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Abstract. In this paper, we study the learning problem in contextual search, which is moti-
vated by applications such as crowdsourcing and personalized medicine experiments. In
particular, for a sequence of arriving context vectors, with each context associated with an
underlying value, the decision maker either makes a query at a certain point or skips the
context. The decision maker will only observe the binary feedback on the relationship
between the query point and the value associated with the context. We study a probably
approximately correct learning setting, where the goal is to learn the underlying mean
value function in context with a minimum number of queries. To address this challenge,
we propose a trisection search approach combined with a margin-based active learning
method. We show that the algorithm only needs to make Õ(1=ε2) queries to achieve an
ε-estimation accuracy. This sample complexity significantly reduces the required sample
complexity in the passive setting where neither sample skipping nor query selection is
allowed, which is at leastΩ(1=ε3).
History:Accepted by J. George Shanthikumar, data science.
Funding: X. Chen andQ. Liuwere supported by the National Science Foundation [Grant IIS-1845444].
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1. Introduction
Contextual search, which extends the classical binary
search problem to high dimensions, finds a wide range
of applications, such as crowdsourcing and personal-
ized medicine. In the contextual search problem, for
each round i � 1, 2, 3, : : : , an item (e.g., a customer or a
patient) arrives sequentially, each with a contextual vec-
tor xi ∈ R

d accessible to the decision maker. We assume
that the context xi incurs an unknown stochastic value
ui � v(xi) + ξi, where v(xi) is the mean value function of
xi and ξi is the stochastic noise. The decision maker
selects a query bi ∈ R and then observes the binary feed-
back, that is, whether ui ≥ bi or vice versa. The true value
ui will never be revealed. To better fit our motivating
applications illustrated below, the decision maker is
allowed to skip making a query on certain contextual
vectors to save her budget. Our goal is to learn the
mean value function v(xi) with a minimum number of
queries/trials. It is worth noting that we adopt the sam-
ple complexity as the objective instead of revenue/cost
because we focus on the experimental phase for the
learning purpose. In this phase, the number of trials is
usually quite small, and thus, it is common to treat cost
equally for each trial. We now briefly describe two
motivating applications.

PersonalizedMedicine Experiment: Let us consider
the example of clinical trials, where the goal of an

experiment is to determine the proper dosage v(x) in
radiation therapy. The profile of each potential experi-
mental unit is characterized by x (e.g., her demo-
graphics, diagnosis, medications, and genetics). Bastani
and Bayati (2020) adopted a linear bandit model (i.e.,
the linear form of v(x)) to investigate the relationship
between the optimal dosage and the patients’ profile.
In this experiment, the laboratory posts an advertise-
ment to the public and receives nominations (e.g.,
someone will call the laboratory to express her inter-
est). After the laboratory receives a nomination and
conducts some prescreening to collect the profile infor-
mation x, the laboratory can simply reject a nomination
without further experimental procedure. For example,
if the laboratory has already experimented on a similar
unit (i.e., a unit with a similar profile x), the laboratory
will naturally reject this potential unit. If the laboratory
decides to accept the experimental unit, we assume
that the laboratory will recommend a dosage bi and
receive the binary feedback on whether the recom-
mended dosage is above or below the appropriate
level. As performing a radiation therapy experiment is
costly and time-consuming, a common goal is to use
the minimum number of trials to learn the ideal per-
sonalized dosage level function (i.e., the v(·) function).

Crowdsourcing: In a crowdsourcing experiment,
the decisionmaker hires a crowdsourced expert to help
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determine the difficulty level (e.g., measured by com-
pletion time) of different tasks characterized by their
context vectors x. Assuming for each task i, the underly-
ing difficulty level is ui � v(xi) + ξi. Numerous psychol-
ogy studies have shown one is more good at providing
pairwise comparison than absolute numerical estimate
(Shiffrin and Nosofsky 1994, Stewart et al. 2005). There-
fore, instead of asking the expert to provide a numerical
estimate of the difficulty level, the decision maker will
give an estimate bi. Then the expert provides binary
feedback on whether she believes bi is an over-estimate
or under-estimate. In such a crowdsourcing experiment,
it is natural that the decision maker will not bother the
expert to provide feedback for some tasks (e.g., those
tasks similar to previously queried jobs).

Motivated by these applications, the goal of this paper
is to propose an efficient algorithm to learn v(x). Follow-
ing the existing literature on contextual search and
feature-based pricing, we also adopt a linear model of
the mean valuation function, that is, v(x) � 〈x,w∗〉 −μ∗
for some unknown coefficient vector w∗ ∈ R

d and the
intercept μ∗ ∈ R. Compared with the existing literature,
our contextual search problem has the following unique
features, which calls for new algorithmic development:

1. First, the existing contextual search setup aims to
minimize either the absolute loss |bi − v(xi)| or the ε-ball
loss I(|bi − v(xi)| > ε) for some predetermined ε over
time. Here I(·) denotes the indicator function. In contrast,
we consider a learning problem, where the goal is to
learn v(x) as accurately as possible. Therefore, we
adopt a probably approximately correct (PAC) setting
(see (2) in Section 2) instead of regret minimization set-
ting in existing literature (Leme and Schneider 2018,
Lobel et al. 2018, Cohen et al. 2020, Krishnamurthy et al.
2021). To facilitate the analysis of this learning prob-
lem, we assume the stochasticity of the contextual
information xi.

2. Second, as we are motivated by experimental applica-
tions, the decision maker should judge the benefit of a
context xi to the learning problem. Therefore, compared
with the existing contextual search, our problem has
another layer of decision, that is, whether to conduct a
query or not, beyond the decision of the query point itself.

To address this problem, we adopt the active learn-
ing framework from machine learning research (Set-
tles 2012). In particular, we adopt the margin-based
active learning approach (Balcan et al. 2007). At a high
level, let v̂(·) be the current estimate of the underlying
v(·) function and b̂ be the query point. For an arriving
context x, the margin-based active learning will make
a query if |̂v(x) − b̂| is sufficiently small, which indi-
cates that it is difficult to determine the relationship
between b̂ and v̂(x). Although it is an intuitive approach,
existing margin-based active learning approaches cannot
be directly applied to address our problem because of the
existence of the intercept μ∗. In fact, a famous negative
result by Dasgupta (2005b) shows that active learning can-
not significantly improve sample complexity over passive
learning for linear binary classification models with inter-
cepts in its most general form. It is worth noting that
throughout this paper, by “passive learning,” we refer to
the learning paradigm in which the decision making can
neither skip samples (regardless of their contextual infor-
mation x) nor adaptively change actions/queries. Please
refer to Figure 1 for details.

To address this challenge, we propose an active
learning procedure consisting of three major stages:

1. The first stage of the algorithm is to use trisection
search to locate two queries b̂1 and b̂2 that are close to the
underlying intercept term μ∗, without consuming too
many labeled (queried) samples. In this first stage sample
selection (i.e., determining whether a sample is to be
labeled/queried or not) is not carried out, but the

Figure 1. (Color online) Negative Examples of Problem Instances Constructed in Dasgupta (2005b)

Notes. (Left) Examples of nonhomogeneous linear classifiers with unbalanced labels, for which Dasgupta (2005b) shows that active learning (i.e.,
sample selection for labeling purposes) cannot lead to significantly improved sample complexity. (Right) Nonhomogenous linear classifiers with
balanced labels, for which improvements of sample complexity can bemade via sample selection (active learning).
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algorithm will actively explore different actions in order
to obtain b̂1, b̂2 that are close to μ∗;

2. The second stage of the algorithm is to apply mar-
gin based active learning to learn the linear model w∗
and an intercept term depending on both μ∗ and b̂1, b̂2.
In this second stage sample selection will be carried
out, as only those users with contextual vectors xt close
to classification hyperplanes will be queried/labeled
(see Algorithm 3 for details). The actions taken in this
stage (on selected samples) will be fixed to either b̂1 or
b̂2 obtained in the first stage.

Although this classification model still has nonzero
intercept terms, the closeness of b̂1, b̂2 to μ∗ would
imply that the obtained labels under actions b̂1 or b̂2
are balanced, circumventing the negative results in the
work of Dasgupta (2005b) that specifically constructed
counter-examples with unbalanced labels. In Figure 1
and the following related work section, we give a
detailed account of this negative example and how it
presents challenges to active learning. Indeed, our the-
oretical analysis extends the arguments in Balcan et al.
(2007) to this more general setting of linear classifica-
tion with intercepts and balanced labels, with similar
convergence rates derived.

3. The final stage of the algorithm is to reconstruct
the mean utility model v̂(·) from the estimated linear
model and intercepts. Because margin-based active
learning can only estimate a linear model up to scales,
we need model estimates at two different actions b̂1, b̂2
(corresponding to two different effective intercepts) in
order to reconstruct w∗ and μ∗ in v(·). Details of how
this reconstruction is carried out are given in the last
two lines of Algorithm 1.

We establish the sample complexity bound for the
proposed margin-based active learning with a trisec-
tion search scheme. We assume that with Õ(1=ε3) total
number of incoming contexts, the decision maker only
needs to make Õ(1=ε2) queries to estimate the mean
value function v(x) within ε-precision (with high
probability). Here Õ here hides the dependence on d
and other logarithmic factors. We also show that in
the passive setting, where the decision maker is re-
quired to conduct queries for all arriving contexts as
in the standard contextual search, the sample com-
plexity would be at leastΩ(1=ε3) (see Remark 1).

