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Abstract. This paper studies a dynamic pricing problem under model misspecification. To
characterize model misspecification, we adopt the ε-contamination model—the most fun-
damental model in robust statistics and machine learning. In particular, for a selling hori-
zon of length T, the online ε-contamination model assumes that demands are realized
according to a typical unknown demand function only for (1− ε)T periods. For the rest of
εT periods, an outlier purchase can happen with arbitrary demand functions. The chal-
lenges brought by the presence of outlier customers are mainly due to the fact that arrivals
of outliers and their exhibited demand behaviors are completely arbitrary, therefore calling
for robust estimation and exploration strategies that can handle any outlier arrival and
demand patterns. We first consider unconstrained dynamic pricing without any inventory
constraint. In this case, we adopt the Follow-the-Regularized-Leader algorithm to hedge
against outlier purchase behavior. Then, we introduce inventory constraints. When the
inventory is insufficient, we study a robust bisection-search algorithm to identify the clear-
ance price—that is, the price at which the initial inventory is expected to clear at the end of
T periods. Finally, we study the general dynamic pricing case, where a retailer has no clue
whether the inventory is sufficient or not. In this case, we design a meta-algorithm that
combines the previous two policies. All algorithms are fully adaptive, without requiring
prior knowledge of the outlier proportion parameter ε. Simulation study shows that our
policy outperforms existing policies in the literature.
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Supplemental Material: The supplementary material is available at https://doi.org/10.1287/opre.2022.

2280.
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1. Introduction
Many operations problems, such as dynamic pricing,
assortment optimization, and supply chain manage-
ment, are built on an underlying probabilistic model.
For example, in dynamic pricing, literature often
assumes that the realized demand at each time period
follows a nonincreasing function of the offered price
(which is known as demand function or demand curve)
plus a stochastic noise. However, for a multiperiod
decision problem with T periods, it is never the case
that every time period follows exactly the same under-
lying probabilistic model. Indeed, nonstandard or out-
lier purchasing behaviors happen from time to time in
reality. In other words, probabilistic models are inher-
ently misspecified, especially in a multiperiod decision
problem with a large time horizon T. Therefore, some
natural questions arise. First, what should be an appro-
priate robust model to capture outlier purchasing

behavior? Second, how should one design robust online
policies to hedge against this outlier behavior?

This paper addresses model misspecification for
dynamic pricing, which has been a central problem in
revenue management. Let us consider a typical
dynamic pricing problem, with T selling periods and
an initial inventory x(T). At each selling period t, the
retailer offers a price pt and observes the realized
demand dt based on the customer’s purchase:

dt � min{ ft(pt) + ξt, x(t)}, (1)

where ft is an unknown demand function at selling
period t, which needs to be learned over time; ξt is
the stochastic noise; and x(t) is the remaining inven-
tory level at the beginning of time t. This paper con-
siders nonparametric demand functions ft, without
assuming ft belongs to any particular parametric fam-
ilies, such as linear or generalized linear demand
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models. After realizing the demand, the retailer col-
lects the revenue rt :� ptdt and updates the inventory
level x(t+ 1) � x(t) − dt.

To model outlier purchasing behaviors, we adopt
the ε-contamination model for the online setting. The
ε-contamination model, which dates back to the 1960s
(Huber 1964), is perhaps the most widely used
model in robust statistics. In a standard setup of the
ε-contamination model, we are given n independent
and identically distributed (i.i.d.) samples drawn from
a distribution (1− ε)P+ εQ, where P denotes the distri-
bution of interest, and Q is an arbitrary outlier distribu-
tion. The parameter ε > 0, which is usually very small,
reflects the level at which contamination occurs. In a
static robust estimation problem, the goal is to learn the
distribution P of interest, in the presence of outlier obser-
vations fromQ. Recent literature in machine learning has
proposed models to extend the ε-contamination model
to multiarmed bandit (MAB) settings (Lykouris et al.
2018, Gupta et al. 2019, Zimmert and Seldin 2021), which
incorporate adversarial corruptions into MAB. In this
paper, we adopt this model for the dynamic pricing
problem. In particular, for T selling periods, we assume
that there are at most εT periods of outlier demand func-
tions. Moreover, we allow the following two features in
the dynamic ε-contamination model:

1. Instead of assuming a fixed outlier demand func-
tion g, we model potentially different outlier demand
functions gt for different time periods t;

2. We assume that the εT outlier time periods and
corresponding demands can be arbitrary and even adap-
tive to historical information (e.g., pricing decisions and
realized demands in prior time periods). The outlier
time periods and associated demand functions are
unknown to the retailer.

This adversarial outlier setting is more practically
favorable than “random arrival.” For example, in a
holiday season, consecutive periods might contain
excessively large demand realizations, which cannot
be captured by the “random arrival of outliers” in
the original ε-contamination model. It is also worth
noting that the “outlier proportion” ε is unknown to
the retailer, and, thus, the designed online policy
needs to be adaptive to the unknown ε. The adversa-
rial outlier setting has been recently explored in the
machine learning literature for a wide range of prob-
lems, including multiarmed bandit (Lykouris et al.
2018, Gupta et al. 2019, Bogunovic et al. 2020, Agar-
wal et al. 2021, Zimmert and Seldin 2021), reinforce-
ment learning (Lykouris et al. 2019), and contextual
pricing (Krishnamurthy et al. 2021). The main tech-
nical challenge in our problem arises from learning
a nonparametric demand function and incorporating
inventory constraints simultaneously. Please refer
to the related work in Section 2 for more detailed
discussions.

To better understand this problem, we first consider
a simple setting without any inventory constraint.
Now, the main challenge lies in how to learn the
unknown demand model under this adversarial cor-
ruption model. It is worth noting that existing upper-
confidence-bound-type algorithms cannot be directly
applied because lengths of the confidence intervals
depend on the outlier proportion ε, which is not
known a priori (see more discussions in Section 4).
Thus, we adopt the Follow-the-Regularized Leader
(FTRL) algorithm with the regularizer in Equation (6)
(see Algorithm 1).

The regularizer, which is a variant of the α-Tsallis-
Inf regularizer (Audibert and Bubeck 2009, Zimmert
and Seldin 2021), prevents the sampling probability
weight parameters from being too close to either zero
or one. This construction of regularizer is essential in
establishing a “self-bounding” property in Lemma 1.
We also note that such a regularizer was also used by
Zimmert and Seldin (2021) for the robustness purpose
in multiarmed bandit. The FTRL algorithm is essen-
tially an online mirror descent strategy, which auto-
matically balances exploration and exploitation in the
presence of outlier demands. In our analysis, by con-
structing “shadow” regret terms, we provide a decom-
position analysis (see the proof of Lemma 2), which
derives regret bounds that are nearly optimal in both
the number of arms and the suboptimality gaps of each
individual arm. This technical result is the key to
establishing the optimal regret upper bound in contin-
uous pricing with outliers.

Here, we highlight one technical subtlety: In con-
trast to the multiarmed bandit, the action space (i.e.,
price range) is continuous in dynamic pricing. To han-
dle this case, we choose to discretize the action space.
However, the number of discretized prices (corre-
sponding to the number of arms) needs to scale
polynomially with the time horizon T because the dis-
cretization has to be sufficiently dense. Thus, existing
Bandit with Knapsacks techniques (see, e.g., Badani-
diyuru et al. 2018) will yield suboptimal regret bounds
(see more discussions in Section 2). We delve deeper
into the structure of the suboptimality gaps among the
candidate prices. More specifically, the key observa-
tion is that prices that are farther away from the
revenue-maximization price have significantly smaller
expected revenue (and hence a larger suboptimality
gap) due to concavity of the revenue function. This key
structure in dynamic pricing plays a critical role in
our analysis.

In the second part of the paper, we introduce the
inventory constraint. When the inventory is sufficient,
it has little impact on the pricing policy, and one can
directly use the FTRL policy. Thus, we focus on the
pricing problem when the initial inventory level is
insufficient. In particular, denote by po the revenue-
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maximization price—that is, the price that maximizes
the revenue r(p) :� pf0(p) without any inventory con-
straint; denote by pc the clearance price—that is, the
price that (in expectation) depletes the inventory at
the end of T periods. Gallego and Van Ryzin (1994)
showed that the optimal price p∗ with respect to the
fluid approximation is the maximum of po and pc.
Thus, we consider the insufficient-inventory capacity
case when pc > po. We note that it could be hard to
determine whether inventory is sufficient or not in
practice due to the unknown demand function. Thus,
the algorithm developed in this setting can be used as
a subroutine of the general inventory setting
described later. Intuitively, when inventory is scarce,
the retailer should charge a higher price than the
revenue-maximization price. When pc > po, it is natu-
ral to propose a search-based strategy to find pc. We
first consider the simple case where the outlier pro-
portion ε is known. By leveraging the fact that
demand rate function f0 is strictly monotonically
decreasing, we propose a robust bisection-search algo-
rithm in Algorithm 2 to identify the clearance price pc.
To make the proposed algorithm robust to outlier cus-
tomers, our procedure is quite different from the
bisection-search algorithms in the existing dynamic
pricing literature (Lei et al. 2014, Wang et al. 2014). In
particular, our confidence bounds in the bisection
search are carefully designed to incorporate the out-
lier proportion ε, which adds an additional layer of
sophistication in both the algorithm and its regret
analysis. When ε is unknown, we apply the robust
bisection-search algorithm from Lykouris et al. (2018)
and Krishnamurthy et al. (2021) to multiple “threads”
of candidate values for the parameter ε, which we
term as “ε-candidates,” searching for the right ε in
parallel. More specifically, the multithread bisection
search in Algorithm 3 runs in parallel on a grid of geo-
metrically discretized candidates of ε and, thus, is
adaptive to the unknown ε.

Finally, we consider general dynamic pricing with
an arbitrary inventory level. Because the underlying
demand rate f0 is unknown, the relationship between
pc and po is unknown as well, and, thus, one has to
decide whether the inventory level is sufficient or not.
To address this challenge, we develop a meta-
algorithm that learns the relationship between pc and
po and invokes the appropriate algorithm for different
cases based on the doubling trick and randomized
exploration strategy (see Algorithm 5). The doubling
trick refers to a common technical strategy used in
bandit learning algorithms that divide the time hori-
zon into epochs with geometrically increasing lengths
to facilitate the learning or estimation of an unknown
quantity with small incurred regret. It is worth noting
that typical exploration phases that perform random-
ized price experiments during the first T0 selling

periods will notwork in the presence of robust/outlier
customers because it is possible that purchases made
throughout the entire exploration phase are outliers,
leading to completely erroneous learned information.
To address this challenge, we first use the doubling
trick to divide the entire T selling periods into epochs
with geometrically increasing lengths and then ran-
domly inject exploration periods into each epoch.
Such a combination of the doubling trick and a
randomized exploration is the key to hedge against
outlier purchases. Table 1 summarizes the algorithm
choices we made in this paper under different settings
of inventory levels.

