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Figure 1: Example inverse consistent network (ICON) registration results for OAI knee images (see §4), obtained from a U-Net trained for
inverse consistency (without any explicit loss to promote map regularity). All four panels show (left to right) the (1) moving image, (2) fixed
image, (3) warped moving image and the (4) corresponding transformation grid (colored). Transformations are, as desired, smooth.

Abstract

Learning maps between data samples is fundamental. Ap-
plications range from representation learning, image trans-
lation and generative modeling, to the estimation of spatial
deformations. Such maps relate feature vectors, or map be-
tween feature spaces. Well-behaved maps should be regular,
which can be imposed explicitly or may emanate from the
data itself. We explore what induces regularity for spatial
transformations, e.g., when computing image registrations.
Classical optimization-based models compute maps between
pairs of samples and rely on an appropriate regularizer
for well-posedness. Recent deep learning approaches have
attempted to avoid using such regularizers altogether by
relying on the sample population instead. We explore if it is
possible to obtain spatial regularity using an inverse consis-
tency loss only and elucidate what explains map regularity
in such a context. We find that deep networks combined
with an inverse consistency loss and randomized off-grid
interpolation yield well behaved, approximately diffeomor-
phic, spatial transformations. Despite the simplicity of this
approach, our experiments present compelling evidence, on
both synthetic and real data, that regular maps can be ob-
tained without carefully tuned explicit regularizers, while
achieving competitive registration performance.

1. Motivation

Learning maps between feature vectors or spaces is an
important task. Feature vector maps are used to improve
representation learning [7], or to learn correspondences in
natural language processing [4]. Maps between spaces are
important for generative models when using normalizing
flows [24] (to map between a simple and a complex probabil-
ity distribution), or to determine spatial correspondences be-
tween images, e.g., for optical flow [16] to determine motion
from videos [12], depth estimation from stereo images [25],
or medical image registration [39, 40].

Regular maps are typically desired; e.g., diffeomorphic
maps for normalizing flows to properly map densities, or
for medical image registration to map to an atlas space [20].
Estimating such maps requires an appropriate choice of trans-
formation model. This entails picking a parameterization,
which can be simple and depend on few parameters (e.g., an
affine transformation), or which can have millions of param-
eters for 3D nonparametric approaches [14]. Regularity is
achieved by 1) picking a simple transformation model with
limited degrees of freedom, 2) regularization of the transfor-
mation parameters, 3) or implicitly through the data itself.
Our goal is to demonstrate and understand how spatial reg-
ularity of a transformation can be achieved by encouraging
inverse consistency of a map. Our motivating example is



image registration/optical flow, but our results are applicable
to other tasks where spatial transformations are sought.

Registration problems have traditionally been solved by
numerical optimization [28] of a loss function balancing an
image similarity measure and a regularizer. Here, the pre-
dominant paradigm is pair-wise image registration1 where
many maps may yield good image similarities between
a transformed moving and a fixed image; the regularizer
is required for well-posedness to single out the most de-
sirable map. Many different regularizers have been pro-
posed [14, 28, 33] and many have multiple hyperparameters,
making regularizer choice and tuning difficult in practice.
Deep learning approaches to image registration and optical
flow have moved to learning maps from many image pairs,
which raises the question if explicit spatial regularization
is still required, or if it will emanate as a consequence of
learning over many image pairs. For optical flow, encour-
aging results have been obtained without using a spatial
regularizer [10, 32], though more recent work has advocated
for spatial regularization to avoid “vague flow boundaries
and undesired artifacts” [18, 19]. Interestingly, for medi-
cal image registration, where map regularity is often very
important, almost all the existing work uses regularizers as
initially proposed for pairwise image registration [36, 42, 2]
with the notable exception of [3] where the deformation
space is guided by an autoencoder instead.

Limited work explores if regularization for deep registra-
tion networks can be avoided entirely, or if weaker forms
of regularizations might be sufficient. To help investigate
this question, we work with binary shapes (where regulariza-
tion is particularly important due to the aperture effect [15])
and real images. We show that regularization is necessary,
but that carefully encouraging inverse consistency of a map
suffices to obtain approximate diffeomorphisms. The result
is a simple, yet effective, nonparametric approach to obtain
well-behaved maps, which only requires limited tuning. In
particular, the in practice often highly challenging process
of selecting a spatial regularizer is eliminated.

Our contributions are as follows: (1) We show that approx-
imate inverse consistency, combined with off-grid interpo-
lation, results in approximate diffeomorphisms, when using
a deep registration model trained on large datasets. Forego-
ing regularization is insufficient; (2) Bottleneck layers are
not required and many network architectures are suitable;
(3) Affine preregistration is not required; (4) We propose
randomly sampled evaluations to avoid transformation flips
in texture-less areas and an inverse consistency loss with
beneficial boundary effects; (5) We present good results of
our approach on synthetic data, MNIST, and a 3D magnetic
resonance (MR) knee dataset of the Osteoarthritis Initiative
(OAI).