1.1. Related Work
Our problem setting can be viewed as a variant of the
contextual search problem, which is an extension of
the classical binary search. In binary search, the deci-
sion maker tries to guess a fixed constant μ∗ (i.e., the
value ui ≡ μ∗ for all i in our problem) by iteratively
making queries bi. In the PAC learning setting, the
binary search algorithm only needs O(log (1=ε))
queries to estimate μ∗ within ε-precision. Because of
the importance of applications such as personalized

medicine and feature-based pricing, contextual search
has received a lot of attention in recent years. The
existing literature mainly adopts the linear model for
the mean value function. For ε-ball loss ∑

iI(|bi−
v(xi)| > ε), Lobel et al. (2018) established the Ω(d log
(1=ε ��

d
√ )) regret lower bound and proposed the project

volume algorithm that achieves a near-optimal regret
of O(d log (d=ε)). For absolute loss ∑

i|bi − v(xi)|, Leme
and Schneider (2018) established the regret bound of
O(poly(d)). As we explained in the introduction, to fit
the applications considered in our paper, we adopt a
PAC learning setting and equip the decision maker
with the ability to pass an incoming context. While
most contextual search settings in the literature con-
sider adversarial contextual information, we assume
the stochasticity of the contextual information as we
study a learning problem.

Active learning is an important research area in
machine learning, originating from the seminal work
of Cohn et al. (1994) dating back to the 1990s. The
main idea behind active learning is to equip the learn-
ing algorithm with the ability to select samples or data
points to be labeled, improving its sample complexity
in applications where labels are expensive to obtain
but unlabeled data are abundant. There have been
many successful algorithms developed for active learn-
ing, such as bisection search for one-dimensional
noiseless problems (Dasgupta 2005b), greedy method
(Dasgupta 2005a), disagreement-based active learn-
ing (Hanneke 2007, Balcan et al. 2009, Zhang and
Chaudhuri 2014), margin based active learning (Balcan
et al. 2007, Balcan and Long 2013, Wang and Singh
2016) and active learning based on surrogate loss
functions (Awasthi et al. 2017, Balcan and Zhang 2017).
Because of the vast amount of literature on active learn-
ing, we cannot cite all related works here and would
like to refer interested readers to the excellent review of
Hanneke (2014) for an overview of this area.

Our approach in this paper resembles the margin-
based active learning method (Balcan et al. 2007, Bal-
can and Long 2013, Wang and Singh 2016) that is
developed for linear classifiers and have been popular
in the active learning literature because of its intuitive
nature, tight sample complexity, and relative ease
of implementation. However, while linear classifiers
seem simple, nonhomogeneous linear classifiers (i.e.,
linear classifiers with an intercept term) present notori-
ous challenges to active learning algorithms. More
specifically, the work of Dasgupta (2005a) shows that
d ≥ 2 and nonhomogeneous linear classifiers produce
unbalanced samples, such as the example shown in
the left panel of Figure 1. In this illustrative example,
potential linear classifiers are within O(ε) distance to
the domain boundary, and thus, active learning cannot
asymptotically improve sample complexity over pas-
sive learning as it takes O(1=ε) samples to hit the
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boundaries. It is easy to verify that, if a nonhomoge-
nous linear classifier is within ε distance to the boun-
dary and the underlying distribution of unlabeled
samples is relatively uniform, the probability of seeing
a positive sample (as indicated in the filled region in
Figure 1) is also on the order of O(ε). To overcome
this counter-example, in this paper, we exploit the
special structure in the contextual search problem to
“balance” the labels, as shown in the right panel of
Figure 1. Although the balanced model still possesses
a nonzero intercept term, the classifier will be gener-
ally Ω(1) away from the boundary, which our theoret-
ical analysis shows is sufficient of obtaining desired
sample complexity results for active learning.

It is also interesting to make comparisons to other
margin-based active learning work. For example, the
work by Awasthi et al. (2017) considers the following
setting: for an underlying (unknown) model w∗ and fea-
ture vector x, the algorithm observes sgn(〈x,w∗〉) with
probability 1− η and an adaptively chosen label with
probability η. In comparison, in our problem setting the
algorithm observes labels with probability related to the
margin |〈x,w∗〉|. Such a difference in the setup leads to a
fundamental difference in the sample complexity: the
sample complexity in Awasthi et al. (2017) is poly-
logarithmic in 1=ε, whereas in our problem setting, a
poly(1=ε) sample complexity is necessary. In fact,
log (1=ε) sample complexity is only possible if one has
deterministic labels or probabilistic labels satisfying the
Massart noise condition; that is, for any x ∈ R

d with
〈x,w∗〉 > 0, Pr [y � 1 |x] > 1=2+ c for some constant c > 0
(and vice versa for all 〈x,w∗〉 < 0). Such a condition
clearly is not satisfied by the setting studied in this
paper, in which Pr [y � 1 |x] → 1=2 as 〈x,w∗〉 → 0+. For
noise distributions not satisfying the Massart condition,
poly(1=ε) samples are necessary (Balcan et al. 2007,
Ben-David and Urner 2014, Wang and Singh 2016).
Our work is also related to the pure-exploration prob-

lem and sequential experimental design (Elfving 1952,
Chernoff 1959, Albert 1961, Naghshvar and Javidi 2013,
Wang and Zenios 2020, Araman and Caldentey 2021, Li
et al. 2021, Wager and Xu 2021, Chen et al. 2022, Feng
et al. 2022). In experimental design problems, the deci-
sion maker is capable of choosing the context vector x.
However, in application settings considered in this paper
(e.g., experimental units arriving sequentially), it is
impractical to assume that the context vectors {xt}Tt�1
could be chosen arbitrarily. Thus, we only allow the deci-
sion maker to decide whether to skip a query.

Active learning has been an important area in
machine learning. However, it has not received a lot
of attention in operations management. This paper
takes a preliminary step on exploring the applications
of active learning, and hopefully, it will inspire more
research on active learning to address challenges aris-
ing from operations management.

1.2. Paper Organization and Notations
The rest of the paper is organized as follows. Section 2
describes the problem formulation and necessary
assumptions. Section 3 develops our margin-based
active learning algorithm with the trisection search
and establishes the sample complexity bound. The
technical proofs are provided in Section 4. We provide
the numerical simulation studies in Section 5, fol-
lowed by the conclusion in Section 6. Proofs of some
technical lemmas are relegated to the appendix.

In our paper, the asymptotic is with respect to d and ε,
with all other parameters being functions of d,ε and other
problem-dependent constants (e.g., B, cx,Cx, cξ,Cξ) that
do not change with d,ε. We say that f (x) �O(g(x)) if
there exist constants d0,ε0 and C <∞ such that for all d ≥
d0 and ε ≤ ε0, f (x) ≤ Cg(x). If we omit dependency on
constants θ � (B, cx,Cx, cξ,Cξ) in the big-O notation, then
the constant C can be a function of θ. If we further omit
poly-logarithmic dependency (by using the nota-
tion Õ(g(x))), then the constant C can depend on
log cx for some constant c.

2. Problem Formulation and
Assumptions

In our modeling, assuming the items (e.g., ads or ex-
perimental units) i � 1, 2, 3, : : : arrive sequentially, each
with a contextual or feature vector xi ∈ R

d accessible to
the decision maker. We assume that the contextual
vectors {xi}i≥1 are independently and identically distrib-
uted with respect to an unknown underlying distribu-
tion PX. We also assume that ||xi||2 ≤ 1 for the ease of
illustration. Given the contextual vector xi ∈ R

d, the
“valuation” of the item (e.g., the appropriate dosage in
personalized medical treatment) follows a linear model:

ui � v(xi) + ξi � 〈xi,w∗〉 −μ∗ + ξi, (1)

where v(·) � 〈 · ,w∗〉 −μ∗ is an underlying linear model
with a fixed but unknown coefficient vector w∗ ∈ R

d,
the intercept μ∗ ∈ R, and the noise {ξi}i≥1, which are
independently and identically distributed stochastic
variations with respect to an unknown distribution Pξ.

After observing the contextual vector xi ∈ R
d, the

decision maker will do either one of the following:
1. Let the item pass without taking any actions, and

thereby without obtaining any feedback/information;
2. Make a query at bi ∈ R, and observe the binary

feedback yi � 1 if ui ≥ bi or yi � −1 if ui < bi.
Because making a query (e.g., admitting an experi-

mental unit into a clinical trail program) incurs much
higher implicit cost as compared with passing (i.e.,
taking no action), the main goal of the decision maker
is to use as few number of queries as possible to esti-
mate the mean valuation function v(·) to a certain pre-
cision. More specifically, let ε,δ ∈ (0, 1) be target accu-
racy and probability parameters. We use n(ε,δ) to
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denote the number of queries a learning algorithm
takes in order to produce an estimate v̂(·) that satisfies

sup
||x||2≤1

|̂v(x) − v(x)| ≤ ε, with probability ≥ 1 − δ:

(2)

Clearly, the smaller n(ε,δ) is the more efficient the
designed learning algorithm is. The main objective of this
paper is to design an active learning algorithm that mini-
mizes n(ε,δ). Additionally, we use m(ε,δ) to denote the
number of total samples (i.e., the number of total incoming
contexts) an algorithm requires to obtain an estimate v̂
satisfyingEquation (2). Although those incoming contexts
skipped by our algorithm usually do not incur extra cost,
it is desirable that m(ε,δ) is reasonable because the
supply of experimental units might still be limited. In
active learning literature, an m(ε,δ) is reasonable if it is a
polynomial function in terms of 1=ε, log (1=δ) and d
(Cohn et al. 1994, Cohn 1996, Balcan et al. 2007).

Throughout this paper, we impose the following
assumptions.

Assumption 1. There exists a constant B <∞ such that
||w∗||2 ≤ B and |μ∗| ≤ B.

Assumption 2. The distribution PX satisfies the following
condition: it is supported on the unit ℓ2 ball B2(d) �
{x ∈ R

d : ||x||2 ≤ 1}; it admits a probability density function
fx(·); there exist constants 0 < cx ≤ Cx <∞ such that
cxfu(x) ≤ fx(x) ≤ Cxfu(x) for all x ∈ B2(d), where fu is the
probability density function (PDF) of the uniform distribu-
tion on B2(d).
Assumption 3. The distribution Pξ satisfies the following
condition: Pr [ξ ≤ 0] � Pr [ξ ≥ 0] � 1=2; it admits a probabil-
ity density function fξ(·); there exist constants 0 < cξ ≤ Cξ <
∞ such that sup ξ∈R fξ(ξ) ≤ Cξ=||w∗||2 and inf |ξ|≤2 fξ(ξ) ≥
cξ=||w∗||2.