For each algorithm, we establish the upper bound of
its incurred cumulative regret, which measures the gap
between the optimal revenue and expected revenue
collected from our dynamic pricing policy. All of our
established regret upper bounds take the form of
Õ(εT + ��

T
√ ), where in the notation Õ, we drop logarith-

mic factors in T. In Theorem 5, we also prove that this
regret bound is rate-optimal up to logarithmic factors
in T. The term εT in the regret bound is the price paid
for being robust. When ε � 0, the regret bound auto-
matically reduces to the optimal regret bound of

��
T

√
for

the classical dynamic pricing when there is no outlier
demand. We also remark that the regret bound Õ(εT +��
T

√ ) can be implied by a potential “fully adversarial”
dynamic pricing algorithm, with no assumptions
imposed on the number of outlier selling periods and
Õ( ��

T
√ ) regret compared against a stationary benchmark

in hindsight. Such an algorithm, however, does not
exist as far as we know and is likely to be very difficult
to design. The closest algorithms are perhaps the ones
developed for the bandit convex optimization question
(Flaxman et al. 2004, Hazan and Levy 2014, Besbes et al.
2015, Bubeck et al. 2017). Although these algorithms
indeed work under the fully adversarial setting, there
are other significant differences in terms of convexity
assumptions and inventory constraints that prevent
them from being applicable to our problem. We discuss
in further detail significant differences from this line of
previous works in the next section.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work and highlights the
difference between this paper and existing works. Sec-
tion 3 provides the model primitives and necessary
assumptions. Sections 4 and 5 propose FTRL and mul-
tithread robust bisection-search algorithms for the
unconstrained-inventory setting and the insufficient-
inventory setting, respectively. Section 6 develops the
meta-algorithm with a partial exploration scheme,
which effectively identifies whether the inventory is
insufficient or not. In Section 7, we provide illustrative
numerical studies, followed by a conclusion in Section
8. The technical proofs will be relegated to the supple-
mentary material.
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2. Related Work
In this section, we briefly review literature from three
perspectives: dynamic pricing, robust machine learn-
ing, and bandit convex optimization. We highlight the
main technical challenges of our problem as compared
with existing literature.

2.1. Dynamic Pricing Literature
Because of the increasing popularity of online retailing,
dynamic pricing has become an active research area in
revenue management in the past decade. We only
briefly review a few related works on single-product
pricing problem and refer the interested readers to
Bitran and Caldentey (2003), Elmaghraby and Keskino-
cak (2003), and den Boer (2015) for a comprehensive lit-
erature survey. The seminal work by Gallego and Van
Ryzin (1994) lays out the foundation of the problem
and shows that the optimal price with respect to the
fluid approximation is the larger price between the
revenue-maximization price and inventory-clearance
price. Earlier work in dynamic pricing (see the surveys
Bitran and Caldentey 2003 and Elmaghraby and Keski-
nocak 2003) assumes that demand information is
known to the retailer a priori and either characterizes
or computes the optimal pricing decisions.

In many retailing industries, such as fast fashion,
the underlying demand function is unknown and can-
not be easily estimated from historical data. As a
result, a lot of recent research in this area focuses on
the joint learning and decision-making problem,
which simultaneously learns the underlying demand
function and makes the price decision (see, e.g., Ara-
man and Caldentey 2009, Besbes and Zeevi 2009,
Farias and Van Roy 2010, Broder and Rusmevichien-
tong 2012, Harrison et al. 2012, den Boer and Zwart
2013, Keskin and Zeevi 2014, Lei et al. 2014, Wang
et al. 2014, Chen et al. 2015, Miao et al. 2019, Chen et al.
2021a, Wang et al. 2021, Chen et al. 2022, and referen-
ces therein). Along this line of research, Besbes and
Zeevi (2009) first proposed separate exploration and
exploitation strategies, which lead to suboptimal
regret of Õ(T3=4) for nonparametric demands and
Õ(T2=3) for parametric demands. Wang et al. (2014)
improved this result by developing joint exploration
and exploitation strategies that achieve the optimal
regret of Õ(T1=2) up to a logarithmic factor in T. Lei
et al. (2014) further improved the result by removing
the logarithmic factor in T. Moreover, den Boer and
Zwart (2013) proposed a controlled variance pricing

policy, and Keskin and Zeevi (2014) discussed a semi-
myopic pricing policy for a class of parametric demand
functions without inventory constraints. With inventory
constraint, Chen et al. (2015) proposed a linear price-
correction policy that performs computationally efficient
price reoptimization for nonparametric demand functions.
Broder and Rusmevichientong (2012) also proposed a
O(logT)-regret policy when demand functions satisfy a
“well-separated” condition. In addition, there are a num-
ber of works proposing Bayesian strategies for dynamic
pricing (Farias andVan Roy 2010, Harrison et al. 2012).

There are many important extensions of single-
product dynamic pricing, such as network revenue man-
agement with multiple products (see, e.g., Gallego and
Van Ryzin 1997, Ferreira et al. 2018, Chen and Shi 2019,
and references therein), pricing in a dynamically chang-
ing environment (Besbes et al. 2015, Keskin and Zeevi
2016), dynamic pricing with a limited number of price
changes (Cheung et al. 2017), and dynamic pricing with
potentially high-dimensional covariates (Ban and Keskin
2017, Lobel et al. 2018, Javanmard and Nazerzadeh 2019,
Nambiar et al. 2019, Chen et al. 2021b, Chen and Gallego
2021). It is an interesting future direction to investigate
robust pricing policies for these more complex dynamic
pricing problems.

We also position our paper in the Bandit with
Knapsacks literature (Badanidiyuru et al. 2018). A key
difference between Badanidiyuru et al. (2018) and
Agrawal and Devanur (2014) and our problem setting
is that in Badanidiyuru et al. (2018) and Agrawal and
Devanur (2014), the action space is finite, and the
regret upper bound depends polynomially on the
number of arms N1 (more specifically, Õ( ������

N1T
√ ) when

inventory levels scale linearly with T (Badanidiyuru
et al. 2018)). In contrast, the action space in our prob-
lem (i.e., the price range) is continuous. Although it is
possible to discretize the price space, the number of
discretized prices needs to scale polynomially with T
(e.g., N1 � T1=4), which would lead to suboptimal
regret bounds, such as Õ(T5=8). Moreover, Agrawal
and Devanur (2015) studied continuous action spaces,
but the demand model is parametric (linear to be
more specific) and cannot be easily applied to non-
parametric demand-learning problems.

2.2. Literature on Model Misspecification and
Robust Statistics

In learning and decision-making settings, a few recent
works investigate the impact of model misspecification

Table 1. Summary of the Developed Algorithms in this Paper

Inventory scenarios Developed algorithms

Unconstrained/sufficient inventory A Follow-the-Regularized Leader (Algorithm 1)
Insufficient inventory Multithread robust bisection search (Algorithms 2 and 3)
General inventory Meta-algorithm (Algorithm 5) with a partial exploration scheme (Algorithm 4)

Chen and Wang: Robust Dynamic Pricing
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in revenue management—for example, Cooper et al.
(2006) for capacity booking problems, Lei et al. (2014)
and Besbes and Zeevi (2015) for dynamic pricing, and
Chen et al. (2019) for assortment optimization. In partic-
ular, Besbes and Zeevi (2015) shows that a class of pric-
ing policies based on linear demand functions perform
well, even when the underlying demand is not linear.
Lei et al. (2014) proposed nonparametric dynamic pric-
ing policies that achieve the optimal regret for paramet-
ric models. Cooper et al. (2006) also identified some
cases where simple decisions are optimal under misspe-
cification. However, our setting is quite different and
has not been considered in existing dynamic pricing lit-
erature. We study the model misspecification from a
model-corruption perspective, which allows arbitrary
outlier purchasing behavior in adversarially chosen time
periods. We also note that this outlier behavior has been
recently studied in a different problem—assortment
optimization under multinomial logit models (Chen et al.
2019).However, the assortment optimization is structurally
different from the dynamic pricing problem considered in
this paper. First, the choice function in assortment optimi-
zation is a parametric problem (parameterized by utility
parameters), whereas our dynamic pricing problem has
nonparametric demand functions. Moreover, the dynamic
pricing problem needs to learn the relationship between
the revenue-maximizing price and the inventory-clearance
price and combine these two cases via ameta-algorithm.

In statistics and machine learning literature, the
ε-contamination model, which was proposed by P. J.
Huber (Huber 1964), is perhaps the most widely used
robust model and has recently attracted much attention
from the machine learning community (see, e.g., Chen
et al. 2016, Diakonikolas et al. 2017 and 2018, and refer-
ences therein). Despite this attention, online learning in
the ε-contamination model or its generalizations is rela-
tively unexplored. In the online setting, Esfandiari et al.
(2018) studied online allocation under a mixing adver-
sarial and stochastic model, but the setting does not
require any learning component. For online learning,
the works of Lykouris et al. (2018), Gupta et al. (2019),
and Zimmert and Seldin (2021) studied the contami-
nated stochastic multiarmed bandit. Our FTRL algo-
rithm is adopted from Zimmert and Seldin (2021), and
the “multilayer active arm race” for MAB (Lykouris
et al. 2018) motivates our multithread bisection-search
algorithm. We note that existing results for robust mul-
tiarmed bandit may not be optimal in terms of their
regret dependency on the total number of arms. There-
fore, directly using either result from Lykouris et al.
(2018) or Zimmert and Seldin (2021) leads to regret sig-
nificantly worse than the optimal rate Õ(εT+ ��

T
√ ) in

the presence of outliers. Please refer to the discussion
below Lemma 2 and Remark 1 for more details.