1A notable exception is congealing [45].

2. Background and Analysis
Image registration is typically based on solving optimiza-

tion problems of the form

θ∗ = argmin
θ

Lsim(I
A ◦ Φ−1

θ , IB) + λLreg(θ) , (1)

where IA and IB are moving and fixed images, Lsim(·, ·)
is the similarity measure, Lreg(·) is a regularizer, θ are the
transformation parameters, Φθ is the transformation map,
and λ ≥ 0. We consider images as functions from RN to R
and maps as functions from RN to RN . We write ∥f∥p for
the Lp norm on a scalar or vector-valued function f .

Maps, Φθ, can be parameterized using few parameters
(e.g., affine, B-spline [14]) or nonparametrically with con-
tinuous vector fields [28]. In the nonparametric case, pa-
rameterizations are infinite-dimensional (as one deals with
function spaces) and represent displacement, velocity, or
momentum fields [2, 36, 42, 28]. Solutions to Eq. (1) are
classically obtained via numerical optimization [28]. Re-
cent deep registration networks are conceptually similar, but
predict θ̃

∗
, i.e., an estimate of the true minimizer θ∗.

There are three interesting observations: First, for trans-
formation models with few parameters (e.g., affine), regular-
ization is often not used (i.e., λ = 0). Second, while deep
learning (DL) models minimize losses similar to Eq. (1),
the parameterization is different: it is over network weights,
resulting in a predicted θ∗ instead of optimizing over θ di-
rectly. Third, DL models are trained over large collections of
image pairs instead of a single (IA, IB) pair. This raises the
following questions: Q1) Is explicit spatial regularization
necessary, or can we avoid it for nonparametric registration
models? Q2) Is using a single neural network parameteriza-
tion to predict all θ∗ beneficial? For instance, will it result
in simple solutions as witnessed for deep networks on other
tasks [35] or capture meaningful deformation spaces as ob-
served in [42]? Q3) Does a deep network parameterization
itself result in regular solutions, even if only applied to a
single image pair, as such effects have, e.g., been observed
for structural optimization [17]?

Regularization typically encourages spatial smoothness
by penalizing derivatives (or smoothing in dual space). Com-
monly, one uses a Sobolev norm or total variation. Ideally,
one would like a regularizer adapted to deformations one
expects to see (as it encodes a prior on expected deforma-
tions e.g., as in [29]). In consequence, picking and tuning a
regularizer is cumbersome and often involves many hyperpa-
rameters. While avoiding explicit regularization has been ex-
plored for deep registration / optical flow networks [10, 32],
there is evidence that regularization is beneficial [18].

Our key idea is to avoid complex spatial regularization
and to instead obtain approximate diffeomorphisms by en-
couraging inverse consistent maps via regularization.



2.1. Weakly-regularized registration

Assume we eliminate regularization (λ = 0) and use the
p-th power of the Lp norm of the difference between the
warped image, IA ◦ Φ−1

θ , and the fixed image, IB , as sim-
ilarity measure. Then, our optimization problem becomes

θ∗ = argmin
θ

∫︂
(IA(Φ−1

θ (x))−IB(x))p dx , p ≥ 1, (2)

i.e., the image intensities of IA should be close to the image
intensities of IB after deformation. Without regularization,
we are entirely free to choose Φθ. Highly irregular minimiz-
ers of Eq. (2) may result as each intensity value IA is simply
matched to the closest intensity value of IB regardless of lo-
cation. For instance, for a constant IB(x) = c and a moving
image IA(y) with a unique location yc, where IA(yc) = c,
the optimal map is Φ−1

θ (x) = yc, which is not invertible:
only one point of IA will be mapped to the entire domain of
IB . Clearly, more spatial regularity is desirable. Importantly,
irregular deformations are common optimizers of Eq. (2).

Optimal mass transport (OMT) is widely used in machine
learning and in imaging. Such models are of interest to us
as they can be inverse consistent. An OMT variant of the
discrete reformulation of Eq. (2) is