Assumption 1 is a standard bounded assumption
imposed on model parameters. Assumption 2 assumes
that the contextual vectors are independently and identi-
cally distributed, with respect to a bounded and nonde-
generate distribution PX that is unknown. Similar
“nondegenerate” or “covariate diversity” assumptions
were also adopted in the contextual learning literature
(Bastani and Bayati 2020, Bastani et al. 2021), and the
assumption is actually weaker than some of the existing
works on active learning (Balcan et al. 2007, Wang and
Singh 2016), which requires PX to be the exact uniform
distribution overB2(d).

Assumption 3 is a general condition imposed on the
distribution Pξ of the noise variables. Essentially, it
assumes that zero is the median of the noise distribu-
tion Pξ, which ensures that the linear classifier is the
optimal Bayes classifier. The same assumption is com-
mon in the active learning literature (Balcan et al.
2007, Wang and Singh 2016). We do not assume the

noise distribution Pξ has any specific parametric forms
(e.g., logistic or Probit noises), making it generally
applicable to a broad range of problems. Assumption
3 requires the noise distribution to scale together with
||w∗||2 to preserve signal-to-noise ratios. In the case of a
signal-independent assumption sup ξ∈R fξ(ξ) ≤ C′

ξ and
inf |ξ|≤2 fξ(ξ) ≥ c′ξ, the change-of-parameter C′

ξ � Cξ=
||w∗||2 and c′ξ � cξ=||w∗||2 can be used to bring the signal
level ||w∗||2 into the sample complexity analysis.

3. Margin-Based Active Learning with
Trisection Search

Algorithm 1 (Meta-Algorithm for Actively Learning
Contextual Functions)

1: Input: dimension d, accuracy parameters ε,δ, algo-
rithm parameters κm,κn,κε,β0.

2: b̂1, b̂2 ← TRISECTIONSEARCH(εs,δs) with εs � 0:1=�������
d− 1

√
, δs � δ=3;

3: Let εa � κεε
2=ln 2(1=ε), δa � δ=3;

4: (ŵ1, β̂1) ← MARGINBASEDACTIVELEARNING(̂b1,εa,
δa, κm,κn,

���
εa

√
,β0);

5: (ŵ2, β̂2) ← MARGINBASEDACTIVELEARNING(̂b2,εa,
δa,κm,κn,

���
εa

√
,β0);

6: Let α̂ � (̂b2 − b̂1)=(̂β2 − β̂1);
7: Output: utility function estimate v̂(·) � 〈· , ŵ〉 − μ̂,

where ŵ � α̂ŵ1 and μ̂ � α̂β̂1 − b̂1.

The main algorithm we proposed for actively learn-
ing contextual functions is given in Algorithm 1. The
main idea of the proposed algorithm can be summar-
ized as follows.

The first step is to find two actions b̂1, b̂2 that are
reasonably close to the mean utility μ∗. This is to
ensure that when the actions are fixed at b̂1 or b̂2, the
labels received from user streams are relatively bal-
anced, thereby circumventing the negative results in
the work of Dasgupta (2005b). In Section 3.1, we show
how b̂1, b̂2 can be found without using too many
labeled samples, using a trisection search idea.

After we obtained candidate actions b̂1 and b̂2, we
use a margin-based active learning algorithm to esti-
mate the linear model w∗ and mean utility μ∗. The
margin-based active learning algorithm is similar to
the work of Balcan et al. (2007), with the difference
being that in our setting the active learning algorithm
needs to incorporate a (relatively small) intercept
term, which complicates its design and analysis.

Finally, we use the estimates (ŵ1, β̂1) and (ŵ2, β̂2)
obtained from the previously mentioned active learn-
ing procedure under two different fixed actions b̂1, b̂2 to
reconstruct the linear utility parameters w∗ and μ∗.
The reason we need two fixed actions b̂1, b̂2 is because
the active learning procedure solves a classification
problem, for which we can only estimate the linear
model and its intercept up to scalings because if one
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multiplies both the linear model and its intercept by a
constant the resulting classification problem is the same.
Hence, we need two fixed actions b̂1, b̂2 to construct an
approximate linear system of equations, the solution of
which would give us consistent estimates of w∗ and μ∗.

We briefly explain our intuition behind the construc-
tion of the utility function estimate v̂(·) in Algorithm 1.
For simplicity, we will omit the learning errors that
occurred in the two MARGINBASEDACTIVELEARING invo-
cations. Because the margin based active learning algo-
rithm learns linear classifiers up to normalization (see
Algorithm 3), we have the following equivalence:

〈ŵ1,x〉 − β̂1 > 0� 〈w∗,x〉 −μ∗ > b̂1;
〈ŵ2,x〉 − β̂2 > 0� 〈w∗,x〉 −μ∗ > b̂2,

where ||ŵ1||2 � ||ŵ2||2 � 1 because of the construction of
Algorithm 3. Again, we emphasize that the above
equivalence only holds approximately because of
learning errors of ŵ1, β̂1, ŵ2, β̂2, but we will omit these
learning errors for ease of explanation. Let α � ||w∗||2.
We have β̂1 � (μ∗ + b̂1)=α and β̂2 � (μ∗ + b̂2)=α. There-
fore, we set α̂ � (̂b2 − b̂1)=(μ̂2 − μ̂1) as the estimate of α,
and μ̂ � α̂β̂1 − b̂1 as the estimate of μ̂. Thus, we obtain
the utility function estimate v̂(·) in Algorithm 1.

3.1. Trisection Search for Accurate Mean Utility
Now we are ready to present our trisection search
algorithm for estimating the mean utility parameter μ.
The graphical illustration is provided in Figure 2.

Algorithm 2 (Trisection Search Algorithm to Roughly
Estimate the Mean Utility Parameter μ∗)

1: function TRISECTIONSEARCH(εs,δs)
2: Initialize: n� 0, lower and upper bounds

b̂1 � −B, b̂2 � B;
3: while b̂2 − b̂1 > εs do
4: b̂3 ← b̂1 + (̂b2 − b̂1)=3, b̂4 ← b̂2 − (̂b2 − b̂1)=3, n̂ �

r̂3 � r̂4 � 0, p
3
� p

4
� 0, p̄

3
� p̄4 � 1;

5: while p
3
≤ 0:5 ≤ p̄

3
and p

4
≤ 0:5 ≤ p̄

4
do

6: For an incoming user x, take action b̂3 and
observe result y ∈ {0, 1};

7: For another incoming user x′, take action b̂4
and observe result y′ ∈ {0, 1};

8: n← n+ 1, n̂ ← n̂ + 1, r̂3 � r̂3 + 1{y3 � 1}, r̂4 �
r̂4 + 1{y4 � 1};

9: Update: [p
3
, p̄

3
] ← r̂3

n̂ 6
����������
ln (8n2=δs)

2n̂

√
] and [p

4
, p̄

4
]

← r̂4
n̂ 6

����������
ln (8n2=δs)

2n̂

√
];

10: end while
11: Set b̂1 ← b̂3 if p

3
> 0:5 or p

4
> 0:5 and b̂2 ← b̂4

otherwise;
12: end while
13: return (̂b1, b̂2).
14: end function

Let b∗ ∈ R be the unique value such that Pr x~PX[v(x) ≥ b∗] � 1=2. Because PX and Pξ have PDFs, such a
value of b∗ exists and is unique. Intuitively, if one
commits to the fixed action b∗, then the labels received
by the algorithm should be balanced. Algorithm 2 shows
how to find actions b̂1, b̂2 that are reasonably close to b∗,
without consuming too many labeled samples.

The main idea behind Algorithm 2 is a trisection
search approach, motivated by the fact that the proba-
bility Pr x~PX[v(x) ≥ b] is a monotonically decreasing
function of b, and furthermore as |b− b∗| increases the
gap between Pr x~PX[v(x) ≥ b] and Pr x~PX[v(x) ≥ b∗] �
1=2 will also increase (see Lemma 4 in the proof). This
allows us to use a trisection search procedure to local-
ize the value of b∗, by simply comparing an empirical
estimate of Pr x∈PX[v(x) ≥ b] at the current value of b.
More specifically, at an iteration b̂3, b̂4 are the two
midpoints and [p3, p̄3] are lower and upper estimates

of Pr x~PX[v(x) ≥ b̂3] and similarly [p4, p̄4] are lower

and upper estimates for Pr x~PX[v(x) ≥ b̂4]. With either
probability being separated from 1/2, the algorithm
could move b̂1 or b̂2 to b̂3 or b̂4. The algorithm is guar-
anteed to maintain that b∗ ∈ [̂p1, p̂2], thanks to the
monotonicity of Pr x~PX[v(x) ≥ b]with respect to b.

The following technical lemmas are the main results
explaining the objective and guarantee of Algorithm
2, which are proved in Section 4.1.

Lemma 1. Suppose d ≥ 2 and let β∗ � b∗ +μ∗. Then |β∗|
||w∗ ||2 ≤������������������

2ln (100CxCξ=cxcξ)
d−1

√
�O(1= ��

d
√ ).

Lemma 2. Suppose d ≥ 2 and let (̂b1, b̂2) be the values
returned by BISECTIONSEARCH(εs,δs). With probability 1−
δs the following hold: b̂1 ≤ b∗ ≤ b̂2, and at most O(ε−2s log
(1=δsεs)) �O(d log (d=δ)) queried samples are consumed.

Intuitively, Lemma 1 establishes that the “balancing”
intercept b∗ isO(1= ��

d
√ ) close to the intercept μ∗ in the util-

ity model, which is helpful for our later analysis. Lemma
2 further establishes that the returned two actions b̂1, b̂2
sandwich the “label-balancing” action b∗ and also upper
bound the total number of labeled (queried) samples con-
sumed in the algorithmic procedure.

3.2. Margin-Based Active Learning
In Algorithm 3, we provide the pseudocode descrip-
tion of the margin based active learning algorithm we
use in this problem to actively learn a linear model
with intercepts.