More recently, the adversarial outlier model has
been studied in many settings—for example, Gaussian

process bandit optimization (Bogunovic et al. 2020),
reinforcement learning (Lykouris et al. 2019), dueling
bandits (Agarwal et al. 2021), assortment optimization
(Chen et al. 2019), contextual pricing (Krishnamurthy
et al. 2021), and product rankings (Golrezaei et al.
2020). The work of Krishnamurthy et al. (2021) is
closer to our modeling in the sense that Krishnamur-
thy et al. (2021) assumes that outlier customers could
be completely irrational, with the number of such cus-
tomers being bounded by a corruption-level parame-
ter. Nevertheless, Krishnamurthy et al. (2021) studied
a parametric model, where truthful agents (or agents
with bounded rationality) realize their valuations
according to a linear model, which is significantly dif-
ferent from the nonparametric modeling carried out
in this paper. In addition, comparing the recent work
on dynamic assortment optimization under the ε-con-
tamination model (Chen et al. 2019), we remark that
assortment optimization has a large, yet finite, action
set, whereas in dynamic pricing, the size of the action
set (i.e., the number of prices) is infinite. Thus, it
requires different analyses into the structure of the
underlying problem. Moreover, our work considers
the inventory constraint, which has been fully
explored in previous works on adversarial outliers.
We have also remarked on the important technical dif-
ferences between our results and the existing results
from Lykouris et al. (2018), Gupta et al. (2019), and
Zimmert and Seldin (2021) in Sections 4 and 5.
There has been existing work on studying dynamic

pricing in the presence of strategic customers. In most
such work, there is an underlying behavior model
that characterizes how a strategic customer realizes
his valuations (Golrezaei et al. 2019). In contrast, the
ε-contamination modeling allows for arbitrary behav-
iors of outlier customers, who do not necessarily fol-
low any predetermined behavior models.

2.3. Literature on Bandit Convex Optimization
Bandit convex optimization (Flaxman et al. 2004, Hazan
and Levy 2014, Besbes et al. 2015, Bubeck et al. 2017) is
an active field in machine learning that is closely
related to the dynamic pricing problem. In bandit con-
vex optimization, for every time period t, there is an
unknown convex function ht. The algorithm provides
an approximate minimizer xt and receives feedback
ht(xt) + ξt with ξt being i.i.d. centered noise. The regret
of an algorithm is then measured against a stationary
benchmark x in hindsight, or,more specifically,

∑
tht(xt)−

minx
∑

tht(x).
The bandit convex optimization question is related

to the dynamic pricing question, by setting ht(p) �
−pft(p) and trying to find p that minimizes the
negative-expected revenue. There are, however, two
major differences between the bandit convex optimi-
zation setup and our problem:
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1. The bandit convex optimization question assumes
every ht is convex in x, whereas the (negative) revenue
function −r(p) � −pft(p) is not necessarily convex in p.
Instead, the conventional assumption is that −r(d) �
−df−1t (d) is convex in the demand, not the price (see, for
example Assumption 3). This also means mainstream
bandit convex optimization algorithms, such as esti-
mating gradient descent (Flaxman et al. 2004, Hazan
and Levy 2014, Besbes et al. 2015), cannot be applied
because one cannot run gradient descent on the
demand rate d directly (because the algorithm does not
know the precise price p resulting in demand rate d).
Running gradient descent on the price variable p, on
the other hand, does not work either because −r(p) is
not convex in p.

2. The bandit convex optimization question essen-
tially assumes no initial inventory constraints. Whereas
in the stochastic setting (in which ft does not change
over time), the initial inventory constraint can be
handled via a pure-exploration phase, in fully adversa-
rial settings, there is no easy way to address the initial
inventory constraint because the demand function ft
evolves over time.

3. Model Primitives
In this section, we formally introduce our online
ε-contamination model for dynamic pricing and corre-
sponding model assumptions.

Assume that there are a total of T selling periods.
The retailer has an initial inventory level of x(T) � xT ∈
(0,T] at the beginning. Without loss of generality, we
assume that the total inventory xT is normalized to be
less than T, and we use xT to make the dependence of
the total inventory on the time horizon more explicit.
At each selling period t ∈ [T], the retailer decides a
price pt ∈ [p,p], where p and p are the minimum and
maximum prices, respectively. Given the price pt, the
retailer observes a realized demand

dt �min{ ft(pt) + ξt,x(t)}, (2)

where ft : [p,p] → [0, 1] is an unknown demand
function, which varies with t and follows our online
ε-contamination model defined in the following. The
term ξt is the stochastic noise, which satisfies
E[ξt | pt] � 0. Because our total inventory x(T) is nor-
malized to be less than T, we assume that the realized
demand is also normalized and bounded with dt ∈
[0, 1] almost surely. At each time t, x(t) represents the
remaining inventory level when there are t time peri-
ods remaining. With the realized demand dt, the
retailer collects revenue rt � ptdt and updates his
inventory level with x(t− 1) � x(t) − dt.

In our ε-contamination model, there are εT selling
periods during which the incoming customer is an out-
lier, whose demand curve could be drastically different

from that of typical customers. In particular, we let f0 :
[p,p] → [0, 1] be the unknown demand function of a
typical customer. For each time period t, we use ιt ∈
{0, 1} to denote whether the customer at time t is an
outlier (ιt � 1 corresponds to an outlier, and ιt � 0 cor-
responds to a typical customer). The demand function
ft at time t is then defined as

ft(pt) � f0(pt), if ιt � 0,
gt(pt), if ιt � 1;

{
where gt : [p,p] → [0, 1] is an arbitrary measurable
function characterizing the demand of the outlier cus-
tomer at time t. Note that in this formulation,
demands of outlier customers may not be the same
across different selling periods.

The occurrences and demand curves of outlier cus-
tomers in this paper are modeled by using the adaptive
adversary model in the bandit learning literature. More
specifically, let Ht−1 � {pt′ ,dt′ , ft′ , ιt′ }t′<t denote the fil-
tration of the history of all selling periods prior to
time t. Recall that xT denotes the total inventory level.
We define x0 � xT=T ∈ (0, 1], which is known as the
inventory rate. A problem instance is modeled as E �
{ f0,x0,φ1,-1,φ2,-2, ⋯ ,φT,-T}, such that ιt � -t(Ht−1),
ft � f0 if ιt � 0 and ft � gt � φt(Ht−1) if ιt � 1, where -t

and φt are functions of Ht−1. It is guaranteed that∑
tιt ≤ εT almost surely, for any policy.

3.1. Dynamic Pricing with Demand-
Learning Policies

In this paper, we are interested in designing efficient
dynamic pricing policies with demand learning,
meaning that the policy we designed does not have
knowledge of either f0 or gt a priori and must learn the
demand-rate function f0 over time.

Mathematically, an admissible policy π can be para-
meterized as π � (π1,π2, ⋯ ,πT), such that each price
pt ~ πt(F t−1), where F t−1 � {pt′ , dt′ }t′<t. This means
that the price decision pt at time t must only be based
on observations from selling periods prior to period t.
Note that the filtration F t−1 does not contain ft′ or ιt′

because the demand-rate function or whether the
period t′ is an outlier cannot be known to the retailer,
even after period t′.

3.2. Assumptions and the Asymptotic
Regret Regime

We make following assumptions throughout this
paper:

Assumption 1 (Strictly Monotonic and Smooth Demand
Curve). f0 : [p,p] → [0, 1] is strictly monotonically decreas-
ing, with f0(p) � 1 and f0(p) � 0. There exists an inverse
function f−10 : [0, 1] → [p,p] such that f0( f−10 (d)) � d for
all d ∈ [0, 1]. Furthermore, there exists constants
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0 < Lp ≤ Lp <∞ and 0 < Ld ≤ Ld <∞, with Ld,Lp ≥ 1, such
that

Lp|p−p′| ≤ | f0(p)− f0(p′)| ≤ Lp|p−p′|, ∀p,p′ ∈ [p ,p];
Ld|d−d′| ≤ | f−10 (d)− f−10 (d′)| ≤ Ld|d−d′|, ∀d,d′ ∈ [0,1]:

Assumption 2 (Strongly Concave and Smooth Revenue
Function). Let r(d) � df−10 (d) be the revenue function.
Then, r is twice continuously differentiable on (0, 1). Fur-
thermore, there exist constants 0 < σ2 ≤M2 <∞ such that
σ2 ≤ −r′′(d) ≤M2 for all d ∈ (0, 1).

Assumption 3 (Outlier Frequency). There exists a small
constant α > 0 such that ε ≤ T−α, and, thus, the total num-
ber of outliers is bounded by εT ≤ T1−α.

Assumptions 1 and 2 are standard Lipschitz con-
tinuity and concavity assumptions adopted in the
pricing literature. Notice that because the range of f0 is
[0, 1] and the realized demands {dt} also belong to
[0, 1] almost surely, the stochastic noise variables {ξt}
are bounded almost surely. Assumption 3 imposes an
additional constraint on the outlier proportion param-
eter ε. Essentially, we assume that the total number of
corrupted periods εT is sublinear with respect to the
time horizon T. This is a practical and easily justifiable
assumption because in most applications, there will
not be too many periods or customers who behave
like outliers. And if there are excessive amount of out-
lier customers, it is unlikely for a retailer to learn an
effective pricing policy. Also, the constants in the
above assumptions (Ld,Lp,Lp,Ld,M,σ) are for theoreti-
cal analysis only, and our proposed algorithms do not
need to know these constants to operate.

In this paper, we consider the following asymptotic
regime. Let f0 : [p,p] → [0, 1] be a fixed, but unknown,
demand-rate function (for typical customers) satisfying
all the above assumptions. When there is no inventory
constraint and the demand is known, it is clear that
the revenue-maximization price po � argmaxp∈[p,p]pf0(p)
maximizes the total expected revenue.

For the inventory-constrained case with T time peri-
ods, the initial inventory level xT � x0T ∈ (0,T] is
known to the retailer before the first selling period. It
is a well-known result in the literature (Gallego and
Van Ryzin 1994) that the optimal expected revenue of
the fluid approximation (without any outlier cus-
tomer) takes the following form:

T × (max{po,pc})f0(max{po,pc}), (3)

where pc � f−10 (x0) is the clearance price at which the ini-
tial inventory xT � x0T is expected to clear at the end
of T time periods. Alternatively, we write the first

term in Equation (3) as

T × r∗ :� T × max
p∈[p,p]

r(p; f0,x0), (4)

where r(p; f0,x0) :� pmin{ f0(p),x0}.
Let r∗ �maxp∈[p,p]r(p; f0,x0). By theorem 2 from Gal-

lego and Van Ryzin (1994), Tr∗ is an upper bound of
the expected revenue for any dynamic pricing policy.
In other words, Tr∗ is an upper bound of the total opti-
mal expected revenue (with respect to the Markov
Decision Process formulation). Thus, for an admissible
policy π, its regret over T time periods with at most E
outlier selling periods is defined as

RT,E(π; f0,x0) :� Tr∗ −E
π

∑T
t�1

rt

[ ]
, (5)

where rt � ptdt is the revenue collected by the retailer
at time t, following the pricing policy π.