θ∗ = argmin
θ

dx

S∑︂
i=1

(IA(Φ−1
θ (xi))− IB(xi))

p (3)

for p ≥ 1, where i indexes the S grid points xi, Φ−1
θ (xi) is

restricted to map to the grid points yi of IA, and dx is the
discrete area element. Instead of considering all possible
maps, we attach a unit mass to each intensity value of IA

and IB and ask for minimizers of Eq. (3) which transform
the intensity distribution of IA to the intensity distribution
of IB via permutations of the values only. As we only
allow permutations, the optimal map will be invertible by
construction. This problem is equivalent to optimal mass
transport for one-dimensional empirical measures [31]. One
obtains the optimal value by ordering all intensity values
of IA (IA1 ≤ · · · ≤ IAS ) and IB (IB1 ≤ · · · ≤ IBS ). The
minimum is the p-th power of the p-Wasserstein distance
(p ≥ 1) Wp

p =
∑︁

i |IAi − IBi |p. In consequence, minimizers
for Eq. (2) are related to sorting, but do not consider spatial
regularity. Note that solutions might not be unique when in-
tensity values in IA or IB are repeated. Solutions via sorting
were empirically explored for registration in [34] to illustrate
that they, in general, do not result in spatially meaningful
registrations. At this point, our idea of using inverse consis-
tency (i.e., invertible maps) as the only regularizer appears
questionable, given that OMT often provides an inverse con-
sistent model (when a matching, i.e., a Monge solution, is
optimal), while resulting in irregular maps (Fig. 2).

0.0 1.0 1.25 1.25 0.00.0 1.0 1.25 1.25 0.0

x

(a) Source function (b) Target function

x

(c) MSE map example (d) OMT map example

0.0 1.0 1.5 1.25 0.0

x

0.0 1.0 1.25 1.25 0.0

x

x

x
0.0 1.0 1.5 1.25 0.0 0.0 1.0 1.5 1.25 0.0

I
A
(x
)

I
B
(x
)

Figure 2: Source and target functions for a 1D registration example.
Panels (c) and (d) show two possible solutions for mean square error
(MSE) and OMT, respectively. In both cases, solutions may not be
unique. However, for OMT, matching solutions will be one-to-one,
i.e., invertible. OMT imposes a stronger constraint than MSE on
the obtainable maps, but irregular maps are still permissible.

Yet, we will show that a registration network, combined
with an inverse consistency loss, encourages map regularity.

2.2. Avoiding undesirable solutions

Simplicity. The highly irregular maps in Fig. 2 occur for
pair-wise image registration. Instead, we are concerned with
training a network over an entire image population. Were
one to find a global inverse consistent minimizer, a network
would need to implicitly approximate the sorting-based OMT
solution. As sorting is a continuous piece-wise linear func-
tion [5], it can, in principle, be approximated according to
the universal approximation theorem [26]. However, this
is a limit argument. Practical neural networks for sorting
are either approximate [27, 11] or very large (e.g., O(S2)
neurons for S values [6]). Note that deep networks often
tend to simple solutions [35] and that we do not even want
to sort all values for registration. Instead, we are interested
in more local permutations, rather than the global OMT per-
mutations, which is what we will obtain for neural network
solutions with inverse consistency.
Invertibility. Requiring map invertibility implies searching
for a matching (a Monge formulation in OMT) which is
an optimal permutation, but which may not be continuous2.
Instead, our goal is a continuous and invertible map. We
therefore want to penalize deviations from

ΦAB
θ ◦ ΦBA

θ = Id , (4)

where ΦAB
θ denotes a predicted map (by a network with

weights θ) to register image IA to IB; ΦBA
θ is the network

output with reversed inputs and Id denotes the identity map.
Inverse consistency of maps has been explored to obtain

symmetric maps for pair-wise registration [13, 8] and for

2It would be interesting to study how well a network approximates an
OMT solution and if it naturally regularizes it.



registration networks [43, 36]. Related losses have been pro-
posed on images (instead of maps) for registration [22, 21]
and for image translation [44]. However, none of these ap-
proaches study inverse consistency for regularization. Likely,
because it has so far been believed that additional spatial
regularization is required for nonparametric registration.

2.3. Approximate inverse consistency

As we will show next, approximate inverse consistency
by itself yields regularizing effects in the context of pairwise
image registration.

Denote by ΦAB
θ (x) and ΦBA

θ (x) the output maps of a
network for images (IA, IB) and (IB , IA), respectively. As
inverse consistency by itself does not prevent discontinuous
solutions, we propose to use approximate inverse consistency
to favor C0 solutions. We approximate the network’s vari-
ance as two vector-valued independent spatial white noises
n1(x), n2(x) ∈ RN (x ∈ [0, 1]N with N=2 or N=3 the
image dim.) of variance 1 for each space location and di-
mension and define

ΦAB
θε (x) = ΦAB

θ (x) + εn1(Φ
AB
θ (x)) ,

ΦBA
θε (x) = ΦBA

θ (x) + εn2(Φ
BA
θ (x)) ,

with ε > 0. We then consider the loss L = λLinv + Lsim,
with inverse consistency component (Linv)

Linv =
⃦⃦
ΦAB

θε ◦ ΦBA
θε − Id

⃦⃦2
2
+
⃦⃦
ΦBA

θε ◦ ΦAB
θε − Id

⃦⃦2
2

(5)

and similarity component (Lsim)

Lsim =
⃦⃦
IA ◦ ΦAB

θ − IB
⃦⃦2
2
+
⃦⃦
IB ◦ ΦBA

θ − IA
⃦⃦2
2
. (6)

Importantly, note that there are multiple maps that can lead
to the same IA ◦ ΦAB

θ and IB ◦ ΦBA
θ . Therefore, among all

these maps, minimizing the loss L drives the maps towards
those that minimize the two terms in Eq. (5).