Algorithm 3 (Margin-Based Active Learning Nonhomo-
geneous Linear Classifiers)

1: function MARGINBASEDACTIVELEARNING(b,εa,δa,κm,
κn,ε0,β0)
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2: Collect n0 � �κn=ε20� samples with action b and
let D0 � {(x,y)} ⊆ Bd(2) × {61}, |D0| � n0 be the
queried samples;

3: Let ŵ0, β̂0 ← argmin||w||2�1,|β|≤β0
∑

(x,y)∈D0
1{y≠ sgn

(〈x,w〉 − β)};
4: Let k0 �min{k ∈ N : 2−kε0 ≤ εa};
5: for k � 1, 2, : : : ,k0 do
6: εk ← 2−kε0, mk ← κm

���
εk

√
, nk ← �κnd=εk�, Dk � ∅;

7: while |Dk| < nk do
8: Observe context vector x ∈ R

d for the next
object;

9: if |〈x, ŵk−1〉 − β̂k−1| ≤mk then
10: Invoke action b and let y ∈ {61} be the

collected binary feedback;
11: UpdateDk ←Dk

⋃{x,y};
12: end if
13: end while
14: ŵk, β̂k ← argmin||w||2�1,|β|≤β0

∑
(x,y)∈Dk

1{y≠ sgn
(〈x,w〉 − β)};

15: end for
16: return ŵk0 , β̂k0 .
17: end function

In Algorithm 3, the query point b is fixed, with the
algorithm only able to select which sample/contextual
vector to act on. Because the query point b is fixed, we
can consider linear models with intercepts as
v̂(·) � 〈 · , ŵ〉 − β̂. For such a model, we define the error
of v̂ under the query point b as

errb (̂v) :� Pr
x~PX,ξ~Pξ

[sgn(v(x) + ξ︸		︷︷		︸
u(x)

−b)≠ sgn(̂v(x))], (3)

where v(x) � 〈x,w∗〉 −μ∗. For any b ∈ R, the model
v∗b(·) :� 〈 · ,w∗〉 −μ∗ − b has the smallest error defined in
Equation (3), This is because v∗b(·) is the Bayes classifier;
that is, v∗b(x) ≥ 0 if and only if Pr [v(x) + ξ ≥ b |x] ≥ 1=2.
Hence, we can also define the excess error of a model
v̂(·) as

Δerrb (̂v) :� errb (̂v) − errb(v∗b): (4)

Figure 3 illustrates the principles of Algorithm 3. The
main idea of Algorithm 3 is simple: The algorithm first
uses a “warm-up” epoch consisting of n0 queried sam-
ples to construct a preliminary model estimate ŵ0 and
β̂0. There is no sample selection or active learning in this
warm-up procedure, and the analysis of excess errors of
ŵ0, β̂0 follows the standard Vapnik–Chervonenkis (VC)
theory analyzing empirical risk minimizers of binary
classifiers (see Lemma A.3 in the proof; Balcan et al.
2007, Vapnik 2013, Vapnik and Chervonenkis 2015).
Next, in each epoch, the algorithm only takes action b for
those users with contextual vectors that are close to the
current classification hyperplane (i.e., those users with
small “margin” |〈x, ŵk−1〉 − β̂k−1|). This concentrates our
labeled/queried samples to the region that are close to
the classification hyperplane, which helps reduce the
number of queried samples as the queried samples are
collected on regions that are the most uncertain from a
binary classification perspective.

The following lemma is the main result of this sec-
tion, which is proved in Section 4.2.

Lemma 3. Let (ŵ, β̂) be returned by Algorithm 3 with
parameters satisfying |μ∗ − b|=||w∗||2 ≤ β0 �O(1= ��

d
√ ), κm �

Ω(1), κn �Ω(d+ log log (1=εa) + log (1=δa)) and ε0 ����
εa

√
. Let v̂(·) � 〈 · , ŵ〉 − β̂. Then for sufficiently large d and

sufficiently small εa, with probability 1− δa the following
hold:

1. The excess error satisfies Δerr(̂v) ≤ εa;
2. Algorithm 3 consumes O(κnd=εa) queried samples

and Õ(κn
��
d

√
edεa=ε3=2a ) total samples.

Essentially, Lemma 3 shows that the estimated lin-
ear model v̂(·) produced by Algorithm 3 has the target
excess risk εa with high probability. The lemma also
upper bounds the number of queried and total samples

Figure 2. (Color online) Graphical Illustration of the Main Idea Behind Algorithm 2

Notes. (Left) First case of the trisection search, in which }(b3) � Ex~PX [y|x,w∗,μ∗,b3] > 1=2. Once p
3
exceeds 1/2, the algorithm will move b1 to b3.

(Right) Second case of the trisection search, in which }(b4) � Ex~PX [y|x,w∗,μ∗,b4] < 1=2. As both p̄3, p̄4 are below 1/2, the algorithm will move b2
to b4. The strict monotonicity of }(·) as a function of b ensures that the trisection search will never exclude b∗ from [b1,b4], and that the search will
terminate inO(d log (d=δ)) iterations (see Lemma 2).
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consumed in the estimation procedure. As we can see,
the number of labeled samples required is on the order
of O(1=εa), which is an order of magnitude fewer than
the total number of samples consumed (on the order
of Õ(1=ε3=2)). This shows that the active learning pro-
cedure is capable of drastically reducing the number
of queried samples required to attain an accurate
model estimate v̂, by being selective in the user context
vectors.

3.3. Sample Complexity Analysis of Algorithm 1
In this section, we establish the following theorem,
which analyzes the sample complexity (both samples
that are queried on and samples that are passed) of
Algorithm 1 and provides guidance on the selection
of the algorithm input parameters.

Theorem 1. Suppose Algorithm 1 is executed with
κm � 1, κn � d+ log log (1=ε) + log (1=δ), κε � 1=d, and
β0 � 1=

��
d

√
. Then for sufficiently small ε > 0 and suffi-

ciently large d, with probability 1− δ it holds that |̂v(x) −
v(x)| ≤ ε for all x ∈ B2(d). Furthermore, the algorithm makes
n(δ,ε) queries among m(δ,ε) total samples/contexts, with

n(δ,ε) �O
d3log (d log (dε−1)=δ)log 2(1=ε)

ε2

( )
,

m(δ,ε) �O
d3log (d log (dε−1)=δ)log 3(1=ε)

ε3

( )
:

Theorem 1 shows that, by using more unlabeled/
unqueried samples than those that are labeled (more
specifically, 1=ε3 total samples and 1=ε2 labeled ones),
the utility function estimate v̂(·) produced by our
active learning algorithm is within ε estimation error
with high probability. In Section 5 of numerical studies,
we will see that the availability of unlabeled samples

will greatly improve the estimation accuracy of an active
learning algorithm compared with a passive learning
baseline which cannot skip or select samples to query.

Remark 1. If the decision maker needs to make queries
to all incoming contexts/samples (i.e., skipping uninfor-
mative samples is not allowed), then at least Ω(d=ε3)
samples are required. To see this, the standard classi-
fication theory establishes that Ω(d=ε3=2) samples
are needed to obtain a linear classifier ŵ such that
Pr [sgn (ŵ�x)≠ sgn((w∗)�x)] ≤ ε (Mammen and Tsyba-
kov 1999; Ben-David and Urner 2014, table 1) probabilis-
tic labels with Bayes classifier in H and the Tsybakov
noise conditions (TNC) parameter α � 1=2. Conversely,
it can be shown via an integration argument as follows.
Let/(ŵ,w∗) denote the angle between ŵ and w∗. If both
ŵ,w∗ are normalized (i.e., ||ŵ||2 � ||w∗||2 � 1) and ||ŵ −
w∗||2 ≈/(ŵ,w∗) ≈ ε then Pr x[sgn(ŵ�x)≠ sgn((w∗)�
x)] ≈ ε2. This shows that to achieve |̂v(·) − v(·)| ≤ ε, we
must have Pr x[sgn(ŵ�x)≠ sgn((w∗)�x)]Ùε2, indicating
a sample complexity lower bound of Ω(d=(ε3=2)2) �
Ω(d=ε3).
Remark 2. When each skipped sample has a cost of
ρ ∈ [0, 1) compared with a labeled sample, the com-
bined sample complexity of our proposed active learn-
ing algorithm is on the order of Õ(ε−2 + ρε−3), omitting
polynomial dependency on other problem parameters.
Conversely, an algorithm incapable of skipping samples
requires Ω(ε−3) samples as indicated in the previous
remark, significantly higher than Õ(ε−2 + ρε−3) espe-
cially when ρ is small (indicating that skipped samples
are much less costly compared with labeled samples).
Remark 3. In this remark, we discuss an “intermediate
setting” in which the algorithm can select action levels

Figure 3. (Color online) Graphical Illustration of the Main Idea of Algorithm 3

Notes. (Left) Initialization step (Lines 2 and 4) of Algorithm 3. In the initialization step, sample selection is not carried out and therefore the
obtained model estimates ŵ0, β̂0 have error upper bounded by ε0. (Right) First iteration of Algorithm 3. As shown in the figure, only those sam-
ples that are within anm1 margin around ŵ0, β̂0 (those within the blue dashed lines) are labeled/queried. After the first iteration, a more refined
estimate ŵ1, β̂1 is obtained and a shrunkmarginm2 is imposed (the shadowed region) for the next iteration.
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but not skip samples. This intermediate setting is
stronger than the passive learning setting but weaker
than the active learning setting. We remark that the
intermediate setting is likely to have similar sample
complexity compared with passive learning.