In our Regret Definition (5), for outlier periods/cus-
tomers, we still use the optimal revenue for typical
customers as benchmarks for comparison. Using out-
lier customers as benchmarks, on the other hand, shall
not change our upper regret bounds. In fact, using any
benchmark in the regret definition for those outlier
periods will lead to at most O(εT) regret in the regret
upper bound. On the other hand, the term O(εT) is
unavoidable in the regret (and also appears in our
bound) because any policy cannot make a reasonable
prediction for those outlier periods, when compared
with a benchmark defined on nonoutlier customers.
We also remark that in our regret metric RT,E(π; f0,x0),
the underlying demand-rate function f0 and the inven-
tory rate x0 stay fixed and do not change with time
horizon T.

We note that another possible benchmark would be
the optimal hindsight solution. In the setting without
any inventory constraint, it corresponds to the bench-
mark

∑T
t�1p

∗ft(p∗), where p∗ is a stationary benchmark
price that maximizes

∑
tpft(p) across T selling periods

with different demand-rate functions ft in hindsight.
When using this hindsight benchmark, it is unclear
whether Õ( ��

T
√ ) regret is attainable. Because the expected

revenue as a function of price is not concave, we cannot
immediately apply bandit convex-optimization tech-
niques; the discretization plusmultiarmed-bandit approach
is not likely to work either, as we have too many arms
due to discretization, and the gap-distribution property
might not be useful when the optimal fixed hindsight
benchmark is used. Note also that there is a compli-
cated relationship between maxp

∑
tpft(p) and Tr∗.

In particular, in the case of all outlier customers being
demand suppressed (i.e., ft ≡ 0 if time period t belongs
to an outlier), then maxp

∑T
t�1pft(p) ≤ T × r∗; in the case

of all outlier customers being demand active (i.e., ft ≡ 1
if time period t belongs to an outlier), then maxp

∑T
t�1
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pft(p) ≥ T × r∗. Moreover, in all cases, the absolute value
difference |maxp

∑T
t�1pft(p) −Tr∗| is upper-bounded by εT.

In some previous literature on dynamic pricing
with demand learning—for example, Besbes and
Zeevi (2009) and Wang et al. (2014)—a competitive
ratio metric is used to evaluate the performance of a
policy. For a policy π, its competitive ratio is defined
as 1− Rπ

R∗ , where Rπ is the expected reward of policy π
and R∗ is the expected reward of the optimal policy.
When R∗ scales linearly with T (e.g., R∗ � Tr∗ in (5)),
the competitive ratio and cumulative regret are equiv-
alent, as an O(1= ��

T
√ ) competitive ratio would corre-

spond to an O( ��
T

√ ) cumulative regret.

4. Dynamic Pricing Without
Inventory Constraint

We first consider the unconstrained-inventory setting.
As the dynamic pricing resembles multiarmed ban-
dits, the popular upper confidence bound (UCB) pol-
icy might be a natural choice. However, with adversa-
rial outliers, we will provide a toy example to
illustrate the failure of the UCB policy. Similar con-
structions of the failed cases also appear in prior
works (Lykouris et al. 2018, Gupta et al. 2019, Krishna-
murthy et al. 2021). For the purpose of completeness,
we provide a simple example with only two candidate
prices, pl < ph, without any inventory constraint. Let
dl � f0(pl),dh � f0(ph) and rl � pldl, rh � phdh be the expected
demand rates and profits at the two price levels,
respectively. Suppose rl > rh, meaning that for the
majority of customers (i.e., typical customers), the
lower price pl results in higher revenue. For a UCB
policy, because it is a deterministic policy, the adap-
tive adversary could realize adversary demand rates

d̃
l
, d̃

h
during the first

��
T

√
times pl or ph is offered, with

r̃l � pl̃d
l
< phd̃

h � r̃h and furthermore r̃l < rh. In this
case, because r̃l < r̃h, with overwhelming probability
1−O(e−Ω(T1=4)) the upper confidence bound of pl is
lower than the upper confidence bound of ph when
normal (typical) customers kick in. Furthermore,
because r̃l < rh, the upper confidence bound of pl will
remain lower than the upper confidence bound of ph,
even after normal (typical) customers start to appear
at the ph price. Therefore, with overwhelming proba-
bility, the UCB algorithm will commit to the wrong
price ph for the rest of the time horizon, leading to an
Ω(T) linear regret, even when the outlier portion ε is
as small as O(1= ��

T
√ ).

Instead of using the UCB policy, we propose to
adopt the Follow-the-Regularized-Leader algorithm
with a carefully designed regularizer that is robust to
outlier customers. The FTRL algorithm is due to Audi-
bert et al. (2014) and was also studied in the context of

MAB with outliers (Zimmert and Seldin 2021). More
discussions will be provided in the paragraph after
Lemma 2 and Remark 1. As the price range is a con-
tinuous interval, we first discretize the interval [po,p]
into N1 candidate prices. According to our regret
bound in Theorem 1, the discretization level N1 will
be set to N1 � 
T1=4�. We use an online mirror descent
strategy to balance the exploration and exploitation in the
presence of an unknown number of outlier customers.

Algorithm1 (A Follow-the-Regularized-Leader Algorithm
for the pc < po Case with Unknown ε)

1: Parameters: po ∈ [p,p], time horizon T,N1 ∈ N, reg-
ularizer ψ and step sizes {ηt}Tt�1 defined in (6);

2: Initialize: p(1), ⋯ ,p(N1) evenly spaced prices par-
titioning [po,po]; L̂0 � 0 ∈ R

N1×1;
3: for t � 1, 2, ⋯ ,T do
4: Compute wt � arg maxw∈ΔN1−1〈w, L̂t−1〉 − 1

ηt
ψ(w),

where ΔN1−1 is the N1-dimensional probability
simplex;

5: Sample it ~ wt; offer price p(it) and observe
realized demand dt;

6: Update L̂t � L̂t−1 + ℓ̂t where

ℓ̂ti �
p(i)d(t) − p

wti
+ p if i � it;

p if i≠ it:

⎧⎪⎪⎨⎪⎪⎩
7: end for

The pseudo-code of the proposed algorithm is given
in Algorithm 1. At a high level, Algorithm 1 partitions
the entire pricing interval [0, 1] into N1 discretized pri-
ces and maintains a probability distribution (denoted
as wt in Algorithm 1) over all candidate prices and sam-
ple one at each time period. The probability distribu-
tions are then updated by using the Follow-the-Regu-
larized-Leader principle, taking into consideration both
the realized demands from prior periods and a care-
fully chosen regularization term ψ. The FTRL principle
has been used in adversarial bandit learning problems,
by learning-probability distributions over actions
sequentially based on both the historical data and a
carefully designed regularizer (Zimmert and Seldin
2021). This approach does not require prior knowledge
of the outlier proportion ε, making it suitable for the
adaptive case. To better illustrate the key components
in Algorithm 1, we provide the overall flow of the algo-
rithm and key algorithmic ideas in Figure 1.

We will run Algorithm 1 with the following selec-
tion of the regularizer ψ and the step sizes {ηt}:

ψ(w) � ∑N1

i�1
− ���

wi
√ − ��������

1−wi
√

, ηt � η0=
��
t

√
, (6)

where η0 > 0 is a small constant to be specified later.
This regularizer is the α-Tsallis-Inf regularizer (Audi-
bert and Bubeck 2009, Zimmert and Seldin 2021), which
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has also been used in reinforcement learning for best-
of-both-world-type results (Jin and Luo 2020). The regu-
larizer prevents the weight parameters {wi} from being
too close to either zero or one, which is essential in
establishing a self-bounding property in Lemma 1 pre-
sented later. We also note that Algorithm 1 and the cor-
responding regret bound in this section also apply to
the setting where there is an inventory constraint, but
the initial inventory level is “sufficient,” as indicated by
its fluid approximation (i.e., when po > pc; see more dis-
cussions in Section 5). In such settings, we simply run
Algorithm 1 for t � 1, 2, : : : ,T, but stop the algorithm
when we run out of the inventory.

We first introduce the next technical lemma on the
revenue gap between ℓt,i∗ − ℓt,it for any i∗, where
ℓti :� p(i)ft(p(i)). This revenue gap plays an important
role in regret analysis. At a high level, Lemma 1 is a
self-bounding inequality: It upper bounds the expected
regret of Algorithm 1 using the sampling weights {wti}
the algorithm itself produces over the T time periods.

Lemma 1. Let {ℓt}Tt�1 ⊆ R
N1 be defined as ℓti � p(i)ft(p(i)),

where ft is the demand curve for customers in selling period
t. Let η0 be the step size chosen as η0 � 0:07=p. Then, for
every i∗ ∈ [N1], the revenue gap between the price p(i∗) and
the offered prices by our algorithm p(it) for t � 1, : : : ,T can
be bounded as follows:

E
∑T
t�1

ℓt,i∗ − ℓt,it

[ ]
≤ 32p × E

∑T
t�1

∑
i≠i∗

����
wti

t

√[ ]
: (7)

The proof of Lemma 1 is based on the analysis of the
works of Audibert et al. (2014), Zimmert et al. (2019),
and Zimmert and Seldin (2021). The details of the
proof are provided in the supplementary material. It
is worth noting that traditionally a self-bounding
inequality like the one in Equation (7) is used together
with a Cauchy-Schwartz inequality to obtain Õ( �����

NT
√ )

cumulative regret upper bound over adaptively
adversarial bandit instances, by simply following∑

t
∑

i

�������
wti=t

√ ≤ �����
NT

√ × ���������������∑
t
∑

iwti=t
√ ≤ �����

NT
√ × ���������∑

t1=t
√ �

O( �����������
NTlogT

√ ). However, in our case, an Õ( �����
NT

√ ) upper

bound is not sufficient because the number of discre-
tized prices N scales polynomially with T. Instead, we
combine Lemma 1 with the “gap” result in Lemma 3
to obtain much sharper regret upper bounds, as we
detail in Lemma 2 later.