Assumption. Both terms in Eq. (5) can be driven to a small
value (of the order of the noise), by minimization.

We first Taylor-expand one of the two terms in Eq. (5)
(the other follows similarly), yielding⃦⃦

ΦAB
θε ◦ ΦBA

θε − Id
⃦⃦2
2
≈
⃦⃦
ΦAB

θ ◦ ΦBA
θ +

εn1(Φ
AB
θ ◦ ΦBA

θ ) +

dΦAB
θε (εn2(Φ

BA
θ ))− Id

⃦⃦2
2
.

(7)

Defining the right-hand side as A, developing the squares
and taking expectation, we obtain

E[A] =
⃦⃦
ΦAB

θ ◦ ΦBA
θ − Id

⃦⃦2
2

+ ε2E
[︂⃦⃦
n1 ◦ (ΦAB

θε ◦ ΦBA
θε )

⃦⃦2
2

]︂
+ ε2E

[︂⃦⃦
dΦAB

θε (n2) ◦ ΦBA
θ

⃦⃦2
2

]︂
,

(8)

since, by independence, all the cross-terms vanish (the noise
terms have 0 mean value). The second term is constant, i.e.,

E
[︂⃦⃦
n1 ◦ (ΦAB

θε ◦ ΦBA
θε )

⃦⃦2
2

]︂
= (9)∫︂

E
[︁
∥n1∥22(y)

]︁
Jac((ΦBA

θε )−1 ◦ (ΦAB
θε )−1) dy = const. ,

where we performed a change of variables and denoted the
determinant of the Jacobian matrix as Jac. The last equality
follows from the fact that the variance of the noise term is
spatially constant and equal to 1. By similar arguments, the
last expectation term in Eq. (8) can be rewritten as

E
[︂⃦⃦

dΦAB
θε (n2) ◦ ΦBA

θ

⃦⃦2
2

]︂
=∫︂

Tr(d(ΦAB
θε )⊤dΦAB

θε ) Jac((ΦBA
θ )−1) dy , (10)

where Tr denotes the trace operator. As detailed in the
suppl. material, the identity of Eq. (10) relies on a change
of variable and on the property of the white noise, n2,
which satisfies null correlation in space and dimension
E[n2(x)n2(x′)⊤] = IdRN if x = x′ and 0 otherwise.

Approximation & H1 regularization. We now want to
connect the approximate inverse consistency loss of Eq. (5)
with H1 norm type regularization. Our assumption implies
that ΦAB

θ ◦ ΦBA
θ ,ΦBA

θ ◦ ΦAB
θ are close to identity, there-

fore one has Jac((ΦBA
θ )−1) ≈ Jac(ΦAB

θ ). Assuming this
approximation holds, we use it in Eq. (10), together with the
fact that, ΦAB

θε ≈ ΦAB
θ +O(ε) to get at order ε2 (see suppl.

material for details) to approximate Linv, i.e.,

Linv ≈
⃦⃦
ΦAB

θ ◦ ΦBA
θ − Id

⃦⃦2
2
+

⃦⃦
ΦBA

θ ◦ ΦAB
θ − Id

⃦⃦2
2

+ε2
⃦⃦⃦⃦
dΦAB

θ

√︂
Jac(ΦAB

θ )

⃦⃦⃦⃦2
2

+ ε2
⃦⃦⃦⃦
dΦBA

θ

√︂
Jac(ΦBA

θ )

⃦⃦⃦⃦2
2

.
(11)

We see that approximate inverse consistency leads to an L2

penalty of the gradient, weighted by the Jacobian of the map.
This is a type of Sobolev (H1 more precisely) regularization
sometimes used in image registration. In particular, the H1

term is likely to control the compression and expansion
magnitude of the maps, at least on average, on the domain.
Hence, approximate inverse consistency leads to an implicit
H1 regularization, formulated directly on the map.

Inverse consistency with no noise and the implicit regu-
larization of inverse consistency. Turning the noise level
to zero also leads to regular displacement fields in our ex-
periments when predicting maps with a neural network. In
this case, we observe that inverse consistency is only approx-
imately achieved. Therefore, one can postulate that the error
made in computing the inverse entails the H1 regularization
as previously shown. The possible caveat of this hypothesis
is that the inverse consistency error might not be independent



of the displacement fields, which was assumed in proving the
emerging H1 regularization. Last, even when the network
should have the capacity to exactly satisfy inverse consis-
tency for all data, we conjecture that the implicit bias due to
the optimization will favor more regular outputs.