Consider the uniform distribution on the unit ℓ2
ball in R

d and let w ∈ R
d be an arbitrary (unknown)

classifier. It is easy to observe that, up to polynomial
constants in d, for every small ε > 0 the probability of
x ∈ {x : θ(x,w) ≤ ε} is O(ε), where θ(·, ·) denotes the
angle between two vectors in R

d. This means that,
without the ability to skip samples, for a batch of n
samples only O(nε) of them are sufficiently close to
the decision boundary w to offer a good amount of
information. On the other hand, active learning allows
the algorithm to only collect labels/responses on the
O(nε) samples that are sufficiently close to the boun-
dary, thus leading to more efficient usage of informa-
tion from labeled samples. Although the intermediate
setting can still adaptively change the action levels
(corresponding to changing the intercept in a nonho-
mogeneous linear classification model), such ability is
unlikely to achieve the “sample concentration” effect
because only changing one parameter in a multivari-
ate linear model cannot bring a uniformly sampled
data point arbitrarily close to the (unknown) decision
boundary.

4. Technical Proofs
In this section, we state the proofs of the main results
in this paper. There are also some technical lemmas
that are either easy to prove or cited/rephrased from
existing works, which will be presented in the appen-
dix. For simplicity, let PU be the uniform distribution
on B2(d) � {x ∈ R

d : ||x||2 ≤ 1} for all proofs in this
section.

4.1. Proof of Results in Section 3.1
4.1.1. Proof of Lemma 1. First, 〈w∗,x〉 −μ∗ ≥ b∗ is
equivalent to 〈w∗,x〉 − β∗ ≥ 0, with β∗ � μ∗ + b∗. Also,
we may assume ||w∗||2 � 1 because |β∗|=||w∗||2 is invari-
ant to ||w∗||2. In this proof, we shall use the lower and
upper bounds of fx by connecting it with the uniform
distribution on B2(d), PU. Because PU is isotropic, we
may assume without loss of generality that w∗ �
(1, 0, : : : , 0) and β∗ ≥ 0. We will also abbreviate η � ηb∗
and Δ � Δb∗ because all margins in this proof are
with respect to b∗. Then for all x ∈ B2(d) with x1 ≥
β∗, η(x) ≥ 1=2, and furthermore,

η(x) − 1
2
� φ(x1 − β∗) �

∫ x1−β∗

0
φ′(u)du ≤ Cξ(x1 − β∗):

Subsequently, by Assumption 2 and Lemma A.1, it
holds that

∫
x1≥β∗

η(x) − 1
2

( )
dPx(x)

≤ Cx

∫
x1≥β∗

η(x) − 1
2

( )
dPU(x)

≤ CxCξ

∫
x1≥β∗

(x1 − β∗)dPU(x)

≤ CxCξ

∫ 1

0

�������
d + 1
2π

√
e−(d−1)(β∗+γ)

2=2γdγ

≤ CxCξ

��
d

√
e−(d−1)(β∗)

2=2
∫ 1

0
γe−(d−1)γ2=2dγ: (5)

With γ �→ γ=
�������
d− 1

√
, we have

∫ 1

0
γe−(d−1)γ2=2dγ ≤����

2π
d−1

√
Ez~N (0,1=(d−1))[|z|]=2 ≤ 1=(d− 1). Noting that

��
d

√ ≤����������
2(d− 1)√

for d ≥ 2, Equation (5) can then be simplified
to ∫

x1≥β∗
η(x) − 1

2

( )
dPx(x) ≤

��
2

√
CxCξ�������
d− 1

√ e−(d−1)(β
∗)2=2: (6)

Conversely, for all x ∈ B2(d) with x1 ≤ β∗, η(x) ≤ 1=2,
and furthermore,

1
2
− η(x) � −φ(x1 − β∗) �

∫ β∗−x1

0
φ′(u)du ≥ cξ(β∗ − x1):

Subsequently, by Assumption 2 and Lemma A.1, it
holds that∫

x1≤β∗
1
2
− η(x)

( )
dPx(x) ≥ cx

∫
x1≤0

1
2
− η(x)

( )
dPU(x)

≥ cxcξ
∫
x1≤0

(β∗ − x1)dPU(x)

≥ cxcξ
∫
x1≤0

−x1dPU(x) ≥ cxcξ
∫ 1

0

�������
d + 1
16π

√
e−(d−1)γ2=2γdγ

≥ cxcξ
��
d

√
4

���
π

√
∫ ��

2
√

=
����
d−1√

1=
����
d−1√ e−(d−1)γ

2=2γdγ

≥ cxcξ
��
d

√
4

���
π

√ × 1

e
�������
d − 1

√ ×
��
2

√ − 1�������
d − 1

√ ≥ ( ��
2

√ − 1)cxcξ
4e

�����������
π(d − 1)√ : (7)

Combining Equations (5) and (7), we obtain

1
2
� Pr

x~Px
[y � 1 | b∗]

≤ 1
2
+

��
2

√
CxCξ�������
d − 1

√ e−(d−1)(β
∗)2=2 − ( ��

2
√ − 1)cxcξ
4e

�����������
π(d − 1)√ :

To satisfy the previous inequality, β∗ ≥ 0 must satisfy

β∗ ≤
��������������������������
2 ln (100CxCξ=cxcξ)

d− 1

√
�O(1= ��

d
√ ),

which proves Lemma 1.
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4.1.2. Proof of Lemma 2. For notational simplicity
define }(̂b) :� Pr x~Px[v(x) ≥ b̂]. Clearly, }(b∗) � 1=2 and
}(·) is a monotonically decreasing function. By Hoeff-
ding’s inequality, at sample n, we have Pr [}(̂b3) ∈
[p

3
, p̄3]] ≥ 1− 2e−2n̂×ln (8n2=δs)=(2n̂) ≥ 1− δs

4n2. The same in-

equality holds for Pr [}(̂b4) ∈ [p
4
, p̄4]] as well. By the

union bound, the probability that }(̂b3) ∈ [p3, p̄3] and
}(̂b4) ∈ [p

4
, p̄4] throughout the entire Algorithm 2 is

lower bounded by

1−∑
n≥1

2 × δs
4n2

� 1− δs
2

∑
n≥1

1
n2

≥ 1− δs
2
π2

6
≥ 1− δs:

This shows that with probability 1− δs the (̂b1, b̂2) pair
returned by Algorithm 2 satisfies b̂1 ≤ b∗ ≤ b̂2 because of
the monotonicity of the }(̂b) function.

To analyze the number of queried samples/objects
by Algorithm 2, we require some additional technical
results. The following lemma connects the deviation
|}(̂b) − 1=2|with |̂b − b∗|.
Lemma 4. Recall the definition that }(̂b) � Pr x~Px[w(x) ≥
b̂] and b∗ such that }(b∗) � 1=2. Then 0:07cxcξ |̂b − b∗|
≤ |}(̂b) − 1=2| ≤ Cξ |̂b − b∗|.
Proof of Lemma 4. Define β∗ � b∗ +μ∗ and β̂ � b̂ +μ∗.
Define also s :� β̂ − β∗, so that β̂ � β∗ + s. Recall the defi-
nition of margin that Δb∗ (x) � v(x) − β∗, and Pr [y � 1 |
x,b∗] � φ(Δb∗ (x)). Under b̂, we have Δb̂(x) � v(x) − β̂ �
Δb∗ (x) − s and Pr [y � 1 |x, b̂] � φ(Δb∗ (x) − s). Subsequently,

|}(̂b) −}(b∗)| ≤ Ex~Px |φ(Δb∗ (x) − s) −φ(Δb∗ (x))|
[ ]

≤ sup
|γ|≤1

|φ(γ− s) −φ(γ)| ≤ Cξ|s|:

This proves the upper bound on |}(̂b) − 1=2|.
We next consider the lower bound of |}(̂b) − 1=2|.

Without loss of generality, assume β∗ ≥ 0, w∗ � (1, 0,
: : : , 0) and s ≥ 0. We will lower bound |}(̂b) − 1=2|
by studying the decrease of Pr [y � 1 |x] on the ball
segment B2(d) ∩ {x ∈ R

d : −r ≤ x1 ≤ 0} with r � 1=����������
2(d− 1)√ ≤ 1=

��
2

√
for d ≥ 2. More specifically,

|}(̂b) − 1=2| ≥
∫
r≤x1≤0

[φ(β∗ − x1) −φ(β∗ − x1 − s)]dPX(x)

≥ cx
∫

r≤x1≤0
[φ(β∗ − x1) −φ(β∗ − x1 − s)]dPU(x) (8)

≥ cx
∫ r

0

�������
d+ 1
16π

√
e−(d−1)γ

2=2[φ(β∗ + γ) −φ(β∗ + γ− s)]dγ (9)

≥ cx
∫ r

0

�������
d+ 1
16π

√
e−(d−1)γ

2=2cξsdγ (10)

≥ cxr ×
�������
d+ 1
16π

√
× e−(d−1)r

2=2 × cξs � cxcξs

4
��������
2π

��
e

√√ ≥ 0:07cxcξs:

(11)

Here Equation (8) is because of Assumption 2,
Equation (9) is because of Lemma A.2, and Equation
(10) is because of Assumption 3. w

We are now ready to analyze the number of queried
samples in Algorithm 2. Fix an arbitrary pair of
(̂b1, b̂2) at outer iteration τ such that b̂2 − b̂1 � ετ �
2(2=3)τB ≥ εa. Then either |̂b3 − b∗| ≥ ετ=6 or |̂b4 − b∗|
≥ ετ=6. Let n̂τ be the final count when outer itera-
tion τ ends. The condition 0:5 ∈ [p

3
, p̄

3
]�0:5 ∈ [p

4
, p̄

4
]

in the inside while loop will be violated if���������������������
ln (8n2τ=δs)=2n̂τ

√
< 0:07cxcξετ=6, which translates to

n̂τ ≤ 1+ 7, 500ln (8nτ=δs)
c2xc

2
ξε

2
τ

,

where nτ � ∑
τ′≤τn̂τ′ . Let τ0 be the largest integer such

that ετ0 ≥ εa. Then the total number of queried sam-
ples is upper bounded by

2
∑
τ≤τ0

n̂τ �O
∑
τ≤τ0

1
ε2τ
log

1
δsετ

( )( )
�O(ε−2τ0 log (1=(δsετ0)))

�O(ε−2a log (1=(δsεa))):

4.2. Proof of Results in Section 3.2
The objective of this section is to prove the key
Lemma 3. Throughout this proof, we assume that d is
sufficiently large, and εa > 0 is sufficiently small. We
also define θ(w,w′) as the smallest angle between
w,w′ ∈ R

d.
Recall the definition that v∗b(·) � 〈 · ,w∗〉 − β with β �

b+μ∗ is the nonhomogeneous linear classifier with the
smallest classification error. For presentation simplic-
ity, we shall normalize v∗b(·) (because only the signs of
v∗b(·) matter in a binary classification problem) as
v∗b(·) � 〈 · , w̃∗〉 − β̃, where w̃∗ � w∗=||w∗||2 and β̃ � β=
||w∗||2. Our first technical lemma shows that if another
classifier v̂(·) � 〈 · , ŵ〉 − β̂ has small excess error, then
the angle between ŵ and w̃∗ must be small.

