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Abstract

Anion resonances are formed as metastable intermediates in low-energy electron-induced
reactions. Due to the finite lifetimes of resonances, applying standard Hermitian formalism for
their characterization presents a vexing problem for computational chemists. Numerous modi-
fications to conventional quantum chemical methods have enabled satisfactory characterization
of resonances, but specific issues remain, especially in describing two-particle one hole (2p-1h)
resonances. An accurate description of these resonances and their coupling with single-particle
resonances requires a multi-reference approach. We propose a projected complex absorbing
potential (CAP) implementation within the multi-reference configuration interaction (MRCI)
framework to characterize single-particle and 2p-1h resonances. As a first application, we use
the projected-CAP-MRCI approach to characterize and benchmark the 2Hg shape resonance
in N5, . We test its performance as a function of the size of the subspace and other parameters,
and we compute the complex potential energy surface of the ZHg shape resonance to show
that a smooth curve is obtained. One key benefit of MRCI is that it can describe Feshbach
resonances (most common examples of 2p-1h resonances) at the same footing as shape reso-

nances. Therefore, it is uniquely positioned to describe mixing between the different channels.



To test these additional capabilities, we compute Feshbach resonances in Hy O™ and anions
of di-cyanoethylene isomers. We find that CAP-MRCI can efficiently capture the mixing be-
tween the Feshbach and shape resonances in di-cyanoethylene isomers, which has significant

consequences for their lifetimes.

Introduction

Low-energy electron induced reactions are important in astrochemistry, condensed-phase pro-
cesses, radiation damage to living cells and other processes. '~/ Efficient inter-molecular processes
due to electron impact have also been demonstrated.®~!! When an electron interacts with a tar-
get molecule and gets trapped momentarily, anion resonances are formed. The state formed after
the electron entrapment has a bound-like character within the interaction region of the molecular
potential but also possesses a non-vanishing oscillating tail outside the potential. Presence of a
non-vanishing tail outside the potential ensures a finite probability for auto-detachment, where the
excess electron can escape back to the continuum. Depending on the electronic state of the neutral
target, anion resonances can be categorized into either single-particle (1p) or two-particle one-hole
(2p-1h) resonances. The decay of 1p/shape resonances in a radical anion is a one-electron process
with the excess electron trapped due to the formation of a centrifugal barrier in the electron-target
interaction potential (see Figure 1).!%13 The term “shape” resonance is used to signify the peculiar
shape of the interaction potential due to which the excess electron is trapped. Based on the decay
mechanism, 2p-1h resonances can be further classified into “core-excited shape” or “Feshbach”.
The former type is energetically higher than the parent excited state and decays through a one-
electron process, and the interaction potential consists of a similar centrifugal barrier. The latter
type is lower in energy to the parent excited state and decays to the ground state through a two
electron process, and is therefore longer-lived compared to shape resonances.

Since resonances are embedded and coupled to the continuum, application of standard bound
#? methods to resonances is not straightforward. !>!# Several methods have been developed over

the years for the accurate treatment of anion resonances, and with the advent of powerful com-
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Figure 1: (a) Electron-molecule interaction potential for a shape resonance. The angular momen-
tum barrier formed traps the excess electron. The tail of the resonance wavefunction extends be-
yond the barrier, thereby rendering a finite lifetime to the shape resonance. (b) The neutral ground
state (blue) and the neutral excited state (red) are shown. The trapping of excess electron by the
excited state of the neutral target results in the formation of Feshbach resonance.

puters and sophisticated computational algorithms, computing anion resonances of polyatomic
systems with increased accuracy has gained more traction. '“2Y Explicit treatment of the contin-
uum is possible in scattering theory and hence, methods based on scattering theory, !7-1921-26 have
established themselves as powerful tools for studying anion resonances and dissociative electron
attachment phenomena. On the other hand, numerous modifications to standard Hermitian elec-
tronic structure theory have also enabled plethora of studies on resonances. 41182027 Electronic
structure theory based methods have the advantage of being more user-friendly for a quantum
chemist compared to scattering methods, and also enable chemical interpretation of the states in

terms of Dyson orbitals, Frank-Condon factors and so on.2% Within the formalism of electronic

structure theory, non-Hermitian quantum mechanical methods, such as complex scaling, complex



absorbing potentials (CAP), exterior complex scaling, and complex basis functions, have been
explored extensively. '316-20.27-34 The equivalence between all the non-Hermitian quantum me-
chanical based methods is illustrated neatly in the work by Ben-Asher and Moiseyev.>> In a non-
Hermitian method, the analytic continuation of the physical Hamiltonian to the complex plane
makes the wavefunction of resonance states square-integrable. !>16 It must be noted that although
complex scaling and reflection-free CAPs represent analytic continuations of the Hamiltonian to
the complex plane, the addition of a box-CAP doesn’t. The resonance states thus obtained, are

bound states of the non-Hermitian Hamiltonian with complex eigenvalues, !>

I

The complex energies (or Siegert energies as they are commonly known3®) encompass the infor-
mation on the position and lifetime of the resonance state. The real part of the Siegert energy gives
the resonance position, and the imaginary part corresponds to the half-width of the resonance. The

inverse of the full-width (I') gives the lifetime of the resonance
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Analytic continuation can also be introduced at the eigenvalue level, as seen in orbital stabilization
methods and extrapolation methods, and consequently one can completely avoid the use of non-

Hermitian quantum chemistry. 37 Complex absorbing potentials20-27-33:34

have found huge suc-
cess compared to other non-Hermitian methods for the computation of auto-ionizing states. In the
CAP formalism, the physical Hamiltonian of a system is augmented with a complex local poten-
tial, resulting in a purely discrete spectrum.?? Resonances are then obtained as square-integrable
eigenfunctions of the non-Hermitian Hamiltonian with Siegert energies.?? The success of CAP
based methods can be attributed to the ease of integration with any available electronic struc-

ture method. Methods augmented with CAP include coupled cluster (EOM-CC and FSMRCCOC),

algebraic diagrammatic construction schemes (ADC), Symmetry Adapted Cluster/Configuration



Interaction (SAC-CI), multi-reference configuration interaction (MRCI), multi-reference pertur-
bation theory (XMCQDPT2, XMS-CASPT?2), electronic propagator (EP) and density functional
theory (DFT).38-3% Several properties such as complex Dyson orbitals and natural transition or-
bitals, as well as analytic gradients, and algorithms for locating crossing points have also been
developed within CAP.%%° Recent implementation of analytic gradients within the CAP-EOM-
CC formalism has enabled computation of optimized structures and exceptional points. Optimized
structures and adiabatic electron affinities have been computed for several polyatomic systems
such as formaldehyde, formic acid and ethylene anions using the CAP-EOM-CC formalism.>® Re-
cently, CAP-EOM-CC has also been employed to compute minimum energy exceptional points on
crossings between resonances and minimum energy crossing points between neutral and anionic
surfaces.””8 The routine application of a variety of CAP augmented methods to compute reso-
nances serves as a testament to their success compared to other non-Hermitian or even Hermitian
methods.

