.1063/1.442271
https://doi.org/10.1063/1.1792031
https://doi.org/10.1063/1.1792031
https://doi.org/10.1021/jp202817d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp202817d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c07904?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c07904?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c07904?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0057737
https://doi.org/10.1063/5.0057737
https://doi.org/10.1063/5.0057737
https://doi.org/10.1021/acs.jctc.5b00465?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00465?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1016/0003-4916(62)90221-X
https://doi.org/10.1088/0022-3700/11/8/001
https://doi.org/10.1063/1.434111
https://doi.org/10.1063/1.434111
https://doi.org/10.1063/1.434111
https://doi.org/10.1103/PhysRev.162.98
https://doi.org/10.1103/PhysRev.162.98
https://doi.org/10.1103/PhysRevA.2.2115
https://doi.org/10.1103/PhysRevA.2.2115
https://doi.org/10.1103/PhysRevA.11.2018
https://doi.org/10.1103/PhysRevA.11.2018
https://doi.org/10.1103/PhysRevA.36.4187
https://doi.org/10.1103/PhysRevA.36.4187
https://doi.org/10.1016/0010-4655(79)90064-X
https://doi.org/10.1016/0010-4655(79)90064-X
https://doi.org/10.1016/j.cplett.2013.09.052
https://doi.org/10.1016/j.cplett.2013.09.052
https://doi.org/10.1016/j.cplett.2013.09.052
https://doi.org/10.1016/0009-2614(77)80304-7
https://doi.org/10.1016/0009-2614(77)80304-7
https://doi.org/10.1103/PhysRevA.21.1093
https://doi.org/10.1103/PhysRevA.21.1093
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01096?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(46) Kunitsa, A. A.; Bravaya, K. B. Feshbach projection XMCQDPT2
model for metastable electronic states. , arXiv (Physics-Chemical
Physics) ver. 1, 1906.11390, Jun 26, 2019. https://arxiv.org/abs/1906.
11390, (accessed 2022-02-05).
(47) Peirs, K.; VanNeck, D.;Waroquier,M. Self-consistent solution of
Dysons equation up to second order for open-shell atomic systems. J.
Chem. Phys. 2002, 117, 4095−4105.
(48) Sajeev, Y.; Vysotskiy, V.; Cederbaum, L. S.; Moiseyev, N.
Continuum remover-complex absorbing potential: Efficient removal of
the nonphysical stabilization points. J. Chem. Phys. 2009, 131, 211102.
(49) Davidson, E. R.; Engdahl, E.; Moiseyev, N. New bounds to
resonance eigenvalues. Phys. Rev. A 1986, 33, 2436−2439.
(50) Lipkin, N.;Moiseyev, N.; Brändas, E. Resonances by the exterior-
scaling method within the framework of the finite-basis-set approx-
imation. Phys. Rev. A 1989, 40, 549−553.
(51) Rom, N.; Moiseyev, N. Absorbing boundary conditions by the
partial integration exterior scaling method. J. Chem. Phys. 1993, 99,
7703−7708.
(52) Balanarayan, P.; Sajeev, Y.; Moiseyev, N. Ab-initio complex
molecular potential energy surfaces by the back-rotation transformation
method. Chem. Phys. Lett. 2012, 524, 84−89.
(53) Sajeev, Y.; Moiseyev, N. Reflection-free complex absorbing
potential for electronic structure calculations: Feshbach-type auto-
ionization resonances of molecules. J. Chem. Phys. 2007, 127,
No. 034105.
(54) Sajeev, Y.; Sindelka, M.; Moiseyev, N. Reflection-free complex
absorbing potential for electronic structure calculations: Feshbach type
autoionization resonance of Helium. Chem. Phys. 2006, 329, 307−312.
(55) Moiseyev, N. Derivations of universal exact complex absorption
potentials by the generalized complex coordinate method. J. Phys. B:
1998, 31, 1431−1441.
(56) Lindgren, I.; Morrison, J. Atomic Many-Body Theory; Springer:
Berlin, Heidelberg, 2012.
(57) Burgers, A.; Wintgen, D.; Rest, J. M. Highly doubly excited S
states of the helium atom. J. of Phys. B 1995, 28, 3163−3183.
(58) Lischka, H.; Shepard, R.; Pitzer, R. M.; Shavitt, I.; Dallos, M.;
Muller, T.; Szalay, P. G.; Seth, M.; Kedziora, G. S.; Yabushita, S.; Zhang,
Z. High-level multireference methods in the quantum-chemistry
program system COLUMBUS: Analytic MR-CISD and MR-AQCC
gradients andMR-AQCC-LRT for excited states, GUGA spin−orbit CI
and parallel CI density. Phys. Chem. Chem. Phys. 2001, 3, 664−673.
(59) Lischka, H.; Müller, T.; Szalay, P. G.; Shavitt, I.; Pitzer, R. M.;
Shepard, R. Columbus−a program system for advanced multireference
theory calculations. WIREs: Comp. Mol. Sci. 2011, 1, 191−199.
(60) Lischka, H.; Shepard, R.; Shavitt, I.; Pitzer, R.; Dallos, M.;Müller,
T.; Szalay, P.; Brown, F.; Ahlrichs, R.; Boehm, H. COLUMBUS, an ab
initio electronic structure program, release 7.0; 2017.
(61) Lischka, H.; Shepard, R.; Müller, T.; Szalay, P. G.; Pitzer, R. M.;
Aquino, A. J.; Arauj́o do Nascimento, M. M.; Barbatti, M.; Belcher, L.
T.; Blaudeau, J.-P. The generality of the GUGA MRCI approach in
COLUMBUS for treating complex quantum chemistry. J. Chem. Phys.
2020, 152, 134110.
(62) Gayvert, J. OpenCAP, Version 1.1.1; github, 2021. https://
github.com/gayverjr/opencap.
(63) Hazi, A. U.; Rescigno, T. N.; Kurilla, M. Cross sections for
resonant vibrational excitation of N2 by electron impact. Phys. Rev. A
1981, 23, 1089.
(64)Meyer, H.-D. Optical potentials for electron-molecule scattering:
A comparative study on the N2