A fully rigorous theoretical understanding of the regular-
ization effect due to the data population and its link with
inverse consistency is important, but beyond our scope here.

3. Approximately diffeomorphic registration
We base our registration approach on training a neural

network FAB
θ which, given input images IA and IB , out-

puts a grid of displacement vectors, DAB
θ , in the space of

image IB , assuming normalized image coordinates covering
[0, 1]N . We obtain continuous maps by interpolation, i.e.,

ΦAB
θ = DAB

θ + Id, DAB
θ = interp(FAB

θ ) (12)

where IA ◦ ΦAB
θ ≈ IB . Under the assumption of linear

interpolation (bilinear in 2D and trilinear in 3D), ΦAB
θ is

continuous and differentiable except on a measure zero set.
Building on the considerations of Sec. 2 we seek to minimize

L(θ) = Ep(IA,IB)

[︁
LAB

sim + λLAB
inv

]︁
, (13)

where λ ≥ 0 and p(IA, IB) denotes the distribution over all
possible image pairs. The similarity and invertibility losses
depend on the neural network parameters, θ, and are

LAB
sim = Lsim(I

A ◦ ΦAB
θ , IB) + Lsim(I

B ◦ ΦBA
θ , IA)

LAB
inv = Linv(Φ

AB
θ ,ΦBA

θ ) + Linv(Φ
BA
θ ,ΦAB

θ ) (14)

with

Lsim(I, J) = ∥I−J∥22 ,Linv(ϕ, ψ) = ∥ϕ◦ψ−Id ∥22 . (15)

For simplicity, we use the squared L2 norm as similarity
measure. Other measures, e.g., normalized cross correla-
tion (NCC) or mutual information (MI), can also be used.
When LAB

inv goes to zero, ΦAB
θ will be approx. invertible and

continuous due to Eq. (12). Hence, we obtain approximate
C0 diffeomorphisms without differential equation integra-
tion, hyperparameter tuning, or transform restrictions. Our
loss in Eq. (13) is symmetric in the image pairs due to the
symmetric similarity and invertibility losses in Eq. (14).
Displacement-based inverse consistency loss. A general
map ΦAB

θ may map points in [0, 1]N to points outside [0, 1]N .
Extrapolating maps across the boundary is cumbersome.
Hence, we only interpolate displacement fields as in Eq. (12).
We rewrite the inverse consistency loss as

Linv(Φ
AB
θ ,ΦBA

θ ) =
⃦⃦
(DAB

θ + Id) ◦ (DBA
θ + Id)− Id

⃦⃦2
2

=
⃦⃦
(DAB

θ ) ◦ ΦBA
θ +DBA

θ

⃦⃦2
2

(16)

Figure 3: Left: Output generated by a network trained with inverse
consistency, evaluated on a grid (not randomly); the loss cannot
detect that these maps flip the pair of pixels in the upper right corner,
as that error is not represented in the composed map. Right: Output
from a network trained with random evaluation off of lattice points.
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Figure 4: In this example, grid points (•) map to each other inverse
consistently. The forward map (a) is inverted by the backward map
(b) and folding of the space occurs as the middle two points swap
positions. Off-grid points map under linear interpolation according
to (c/d). The interpolated displacements for (•) do not result in an
invertible map. Hence, this mismatch would be penalized by the
inverse consistency loss, but only when evaluated off-grid.

and use it for implementation, as it is easier to evaluate.

Random evaluation of inverse consistency loss. LAB
inv can

be evaluated by approximating the L2 norm, assuming con-
stant values over the grid cells. In many cases, this is suffi-
cient. However, as Fig. 3 illustrates, swapped locations may
occur in uniform regions where a registration network only
sees uniform background. This swap, composed with itself,
is the identity as long as it is only evaluated at the center
of pixels/voxels. Hence, the map appears invertible to the
loss. However, outside the centers of pixels/voxels, the map
is not inverse consistent when combined with linear interpo-
lation. To avoid such pathological cases, we approximate
the L2 norm by random sampling. This forces interpola-
tion and therefore results in non-zero loss values for swaps.
Fig. 4 shows why off-grid sampling combined with inverse
consistency is a stronger condition than only considering
deformations at grid points. In practice, we evaluate the loss



Linv(Φ
AB
θ ,ΦBA

θ ) =
⃦⃦
(DAB

θ ) ◦ ΦBA
θ +DBA

θ

⃦⃦2
2

= Ex∼U(0,1)N
[︁
(DAB

θ ) ◦ ΦBA
θ +DBA

θ

]︁2
(x)

≈ 1/Np

∑︂
i

(︁
[(DAB

θ ) ◦ (DBA
θ + Id) +DBA

θ ](xi + ϵi)
)︁2

(17)

= 1/Np

∑︂
i

(︁
[DAB

θ ◦ (DBA
θ ◦ (xi + ϵi) + xi + ϵi)

+ DBA
θ ◦ (xi + ϵi)]

)︁2
,

where Np is the number of pixels/voxels, U(0, 1)N de-
notes the uniform distribution over [0, 1]N , xi denotes the
grid center coordinates and ϵi is a random sample drawn
from a multivariate Gaussian with standard deviation set to
the size of a pixel/voxel in the respective spatial directions.