The conventional implementation involves adding CAP at the Hartree-Fock stage and work-
ing through the complex algebra for the inclusion of electron correlation. To accommodate the
complex algebra as a consequence of the non-Hermiticity of the CAP augmented Hamiltonian, the
familiar concepts of normalization, orthogonalization have to be redefined.!3 An obvious conse-
quence of having to deal with complex numbers within the electronic structure framework is the
increase in associated computational cost and memory requirements. > In addition, the resonance
eigenvalues are also dependent on a set of user-defined CAP parameters, and as a result, multiple
electronic structure calculations are required for the optimization of parameters to obtain optimum
results. The combination of these factors with very diffuse basis sets (a general requirement for
anions) greatly enhances the computational cost in conventional implementation of CAP, making
it expensive for the computation of resonances in large polyatomic systems.®® An easier way to
circumvent the high cost and memory requirements associated with conventional CAP is to project
the CAP to a subspace spanned by the eigenstates of the physical Hamiltonian at the correlated

1.61

level.®" The resulting small complex symmetric matrix can be easily diagonalized with standard



diagonalization routines. This approach has the definite advantage of being very efficient in terms
of computational cost compared to the traditional CAP procedure, as only one electronic structure
calculation (albeit of many states) is needed to generate the underlying subspace. Studies have
shown that projection schemes are very much capable of reproducing results obtained from con-
ventional schemes and in many cases can generate smooth potential energy surfaces associated
with resonances.*+#7-30-31 When using the projection scheme it is important to check the conver-
gence of the results against the size of the effective Hamiltonian. A recent study by Dempwolff et
al. on characterization of anion resonances with CAP-ADC using the projection scheme has shown
that one can reproduce accurate resonance energies and widths of conventional CAP approach with
a small subspace.** While projected CAP offers numerous advantages, certain drawbacks do ex-
ist. For example, it is not clear that complex potential energy surfaces and their gradients will
always be smooth for polyatomic molecules compared to conventional CAP. It is also possible that
in certain cases (higher-lying resonances), the computed resonance parameters display significant

variation with the effective Hamiltonian size.>>

Most studies on application of CAP for computing anion resonances in polyatomic systems
have often focused on the computation of low-lying shape resonances. The computation of high-
lying shape and Feshbach resonances is important as they are known to facilitate a variety of
electron-driven reactions.%>~70 Furthermore, the prevalence of the resonant-channel coupling in
nucleobases and other aromatic systems warrants more investigation as such phenomena perhaps
could be the key to unravelling the fundamental pathways in radiation damage of bio-molecular
systems. %73 Resonant-channel coupling is usually observed between a shape and a Feshbach res-
onance of the same symmetry in an anion. Estimation of this coupling requires obtaining both
shape and Feshbach resonances in the same calculation, and this is where multi-reference methods
are essential. One strong advantage of multi-reference methods is that both shape and Feshbach
resonances and the coupling between them can be obtained in the same calculation.”!7274.75.75.76

In addition, one can also generate the complete potential energy surfaces (PES) for resonances with



CAP augmented multi-reference methods, unlike single reference methods where one can only
generate the PES in the vicinity of the equilibrium structure of the resonance.>! There have been
some recent implementations of CAP with multi-reference methods, focusing mostly on multi-
configurational perturbation theory or MCSCF.3029 An earlier implementation combined CAP

48.61 That work however did

with MRCI and examined the applicability of the projection scheme.
not integrate CAP with a generally available MRCI code restricting its applicability. Our goal
in this work is to generate and test a CAP-MRCI approach using an easily available electronic
structure code with analytic gradients available, with a future goal of applying it to polyatomic
molecules and electron driven chemistry. In this work, we implement and benchmark a projected
CAP-MRCI method to study primarily 2p-1h resonances and resonant channel coupling. The un-
contracted version of the MRCI as implemented in the COLUMBUS7"-"8 system is used for the
electronic structure calculations. Unlike the previous implementation,*® the current implementa-
tion of CAP-MRCI uses the open-source COLUMBUS electronic structure program system as the
underlying package, which is interfaced to the freely available openCAP program.’® The combina-
tion of openCAP and COLUMBUS programs provides a user-friendly experience for the computa-
tion of anion resonances with multi-reference approaches. At first, the new projected CAP-MRCI
method is used to characterize the well-studied ZHg shape resonance of N, anion. by computing
the PES of the ZHg resonance in N5 . A systematic study on the dependence of N resonance pa-
rameters on subspace size, basis set, and Davidson convergence tolerance is shown. Following the
benchmark of N5, we study the 2B, Feshbach resonance in HoO~. For the 2B resonance in water
anion, we also examine the dependence of resonance parameters on the chosen active space. Fi-
nally, we use the projected CAP-MRCI approach to compute both Feshbach and shape resonances
in cis- and trans- isomers of dicyanoethylene, where we have the opportunity to investigate the

resonant-channel coupling between the shape and Feshbach resonances in both isomers.



Methods

Background theory
Complex Absorbing Potential

The use of complex absorbing potentials to compute atomic and molecular resonances is built on
a rigorous mathematical foundation provided by Riss and Meyer.?3 A complex local potential is

added to the physical Hamiltonian H as shown in Eqn 3.3
H(n)=H—mW 3)

W is the one-particle CAP and 7 is the potential strength. Traditionally, CAP augmented calcu-
lations have often employed a “box-like” potential, where the potential is zero inside the box and

grows quadratically outside the box.+>4%:61.80.81

Box-CAP is employed routinely due to the sim-
plicity involved in the evaluation of one-electron integrals. Aside from box-CAP, elliptical-CAPs
and smooth Voronoi CAPs are also available. 338283 In particular, smooth Voronoi CAP is gen-
erally better than box-CAP as it has the same symmetry as that of the physical Hamiltonian, it
conforms to the shape of the molecule, and is therefore better suited for describing resonances in
polyatomic systems and molecular clusters.?83:34 Nevertheless, the use of Voronoi CAP is limited
owing to difficulties arising from numerical evaluation of the one-electron integrals. In our work,

we have employed the “box” potential for all our calculations: 3"

W= ) W )

I=x,y,2
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The form of the potential is such that it is zero inside the interaction region of the molecular
potential and has a finite value outside the interaction region. The separation between the off and
on regions is decided by the user specified cut-off parameter ‘r?’ in Eqn 5. This separation ensures
that the bound states are not perturbed much by the introduction of the artificial potential. The
Siegert energies associated with resonance states are obtained directly as eigenvalues of the non-
Hermitian Hamiltonian. In the complete basis set limit, the true Siegert energy of a resonance state
is obtained in the limit of n — 0,.. However, the inevitable use of finite basis sets means that a
finite value of CAP strength is required to stabilize the resonances.