Based on Lemma 1, we obtain a more explicit upper
bound of the term E[∑T

t�1ℓt,i∗ − ℓt,it] in the next lemma
by partitioning the prices to a subset I and its comple-
ment. Later, when we upper bound the expected
regret of Algorithm 1, note that I corresponds to the
prices that are close to p(i∗) (corresponding to the
O( ������|I |T√ ) term in Lemma 2), and I c to those prices far
away from p(i∗), whose expected revenues are much
lower than the optimal reward (corresponding to the∑

i∉I ,i≠i∗
O(logT)
Δμi

term).

Lemma 2. Let {ℓt}Tt�1 ⊆ R
N1 be defined in Lemma 1, and

suppose that the sampling probabilities {wt}Tt�1 ⊆ ΔN1−1
satisfy Equation (7). Let i∗ � arg maxi∈[N1]p(i)f0(p(i)), and
for every i≠ i∗, define Δμi � p(i∗)f0(p(i∗)) − p(i)f0(p(i)) ≥ 0.
Then, for any subset I ⊆ [N1]\{i∗},

E
∑T
t�1

ℓt,i∗ − ℓt,it

[ ]
≤ 64p

������|I |T√ +∑T
t�1

∑
i∉I , i≠i∗

1
2
(32p)2
tΔμi

+ 1
2
pεT

≤O( ������|I |T√ + εT) + ∑
i∉I, i≠i∗

O(logT)
Δμi

: (8)

Lemma 2 is a key step in the analysis of the FTRL
algorithm, and it is worth comparing Lemma 2 with
similar results established in the existing literature
under the ε-contamination model. For simplicity, we
consider the case of I � ∅, such that |I | � 0. The closest
result is from Zimmert and Seldin (2021), who also
analyzed this FTRL procedure. A regret upper bound

of O
(∑

i≠i∗
logT
Δμi

+
����������������∑

i≠i∗
logT
Δμi

εT
√ )

was shown in Zimmert

and Seldin (2021). In Remark 1, we observe that this
regret bound from Zimmert and Seldin (2021) yields
worse regret bounds in the pricing with demand-
learning setting. The work by Lykouris et al. (2018)
and Gupta et al. (2019) studied different policies for

Figure 1. (Color online) Plots of the Key Algorithmic Idea (Left) and Schematic (Right) of Algorithm 1
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MAB with corruptions and derived regret upper bounds

of O
(∑

i≠i∗
NεT+logT

Δμi
log(NT)

)
and O

(∑
i≠i∗

logT
Δμi

+NεT
)
,

respectively. Again, in Remark 1, we show that these
two regret bounds are not optimal in our setting.

Additionally, the reason for Lemma 2 separating
prices (arms) into two sets is motivated by the obser-
vation that, for prices close to po (i.e., those belonging
to I ), the suboptimality gap Δμi is small, and, hence,
1=(tΔμi) would be too large. For these prices, it is bet-
ter to use the gap-independent bound Õ( ������|I |T√ ). For
prices (arms) that are far away from po (i.e., those not
in I ), the gap-dependent result of 1=(tΔμi) is impor-
tant in establishing a tight regret bound that does not
depend on the total number of arms (prices) in the dis-
cretization set.

In the proof of Lemma 2, the important technical
step is to use the arithmetic mean-geometric mean
(AM-GM) inequality to extract a 1

2
∑

t
∑

i∉IΔμiwti term,
in Equation (11). The 1

2 coefficient is not important
here, but it needs to be strictly smaller than one so
that it could be absorbed by the left-hand side of the
inequality. The other part arising from the AM-GM
inequality would then have a nice dependency on
1=(tΔμi).

Proof of Lemma 2. First, because there are at most εT
outlier periods, we have that

E
∑T
t�1

∑
i≠i∗

Δμiwti

[ ]
− pεT ≤ E

∑T
t�1

ℓt,i∗ − ℓt,it

[ ]

≤ E
∑T
t�1

∑
i≠i∗

Δμiwti

[ ]
+ pεT: (9)

On the other hand, by Lemma 1, we have

E
∑T
t�1

ℓt,i∗ − ℓt,it

[ ]
≤ E

∑T
t�1

∑
i≠i∗

32p
����
wti

t

√[ ]

� ∑T
t�1

E
∑
i∈I

32p
����
wti

t

√
+ ∑

i∉I, i≠i∗
32p

����
wti

t

√[ ]

≤ E
∑T
t�1

32p
����|I |√ ����������∑

i∈Iwti

t

√[ ]

+ E
∑T
t�1

∑
i∉I, i≠i∗

32p
����
wti

t

√[ ]
, (10)

≤ E
∑T
t�1

32p
����|I |√ �����������∑

i∈I wti

t

√[ ]

+ E
∑T
t�1

∑
i∉I, i≠i∗

1
2
Δμiwti + 1

2
(32p)2
tΔμi

[ ]
,

(11)

≤ 64p
������|I |T√ + E

∑T
t�1

∑
i∉I, i≠i∗

1
2
Δμiwti + 1

2
(32p)2
tΔμi

[ ]
: (12)

Here, in Equation (10), we apply the Cauchy-Schwartz
inequality that

∑
i∈I

����
wti

√ ≤ ����|I |√ �����������∑
i∈Iwti

√
and the key

term
∑T

t�1
∑

i∉I ,i≠i∗
1
2Δμiwti can be viewed as a shadow

regret; in Equation (11), we use the AM-GM inequality; in
Equation (12), we use the fact that

∑
i∈Iwti ≤ ∑N1

i�1wti ≤ 1
and

∑T
t�11=

��
t

√ ≤ 2
��
T

√
.

Combining Equations (9) and (12), we have that

E
∑T
t�1

ℓt,i∗ − ℓt,it

[ ]
≤ 64p

������|I |T√ + E
∑T
t�1

1
2
(32p)2
tΔμi

[ ]

+ 1
2

E
∑T
t�1

ℓt,i∗ − ℓt,it

[ ]
+ pεT

( )
,

because E[∑T
t�1

∑
i∉I ,i≠i∗Δμiwti] ≤ E[∑T

t�1
∑

i≠i∗Δμiwti] ≤
E[∑T

t�1ℓt,i∗ − ℓt,it] + pεT thanks to Equation (9). Cancel-
ing out a 1

2E[
∑T

t�1ℓt,i∗ − ℓt,it] term on both sides of the
above inequality and rearranging the terms, we obtain

1
2
E

∑T
t�1

ℓt,i∗ −ℓt,it

[ ]
≤ 64p

������|I |T√ +∑T
t�1

∑
i∉I , i≠i∗

1
2
(32p)2
tΔμi

+1
2
pεT

≤O( ������|I |T√ )+ ∑
i∉I, i≠i∗

O(logT)
Δμi

+O(εT),

where the second inequality holds because
∑T

t�11=t �
O(logT). Lemma 2 is thus proved. w

The next lemma shows that for a discretized price
γ-distance away from the price po, the revenue gap is
at least quadratic in γ when γ is not too small. Intui-
tively, this follows from the strong concavity assump-
tions imposed on the reward function r (as a function
of the demand rate d) and the Lipschitz continuity of
both f0 and its inverse function f−10 . The parameters M,
Lp, and Lp are defined in Assumptions 1 and 2.

Lemma 3. Suppose po ≤ po, and let i] � argmini∈[N1]
|p(i) − po|. Consider any i ∈ [N1], i≠ i], such that |i− i]| � γ.
Let ζ � (p − po)=N1 be the space between neighboring pri-

ces. If γ ≥ 1
2+ MLp��

2
√

σLp
, then

r(i) ≤ r(i]) − σ2L2
p(γ− 1=2)2ζ2

4
,

where r(i) � p(i)f0(p(i)) and r(i]) � p(i])f0(p(i])).
Lemma 3 is another important intermediate result

that facilitates our analysis of Algorithm 1. It shows
that as a price p(i) moves away from the optimal price
p(i]), the expected revenue drops significantly, and the
revenue drop is further associated with the distance
between i and i]. This creates a nice optimality-gap
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structure among the discretized prices, which is essen-
tial in establishing a tight regret upper bound in Theo-
rem 1. At a higher level, the results of Lemma 3 are
similar to Kleinberg and Leighton (2003, lemma 3.11),
which also utilized the concavity of revenue curves to
prove optimality-gap structures. The key difference
between Lemma 3 and Kleinberg and Leighton (2003,
lemma 3.11) is that we assume the expected revenue r
is concave as a function with respect to the demand rate
d, whereas Kleinberg and Leighton (2003) assume r is
concave with respect to the price p. It is well-known
that the former assumption/condition includes more
interesting demand distributions (e.g., the exponential
and logistic demand distributions) and, thus, is more
widely used in dynamic pricing problems (Chen and
Shi 2019). The assumption that r is concave in the
demand d instead of the price p requires a more robust
suboptimality-gap analysis. Below, we give the com-
plete proof of Lemma 3.

Proof of Lemma 3. Let d(i) :� f0(p(i)) be the expected
demands of p(1), ⋯ ,p(N). Let also do � f0(po). By the
Lipschitz continuity of f0 and f−10 (see Assumption 2),
it holds that

|d(i]) − do| ≤ Lpζ=2 and |d(i) − do| ≥ Lp(γ− 1=2)ζ:
Using the strong concavity and smoothness of r(d) �
df−10 (d) (see Assumption 3), it holds that

r(d(i])) ≥ r(do) −M2

2
|do − d(i])|2 ≥M2L

2
pζ

2

8
;

r(d(i)) ≤ r(do) − σ2

2
|do − d(i)|2 ≤ σ2L2

p(γ− 1=2)2ζ2
2

:

With the condition that γ ≥ 1
2+ MLp��

2
√

σLp
, the term

M2L
2
pζ

2

8 is

upper bounded by one-half of
σ2L2

p(γ−1=2)2ζ2
2 . Subsequently,

r(d(i)) ≤ r(d(i])) − σ2L2
p(γ− 1=2)2ζ2

4
,

which is to be demonstrated. w

We are now ready to state our main regret upper
bound for Algorithm 1.