4. Experiments
Our experiments address several aspects: First, we com-

pare our approach to directly optimizing the maps ΦAB and
ΦBA on a 2D toy dataset of 128× 128 images. Second, on
a 2D toy dataset of 28× 28 images, we assess the impact of
architectural and hyperparameter choices. Finally, we assess
registration performance on real 3D MR images of the knee.

4.1. Datasets

MNIST. We use the standard MNIST dataset with images
of size 28 × 28, restricted to the number “5” to make sure
we have semantically matching images. For training/testing,
we rely on the standard partitioning of the dataset.
Triangles & Circles. We created 2D triangles and circles
(128 × 128) with radii and centers varying uniformly in
[.2, .4] and [.4, .7], respectively. Pixels are set to 1 inside a
shape and smoothly decay to -1 on the outside. We train
using 6,000 images and test on 6,000 separate images3.
OAI knee dataset. These are 3D MR images from the
Osteoarthritis Initiative (OAI). Images are downsampled to
size 192× 192× 80, normalized such that the 1th percentile
is set to 0, the 99th percentile is to 1, and all values are
clamped to be in [0, 1]. As a preprocessing step, images of
left knees are mirrored along the left-right axis. The dataset
contains 2,532 training images and 301 test pairs.

4.2. Architectures

We experiment with four neural network architectures.
All networks output displacement fields, DAB

θ . We briefly
outline the differences below, but refer to the suppl. material
for details. The first network is an MLP with 2 hidden lay-
ers and ReLU activations. The output layer is reshaped into
size 2×W ×H . Second, we use a convolutional encoder-
decoder network (Enc-Dec) with 5 layers each, reminiscent
of a U-Net without skip connections. Our third network uses
6 convolutional layers without up- or down-sampling. The

3Code to generate images and replicate these experiments is available at
https://github.com/uncbiag/ICON
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U-Net

Figure 5: Comparison between U-Net results and direct optimiza-
tion (no neural network; over ΦAB

θ and ΦBA
θ ) w/ and w/o added

noise, using the inverse consistency loss with λ = 2, 048. Direct
optimization w/o noise leads to irregular maps, while adding noise
or using the U-Net improves map regularity (best viewed zoomed).

input to each layer is the concatenation of the outputs of
all previous layers (ConvOnly). Finally, we use a U-Net
with skip and residual connections. The latter is similar to
Enc-Dec, but uses LeakyReLU activations and batch nor-
malization. In all architectures, the final layer weights are
initialized to 0, so that optimization starts at a network out-
putting a zero displacement field.

4.3. Regularization by approx. inverse consistency

Sec. 2.3 formalized that approximate inverse consistency
results in regularizing effects. Specifically, when ΦAB

θ is ap-
proximately the inverse of ΦBA

θ , the inverse consistency loss
LAB

inv can be approximated based on Eq. (11), highlighting its
implicit H1 regularization. We investigate this behavior by
three experiments: Pair-wise image registration (1) with arti-
ficially added noise (noise) and (2) without (no noise) artifi-
cially added noise, and (3) population-based registration via
a U-Net. Fig. 5 shows some sample results, supporting our
theoretical exposition of Sec. 2.3: Pair-wise image registra-
tion without noise results in highly irregular transformations
even though the inverse consistency loss is used. Adding a
small amount of Gaussian noise with standard deviation of
1/8th of a pixel (similar to the inverse consistency loss mag-
nitudes we observe for a deep network) to the displacement
fields before computing the inverse consistency loss, results
in significantly more regular maps. Lastly, using a U-Net
yields highly regular maps. Notably, all three approaches
result in approximately inverse consistent maps. The behav-
ior for pair-wise image registration elucidates why inverse
consistency has not appeared in the classical (pair-wise)
registration literature as a replacement for more complex
spatial regularization. The proposed technique only results
in regularity when inverse consistency errors are present.

https://github.com/uncbiag/ICON


MNIST

Network → MLP Enc-Dec U-Net ConvOnly

λ ↓ Dice Folds Dice Folds Dice Folds Dice Folds

64 0.92 26.61 0.80 0.15 0.93 3.87 0.93 30.20
128 0.92 9.95 0.77 0.08 0.92 1.45 0.90 16.27
256 0.91 2.48 0.72 0.01 0.90 0.41 0.88 7.17
512 0.90 0.72 0.66 0.03 0.89 0.09 0.85 3.12
1,024 0.88 0.34 0.62 0.06 0.86 0.02 0.81 0.54
2,048 0.87 0.16 0.63 0.00 0.73 0.09 0.76 0.07