Lemma 5. Let v̂(·) � 〈 · , ŵ〉 − β̂, ||ŵ||2 � 1 be a learnt clas-
sifier such that Δerr(̂v) � err(̂v) − err(v∗b) ≤ ε. Then for
sufficiently small ε, it holds that tanθ(ŵ, w̃∗) ≤ 23e(d−2)β20=2��
ε

√ �O( ��
ε

√ ).
Proof of Lemma 5. Abbreviate θ � θ(ŵ, w̃∗). Without
loss of generality, assume w∗ � (1, 0, : : : , 0), ŵ � (1−
cosθ, sinθ, 0, : : : , 0) and β̃ ≥ 0. For sufficiently small ε,
we have tanθ ≤ 1, and the disagreement region
between v̂ and v∗b is shadowed in solid color in the left
panel of Figure 4. Also, as one adjusts the intercept β̂
in v̂, one disagreement region will enlarge and the
other one will shrink. As a result, the minimal
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disagreement region is shadowed in solid color in the
middle panel of Figure 4, with the radius ρ to be at least
1/2 for sufficiently large d because |β| ≤ β0 �O(1= ��

d
√ ).

To further simplify, we take only the upper triangle of
the disagreement region with r � 1=2

��
d

√ ≤ ρ and study
the rectangular region designated asΩ in the right panel
of Figure 4, whose size is r

2 × h where h � r
2 tanθ.

The excess error of v̂ can be lower bounded by the
deviation of η(x) � Pr [y � 1 |x,b] from 1/2 on Ω. More
specifically,

Δerr(̂v) ≥
∫
Ω

η(x) − 1
2

( )
dPX(x) ≥ cx

∫
Ω

η(x) − 1
2

( )
dPU(x)

� cx
∫
Ω

φ(x1 − β)dPU(x) (12)

≥ cxcξ
∫
Ω

(x1 − β)dPU(x) ≥ cxcξ
∫
Ω

d
4π

e−(d−2)(x
2
1+x22)=2

(x1 − β)dx1dx2 (13)

≥ cxcξd
4π

∫ h

0
γe−(d−2)((β+h)

2+r2)=2dγ

≥ cxcξd
4π

e−(d−2)(β
2+r2) 1

2
h2 ≥ e−(d−2)β2

128π
��
e4

√ tan 2θ:

(14)

Here, Equation (12) is because of Assumption 2
and the definition of φ; Equation (13) is because of

Assumption 3 and Lemma A.2. Taking the square
root on both sides of Equation (14) and noting that
Δerr(̂v) � ε, we complete the proof of Lemma 5. w

The next lemma shows that if Δerr(̂v) is small, then
the intercept β̂ cannot be too far away from β either.

Lemma 6. Let v̂(·) � 〈 · , ŵ〉 − β̂, ||ŵ||2 � 1, |̂β| ≤ β0 be a
learnt classifier such that Δerr(̂v) � err(̂v) − err(v∗b) � ε.
Then for sufficiently small ε, |̂β − β̃| ≤ 3601

���
π

√
CxCξc−1x c−1ξ

max{e(d−1)β20 , 1} ��
ε

√ �O( ��
ε

√ ).
Proof of Lemma 6. Let θ � θ(ŵ, w̃∗), and assume
without loss of generality that w̃∗ � (1, 0, : : : , 0) and
β̃ ≥ 0. Let also Δβ � β̂ − β̃.

First we compare the two models of v̂(·) � 〈 · , ŵ〉 − β̂
and v̂∗(·) � 〈 · , w̃∗〉 − β̂. When d is sufficiently large and
ε is sufficiently small, the disagreement region between
v̂ and v̂∗ is depicted in the left panel of Figure 5.
Because the two line segments intersect when |̂β| ≤
β0 → 0 as d→∞ and θ(ŵ, w̃∗) → 0 as ε→ 0, the maxi-
mal disagreement region between v̂ and v̂∗ is reach-
ed by the two green dashed lines in the left panel of
Figure 5, an upper bound of which is depicted in the
middle panel of Figure 5 by projecting onto the one-
dimensional space along the direction of w̃∗. Subse-
quently, the disagreement between v̂ and v̂∗ can be
upper bounded by

Figure 4. (Color online) Graphical Illustration of the Proof of Lemma 5

Figure 5. (Color online) Graphical Illustration of Proof of Lemma 6
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∫
sgn(v̂(x))≠sgn(v̂∗(x))

η(x) − 1
2

∣∣∣∣ ∣∣∣∣dPX(x)

≤
∫
x1∈[β̂6tanθ]

η(x) − 1
2

∣∣∣∣ ∣∣∣∣dPX(x)

≤ CxCξ

∫
x1∈[β̂6tanθ]

|x1 − β̃|dPU(x)

≤ CxCξ

∫ tanθ

−tanθ

�������
d+ 1
4π

√
e−(d−1)(β̂+γ)

2=2|γ−Δβ|dγ (15)

≤ CxCξ

�������
d+ 1
4π

√ ∫ tanθ

−tanθ
|γ−Δβ|dγ

� CxCξ

�������
d+ 1
4π

√
tan 2θ+ 2Δβtanθ
( )

≤ 150CxCξ

�������
d+ 1

√
e(d−2)β20ε+ 2e(d−2)β20=2

��
ε

√
Δβ

( )
�O( ��

d
√

ε+ ���
dε

√
Δβ): (16)

Here, Equation (15) is because of Lemma A.1, and the
last inequality of Equation (17) holds by Lemma 5.

Next, consider the disagreement between the two
models of v̂∗(·) � 〈 · , w̃∗〉 − β̂ and v∗(·) � 〈 · , w̃∗〉 − β̃. First
consider the case of β̂ ≥ β̃, and let Δβ � β̂ − β̃. The dis-
agreement region between v̂∗ and v∗ in this case is
depicted in the right panel of Figure 5. The disagree-
ment between v̂∗ and v∗ can then be lower bounded by∫

sgn(v̂∗(x))≠sgn(v∗(x))
η(x) − 1

2

( )
dPX(x)

≥
∫
x1∈[β̃,β̂]

η(x) − 1
2

( )
dPX(x)

≥ cxcξ
∫
x1∈[β̃,β̂]

(x1 − β̃)dPU(x)

≥ cxcξ
∫ Δβ

0

�������
d+ 1
16π

√
e−(d−1)(β̃+γ)

2=2γdγ

≥ cxcξ

�������
d+ 1
16π

√
e−(d−1)β20=2

∫ Δβ

0
γdγ (17)

≥ cxcξ
�������
d+ 1

√
8

���
π

√ e−(d−1)β
2
0=2Δ2

β: (18)

Here the second inequality in Equation (17) holds
because β̂ � β+Δβ ≤ β0 by optimization constraint. If
β̂ < β̃, the disagreement region has more density
because the region (the [̂β, β̃] strip) is closer to the ori-
gin than the perimeter of the B2(d) ball.

Combining Equations (16) and (18) and noting that
v∗ is the Bayes classifier (i.e., the classifier that mini-
mizes classification error), we have that

Δerr(̂v) ≥ cxcξ
�������
d+ 1

√
8

���
π

√ e−(d−1)β
2
0=2Δ2

β − 150CxCξ

�������
d+ 1

√

e(d−2)β
2
0ε+ 2e(d−2)β

2
0=2

��
ε

√
Δβ

( )
: (19)

Because Δerr(̂v) � ε and |Δβ| ≤ 2β0 �O(1= ��
d

√ ), for suffi-
ciently large d, the previous inequality solves to

|Δβ| ≤ 3601
���
π

√ CxCξ

cxcξ
max e(d−1)β

2
0 , 1

{ }
× ��

ε
√ �O( ��

ε
√ ),

which is to be proved. w

We are now ready to prove the key Lemma 3 in
Section 3.2.

Proof of Lemma 3. Recall the definition that εk � 2−kε0.
We use mathematical induction to prove that, at
the end of each outer iteration k ∈ {0, 1, 2, : : : , k0}, with
probability 1− δa=(k0 + 1) it holds that Δerr(ŵk, β̂k)≤ εk.

4.2.1. Base of Induction. For k � 0, invoke Lemma A.3
with n � n0 and δ � δa=(k0 + 1), we have with proba-

bility 1− δ that Δerr(ŵ0, μ̂0) ≤O
( ������������

d+ln (k0=δa)
n0

√ )
. Also,

k0 � log (1=εa). Hence, with n0 �Ω(ε−1a (d+ log log (1=
εa) + log (1=δa)), we have with probability 1− δa=(k0 + 1)
that Δerr(ŵ0, μ̂0) ≤ ε0.

4.2.2. Inductive Steps. We assume the inductive hy-
pothesis is true for k – 1, that is, Δerr(ŵk−1, μ̂k−1) ≤
εk−1 � 2−(k−1)ε0. We will prove in this step that Δerr
(ŵk, μ̂k) ≤ εk � 2−kε0 with probability 1− δa=(k0 + 1).