As the CAP strength is increased, the eigenvalues of the CAP augmented Hamiltonian move
into the complex plane. In particular, the eigenvalues of the resonance state computed as a function
of CAP strength tend to accumulate in a certain region of the complex plane. The optimal CAP
strength is then identified as the point at which the logarithmic velocity is at its minimum. In
other words, the stabilized point at which the optimal CAP strength is obtained corresponds to

minimization of the first order term in the Taylor series expansion of the 1 dependent energy: >’

()~ E(0)] = \ o) ©

Graphically, the point at which the first-order term is at its minimum corresponds to a turning point
in the n-trajectory of the resonance. To further reduce the sensitivity of computed Siegert energies
to changes in the CAP onset, few strategies have been reported in the literature. The underlying
idea is to improve the energy by minimizing higher order terms in the Taylor series expansion
of m-dependent energy. In this work, we have employed the correction scheme introduced by
Riss and Meyer where we subtract the energy derivatives from the zeroth order energy. Another
correction scheme introduced by Krylov and co-workers accomplishes the same but with the use
of density matrices, where the energy-derivatives are re-computed in terms of expectation value
of the CAP operator by the use of Hellman-Feynman theorem.® Both correction schemes tend to

provide similar results but it is seen that the density based correction scheme could be useful in



certain cases.” Based on the scheme introduced by Riss and Meyer,?? the first order corrected

energy ‘U’ is defined as

dE(1)
dn

(7

The minimization of the second-order term identifies the turning point in the 1-trajectory for cor-

rected energies (U): 2

dn?

min = min

n an ®)

In this work, the optimum energy obtained from the minimization of the first-order term will be
henceforth referred to as the uncorrected energy (E) and as per Eqn 7, the second-order minimized

energy will be referred to as the corrected energy (U).

Implementation of projected CAP-MRCI

In this work, we employ the projected CAP approach for implementation at the MRCI level. First
we solve the (N + I)-electron Hamiltonian at the MRCI level for a set of eigenpairs
{(¥y,Ey),v=1,......,K},

HY, = E,Y¥y ©)

Following this, the CAP matrix is represented in a Gaussian basis set, 5!

W 16) = [ 2alr)W (") 25 () (10

where J is a Gaussian-type function, and W is the complex absorbing potential as given in Eqn 5.
The computed CAP matrix in atomic orbital (AO) basis is then transformed into the molecular or-
bital (MO) basis using the converged MO coefficients obtained from the underlying self-consistent
field calculation of the (N + 1)-electron system. In our case, we employ the converged orbitals
from a CASSCEF calculation. The molecular orbitals are represented in terms of Gaussian atomic

orbitals as ¢, = )., CypXa. Following this, the CAP integrals can now be represented in the MO
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basis, 2761

(0pIW10g) =Y Cap(XalW|X5)Chg (11)
a,b

where ‘p’ and ‘g’ indices run over MOs and ‘@’ and ‘b’ indices run over AOs. Once the CAP
matrix is represented in the MO basis, the CAP augmented Hamiltonian (see Eqn 3) is projected

onto the subspace spanned by the set {¥, ,'¥,,......, ¥y },27:61
¥ H(N)Y,, =Ep, &, —in¥) W¥, (12)

where ‘A,v =1,...,K’, with ‘K’ being the total number of computed roots at the MRCI level of
theory. Once the final Hamiltonian is projected onto the subspace spanned by the eigenvectors
of K roots, the resulting small complex symmetric matrix is diagonalized for a series of CAP
strengths to obtain the desired 1n-trajectories. The electronic structure energies and wavefunctions
are obtained from the COLUMBUS program system,’’-7886:87 and the resonance trajectories are

generated and analyzed with the help of the OpenCAP package.”®

Electronic structure methods

Most electronic structure calculations in this work are performed at the MRCI level with single
excitations (MRCIS), while we tested the performance of single and double excitations (MRCISD)
in the case of the N, resonance. There are no frozen orbitals at the MRCI level. As demonstrated
earlier in a previous work,>! initially a calculation for the neutral ground state of the molecule
is performed at the state-averaged CASSCF (SA-CASSCEF) level with a valence active space to
generate the optimized orbitals for subsequent calculations. In the next step, the valence active
orbitals are augmented with a set of lowest energy diffuse orbitals (n,;+) to perform a SA-CASSCF
and MRCIS calculation on the anion.

Obtaining a balanced approach between the neutral and anion energies is challenging with
multi-reference methods. There is no unique way to do this, but using the same set of orbitals

for both neutral and anion has been used before with improved results, and that is the approach
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we chose here.! The converged orbitals of the anion are used to perform MRCI on the neutral to
obtain the reference energy in order to calculate electron attachment energies. In another approach,
one can add a very diffuse function (exponent ~ 107-10~%) on one of the atoms and obtain
the position in a single calculation where the lowest state in the anion calculation corresponds to

neutral plus the excess electron occupying a very diffuse orbital.>"

N> methodology

For N3, the N-N bond distance is optimized to be 2.078 bohr at the B3LYP/aug-cc-pVTZ level of
theory. For the CASSCEF on the neutral N, a (4,4) active space is employed with state-averaging
over 8 states. The active space used in the CASSCF calculation for the neutral consists of the
degenerate pairs of 7w and ©* orbitals. In the anion calculations, the (4,4) active space is aug-
mented with two degenerate pairs of diffuse orbitals of & symmetry, leading to a (5,8) CAS, and
an average over 10 states is used (SA10-CASSCF). The active space orbitals can be found in Fig
S1 of the supplementary information (SI). The parent basis set, Dunning’s correlation-consistent
triple-zeta basis, aug-cc-pVTZ is placed on both the nitrogens. The diffuse functions are either
added on a ghost atom in the center of the molecule or on the nitrogen atoms. A set of [3s3p3d]
and [5s5p5d] functions are placed on the ghost atom to generate two ghost-atom based basis sets:
aug-cc-pVTZ+gh[3s3p3d] and aug-cc-pVTZ+gh[5s5p5d]. For the atom-centered type, the parent
basis aug-cc-pVTZ is augmented with the addition of either [3s3p] or [2s2p2d] functions. The
diffuse functions in all basis sets are obtained in an even-tempered manner (¢4 = 0.5¢;), where
‘a;’ 1s the exponent of the most diffuse function for a given angular momentum in the parent basis

set.

H,0 methodology

The equilibrium structure of the neutral water molecule was obtained at the MP2/aug-cc-pVTZ
level of theory. The electronic configuration of neutral water is 1a%2a%1b%3a%lb%4a?2bg, based

on the C,, abelian point group. The aug-cc-pVTZ basis set is added on all the atoms and an
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additional even-tempered set of [3s3p3d] Gaussians is placed on the oxygen atom. Prior to the
anion calculation, a CASSCF calculation on the neutral H,O molecule is performed with a (6,5)
active space and state-averaging over 10 states. The base active space of (6,5) consists of the
orbitals 3ay, 4ay, 1by, 1b1 and 2b, orbitals. For the anion calculations, the active set employed
in the neutral water CASSCF is augmented with 2, 3 or 4 lowest energy virtual orbitals of b;

symmetry to create three different active spaces, and a SA10-CASSCEF is used.