Theorem 1. Suppose that Algorithm 1 runs with N1 � 
T1=4�,
and ψ, {ηt} are chosen as in Equation (6), with η0 � 0:07=p.
Suppose also that pc ≤ po ≤ po. Then, the regret of Algorithm 1
can be upper bounded by

RT,εT(Alg:1 ; f0,x0)
� 1
8
M2L

2
d(p − p)2 ��

T
√

+ 128

��������
MLpT
σLp

√
+ 1
2
pεT+ 2145p2

��
T

√
ln(eT)

σ2L2
p(p − po)2

� Õ(εT + ��
T

√ ),

where in the Õ(·) notation, we drop polynomial dependency
on po,pc,p,p,Lp,Lp,M2,σ2 and logT.

Theorem 1 is based on the result in Lemma 2, with
the suboptimality gaps Δμi being replaced by their
lower bounds proved in Lemma 3. The other parts of
the proof of Theorem 1 are rather technical and
deferred to the supplementary material.

Remark 1. It is worth comparing our results with exist-
ing results on robust multiarmed bandit (Lykouris et al.
2018, Gupta et al. 2019, Zimmert and Seldin 2021) and
their consequences in the dynamic pricing with
demand-learning problem. First, corollary 8 of section
5.1 in Zimmert and Seldin (2021) establishes a regret
upper bound of

O
∑
i≠i∗

logT
Δi

+
�������������∑
i≠i∗

logT
Δi

C

√( )
,

where {Δi} are the suboptimality gaps, and C is the
total number of adversarially corrupted periods,
which is equal to εT in our notation. Because we have
N1 � T1=4 discretized prices and r(p∗) − r(p′)� |p− p′|2,
we have

∑
i≠i∗

logT
Δi

�O( ��
T

√ ), and, subsequently, the
upper bound in Zimmert and Seldin (2021) leads to an

Õ( ��
T

√ + ��
ε

√
T)

regret, which is considerably worse than our Õ( ��
T

√ + εT)
regret because ε ∈ (0, 1) is a small number characteriz-
ing the proportion of outlier/adversarial customers.
The regret upper bound established in Lykouris et al.
(2018) is (omitting logarithmic factors)

Õ
∑
i≠i∗

N1C+ logT
Δi

log(NT)
( )

,

where N1 is the total number of arms (N1 � T1=4 in our
setting), and C � εT. This translates to an Õ( ��

T
√ +

εT7=4) regret, which is considerably worse than
Õ( ��

T
√ + εT). Finally, the regret upper bound in Gupta

et al. (2019) is

Õ
∑
i≠i∗

logT
Δi

+N1C

( )
,

which translates to Õ( ��
T

√ + εT5=4) with C � εT, N1 � T1=4,
again worse than the desired Õ( ��

T
√ + εT) regret upper

bound.

5. Dynamic Pricing with Binding
Inventory Constraints

Now, we are ready to consider the impact of the inven-
tory constraint. As we mentioned, the inventory con-
straint makes this problem challenging. In particular,
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we consider the case when the inventory constraint in
the fluid-approximation problem is binding without
corruptions, reflecting the impact of inventory con-
straints. We shall remark that, because it is not possible
for a retailer to know a priori whether the inventory
constraint in the fluid approximation is binding or not
due to the unknown demand models and the presence
of outlier customers, the algorithm presented in this
section should be regarded as a “subroutine” for our
meta-algorithm in Section 6. In practice, the robust
bisection-search algorithm presented in this section
should be used together with the meta-algorithm for
general inventory settings designed in Section 6.

We first state a decomposition result, which tries to
separate out the consideration of inventory con-
straints. It shows that if the (expected) demand rates
at each time period are not significantly lower than
the inventory rate x0, then the regret of the policy can
be characterized accurately by

∑
tr
∗ − ptf0(pt)—that is,

the gap without inventory consideration.

Proposition 1. Fix an arbitrary pricing policy π. For sell-
ing period t, define δt :�max{0, f0(pt) − x0}. Then, it holds
that

RT,E(π; f0,x0) ≤ E
π

∑T
t�1

r∗ − ptf0(pt)
[ ]

+ 1
x0

(E+ ��������
T lnT

√ +E
π[δ]),

where δ :� ∑T
t�1δt. Furthermore, assume that δ ≤ B with

probability 1−O(T−1) for some constant B. Then, with
probability 1−O(T−1), the inventory level will remain pos-
itive until the last x−10 (B+ εT +O( ��������

T lnT
√ )) �O(E+��������

T lnT
√ +B) periods, where E � εT is the total number of
outlier customers.

Proposition 1 is a technical result that will be used
later in our regret analysis. The quantity δt plays an
important role in this decomposition result. In partic-
ular, when the mean demand f0(pt) at the price pt
exceeds the inventory rate x0, δt will be positive and
contribute to the regret because it is necessary to con-
sider the inventory constraint. Otherwise, we simply
truncate δt at zero and ignore the effect of inventory in
the regret.

At a higher level, the proof of Proposition 1 is as fol-
lows: Using standard concentration inequalities, we
can show that the cumulative realized demand over
the first t selling periods is upper bounded by x0t+
E[δ] +E+O( ���������

t logT
√ ). Let T+ be the index of the time

period when inventory is completely depleted. Thus,
the total demand over the first T+ periods exceeds
x0T. This implies that E[T −T+] is upper bounded by
x−10 (E[δ] + εT +O( ����������

T logT
√ )). This implication would

then lead to Proposition 1 because the regret incurred

by the last T−T+ periods is at most p(T −T+). A com-
plete proof of Proposition 1 is given in the supplemen-
tary material.

When the inventory is sufficient, the inventory con-
straint is ineffective. To measure the sufficiency of the
inventory, we leverage the fluid approximation from
Gallego and Van Ryzin (1994). As discussed in Section
3.2, the optimal solution to the fluid approximation is
the maximum of the revenue-maximization price and
the clearance price—that is, p∗ �max(po,pc). The con-
dition pc ≡ f−10 (x0) > po indicates that the total inven-
tory xT � x0T is small, and, thus, the retailer needs to
charge a higher price than po. This section mainly
focuses on the insufficient-inventory case with pc > po.
On the other hand, when the inventory is sufficient
with pc < po, one can directly adopt the FTRL algo-
rithm (see Algorithm 1), which achieves the same
regret guarantee in Theorem 1. For ease of presenta-
tion, we will refer to the sufficient-inventory or
“unconstrained-inventory” case as the pc < po case
(note that unconstrained inventory corresponds to
pc � p).

In the case of pc > po, we first propose a (robust)
bisection approach to quickly identify prices that lead
to the total expected demand close to the inventory
level x0, with the knowledge of the outlier proportion
ε. We then extend the robust bisection approach to the
case when ε is not known, using a multithread coordi-
nation strategy. We provide Figure 2 to illustrate the
key algorithmic idea of the robust bisection search
and the schematic for the multithread robust search
algorithm (Algorithm 3).

5.1. A Robust Bisection-Search Policy
Before we present our robust bisection-search policy, we
first illustrate why the standard bisection-search algo-
rithm will not work in the setting with adversarial out-
liers. Indeed, without consideration of outlier customers,
a popular method for identifying pc is to use bisection
search, with each iteration building upper and lower con-
fidence bounds of f0(pmid) ∈ [dmid,dmid] at the price-
interval median pmid. Then, it shortens the price interval
to the right of pmid if dmid > x0 or to the left of pmid if
dmid < x0, based on the monotonicity of the demand-rate
function f0. In the presence of outlier customers, such a
bisection protocol would easily fail when the first few
customers are outliers, leading to significantly inaccurate
estimates of f0(pmid) and a subsequently incorrect deci-
sion of whether pc > pmid or pc < pmid. Once the first inter-
val shrinkage is incorrect, there is no opportunity for the
bisection-search algorithm to correct itself in later time
periods, as the price pc is eliminated once and for all.
Therefore, the bisection-search strategy without consid-
eration of outlier customers must suffer an Ω(T) linear
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regret, even if only the first few customers exhibit outlier
purchase behaviors.

Algorithm 2 (A Robust Bisection Algorithm for the pc > po

Case with Known ε)
1:Parameters: time horizon T, inventory level
x0 ∈ (0, 1], an upper bound of ε.

2: Initialize: I(1) � [a(1),b(1)] � [0, 1], Cε(0) � 1;
3: for τ � 1, 2, ⋯ , until T selling periods are reached

do
4: Set T(τ) � 2τ, p(τ) � (a(τ) + b(τ))=2 and d̂(τ) � 0;
5: for the next T(τ) selling periods, or until T sell-

ing periods are reached do
6: Offer price p(τ) and observe realized demand

dt;
7: Update d̂(τ) ← d̂(τ) + dt;
8: end for
9: Compute [d(τ),d(τ)]� d̂(τ)

T(τ) 6Cε(τ), where Cε(τ) �
min{1,εT=T(τ)} + �������������������

log(2T2)=T(τ)√ + 2log(2T2)=T(τ);
10: Update I(τ+ 1) � [a(τ+ 1),b(τ+ 1)] as follows:

- If x0 < d(τ), then set a(τ+ 1) � p(τ) and b(τ+ 1)
� b(τ);

- If x0 > d(τ), then set a(τ+ 1) � a(τ) and b(τ+ 1)
� p(τ);

- If x0 ∈ [d(τ),d(τ)], then set a(τ+ 1) �max{a(τ),
p(τ) − 2LdCε(τ)} and b(τ+ 1) �min{b(τ),p(τ)+
2LdCε(τ)};

11: end for

Pseudo-code of the proposed robust bisection-search
algorithm is given in Algorithm 2. At a high level, Algo-
rithm 2 uses the monotonicity of the demand curve f0 to
perform bisection and accurately identifies the price pc at
which f0(pc) � x0. More specifically, Algorithm 2 main-
tains intervals I(τ) containing the clearance price pc with
high probability and attempts to halve the lengths of
I(τ) at the end of every epoch τ. If f0(dτ) is deemed to be
higher than x0, then the algorithm moves the left end-
point of I(τ) to its midpoint, and vice versa. Because
f0(dτ) is unknown, Algorithm 2 uses (corrupted) samples
to construct upper and lower edges [d(τ),d(τ)], which
contain f0(dτ) with high probability. Finally, the third

case in step 10 in Algorithm 2 reflects the possibility of
the algorithm not being able to determine (with high
probability) whether f0(dτ) is higher or lower than x0,
which happens when f0(pτ) is very close to x0. In such a
case, however, Algorithm 2 is still able to shorten the
interval I(τ) considerably, by utilizing the (inverse) Lip-
schitz continuity of f0, meaning f0(pτ) being close to x0
must imply the demand rate at the left endpoint of I(τ)
being much higher than x0.