Denote S1 � {x ∈ B2(d) : |〈x, ŵk−1〉 − β̂k−1| ≤mk} and
S2 � B2(d)\S1. Because Δerr(ŵk−1, β̂k−1) ≤ εk−1, by Lem-
mas 5 and 6, we have that tanθ(ŵk−1,w∗) ≤ C

������
εk−1

√
and |̂βk−1 − β| ≤ C

������
εk−1

√
for some constant C depending

only on Cx, cx,Cξ, cξ. Hence, with mk selected as
mk �Ω( ������

εk−1
√ ), we have that sgn(x�ŵk−1 − β̂k−1) �

sgn(x�w∗ − β) for all x ∈ S2. Subsequently,

Δerr(ŵk, β̂k) � [err(ŵk, β̂k | S1) − err(w∗,β | S1)]Pr [x ∈ S1]
≕Δerr(ŵk, β̂k | S1)Pr [x ∈ S1], (20)

where err(w,β | S1) � Pr (x,y)[y≠ sgn(w�x− β) | x ∈ S1].
Invoking Lemma A.3, if nk ≥Ω(C2

xm
2
kd

2ε−2k ln (k0=
δa)) �Ω(d2ε−1k ln (k0=δa)) then it holds with probability
1− δa=(k0 + 1) that

Δerr(ŵk, β̂k | S1) ≤
εk

1:3Cxmk
��
d

√ : (21)

Conversely, we have that

Pr
x~PX

[x ∈ S1] ≤ Cx Pr
x~PU

[x ∈ S1] ≤ Cx Pr
x~PU

[|x1| ≤ mk]

≤ Cx

�����������
2(d + 1)

π

√ ∫ mk

0
e−(d−1)u

2=2du (22)

≤ 1:3Cxmk

��
d

√
: (23)
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Here, the last inequality in Equation (22) holds by
invoking Lemma A.1. Plug Equations (21) and (23)
into Equation (20). We proved that Δerr(ŵk, β̂k) ≤ εk,
which completes the induction step.

In the final part of the proof, we upper bound the
total number of labeled (queried) and unlabeled sam-
ples used in Algorithm 3. The number of labeled sam-
ples is simply n0 +∑k0

k�1nk. It can be upper bounded by

n0 +
∑k0
k�1

nk ≤O(κnε
−2
0 ) +∑k0

k�1
O(κndε−1k ) ≤O(κn)

× 1
εa

+∑k0
k�1

2kd���
εa

√
( )

≤O
κnd
εa

( )
,

where the last inequality holds because k0 �min{k ∈
M : 2−kε0 ≤ εa} and ε0 � ���

εa
√

. This shows that the total
number of labeled samples consumed is on the order
of O(κnd=εa).

To upper bound the total number of samples (labeled/
queried or unlabeled/not queried), note that at epoch k
the number of total samples is upper bounded by
Õ(nk=Pr [x ∈ S1(k)]), where S1(k) � {x ∈ B2(d) : |x�ŵk−1−
β̂k−1| ≤mk}. Because |̂βk−1| ≤ β0, we can lower bound
Pr [x ∈ S1(k)] as

Pr
x~PX

[x ∈ S1(k)]
≥ cx Pr

x~PU
[x ∈ S1(k)]

≥ cx Pr
x~PU

[|x− β̂k−1| ≤mk]

≥ cx

�������
d+ 1
16π

√ ∫ mk

0
e−(d−1)(|β̂k−1 |+u)2=2du

≥ cx

�������
d+ 1
16π

√
e−(d−1)β

2
0 ×mke−(d−1)m

2
k

≥Ω( ��
d

√ ) ×mke−(d−1)m
2
k :

Hence, the total number of samples consumed can be
upper bounded by

n0 +
∑k0
k�1

Õ
nk

Pr [x ∈ S1(k)]
( )

≤ Õ(κnε−20 ) +∑k0
k�1

Õ
κn

��
d

√
e(d−1)m2

k

mkεk

( )

≤ Õ(κnε−20 ) +∑k0
k�1

Õ
κn

��
d

√
e(d−1)×Õ(εk)

ε3=2k

( )

≤ Õ
κn

��
d

√
edεa

ε
3=2
a

( )
:

This completes the proof of Lemma 3. w

4.3. Proof of Theorem 1
Recall the definition that v(·) � 〈 · ,w∗〉 −μ∗. Define
α :� ||w∗||2 ≤ B, w̃∗ � w∗=α, and for j ∈ {1, 2} define β̃j �

(μ∗ + b̂j)=α. By Lemma 3, we have Δerr(ŵj, β̂j) ≤ εa,
which by Lemmas 5 and 6 implies tanθ(ŵj, w̃

∗) �
O( ���

εa
√ ) and |̂βj − β̃j| �O( ���

εa
√ ). This implies that |αβ̂j−

μ∗ − b̂j| ≤ α ×O( ���
εa

√ ) �O(B ���
εa

√ ). On the other hand,
the stopping condition in Algorithm 3 implies
|̂b2 − b̂1| �Ω(εs) �Ω(1= ��

d
√ ), which yields |̂β2 − β̂1| �

Ω(1=(α ��
d

√ )) for sufficiently small ε because β̂1 → (μ∗+
b̂1)=α and β̂2 → (μ∗ + b̂2)=α as ε→ 0. Subsequently,

|̂α − α| � α− αβ̂2 −μ∗6O(B ���
εa

√ )−αβ̂1 +μ∗6O(B ���
εa

√ )
β̂2 − β̂1

∣∣∣∣∣
∣∣∣∣∣

�O(B ���
εa

√ )
|̂β2 − β̂1|

�O(B2
�����
dεa

√ ): (24)

We now upper bound |μ̂ −μ∗| and ||ŵ −w∗||2. By defi-
nition, μ̂ � α̂β̂1 − b̂1 and μ∗ � αβ̃1 − b̂1. Subsequently,

|μ̂ −μ∗| ≤ |̂α − α| · |̂β1| + α|̂β1 − β̃1|
≤O(B2

�����
dεa

√
β0) +O(B ���

εa
√ ) ≤O(B2

�����
dεa

√ ): (25)

Similarly, ŵ � α̂ŵ1 and w∗ � αw̃∗. Therefore,

||ŵ −w∗|| ≤ |̂α −α| · ||ŵ||2 + α||ŵ1 − w̃∗||2
≤O(B2

�����
dεa

√ ) +O(B ���
εa

√ ) �O(B2
�����
dεa

√ ): (26)

With the choice of εa � κεε
2=ln 2(1=ε) and κε � 1=d,

and with ε→ 0 being sufficiently small, Equations
(25) and (26) yield that sup x∈B2(d)|̂v(x) − v∗(x)| ≤ ε. Fin-
ally, plugging in the expression of εa � κεε

2=ln 2(1=ε)
and invoking Lemma 2 and 3, we obtain the upper
bounds on n(ε,δ) and m(ε,δ).

5. Numerical Results
We use synthetic data to study the numerical per-
formance of our proposed active learning methods
and compare it with baseline methods. The main base-
line method we are comparing against is a passive
learning method:

• The baseline method will first invoke the TRISEC-

TIONSEARCH routine in Algorithm 2 to obtain actions
b̂1, b̂2. The method then divides the remaining number
of samples into two halves and use Logistic regression
to form two model estimates ŵ1, β̂1 and ŵ2, β̂2 under
actions b̂1 and b̂2 respectively, without sample selection.
The method finally uses Lines 6 and 7 of Algorithm 2
to produce an estimate v̂(·) of the utility function v(·).

Theoretically, a passive learning baseline algorithm
cannot adaptively change actions in queries. How-
ever, we observe in our simulations that if the default
actions for passive learning are too far away from
optimal, very little information is gained and the accu-
racy of passive learning is very low. Therefore, we use
the actions estimated by the TRISECTIONSEARCH routine
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as the default actions of a passive learning algorithm in
our experiments to form amore reasonable comparison.

We also mention details of the implementation of
our proposed active learning algorithm. The imple-
mentation slightly deviates from the descriptions of
the algorithms and the selection of parameter values
in the theoretical results, because of computational
efficiency issues and other factors we observe could
impact the algorithm’s numerical performances. In
Line 14, the 0/1-error empirical risk minimization
step is replaced with logistic regression as the former
formulation is computationally expensive. We also
remove the ||w||2 � 1, |β| ≤ β0 constraints in the optimi-
zation but normalize the estimator after optimization.
The parameters of Algorithm 2 are set as εs � 0:5 and
δs � 0:1. The parameters of Algorithm 3 are set as ε0 �
0:2, κm � 1:0 and κn � d+ ln (n). We no longer need the
β0 parameter with the logistic regression formulation.

For the problem settings, we adopt PX � PU being
the uniform distribution on the d-dimensional ℓ2 ball
B2(d). We set the mean utility model v(·) as v(·) �
〈 · ,θ∗〉 −μ∗ with θ∗ � (2= ��

d
√

, : : : , 2=
��
d

√ ), and μ∗ � −2:5.
The noise distribution Pξ is set as the uniform distri-
bution on interval [−1, 1].

5.1. Convergence of Utility Estimates
In the first set of reports, we report how fast the utility
estimates v̂(·) of our proposed algorithm (and the pas-
sive learning baseline) converge to the ground truth
v(·) as the number of labeled (queried) samples n in-
creases. The estimation errors between v̂(·) � 〈 · , ŵ〉−
μ̂ and v(·) � 〈 · ,w∗〉 −μ∗ are reported as ||ŵ −w∗||2+
|μ̂ −μ∗|.

Figure 6 reports the estimation errors of the active
learning algorithm and the passive learning baseline
for dimension settings of d ∈ {2, 5, 10}. Each reported
error statistic is averaged over 200 independent trials
because both the labels and algorithm decisions con-
tain randomness. As we can see, our proposed active
learning algorithm (the lower curves with solid circle

marks) outperforms significantly the estimates of the
baseline passive learning algorithm (the middle cur-
ves with hollow circle marks), demonstrating the sam-
ple efficiency of active learning.