Triangles & Circles

Network → MLP Enc-Dec U-Net ConvOnly

λ ↓ Dice Folds Dice Folds Dice Folds Dice Folds

64 0.98 1.24 0.94 3.50 0.98 2.74 0.97 12.57
128 0.98 0.73 0.90 2.71 0.98 1.59 0.96 10.15
256 0.98 0.27 0.88 1.11 0.97 1.14 0.96 8.49
512 0.97 0.10 0.87 0.65 0.96 0.70 0.94 6.61
1,024 0.96 0.03 0.86 0.22 0.95 0.25 0.92 3.91
2,048 0.95 0.03 0.85 0.15 0.94 0.09 0.89 2.18

Table 1: Network performance across architectures and regulariza-
tion strength λ. MLP / U-Net perform best. All methods work.

ConvOnlyU-NetEnc-DecMLP
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0

λ=
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λ=
0

λ=
64

λ=
2,0

48

Moving

Fixed

Figure 6: Comparison of networks as a function of λ. U-Net and
MLP show the best performance due to their ability to capture long
and short range dependencies. Enc-Dec and ConvOnly, which
capture only long range and only short range dependencies, resp.,
also learn regular maps, but for a narrower range of λ. In all cases,
maps become smooth for sufficiently large λ. Best viewed zoomed.

In summary, our theory is supported by our experimental
results: approximate inverse consistency regularizes maps.

4.4. Regularization for different networks

Sec. 4.3 illustrated that approximate inverse consistency
yields regularization effects which translate to regularity for
network predictions, as networks will, in general, not achieve
perfect inverse consistency. A natural next question to ask is
“how much the results depend on a particular architecture”?
To this end, we assess four different network types, focusing
on MNIST and the triangles & circles data. We report two
measures on held-out images: the Dice score of pixels with
intensity greater than 0.5, and the mean number of folds, i.e.,
pixels where the volume form dV of Φ is negative.

One hypothesis as to how network design could drive
smoothness would be that smoothness is induced by convo-
lutional layers (which can implement a smoothing kernel).
If this were the case, we would expect the MLP to produce
irregular maps with a high number of folds. Vice versa, since
the MLP has no spatial prior, obtaining smooth transforms
would indicate that smoothness is promoted by the loss itself.
The latter is supported by Fig. 6, showing regular maps even
for the MLP when λ is sufficiently large. Note that λ = 0
in Fig. 6 corresponds to an unregularized MSE solution, as
discussed in Sec. 2.1; maps are, as expected, highly irregular
and regularization via inverse consistency is clearly needed.

A second hypothesis is that regularity results from a bot-
tleneck structure within a network, e.g., a U-Net. In fact,
Bhalodia et al. [3] show that autoencoders tend to yield
smooth maps. To assess this hypothesis, we focus on the
Enc-Dec and ConvOnly type networks; the former has a
bottleneck structure, while the latter does not. Fig. 6 shows
some support for the hypothesis that a bottleneck promotes
smooth maps: for a specific λ, Enc-Dec appears to have
more strongly regularized outputs compared to U-Net, with
ConvOnly being the most irregular. Yet, higher values of λ
(e.g., 1,024 or 2,048) for ConvOnly yield equally smooth
maps. Overall, a bottleneck structure does have a regulariz-
ing effect, but regularity can also be achieved by appropri-
ately weighing the inverse consistency loss (see Tab. 1).

In summary, our experiments indicate that the regulariz-
ing effect of inverse consistency is a robust property of the
loss, and should generalize well across architectures.

4.5. Performance for 3D image registration

For experiments on real data, we focus on the 3D OAI
dataset. To demonstrate the versatility of the advocated
inverse consistency loss in promoting map regularity, we re-
frain from affine pre-registration (as typically done in earlier
works) and simply compose the maps of multiple U-Nets
instead. In particular, we compose up to four U-Nets as
follows: A composition of two U-Nets is initially trained
on low-resolution image pairs. Weights are then frozen and
this network is composed with a third U-Net, trained on
high-resolution image pairs. This network is then optionally



Method Lsim Dice Folds Time [s]

Demons MSE 63.47 19.0 114
SyN CC 65.71 0 1330
NiftyReg NMI 59.65 0 143
NiftyReg LNCC 67.92 203 270
vSVF-opt LNCC 67.35 0 79
Voxelmorph (w/o affine) MSE 46.06 83 0.12
Voxelmorph MSE 66.08 39.0 0.31
AVSM (7-Step Affine, 3-Step Deformable) LNCC 68.40 14.3 0.83