The following theorem upper bounds the regret of
Algorithm 2 under the po < pc setting, with the value of
the outlier proportion ε (or its upper bound) being
known and fed into the algorithm as an input parameter.

Theorem 2. Suppose pc > po. The regret of Algorithm 2 can
be upper bounded by

RT,εT(Alg:2 ; f0,x0)
≤ (x−10 + 4pLpLd)εT log2T

+ (x−10 + 14pLp)
�������������
T ln (2T2)√ + 6pLpLdln

2(2T2) +O(1)
� Õ(εT+ ��

T
√ ),

where in the Õ(·) notation, we drop polynomial dependency
on p,p,pc,po,Lp,Lp,Ld,Ld and logT.

To establish Theorem 2, we will introduce several
technical lemmas. The first lemma shows that for an
epoch τ, [d(τ),d(τ)] covers the expected demand at
the price p(τ) with high probability (see Lemma EC.2
in the supplementary material). The second lemma
provides an upper bound on the length of the search-
ing interval |I(τ)| :� (b(τ) − a(τ)) (see Lemma EC.5 in
the supplementary material). We will then establish
the result in Theorem 2 based on these two key lem-
mas. Because of space constraints, all the details of the
technical lemmas and the proofs are relegated to the
supplementary material.

5.2. Multithread Coordination of
Bisection Searches

In the unknown-ε case with pc > po, we will run multi-
ple threads of Algorithm 2 with different ε values and

Figure 2. (Color online) Plots of the Key Algorithmic Idea (Left) of Algorithm 2 and Schematic (Right) of Algorithm 3
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carefully coordinate them, so that an adaptive regret
upper bound can be achieved.

More specifically, let {εj � 2−j}Jj�1 be a geometric
grid of ε values, with εJ � 2−J � 1=

��
T

√
. Recall that T, as

used in Algorithm 2, is the total number of selling
periods on which the algorithm runs. Each thread j ∈ [J]
is associated with one independent instantiation of
Algorithm 2, with its own intervals Ij(τ) and confi-
dence bands Cεj(τ). An algorithm that coordinates
these threads in parallel is presented in Algorithm 3.

Algorithm3 (AMultithreadBisection-SearchAlgorithm for
the pc > po Case with Unknown ε)

1: Parameters: time horizon T, inventory level
x0 ∈ (0, 1].

2: Let {εj � 2−j}Jj�1 be a geometric grid with
J � 
log2

��
T

√ �;
3: For each j ∈ [ J] initialize Ij(1) � [aj(1),bj(1)] :�

[p,p], Δεj(0) � 1, }j :� 2−(J−j)=2(1− 2−J);
4: for τ � 1, 2, ⋯ , until T selling periods are reached

do
5: Set T(τ) � 2τ and Tj(τ) � }jT(τ), pj(τ) � (aj(τ)+

bj(τ))=2, d̂j(τ) � 0 for all j ∈ [ J];
6: for each of the next T(τ) selling period t do
7: Sample jt ∈ [ J] randomly such that Pr[jt � j] � }j;
8: Offer price pjt(τ) and observe realized demand

dt;
9: Update d̂jt(τ) ← d̂jt(τ) + dt;
10: end for
11: for j � 1, 2, ⋯ , J do

12: [dj(τ),dj(τ)] � d̂j(τ)
Tj(τ)6Cεj(τ), where Cεj(τ) �

min 1, εjT
Tj(τ)

{ }
+

��������
log(2T2)
Tj(τ)

√
+ 2log(2T2)

Tj(τ) ;

13: Update Ij(τ+ 1) based on [dj(τ),dj(τ)] using
step 10 in Algorithm 2;

14: If j > 1 then further update Ij(τ+ 1) ←
Ij(τ+ 1) ∩ Ij−1(τ+ 1);

15: end for
16: If IJ(τ+ 1) � ∅, then set J← J − 1 and recalculate

{}j}Jj�1 as in step 3;
17: end for

The high-level idea behind Algorithm 3 is as fol-
lows: Threads with εj ≥ ε are more conservative with
the elimination of suboptimal prices, at the cost of
potentially larger regret incurred per period (due to
insufficient elimination). Hence, we sample threads of
larger εj with smaller probability to control the total
regret incurred by these threads. On the other hand,
threads with εj < ε are more aggressive with the elimi-
nation of prices and, therefore, incur much less regret,
provided that the targeted clearance price pc is not elimi-
nated. To check whether pc is potentially eliminated,
we compare active prices of a thread with those in
threads with larger εj values and eliminate a thread

(i.e., decreasing the value of J) whenever inconsistency
is spotted, meaning that pc is likely to be eliminated
by mistake in thread J.

In the following, we state important technical lem-
mas in the analysis of the regret of Algorithm 3.
Because of the technical nature of the proofs, we rele-
gate all proofs in this section to the supplementary
material and only describe high-level intuitions and
explanations of lemmas we present.

First, we state a lemma showing that, for those
threads with εj levels higher than the true outlier pro-
portion ε, the upper and lower bounds [dj(τ),dj(τ)]
and the bisection intervals Ij(τ) behave well (with
high probability) in these threads.

Lemma 4. With probability 1−O(T−2J logT), the follow-
ing holds for all τ and j such that εj ≥ ε:

1. dj(τ) ≤ f0(pj(τ)) ≤ dj(τ);
2. pc ∈ Ij(τ);
3. |Ij(τ)| � (bj(τ) − aj(τ)) ≤ 2LdCεj(τ− 1).
The first property in Lemma 4 states that, with high

probability, the lower and upper confidence edges
[dj(τ),dj(τ)] contain the true demand rate f0(pj(τ)) eval-
uated at the offered price pj(τ). The second and third
properties of Lemma 4 show that, with high probabil-
ity, the bisection intervals Ij(τ) will never exclude the
target clearance price pc, and the lengths of the bisection
intervals decrease over epochs. Note that Lemma 4
only applies to those threads with εj ≥ ε and may not
hold true for the other threads with smaller εj values.

The next corollary shows that the J value, which could
potentially be decreased in step 16 of Algorithm 3, will
not fall below the level of the true corruption level ε
with high probability.

Corollary 1.With probability 1−O(T−2J logT), the param-
eter J in Algorithm 3 satisfies εJ ≤ ε throughout.

We are now ready to state our main regret theorem.
The proof of our main theorem based on Lemma 4
and Corollary 3 is relegated to the supplementary
material.

Theorem 3. Suppose pc > po. Then, the regret of Algorithm
3 can be upper bounded by

RT3,εT(Alg:3 ; f0,x0)
≤ (44pL2

d + x−10 )εTln(2T2)
+ (116pL2

d + x−10 ) ��
T

√
ln(2T2) + 32pL

2
dln(2T2) +O(1)

≤ Õ(εT + ��
T

√ ),
where in the Õ(·) notation, we drop polynomial dependency
on p,p,pc,po,Lp,Lp,Ld,Ld and logT.

Before presenting the proof of Theorem 3, we remark
that the main algorithmic idea behind this multithread
searching of unknown ε is due to Lykouris et al. (2018)
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for MAB. In Lykouris et al. (2018), the number of
actions (i.e., number of arms) is finite and small,
whereas in the dynamic pricing, there are an infinite
number of arms because the price range (action space)
is infinite. Later, in Krishnamurthy et al. (2021), the
multithread approach was extended to a more compli-
cated multidimensional setting. The analysis of Algo-
rithm 3, on the other hand, is slightly different from
the works of Lykouris et al. (2018) and Krishnamurthy
et al. (2021), as it utilizes the Lipschitz and “inverse”
Lipschitz properties of the demand-rate function f0(p)
(see Assumption 1).

We also explain why we adopt the multithread
coordination idea in Algorithm 3, specifically for the
po < pc setting, while using a Follow-the-Regularized-
Leader strategy for the unconstrained inventory (or
pc < po) setting in the previous section. As we dis-
cussed in Remark 1, a multithread coordination algorithm
will inevitably lead to suboptimal regret (e.g., Õ( ��

T
√ + εT7=4)

instead of Õ( ��
T

√ + εT)) in the unconstrained- inventory
case. Indeed, the multithread coordination analysis in
Lykouris et al. (2018) is not optimal in terms of depend-
ency on the number of arms, and the number of discre-
tized prices is fairly large in the dynamic pricing (i.e.,
N1 � T1=4). On the other hand, there are technical
difficulties applying bisection search directly to the
unconstrained-inventory case. In the po < pc case, we
only need to check whether the expected demand rate
at the bisection-search midpoint pmid is above or below
x0. In contrast, in the unconstrained-inventory setting,
we need to estimate the derivative of the revenue func-
tion at pmid in order to decide whether pmid < po or
pmid > po. This makes bisection search harder to imple-
ment for the unconstrained-inventory case, as esti-
mating the derivative of the unknown revenue curve
is challenging, especially in the presence of outlier
customers.

Finally, we discuss why the Follow-the-Regular-
ized-Leader strategy for the unconstrained-inventory
setting is unlikely to be applicable to the bisection-
search threads in the po < pc setting. First, using FTRL
or similar methods to coordinate several independent
bandit-learning threads usually leads to suboptimal
regret guarantees, as illustrated in Cheung et al.
(2018) and Agarwal et al. (2017). It is also difficult to
predict or estimate the final incurred regret of a
bisection-search thread under certain ε values, render-
ing Bayesian optimization and GP-UCB-type methods
(see, e.g., Toscano-Palmerin and Frazier 2018) inappli-
cable to our setting.

Proof of Theorem 3. We will prove this theorem by
upper bounding the regret incurred by all threads
separately. Recall that, by Proposition 1, it suffices to
upper bound E[∑T

t�1| f0(pt) − x0|], where x0 � f0(pc). We
will also condition the rest of the proof on the success

events of Lemma 4 and Corollary 1, which occur with
probability 1−O(T−2JlogT) � 1−O(T−2log2T).