Dicyanoethylene methodology

The structures of maleonitrile (cis-dicyanoethylene) and fumaronitrile (trans-dicyanoethylene) are
optimized using B3LYP/cc-pVTZ. A (6,6) active space consisting of all the valence out-of-plane
7 and 7* orbitals is used in the CASSCF calculations on the neutral for both isomers. The state-
averaging for both the neutral calculations is performed over the first 10 states. The valence active
orbitals used for the CASSCEF calculations on both isomers are summarized in Figs S2 and S3 of
the SI. Once again, Dunning’s correlation consistent triple-valence zeta basis set with augmenta-
tions (aug-cc-pVTZ) is used as the parent basis set on all the atoms. A set of even-tempered [3p]
functions is added on the carbon (C) and nitrogen (N) atoms of both isomers. The active space
used in the CASSCF and subsequent MRCIS calculations on the anion and the neutral reference is
augmented with 3 diffuse functions of the same symmetry as that of the resonance. This leads to
an active space of (7,9) for the anion and (6,9) for the neutral. For the anion CASSCF and MRCIS

calculations, the state-averaging is performed over the first 12 states.

Results and Discussion

2Hg shape resonance in N, anion

First, we look at the well studied 2Hg shape resonance in the N, anion. An accurate fixed-nuclei
estimate based on the experimental data reports the 2I'Ig resonance position at 2.32 eV and the

width at 0.41 eV.%® Being one of the model systems for studying new methods developed for
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anion resonances, numerous theoretical predictions of the resonance parameters for the 2Hg shape
resonance with a variety of methods have been reported in the literature. Table 1 summarizes some
of the previous predictions of the resonance parameters for the lowest N, anion shape resonance.
From Table 1, the reported positions and widths vary between 2.23-3.12 eV and 0.25-0.65 eV,

respectively.

Table 1: Selected previous theoretical predictions of the ZHg resonance in N; anion.

Method Er/leV | T/eV
Stieltjes-moment theory-CIS® | 2.23 | 0.40
Optical potential-ADC(3)° | 2.53 | 0.54

CAP-MRCISD# 297 | 0.65
CAP-FSMRCC* 2.52 | 0.39
CAP-EOM-EA-CCSD*? 2.57 | 0.25
OSM-EOM-EA-CCSD®? 2.52 | 049
CAP-EP-MCSCF>? 3.12 | 0.31

Our values for the 2Hg resonance in N, are tabulated in Table 2 for several box sizes. The
corresponding trajectories for the box size rg = rg = 2.76,r? = 4.88 bohr are shown in Figure
2. The change in corrected positions and widths with box size is less significant than that of

the uncorrected results, as expected. Nonetheless, the resonance parameters remain more or less

consistent with small variations at both the uncorrected and corrected level.

0
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Figure 2: Uncorrected and corrected trajectories of the ZHg resonance in Nj anion at CAP-
MRCIS(5,8)/aug-cc-pVTZ+gh[3s3p3d] level of theory. The minima of first and second order
logarithmic velocities corresponding to uncorrected and corrected trajectories, respectively, are
indicated by the arrows. The box size used is ) = rg =2.76, rg =4.88 a.u.
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Table 2: Uncorrected and corrected energies, widths and optimum 7 for the ZI'Ig resonance in Nj
anion using CAP-MRCIS(5,8)/aug-cc-pVTZ+gh[3s3p3d] for various box sizes.

Box size (a.u.) Er(eV) | ' (eV) ng,t (au) | Ug (eV) | I'(eV) ng,, (a.u.)
r=r)=276,r) =488 | 3.06 0.40 0.0095 3.00 0.31 0.018
rl=r)=3.00,/7=5.00| 3.05 0.38 0.011 2.99 0.29 0.021
r=r9=4.00,2=500| 3.02 | 031 | 0.021 297 | 023 | 0.041

Our positions agree well with the CAP-MRCISD and CAP-EP-MCSCEF results of Sommerfeld

1.51 L 52

et al.”" and Das et a as listed in Table 1. In multi-reference methods, the position is gener-
ally computed by taking the difference between the energies of the anion and the neutral. The
difference in correlation between anionic and neutral calculations leads to uncertainties in the final
result, and that probably explains why both our results and the previous MCSCEF results somewhat
overestimate the position compared to experiment.

The width of ZI'Ig resonance shows great variation among the previously reported values. When

compared to the fixed-nuclei estimate of 0.41 eV by Berman et al., %

our theoretical prediction is
somewhat underestimated depending on the box size. Obtaining widths experimentally can be
complicated due to its sensitivity to nuclear positions. In certain cases, the sensitivity of widths
to nuclear position can be rather severe, which makes the comparison between theoretical and
experimental estimates difficult. The reported positions and widths vary between 2.23-3.12 eV

and 0.2-0.4 eV respectively. Compared to previous estimates, they fall well within the range of

theoretical values reported in the literature.

Tolerance dependence

Since the projected CAP approach is dependent on the size of the subspace, it is also crucial to
assess the effect of convergence of pseudo-continuum states on the computed resonance parame-
ters. In COLUMBUS, the CI matrix diagonalization is carried out using the iterative Davidson-Liu
diagonalization algorithm.”!"> The energy convergence for different excited states is decided by
setting the residual tolerance vector for each state. A residual norm of 10™"7, where n, > 3 results in

stronger convergence of the computed roots. In this study, we have employed four sets of tolerance
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conditions as tabulated in Table 3, where the individual residual vector norms are adjusted in every
set. A tolerance level of 1e — 3 implies stronger convergence and levels of 1e —2 or 1e — 1 imply
loose convergence. In all the tolerance sets, the resonance state has a minimum energy convergence
of 10~!! Hartree. The distinction between the resonance and the pseudo-continuum state comes
by looking at the coefficients of the CI vector corresponding to a given electronic configuration in
a CAP free calculation. When a state is identified as the resonance state, it means that particular
state has dominant contributions from the CI vector corresponding to the electronic configuration
of the resonance. In some cases the contribution may not be as clear however complicating this

analysis.

Table 3: Tolerance sets employed for the computation of the 2Hg resonance energy and width in Ny’
at SA10-CASSCF/SA10-MRCIS(5,8)/aug-cc-pVTZ+gh[3s3p3d] level of theory. The tolerance
‘n,” for the individual roots 1 through 10 is shown. Root 2 has the electronic configuration of the
resonance state, while the other roots are pseudo-continuum states. Tolerance for the resonance is
set to high value while the tolerance of the other roots is explored.