ICON (2 step 1/2 res., 2 step full res., w/o affine) MSE 68.29 118.4 1.06
ICON (2 step 1/2 res., 1 step full res., w/o affine) MSE 66.16 169.4 0.57
ICON (2 step 1/2 res., w/o affine) MSE 59.36 49.35 0.09

Table 2: Comparison of ICON against the methods in [36], on
cross-subject registration for OAI knee images.

frozen and composed with a fourth U-Net, again trained on
high-resolution image pairs. During this multi-step training,
the weighting of the inverse consistency loss is gradually
increased. We train using ADAM [23] with a batch size
of 128 in the low-res. stage, and a batch size of 16 in the
high-res. stage. MSE is used as image similarity measure.

We compare our approach, InverseConsistentNet (ICON),
against the methods of [36], in terms of (1) cartilage Dice
scores between registered image pairs [1] (based on manual
segmentations) and (2) the number of folds. The segmen-
tations are not used during training and allow quantifying
if the network yields semantically meaningful registrations.
Tab. 2 lists the corresponding results, Fig. 1 shows several
example registrations. Unlike the other methods in Tab. 2,
except where explicitly noted, ICON does not require affine
pre-registration. Since affine maps are inverse consistent,
they are not penalized by our method. Notably, despite its
simplicity, ICON yields performance (in terms of Dice score
& folds) comparable to more complex, explicitly regularized
methods. We emphasize that our objective is not to outper-
form existing techniques, but to present evidence that regular
maps can be learned without carefully tuned regularizers.

In summary, using ICON yields (1) competitive Dice
scores, (2) acceptable folds and (3) fast performance.

5. Limitations, future work, & open questions
Several questions remain and there is no shortage of theo-

retical/practical directions, some of which are listed next.
Network architecture & optimization. Instead of speci-
fying a spatial regularizer, we now specify a network ar-
chitecture. While our results suggest regularizing effects
for a variety of architectures, we are still lacking a clear
understanding of how network architecture and numerical
optimization influence solution regularity.
Diffemorphisms at test time. We simply encourage inverse
consistency via a quadratic penalty. Advanced numerical ap-
proaches (e.g., augmented Lagrangian methods [30]) could
more strictly enforce inverse consistency during training.
Our current approach is only approximately diffeomorphic
at test time. To guarantee diffeomorphisms, one could ex-
plore combining inverse consistency with fluid deformation

models [14]. These have been used for deep registration
networks [42, 41, 36, 37, 9] combined with explicit spatial
regularization. We would simply predict a velocity field and
obtain the map via integration. By using our loss, sufficiently
smooth velocity fields would likely emerge. Alternatively,
one could use diffeomorphic transformation parameteriza-
tions by enforcing positive Jacobian determinants [38].
Multi-step. Our results show that using a multi-step estima-
tion approach is beneficial; successive networks can refine
deformation estimates and thereby improve registration per-
formance. What the limits of such a multi-step approach
are (i.e., when performance starts to saturate) and how it
interacts with deformation estimates at different resolution
levels would be interesting to explore further.
Similarity measures. For simplicity, we only explored
MSE. NCC, local NCC, and mutual information would be
natural choices for multi-modal registration. In fact, there are
many opportunities to improve registrations e.g. using more
discriminative similarity measures based on network-based
features, multi-scale information, or side-information during
training, e.g., segmentations or point correspondences.
Theoretical investigations. It would be interesting to es-
tablish how regularization by inverse consistency relates to
network capacity, expressiveness, and generalization. Fur-
ther, establishing a rigorous theoretical understanding of the
regularization effect due to the data population and its link
with inverse consistency would be important.
General inverse consistency. Our work focused on spatial
correspondences for registration, but the benefits of inverse
consistency regularization are likely much broader. For
instance, its applicability to general mapping problems (e.g.,
between feature vectors) should be explored.

6. Conclusion
We presented a deliberately simple deep registration

model which generates approximately diffeomorphic maps
by regularizing via an inverse consistency loss. We theo-
retically analyzed why inverse consistency leads to spatial
smoothness and empirically showed the effectiveness of our
approach, yielding competitive 3D registration performance.

Our results suggest that simple deep registration networks
might be as effective as more complex approaches which
require substantial hyperparameter tuning and involve choos-
ing complex transformation models. As a wide range of
inverse consistency loss penalties lead to good results, only
the desired similarity measure needs to be chosen and ex-
tensive hyperparameter tuning can be avoided. This opens
up the possibility to easily train extremely fast custom reg-
istration networks on given data. Due to its simplicity, ease
of use, and computational speed, we expect our approach
to have significant practical impact. We also expect that
inverse consistency regularization will be useful for other



tasks, which should be explored in future work.
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