2Πg resonance. Phys. Rev. A 1989, 40,
5605.
(65) Sajeev, Y.; Santra, R.; Pal, S. Analytically continued Fock space
multireference coupled-cluster theory: Application to the2Πg shape
resonance in e-N2 scattering. J. Chem. Phys. 2005, 122, 234320.
(66) Zuev, D.; Jagau, T.-C.; Bravaya, K. B.; Epifanovsky, E.; Shao, Y.;
Sundstrom, E.; Head-Gordon, M.; Krylov, A. I. Complex absorbing
potentials within EOM-CC family of methods: Theory, implementa-
tion, and benchmarks. J. Chem. Phys. 2014, 141, No. 024102.
(67) Das, S.; Sajeev, Y.; Samanta, K. An Electron Propagator
Approach Based on a Multiconfigurational Reference State for the

Investigation of Negative-Ion Resonances Using a Complex Absorbing
Potential Method. J. Chem. Theory Comput. 2020, 16, 5024−5034.
(68) Sommerfeld, T.; Santra, R. Efficient method to perform CAP/CI
calculations for temporary anions. Int. J. Quantum Chem. 2001, 82,
218−226.
(69) Berman, M.; Estrada, H.; Cederbaum, L. S.; Domcke,W. Nuclear
dynamics in resonant electron-molecule scattering beyond the local
approximation: The 2.3-eV shape resonance in N2

−. Phys. Rev. A 1983,
28, 1363.
(70) Feuerbacher, S.; Sommerfeld, T.; Santra, R.; Cederbaum, L. S.
Complex absorbing potentials in the framework of electron propagator
theory. II. Application to temporary anions. J. Chem. Phys. 2003, 118,
6188−6199.
(71) Ghosh, A.; Vaval, N.; Pal, S. Equation-of-motion coupled-cluster
method for the study of shape resonance. J. Chem. Phys. 2012, 136,
234110.
(72) Thodika, M.; Fennimore, M.; Karsili, T. N.; Matsika, S.
Comparative study of methodologies for calculating metastable states
of small to medium-sized molecules. J. Chem. Phys. 2019, 151, 244104.
(73) Chao, J. S.; Falcetta, M. F.; Jordan, K. D. Application of the
stabilization method to the N-2(12Πg) and Mg-(12P) temporary anion
states. J. Chem. Phys. 1990, 93, 1125−1135.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01096
J. Chem. Theory Comput. 2022, 18, 2863−2874