Tol. index 1 2 3 4 5 6 7 8 9 10 | Niter
1 le-3 | 1e-3 | 1e-3 | 1e-3 | 1e-3 | 1e-3 | 1e-3 | 1e-3 | 1e-3 | 1e-3 | 253
2 le-3 | 1e-3 | 1e-3 | le-3 | 1le-3 | 1le-2 | le-2 | le-2 | le-2 | le-2 | 154
3 le-2 | 1e-3 | 1le-2 | 1le-2 | 1e-2 | 1e-2 | 1e-2 | 1e-2 | 1e-2 | 1le-2 | 205
4 le-1 | 1e-3 | le-1 | 1le-1 | le-1 | le-1 | le-1 | 1le-1 | le-1 | le-1 36
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Figure 3: Uncorrected (UC) and corrected (C) trajectories for the 2Hg resonance in Nj anion at
MRCIS(5,8)/aug-cc-pVTZ+gh[3s3p3d] level of theory for difference tolerance sets, denoted as
UCi and Ci where i is the tolerance index in Table 3.
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Table 4: Uncorrected and corrected energies, widths and optimum 1 of the ZI'Ig resonance in Np
anion at CAP-MRCIS(5,8)/aug-cc-pVTZ+gh[3s3p3d] level of theory for various tolerance sets.

Box size is set at 1) = rg =2.76, rg =4.88a.u..

Tol. index | Eg (ev) | I (V) | nf, (au) [ Ug (V) | T(eV) | nY, (au.)
1 306 | 040 | 0.0095 | 3.00 | 031 | 0018
2 306 [ 040 | 0.0095 | 3.00 [ 031 | 0.018
3 306 [ 040 | 0.0095 | 3.00 [ 031 | 0.018
4 307 | 041 | 0.0095 | 300 [ 032 | 0018

Figure 3 summarizes the trajectories obtained at various tolerance sets. It is clearly seen that all
the trajectories are seemingly on top of each other with minimal variation. The reported values for
energy position and width as summarized in Table 4 indicate that there is barely any change in the
reported values when the pseudo-continuum states are not as accurately converged compared to the
resonance state. A small change of 0.01 eV in the position and width is seen at the lowest tolerance
setting which is once again quite minimal. It is worth noting that the energy position and width
reported at the lowest tolerance setting is obtained in a mere 36 iterations of the Davidson-Liu
algorithm compared to 253 for the highest tolerance setting. This further cements the fact that in
CAP, only the resonance state needs to be accurately represented unlike the stabilization method,
where the final position is strongly dependent on the energy convergence of the pseudo-continuum
states. Also, by smartly adjusting the convergence threshold of pseudo-continuum states, one can
easily perform the calculation for a higher subspace size and have it converge faster. Adjusting the
tolerance thresholds can also be helpful in computing resonances in fairly larger systems, where

the iterations are usually slower and the pseudo-continuum states are difficult to converge as well.

Effect of subspace size, basis sets, and correlation

To check the dependence of the resonance parameters as a function of the subspace size, we report
the positions and widths of the ZHg shape resonance for increasing number of states at the MRCIS
level of theory. Figure 4 summarizes the change in the computed positions and widths respectively
as a function of the number of states included in the CAP Hamiltonian. It is worth noting that

the resonance position remains constant for up to 30 states in the subspace size. The widths also
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remain more or less consistent, although there is somewhat more sensitivity.

3.08
e ® ® °®
2
=S 3.04
o
(0]
T 3l e——o——o—e o
Uncorrected =—@=
2.96 Corrected =—@=
5 10 15 20 25 30 35
(a) No. of States
0.45
e —0
04} -
>
2
3 035
(0]
LICJ .__‘_.___./.
0.3
Uncorrected =—@=
0.25 Corrected ===
5 10 15 20 25 30 35
(b) No. of States

Figure 4: (a) Resonance positions and (b) resonance widths of 2Hg resonance in N3 as a function
of subspace size at MRCIS(5,8)/aug-cc-pVTZ+gh[3s3p3d] level of theory.

To check the effects of basis sets on resonance parameters, we benchmarked the complex en-
ergies for four basis sets. We used Dunning’s augmented correlation-consistent valence triple-zeta
(aug-cc-pVTZ) as the parent basis set. The four sets of basis set employed included a pair of atom-
centered and a pair of ghost-atom based basis sets, respectively. The results are summarized in
Table 5. Based on these results there seems to be an overall uncertainty of 0.1 eV in both positions
and widths because of the basis set. The basis set dependence for various CAP implementations

42,50

has been explored previously in the literature, so we are not focusing any further on this issue.

Finally, we explored the effects of correlation by introducing the double excitations at the

MRCI level. The differences between the final resonance positions and widths obtained for the 2Hg

resonance is summarized in the supporting information using SA5-MRCI(5,8)/aug-cc-pVTZ+gh[3s3p3d].

The widths at the MRCISD level decrease by 0.1 eV in comparison to the MRCIS widths both at

the uncorrected and the corrected level and show more agreement with the CAP-EOM-CC results

18



Table 5: Uncorrected and corrected energies, widths, and optimum 7 of the 2Hg resonance in Ny
anion at CAP-MRCIS(5,8) level of theory. Results are shown for both atom-centered and ghost-

atom based basis sets. All results are shown for a box size of ¥ = r;) =2.76, rg =4.88a.u.

Basis Set Eg (ev) | T (eV) nfp, (au.) | Ug (eV) | I'(eV) n(%t (a.u.)
aug-cc-pVTZ+[3s3p] 3.08 0.32 0.0067 3.03 0.20 0.014
aug-cc-pVTZ+[2s2p2d] 3.03 0.46 0.0039 2.95 0.44 0.0071
aug-cc-pVTZ+gh[3s3p3d] 3.06 0.40 0.0095 3.00 0.31 0.018
aug-cc-pVTZ+gh[5s5p5d] 3.12 0.33 0.010 3.07 0.24 0.020

of Zuev et al.*> The decrease in widths associated with increase in correlation is counter-intuitive
but has been observed before as well. Jagau et al.®3 found that the inclusion of triple excitations
at the EOM-CC level decreased the widths compared to the values obtained at the EOM-CCSD
level for all resonances studied. The resonance position obtained at the MRCISD level is over-
estimated in comparison with the position at the MRCIS level by 0.4 eV. As a result, the position
at the MRCISD level is significantly over-estimated in contrast to previously reported theoretical
and experimental positions. The most likely reason for this increased uncertainty of the resonance
position is the addition of significant correlation energy to both neutral and anionic species due
to the inclusion of both single and double excitations at the MRCI level which exaggerates the
problem of differential correlation. The differential correlation error is relatively lower when only
single excitations at the MRCI level are included, and, as a result, we have mainly focused on

MRCIS for characterizing resonances in this work.