We further fit linear regression models on the log-
log plots for both algorithms. For the active learning
algorithm, the slopes of the fitted linear models are
very close to –0.5, suggesting an asymptotic conver-
gence rate of n(ε,δ) � 1=ε2. This matches our theoreti-
cal results established in Theorem 1. Conversely, the
slopes of fitted models for the passive learning base-
line range from –0.17 to –0.31, which are orders of
magnitudes slower convergence rates compared with
the 1=ε2 rates for active learning methods.

5.2. Sensitivity of Model Dimensions
We use numerical results to evaluate the sensitivity of
estimation errors with respect to the dimensions of
the underlying linear model d. In Figure 7, we report
the estimation errors of the active learning algorithm
and the passive learning baseline for dimensions d
ranging from 3 to 30.

As we can see in Figure 7, the estimation errors of
our proposed active learning approach scale near line-
arly with the dimension d of the underlying linear
model. The active learning algorithm also consistently
outperforms the passive learning baseline, especially
in large n or d settings.

5.3. Sensitivity of Unlabeled Samples
In this section, we report numerical results showing
how the estimation errors of the proposed active learn-
ing algorithm decrease as the algorithm has access to
more unlabeled samples. For this purpose, we define
the ratio between unlabeled and labeled samples as

ρ :� m(ε, δ) − n(ε, δ)
n(ε, δ) ,

where m(ε,δ) is the total number of samples con-
sumed and n(ε,δ) is the number of samples that are

Figure 6. (Color online) Log-Log Plot of the Estimation Errors of v(·) as a Function of the Number of Labeled (Queried) Samples
n, for d ∈ {2, 3, 5}

Note. The dotted lines are fitted linear regression of the log-log plots.
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labeled/queried. Thus, the numerator m(ε,δ) − n(ε,δ)
is the number of skipped samples. However, our theo-
retical results in Theorem 1 indicate that ρ has to scale
as large as O(1=ε) for the margin-based active learning
algorithm. In practice, however, it is possible to ach-
ieve significant estimation accuracy improvements
with smaller values of ρ: when the unlabeled sample
budget is completely consumed, the margin-based
active learning algorithm will revert back to passive
learning without any additional sample selection
being carried out.

In Figure 8, we plot the estimation errors of the util-
ity v(·) as a function of log2(ρ), with larger values of
log2(ρ) indicating more unlabeled samples involved.

We also report the estimation errors of the passive
learning algorithm as a benchmark, which can be
regarded as an instance of ρ�0 (i.e., all the samples
are labeled). As we can see, the estimation errors of
our proposed active learning algorithm decrease rap-
idly with increasing ρ, and the performance increase
is significant when ρ is as small as 0.5 or 1.0. This
shows that even with a modest amount of unlabeled
samples, the active learning procedure can already
significantly increase the accuracy of the estimated
utility function v̂(·).

6. Conclusions
In this paper, we study a learning problem in contextual
search, where the goal is to use as fewer queries as pos-
sible to accurately estimate the mean value function. To
this end, we propose a margin-based active learning
algorithm with trisection search scheme and establish
the corresponding PAC learning sample complexity
bound. Our bound shows a significant improvement
over the passive setting.

There are several interesting future directions. First,
we assume a linear model in this paper. It would be
interesting to extend the linear model to more general
parametric and nonparametric models. Second, in gen-
eral, establishing lower bound result in active learning
for binary feedback is very challenging. Despite that, it
is worth to explore the optimality of our algorithm.
Third, we hope the proposed active learning algorithm
would inspire more research on adaption of active
learning to solve important operations problems.

Acknowledgments
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Figure 8. (Color online) Plots of Estimation Errors of v(·) by the Active Learning Algorithmwith Different Budgets of Unlabeled
Samples (i.e., Number of Labeled Samples n(ε,δ) Varies from 0.5 and 1 to 2 Million)

Notes. The x axis is the log of the ratio between the number of unlabeled samples and the number of labeled samples. The y axis is the estimation
error. Dotted lines are errors of the passive learning algorithm.

Figure 7. (Color online) Plot of the Estimation Errors of v(·)
for Different Labeled (Queried) Samples n and d ∈ [3, 30]
Settings

Note. Here m in the legend stands for million (e.g., n � 2m means the
sample size is twomillion).
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Appendix A. Some Technical Lemmas

Lemma A.1. Suppose x ~ PU. Then for any measurable set

A ⊆ [−1,1], it holds that Pr [x1 ∈ A] ≤
����
d+1
2π

√ ∫
u∈A

e−(d−1)u
2=2du. If

A ⊆ [−1= ��
2

√
, 1=

��
2

√ ] then Pr [x1 ∈ A] ≥
����
d+1
16π

√ ∫
u∈A

e−(d−1)u
2=2du.

Proof of Lemma A.1. Let Vd � πd=2=Γ(1+ d=2) be the vol-

ume of B2(d), where Γ(z) �
∫ ∞
0

xz−1e−xdx is the Gamma

function. Using change-of-variable in multivariate in-
tegration, it is easy to verify that Pr [x1 ∈ A] � Vd−1

Vd∫
u∈A

(1− u2)(d−1)=2du � 1��
π

√ Γ(d=2+1)
Γ(d=2+1=2)

∫
u∈A

(1− u2)(d−1)=2du. By

Kershaw’s inequality (Kershaw 1983), for any m > 0 it
holds that m�����

m+1√ < Γ(m+1=2)
Γ(m) <

���
m

√
. Subsequently,

Pr [x1 ∈ A] ≤
�������������
d=2+ 1=2

√ ���
π

√
∫
u∈A

(1− u2)(d−1)=2du

≤
�������
d+ 1
2π

√ ∫
u∈A

e−(d−1)u
2=2du,

where the last inequality holds because 1− z ≤ e−z for all
u ≥ 0. For the other direction, note that m=

��������
m+ 1

√ ≥ 1=
��
2

√
for m ≥ 1 and 1− z ≥ 0:5e−z for all 0 ≤ z ≤ 1=2. We have

Pr [x1 ∈ A] ≥
�������������
d=2+ 1=2

√ ����
2π

√
∫
u∈A

(1− u2)(d−1)=2du

≥
�������
d+ 1
16π

√ ∫
u∈A

e−(d−1)u
2
du,

where the last inequality holds because u2 ≤ 1=2 for all u ∈
A as assumed. w

Lemma A.2. Suppose d ≥ 2 and x ~ PU. Then for any measur-
able set A ⊆ [−1, 1]2 ∩ B2(d), it holds that Pr [(x1,x2) ∈
A] ≤ d

2π

∫
(u1,u2)∈A

e−(d−2)(u
2
1+u22)=2du1du2. If x21 + x22 ≤ 1=2 for all

(x1,x2) ∈ A, then Pr [(x1,x2) ∈ A] ≥ d
4π

∫
(u1,u2)∈A

e−(d−2)(u
2
1+u22)=2du1

du2.

Proof of Lemma A.2. By the change-of-variable formula,
Pr [(x1,x2) ∈ A] � Vd−2

Vd

∫
(u1,u2)∈A

(1− u21 − u22)(d−2)=2du1du2 � d
2π∫

(u1,u2)∈A
(1− u21 − u22)(d−2)=2du1du2. The rest of the proof is

identical to the proof of Lemma A.1. w

We next define some useful notations that will make
our proof similar. For any x ∈ B2(d) and b ∈ R, define

ηb(x) :� Pr [y � 1 |x,b], Δb(x) :� v(x) − b � 〈x,w∗〉 +μ∗ − b:
(A.1)

Because y� 1 if and only if v(x) + ξ ≥ b and ξ ~ Pξ with∫ 0

−∞
fξ(u)du �

∫ ∞
0

fξ(u)du � 1=2 (see Assumption 3), we have

that ηb(x) − 1
2 �

∫ 0

−Δb(x)
fξ(u)du � Fξ(0) − Fξ(−Δb(x)) if Δb(x) ≥ 0,

and ηb(x) − 1
2 � −

∫ −Δb(x)
0

fξ(u)du � Fξ(0) − Fξ(−Δb(x)) if Δb(x)
< 0, where Fξ(·) is the cumulative distribution function

(CDF) of Pξ. Because ηb(x) only depends on Δb(x), we can
define

φ(Δ) :� Fξ(0) − Fξ(−Δ): (A.2)

It then holds that ηb(x) − 1
2 � φ(Δb(x)). Furthermore, by def-

inition, we have that φ(Δ) ≤ 0 for all Δ ≤ 0, φ(Δ) ≥ 0 for all
Δ ≥ 0, φ(0) � 0 and φ′(Δ) � fξ(−Δ) ∈ [cξ,Cξ] for all |Δ| ≤ 2,
thanks to Assumption 3.
Now let V � {v(·) : v(·) � 〈 · ,w〉 − β,w ∈ R

d,β ∈ R} be a
hypothesis class of nonhomogeneous d-dimensional linear
classifiers. The following lemma is a consequence of the
classical VC theory of classification (Balcan et al. 2007, the-
orem 8).

Lemma A.3. Fix a distribution P supported on B2(d) and a
joint distribution Q supported on B2(d) × {0, 1}, such that the
marginal of Q on B2(d) is P. Let v∗ � argminv∈Verr(v | Q),
where err(v | Q) � Pr (x,y)~Q[y≠ sgn(v(x))]. Let {(xi,yi)}ni�1 ~i:i:d:Q
be n i.i.d. samples, and v̂ � argminv∈V

∑n
i�11{yi ≠ v(xi)} be the

empirical risk minimizer. Then there exists a universal constant
C>0 such that for any ε,δ ∈ (0, 1), if n ≥ Cε−2(d+ 1+ ln (1=δ))
then it holds with probability 1− δ that err(̂v | Q) − err(v∗ |
Q) ≤ 2ε.

Proof of Lemma A.3. The VC dimension of V is d + 1. By
Balcan et al. (2007, theorem 8), it holds with probability
1− δ that

Pr ∀ v ∈ V,
1
n

∑n
i�1

1 yi ≠ sgn(v(xi)){ }− err(v | Q)
∣∣∣∣∣

∣∣∣∣∣ ≤ ε

[ ]
≥ 1− δ:

The lemma is proved by using triangle inequality. w
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