2874

 Recommended by ACS

Stochastic Resolution of Identity for Real-Time Second-
Order Green’s Function: Ionization Potential and Quasi-
Particle Spectrum
Wenjie Dou, Eran Rabani, et al.
OCTOBER 25, 2019
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

Projected Complex Absorbing Potential Multireference
Configuration Interaction Approach for Shape and Feshbach
Resonances
Mushir Thodika and Spiridoula Matsika
MAY 27, 2022
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

Uniform vs Partial Scaling within Resonances via Padé
Based on the Similarities to Other Non-Hermitian Methods:
Illustration for the Beryllium 1s22p3s State
Anael Ben-Asher, Nimrod Moiseyev, et al.
MAY 04, 2021
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

Combination of a Voronoi-Type Complex Absorbing
Potential with the XMS-CASPT2 Method and Pilot
Applications
Quan Manh Phung, Masahiro Ehara, et al.
FEBRUARY 27, 2020
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

Get More Suggestions >

https://arxiv.org/abs/1906.11390
https://arxiv.org/abs/1906.11390
https://doi.org/10.1063/1.1497682
https://doi.org/10.1063/1.1497682
https://doi.org/10.1063/1.3271350
https://doi.org/10.1063/1.3271350
https://doi.org/10.1103/PhysRevA.33.2436
https://doi.org/10.1103/PhysRevA.33.2436
https://doi.org/10.1103/PhysRevA.40.549
https://doi.org/10.1103/PhysRevA.40.549
https://doi.org/10.1103/PhysRevA.40.549
https://doi.org/10.1063/1.465699
https://doi.org/10.1063/1.465699
https://doi.org/10.1016/j.cplett.2011.12.028
https://doi.org/10.1016/j.cplett.2011.12.028
https://doi.org/10.1016/j.cplett.2011.12.028
https://doi.org/10.1063/1.2753485
https://doi.org/10.1063/1.2753485
https://doi.org/10.1063/1.2753485
https://doi.org/10.1016/j.chemphys.2006.08.008
https://doi.org/10.1016/j.chemphys.2006.08.008
https://doi.org/10.1016/j.chemphys.2006.08.008
https://doi.org/10.1088/0953-4075/31/7/009
https://doi.org/10.1088/0953-4075/31/7/009
https://doi.org/10.1088/0953-4075/28/15/010
https://doi.org/10.1088/0953-4075/28/15/010
https://doi.org/10.1039/b008063m
https://doi.org/10.1039/b008063m
https://doi.org/10.1039/b008063m
https://doi.org/10.1039/b008063m
https://doi.org/10.1002/wcms.25
https://doi.org/10.1002/wcms.25
https://github.com/gayverjr/opencap
https://github.com/gayverjr/opencap
https://doi.org/10.1103/PhysRevA.23.1089
https://doi.org/10.1103/PhysRevA.23.1089
https://doi.org/10.1103/PhysRevA.40.5605
https://doi.org/10.1103/PhysRevA.40.5605
https://doi.org/10.1063/1.1938887
https://doi.org/10.1063/1.1938887
https://doi.org/10.1063/1.1938887
https://doi.org/10.1063/1.4885056
https://doi.org/10.1063/1.4885056
https://doi.org/10.1063/1.4885056
https://doi.org/10.1021/acs.jctc.0c00434?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00434?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00434?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00434?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qua.1042
https://doi.org/10.1002/qua.1042
https://doi.org/10.1103/PhysRevA.28.1363
https://doi.org/10.1103/PhysRevA.28.1363
https://doi.org/10.1103/PhysRevA.28.1363
https://doi.org/10.1063/1.1557452
https://doi.org/10.1063/1.1557452
https://doi.org/10.1063/1.4729464
https://doi.org/10.1063/1.4729464
https://doi.org/10.1063/1.5134700
https://doi.org/10.1063/1.5134700
https://doi.org/10.1063/1.459176
https://doi.org/10.1063/1.459176
https://doi.org/10.1063/1.459176
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01096?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00918?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00918?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00918?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00918?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00918?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c01310?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c01310?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c01310?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c01310?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c01310?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.1c00223?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b01032?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b01032?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b01032?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b01032?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
http://pubs.acs.org/doi/10.1021/acs.jctc.9b01032?utm_campaign=RRCC_jctcce&utm_source=RRCC&utm_medium=pdf_stamp&originated=1666068607&referrer_DOI=10.1021%2Facs.jctc.1c01096
https://preferences.acs.org/ai_alert?follow=1