Continuum remover CAP

The use of continuum remover CAP (or CR-CAP) to weed out non-physical stabilization points in

CAP trajectories was first proposed by Sajeev ez al..”* In CR-CAP, a real potential is also added to

the Hamiltonian in addition to the complex potential. The final Hamiltonian is given as:**

H=H+(A—in)W (13)
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where ‘A’ is the strength of the real potential. The real potential is also “turned on” in the same
region as that of the CAP. The appearance of the non-physical stabilization is attributed to the
incomplete damping of the wavefunctions in the absorbing region. Since the wavefunctions asso-
ciated with continuum states have high amplitudes in the absorbing region compared to resonance
states, the real potential perturbs the continuum states to a greater extent while the resonance state

remains unaffected.
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Figure 5: (a) Uncorrected trajectory for the 2Hg resonance in Ny anion for A = 0 using
MRCIS(5,8)/aug-cc-pVTZ+gh[5s5p5d] level of theory. At A = 0 two stabilization points (or turn-
ing points) are observed. The turning points are marked with red and blue circles. (b) Uncorrected
trajectories for a finite value of the real potential.

We demonstrate the utility of CR-CAP in the uncorrected trajectory for the 2Hg resonance in
N, computed at MRCIS(5,8)/aug-cc-pVTZ+gh[5s5p5d] level of theory which has two stabiliza-
tion points, as seen in Figure 5a. To identify the physical stabilization point on the trajectory, a

finite value is assigned to the A parameter. As seen in Figure 5b, the non-physical stabilized point
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starts to disappear as A is increased. Moreover, there is significant difference in the shape of the
trajectories in the region where 11 < 1,,;. Once the trajectories corresponding to different strengths
of the real potential cross the actual physical stabilization point corresponding to 1, they all fol-
low the same pattern. By employing the CR-CAP approach, we were able to determine the real
turning point and therefore, the stabilized resonance parameters. It should be noted that there is
no need to optimize the strength of the real potential. We usually pick small values (positive or
negative) and increase them until the non-physical stabilization points start to disappear. Beyond
a certain arbitrary limit, the strength of the real potential can result in un-physical perturbations of

the trajectories.

Complex potential energy surface of the 2Hg resonance in N

To ensure that the CAP-MRCI approach can be used beyond just the single point characterization
of resonances, it is important that the method is capable of producing smooth complex potential en-
ergy surfaces of the metastable anions. Computing PES of metastable anions with CAP methods is
precarious as the final result depends on parameters such as CAP strength and onset. The optimum
parameters are dependent on the geometry of the molecule and therefore kinks and inconsistencies
in the potential energy surfaces are expected. Previous studies with CAP augmented methods have
shown to yield smooth and consistent potential energy surfaces,>!> but that is not always the case,
as seen in the case of CPES of 2%;" resonance of H,% and minimum energy crossing pathway of
m* resonance of formic acid with the corresponding ground state of neutral.>’It has recently been
observed that in certain cases, even the choice of correction scheme for the determination of 1,

S.3> Furthermore, the projected CAP introduces

can play a role in affecting the integrity of the PE
additional variations, such as the size of subspace.

Here, to demonstrate the application of CAP-MRCI as a useful tool for the exploration of
complex potential energy surfaces, we investigate the PES of the well studied 2Hg shape resonance
in N, . The CAP onset is determined based on the (R?) values for the equilibrium structure of

0

ground state N, and is fixed at 10 = r(y) =276 a.u., r, = 4.88a.u., respectively. For a II type

21



resonance, it is safe to assume that the resonance parameters are not oversensitive to change in the
CAP onset. However, when dealing with a ¢ type resonance, the CAP onset should be optimized

along with the CAP strength at each point.”>
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Figure 6: (a) Potential energy curves of the ]Z; state of N, and the 2Hg state of N, at
MRCIS(5,8)/aug-cc-pVTZ+gh[3s3p3d] level of theory. The encircled red and blue points cor-
respond to the equilibrium bond distance (r,,)) on neutral and anionic surfaces, respectively. (b)
Corresponding widths along the PES

From our CAP-MRCIS calculations, a smooth potential energy surface is obtained for the 2I'Ig
state as summarized in Figure 6. A shallow minimum is seen on the anionic PES at r(N-N) =
1.15 A. As expected, the optimum geometry of the anion is slightly displaced along the reaction
coordinate compared to the optimized neutral structure. The complex PES obtained at the CAP-
MRCIS level is in fairly good agreement with the PES obtained by Jagau et al.”> and White et
al.?? at EOM-EA-CCSD level of theory. A small difference is however observed near the crossing
point between our results and the EOM-EA-CCSD results.*?>% The crossing between the neutral
and the anion curves in this work is observed close to ~ 1.55 A whereas the crossing point is seen

at ~ 1.45 A at the coupled cluster level. The width of the resonance as a function of bond length is
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shown in Figure 6b. A difference between the uncorrected and corrected widths starts to increase
at shorter bond lengths. The uncorrected width increases in a strictly linear fashion to 3.2 eV at
0.8 A whereas the corrected width undergoes a gradual increase and attains a width of ~ 1.6 eV
at 0.8 A. More importantly, the corrected width becomes zero at the same distance as the crossing
between the neutral and the anion surfaces, as is physically expected.

The PES obtained for the ZHg resonance at the projected CAP-MRCI level agrees well with
previous studies with respect to the shape and the continuity of the PES, thereby demonstrating
the capabilities of the projected approach to computing complex PES. One strong advantage of
using MRCI methods is being able to describe the wavefunctions at stretched geometries, and
hence a complete picture of the PES including the dissociation limit can be computed effectively.
Nevertheless, as described above, the success of this example is not guarantee that the approach

will work in general for more complicated systems.

2B, Feshbach Resonance in H,O~

Now that the effectiveness of the projected CAP-MRCI approach has been demonstrated for the
calculation of a shape resonance, we turn our attention to computing 2p-1h resonances with the
same approach. Since we are employing a multi-reference approach, computing 2p-1h resonances
is quite straightforward and effective. This is described in our earlier work where we employ
multi-reference approaches with stabilization methods to compute 2p-1h resonances in water and
benzene anions. > Here, we attempt to describe the lowest Feshbach resonance (?B1) in H,O anion.
The 2B; Feshbach resonance has been the subject of several studies over the past years. Exper-
iments by Schulz, Compton et al. and Beli¢ et al. place the resonance position at 6.5 eV with
no information on the corresponding width.”®% A complete description of the complex poten-
tial energy surfaces of the various Feshbach resonances in water has been provided by Haxton
et al. using complex Kohn scattering calculations, where they estimate the 2B; resonance posi-
tion and width to be 6.09 eV and 10 meV, respectively.’® On the other hand, R-matrix studies by

Gorfinikiel et al. report a position of 6.99 eV and a width of 4 meV. %’ From our previous work

23



using stabilization-MRCISD, the position and width for the 2By resonance is predicted to be 7.2

eV and 7 meV, respectively.
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Figure 7: Corrected trajectories for the 2B; Feshbach resonance in H,O~ computed at
MRCIS(7,5+n,;,¢)/aug-cc-pVTZ+[3s3p3d(O)] level of theory. ‘ny;;’ is the number of lowest en-
ergy virtual orbitals in the active space for anion calculations. Arrows indicate the turning points.

Table 6: Corrected trajectories for the 2B, Feshbach resonance in H,O ™ at MRCIS(7,5+ny;,)/aug-
cc-pVTZ+[3s3p3d(0)] level of theory. Box size is fixed at r) = 2.72,r) = 2.40,r0 = 2.60 a.u..

i | Ug (V) [ T(eV) [ nZ, (au.)
2 6.65 0.015 0.011
3 6.65 0.015 0.0054
4 6.70 0.014 0.0031

Table 6 contains a summary of the computed resonance positions and widths for the 2B Fesh-
bach resonance as a function of active space size, whereas the corresponding trajectories are shown
in Figure 7. The number of lowest energy virtual orbitals in the active space is increased from 2
to 4 to track the associated changes in the final positions and widths. Unfortunately, the minimum
logarithmic velocity criterion was not fulfilled for the uncorrected trajectory and therefore uncor-
rected results are not presented. The corrected positions remain consistent against changes in the
active space at 6.65 eV. A small increase of 0.05 eV is observed in the corrected position for the
(7,9) active space. The widths, on the other hand seem to decrease as we add more virtual orbitals

into the active space. Our results for the position are in very good agreement with theoretical
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and experimental estimates. Also, the theoretical predictions of the width of ~14 meV is in good
agreement with the result of Haxton et al.”® The widths are also not very sensitive to the active
space despite their small value. Since there is no experimental information regarding the widths, a

direct comparison of our computed value to experiment is not possible.

Shape and Feshbach Resonances in Maleonitrile and Fumaronitrile Anions
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Figure 8: Optimized structures of maleonitrile (MN) (left) and fumaronitrile (FN) (right). The
highest Abelian point groups for MN and FN are C;, and C,;, respectively.

A final application of the projected CAP-MRCI method is demonstrated for the computation
of both shape and Feshbach resonances in two structural isomers of dicyanoethylene (seen in Fig
8). In this final application we want to examine the effect of mixing between shape and Fesh-
bach resonances on their properties. Very little is known about the resonances in dicyanoethylene

101 o the fumaronitrile radical anion

anions. Photo-detachment experiments by Khuseynov et al.
(FN) reveal a series of shape resonances in the photo-electron spectrum. The shape resonances cor-
respond to e~ attachment to low-lying valence unoccupied orbitals of fumaronitrile radical anion.
The shape resonances have also been detected using electron transmission spectroscopy. %2 There
is some theoretical work as well using projected CAP/SAC-CI by Ehara et al. !9 Although there is
no experimental observation of the Feshbach resonance in either isomer of dicyanoethylene, which
is formed from the e~ attachment to HOMO->LUMO excitation, this has been explored theoreti-
cally.%% A theoretical study by Klaiman and Cederbaum demonstrated that barrierless isomeriza-
tion reaction can be achieved in either direction by simply accessing the Feshbach resonances in
either of the isomers of dicyanoethylene.%> They were able to compute the potential energy sur-

faces along the isomerization pathway starting from the Feshbach resonance in either direction by

simply performing small basis set calculations. The Feshbach resonances for both isomers radical
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anions were predicted to be around ~ 90 kcal mol~! or 3.9 eV.

2B resonances in cis-dicyanoethylene anion
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Figure 9: Uncorrected and corrected trajectories for the 2B, Feshbach (a) and shape (b) resonances
in MN anion at MRCIS(7,9)/aug-cc-pVTZ+[3p] level of theory.

In order to obtain both positions and widths we use the projected CAP-MRCI approach to study
both one particle and 2p-1h resonances of maleonitrile (MN) anion and the mixing between them.
As discussed earlier, the 2p-1h resonance in this case is a Feshbach resonance. The results obtained
at the SA12-CAP-MRCIS(7,9)/aug-cc-pVTZ+[3p] level of theory for both the Feshbach and shape
resonances of 2B; symmetry are summarized in Table 7, while details for various box sizes are
shown in SI. The uncorrected and corrected trajectories for the Feshbach resonance are depicted in
Figure 9. The position is at 4.35 eV, while the width is about 0.05 eV. On the other hand, the shape
resonance 1s situated slightly above the Feshbach with a position of 5.12 eV from the neutral. The

energy difference between the shape and the Feshbach resonance is calculated to be 0.77 eV. The
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Table 7: Corrected resonance positions and widths of Feshbach and shape resonances in MN and
FN anions respectively at SA12-MRCIS(7,9)/aug-cc-pVTZ+[3p] level of theory. The characteri-
zation as Feshbach and Shape resonances is based on initial expectations and it is not appropriate
for MN, as discussed in the text.

Res. Type Eg (eV) I'(eV)
Feshbach (MN) | 4.35 [ 4.7x1072
Shape (MN) 512 | 3.0x1072
Feshbach (FN) | 4.37 | 6.8x1073
Shape (FN) 516 | 3.8x107!

close proximity of the shape to the Feshbach should result in mixing and this feature is reflected
in the CI coefficients associated with the Feshbach resonance wavefunction. The coefficient of
the Feshbach configuration is found to be 0.61 and the coefficient corresponding to the shape
configuration is observed to be 0.45, indicating strong mixing between the two resonances. To
further investigate the mixing, we also looked at the natural orbital occupation numbers for both
shape and Feshbach resonance states (Fig 10). The effect of mixing becomes evident when we
look at the individual orbital occupation numbers of 2by, 2a; and 3b; orbitals in both shape and
Feshbach resonances. The 2b; orbital should be singly occupied for the shape resonance and
doubly occupied for the Feshbach resonance. However the occupation numbers are almost equal
for the two resonances, around 1.5-1.7. The mixing becomes more evident in the case of the
2a, orbital where the occupation number is only 1 and not > 1.5 to indicate the presence of 2
electrons in the Feshbach resonance. The 2a; orbital in the shape resonance has an occupation
number of 0.6 as opposed to being ~ 0.0, indicating the presence of an electron. Similarly, the
unoccupied 3b; orbital in the Feshbach resonance has an occupation number of 0.5, although
in a single configuration description it should be 0. More importantly the mixing has important
consequences for the widths, which are very similar for the two resonances, even though one
would expect the Feshbach resonance to be much longer lived. The strong mixing between the two
configurations indicates that the characterization of either state as “shape" or “Feshbach" is not
appropriate any more. For a clear distinction between the decay channels, computation of partial

decay widths is required. As we will discuss, the same effect in trans-dicyanoethylene presents an
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alternate picture altogether.

Occ. No. Occ. No.
3b,—— (0.5) —f— (0.7)
2a, —4+—— (1.0) — (0.6)

2b, —— (1.5) —— (17)
1b, ——— (1.9) —— (19)

() Feshbach Shape
Occ. No. Occ. No.
33,/ (0.2) —_—— (0.8)
2b, ——4—— (1.7) —— (04)

2a,—+— (1.2) —=— (19
1la,——+—— (1.9) —— (19

(b) Feshbach Shape

Figure 10: Natural orbital occupation numbers for the Feshbach and shape resonances of MN (a)
and FN (b) using MRCIS(7,9)/aug-cc-pVTZ+[3p].

2A, resonances in trans-dicyanoethylene

The energy positions and widths of the Feshbach and shape resonances for FN are tabulated in
Table 7. The trajectory for the Feshbach resonance is shown in Figure 11. Since the minimum
of the logarithmic velocity couldn’t be identified for the uncorrected trajectory, the results are
therefore omitted from the figure. Detailed results are shown in the SI. From the corrected results
for the %A, Feshbach resonance, the position is situated at an energy of 4.37 eV from the neutral
FN. The position of the Feshbach in FN anion is similar to the 4.35 eV position seen in the case
of the MN anion. The widths, however are different by an order of magnitude between the two
resonances. In the case of the MN anion, the width was reported to be 0.047 eV but for the
Feshbach in FN anion, it is predicted to be an order of magnitude smaller, 0.0068 eV. This much
smaller width is more in line with what would be expected from a Feshbach resonance. A shape
resonance is also seen here of 2A, symmetry situated at an energy of 5.16 eV. The width for the
shape resonance as seen from Table 7 is 0.38 eV, indicating a broad 7* resonance as opposed to the
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shape resonance in MN anion. Experimental results by Burrow et al. !0 place the A, resonance
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Figure 11: (a) Corrected trajectory for the 24, Feshbach resonance. (b) Uncorrected and corrected
trajectories for the 2A,, shape resonance in FN anion. MRCIS(7,9)/aug-cc-pVTZ+[3p] level of
theory was used in both cases.

position at 3.5 eV. Projected CAP/SAC-CI results by Ehara et al. % report a position of 4.21 eV
and a width of 0.36 eV for the same resonance. Our results for the width are in good agreement,
but our position is off by 1.66 eV from the experimental value.

The extent of mixing between the Feshbach and shape resonances in FN™ is very different
from MN™. In the case of the FN anion, the wavefunction of the Feshbach resonance has a CI
coefficient of 0.81 from the Feshbach configuration but only a coefficient of 0.32 from the shape
configuration. The relatively lower mixing in the trans-isomer is also evident from the analysis of
natural orbital occupation numbers shown in Figure 10b, which in this case are aligned with the
expected occupations for Feshbach and shape resonances.

Comparison of these two isomers provides evidence of the profound effect of mixing. When
mixing occurs the widths of the two channels are very similar, as seen in MN, while without

mixing they differ by two orders of magnitude, as seen in FN. In order to confirm that the mixing
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is responsible for the different widths, we calculated the shape resonances of the two isomers using
EOM-EA-CCSD where mixing with Feshbach resonances is not possible. The detailed results are
shown in SI. Remarkably, we found that both isomers have similar large widths, around 0.3-0.5
eV. So the small width and associated long lifetime for the shape resonance in MN is clearly an
effect of mixing with the Feshbach resonance. This finding can be very important in a variety of
molecules where mixing has been suggested, and in particular the nucleobases.’! This is the first

time that accurate widths have been calculated confirming the importance of mixing.

Conclusions

An implementation of the projected CAP approach with the MRCI electronic structure method is
presented. The freely available OpenCAP program is interfaced to the open-source COLUMBUS
electronic structure program system to compute 1)-trajectories for resonances at the cost of a single
MRCI calculation. The projected approach is employed to study shape and Feshbach resonances
in anions of N», H,O and isomers of dicyanoethylene.

Benchmark studies on the 2Hg resonance in the N; anion with projected CAP-MRCI suggest
that a small subspace consisting of a few states is adequate for the characterization of resonance
states to a reasonable accuracy. We also demonstrated the variation of resonance positions and
widths against the changes in convergence thresholds for pseudo-continuum states, where we ob-
served that the final resonance energies remain relatively insensitive to changes in the convergence
criterion for pseudo-continuum states. This observation is in contrast to stabilization methods,
where the eigenvalues in the vicinity of the resonance state need to be converged tightly for the
successful application of the analytical continuation procedure to retrieve Siegert energies.

Moving from single point energies, we know that MRCI excels in producing complete poten-
tial energy surfaces for bound states and in this work, we were able to generate a smooth complex
potential energy surface for an anion resonance using the projected CAP-MRCI approach. The ad-

vantage of the projected CAP-MRCI for the computation of complex potential energy surfaces is

30



twofold: 1) projected CAP is computationally inexpensive compared to conventional CAP imple-
mentation for the computation of single point energies; 2) use of MRCI as the underlying electronic
structure method enables us to explore regions of the potential energy surfaces where multiple con-
figurations are dominant. Another advantages of MRCI when studying potential energy surfaces is
that it can be applied to conical intersections. Consequently, it will be interesting to investigate the
applicability of the CAP-MRCI approach to compute resonance energies for molecular geometries
in the vicinity of complex analogues of conical intersections. As demonstrated by Feuerbacher et
al.*® and Benda et al.,”® crossings between resonances are quite common, and their characteriza-
tion is important for a deeper understanding of the underlying decay mechanisms. Although the
current work successfully reproduced the PES of N, more work is needed to examine the behavior
of complex PES for more complicated molecules.

To demonstrate the effectiveness of the projected CAP-MRCI approach, both Feshbach and
shape resonances in structural isomers of dicyanoethylene and the mixing between the two reso-
nances in respective isomers were investigated. We found that in both isomers, the positions of
the Feshbach and shape resonances are similar. However, a key difference between the isomers is
that in the case of the cis-isomer, the resonant-channel mixing is greater compared to that of the
trans-isomer. As a consequence we observe very different widths and lifetimes between the two
isomers. The cis-isomer has a much longer lifetime of the shape resonance in comparison to the
shape resonance in trans-isomer. Since mixing between different types of resonances is present in
many systems, including the biologically relevant nucleobases, we expect this observed effect on
the widths to have profound effects in electron driven processes.

Despite the above described advantages of CAP-MRCI, there are also some shortcomings of
using multi-reference methods as the underlying electronic structure method in CAP based cal-
culations. A main issue is that, since the resonance position is computed by taking the difference
between the neutral and anion energies obtained from two different calculations, the final values are
usually over-estimated. In addition, the dependence of resonance parameters on choice of active

space also needs to be included while dealing with multi-reference methods unlike single-reference
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methods.
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