First, consider threads j ∈ [J] with εj ≥ ε. By Lemma 4,
we have that pc ∈ Ij(τ) for all epochs, and, furthermore,
|Ij(τ)| ≤ 2LdCεj(τ− 1). This means that, for every selling
period during which thread j is selected (with probabil-
ity }j � 2−(J−j)=2(1− 2−J) ≤ 21−J+j), the regret incurred by
|f0(pj(τ)) − x0| is upper bounded by |Ij(τ)|. Because
thread j is selected in epoch τ for Tj(τ) � }jT(τ) ≤
2τ+1−J+j selling periods in expectation, the total regret
incurred on thread j is upper bounded by∑τ0
τ�1

}jT(τ)|Ij(τ)| ≤
∑τ0
τ�1

2τ+1−J+j

× 2Ld min 1,
2−jT
2τ−1

{ }
+

����������
ln(2T2)
2τ−J+j

√
+ 2 ln(2T2)

2τ−J+j
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 8Ld

∑τ0
τ�1

(
2−JT+

�����������������
2τ−J+jln(2T2)

√
+ 2 ln(2T2)

)
≤ 8Ld 2−JTτ0 + 3:5

������������������
2τ0−J+jln(2T2)

√
+ 2 ln(2T2)

( )
≤ 8Ld

��
T

√
log2T+ 3:5

������������
T ln(2T2)√ + 2 ln(2T2)

( )
,

(13)
where the last inequality holds because 2−J ≤ 2−j, and
τ0 being the last epoch must satisfy |T(τ0)| � 2τ0 ≤ T.

We next consider those threads with εj < ε. Let τj be
the last epoch, such that Ij(τj)≠ ∅. For any epoch
τ ≤ τj, recall that pj(τ) is the price advertised by thread
j. Now, let j∗ < J be the thread with the smallest εj∗ ≥ ε,
implying that εj∗ ≥ ε > εj∗+1 ≥ εj. Because Ij(τ) ⊆ Ij∗ (τ),
we conclude that the mismatched demand | f0(pj(τ)) −
x0| is upper bounded by |Ij∗ (τ)| ≤ 2LdCεj∗ (τ− 1). Because
thread j is selected in epoch τ for, at most, T(τ) selling
periods in total, the total regret incurred on thread j is
upper bounded by∑τj
τ�1

T(τ)|Ij∗ (τ)| ≤
∑τj
τ�1

2τ × 2LdCεj∗ (τ− 1)

≤ ∑τj
τ�1

2τ × 2Ld min 1,
2−j

∗
T

2τ−1

{ }
+

����������
ln(2T2)
2τ−J+j∗

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
+2ln(2T2)

2τ−J+j∗
]

≤ 4Ld
∑τj
τ�1

(
2−j

∗
T +

������������������
2τ+J−j∗ ln(2T2)

√
+2J−j

∗
ln(2T2)

)
≤ 4Ld

(
2τjεT+ 3:5

������������������
2τj+J−j∗ ln(2T2)

√
+2J−j

∗
τjln(2T2)

)
, (14)

≤ 4Ld(2εTlog2T+3:5T3=4
�������������
2εln(2T2)√

+2ε
��
T

√
ln(2T2)), (15)
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≤ 4Ld(2εTlog2T+2:5(εT+ ��
T

√ ) ����������
ln(2T2)√

+2ε
��
T

√
ln(2T2)), (16)

≤ 22LdεTln(2T2)+18Ld

��
T

√
ln(2T2): (17)

Here, Equation (14) holds because 2−j
∗ � εj∗ ∈ [ε, 2ε]

and 2−J � εJ ≥ 1=
��
T

√
. Equation (15) holds because τj ≤

τ0 ≤ log2T and 2J � 1=εJ ≤
��
T

√
. Equation (16) holds

because T3=4ε1=2 � ����
εT

√ × T1=4 ≤ ( ����
εT

√ +T1=4)2=4 ≤ 0:5
(εT+ ��

T
√ ), thanks to the AM-GM inequality.

Finally, combine Equations (13) and (17) and note
that the regret of Algorithm 3 is upper bounded by
(max{pc,Ld} + 1)E ∑

t| f0(pt) − x0|[ ]+ x−10 (εT + �������
TlnT

√ ) (see,
e.g., Eq. (EC.25) in the supplementary material). We
have that

RT3,εT(Alg:3 ; f0,x0)
≤O(1) + x−10 (εT + �������

TlnT
√ )

+ (max{pc,Ld} + 1) ×
8Ld

��
T

√
log2T+ 3:5

������������
Tln(2T2)√ + 2ln(2T2)

( )[
+22LdεTln(2T2) + 18Ld

��
T

√
ln(2T2)

]
≤ (44pL2

d + x−10 )εTln(2T2) + (116pL2
d + x−10 ) ��

T
√

ln(2T2)
+ 32pL

2
dln(2T2) +O(1)

≤ Õ(εT+ ��
T

√ ):

Theorem 3 is thus proved. w

6. Meta-Algorithm for the General
Inventory Setting

The previous section considers the insufficient-
inventory setting with pc ≡ f−10 (x0) > po. However, in
practice, the true demand rate f0 is unknown. Thus,
the retailer has no prior knowledge about the relation-
ship between pc and po. In this section, we will
develop a meta-algorithm that combines our previ-
ously presented methods without knowing the rela-
tive relationship between pc and po. Again, we note
that the unconstrained-inventory case can be viewed
as a special case of pc < po, and our FTRL algorithm in
Section 4 also fits in the case of pc < po. Because of space
constraints, all proofs to technical lemmas in this sec-
tion are relegated to the supplementary material.

6.1. Key Ideas
The main idea of the aggregation meta-algorithm is to
use a partial exploration subroutine to obtain esti-
mates of pc, po and a carefully designed mechanism to
invoke the partial exploration subroutine to mitigate
the existence of adversarial customers. In the partial
exploration subroutine (see Section 6.2 and Algorithm
4), we use a simple discretization idea to discretize the
entire pricing interval [p,p] into N3 evenly spaced

prices and estimate p̂o, p̂c on the discretized prices by
testing a total of T3 selling periods (N3, T3 are tunable
algorithm parameters). Clearly, the larger N3 and T3

are, the more accurate the estimation of p̂o, p̂c, but the
larger regret the partial exploration subroutine incurs.

Then, in the main aggregation algorithm (see Sec-
tion 6.2 and Algorithm 5), we invoke the partial explo-
ration subroutine iteratively. For iteration (epoch) ζ,
the length of the epoch (i.e. the number of time peri-
ods in the epoch) is 2ζT0, which is geometrically
increasing with ζ. On the other hand, the probability
of a time period being used in the pure exploration
Algorithm 4 is 1=

������
T(ζ)√

, which is decreasing with ζ.
This means that for later epochs ζ, the total number of
time periods devoted to estimate p̂o(ζ), p̂c(ζ) increases
(because T(ζ) × 1=

������
T(ζ)√ →∞ as ζ→∞), ensuring

that after a certain epoch ζ, the partial exploration
subroutine will return sufficiently accurate p̂c(ζ), p̂o(ζ)
estimates so that the relationship between po and pc

can be reliably determined for all remaining time peri-
ods. On the other hand, the exploration probability
1=

������
T(ζ)√

decreases as ζ increases, which makes sure
that the cumulative regret incurred during time peri-
ods assigned to Algorithm 4 is small, even though the
epoch lengths T(ζ) increase geometrically. We also
use randomly assigned time periods for partial explo-
ration to avoid the concentration of adversarial cus-
tomers in the assigned exploration periods.

Note also that, when there is no corruption (ε � 0), nei-
ther doubling trick nor randomized exploration is
needed to aggregate the two subalgorithms. However, in
the presence of an adaptive adversary, we need to use
randomized exploration to evenly sample corrupted
periods and also a doubling trick to keep track of the cur-
rent progress of po and pc estimates because corruption
could be concentrated in the block of initial time periods.

6.2. Partial Exploration over Selected
Selling Periods

Algorithm 4 (Partial Exploration for Crude Estimates of pc

and po)
1: Parameters: selected subset of selling periods T

with |T | � T3, intervalsN3, T0 � 
 ��
T

√ �.
2: Let p(1), ⋯ ,p(N3) ∈ [p,p] be evenly spaced points

on [p,p], with p(1) � p, p(N3) � p;
3: Initialize d̂(1), ⋯ , d̂(N3) � 0;
4: for every t ∈ T do
5: Select i ∈ [N3] uniformly at random;
6: Offer price pt � p(i) and observe realized demand

dt;
7: Update d̂(i) ← d̂(i) + dt;
8: end for
9: For every i ∈ [N3] compute d̃(i) �N3d̂(i)=T0;

10:Output: p̂c � p(̂i c), p̂ o � p(̂i o), where î
c � argmini∈[N3] |

d̃(i) − x0| and î
o � argmaxi∈[N3]p(i)̃d(i).
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To distinguish between the pc < po and pc > po cases,
we use randomized partial exploration to get crude
estimates p̂c and p̂o. Our robust partial exploration
method is different from the common “initial
exploration” strategy in the existing dynamic pricing
literature (see, e.g., Besbes and Zeevi 2009, Broder and
Rusmevichientong 2012, and Wang et al. 2014). More
specifically, in the prior literature Wang et al. (2014),
Besbes and Zeevi (2009), and Broder and Rusmevi-
chientong (2012), the explorations are done in a central-
ized manner, utilizing the first T0 � T selling periods.
In the presence of outlier customers, however, such an
approach is likely to fail, as the outlier customers might
concentrate on the beginning of the time periods. To
overcome this challenge, we design an algorithm based
on doubling epochs and perform randomized explora-
tion (i.e., designating whether a selling period is used
for exploration at random) to hedge against the possi-
bility of clustered outlier periods. Our partial explora-
tion strategy is presented in Algorithm 4, which will be
used as the core building block for our meta-algorithm
introduced in the next subsection. Our algorithm is
closely related to randomized exploration strategy in
robust multiarmed-bandit algorithms (Gupta et al.
2019). Nevertheless, one key difference is that in Gupta
et al. (2019), the randomized exploration is applied to a
discrete set of arms, whereas in Algorithm 4, the explo-
ration is applied to coordinate two separate bandit
algorithms.

We provide the theoretical properties for Algorithm 4.
We first upper bound the deviation of p̂c, p̂o from pc, po,
using the “relative density” of the outlier periods (indi-
cated by ιt � 1) among the exploration phases, denoted
as Z in Lemma 5. The larger Z is, the more outlier peri-
ods there are in the exploration phases, and, thus, the
larger errors of |̂pc − pc| and |̂po − po| are expected.
Lemma 5. Let p̂c, p̂o be the output of Algorithm 4. Suppose
also that

∑
t∈T ιt ≤ ZT3 with probability 1−O(T−2) for

some Z > 0. Then, with probability 1−O(T−2), it holds
that

|̂pc − pc| ≤ Ld
Lp(p − p)

N3
+ 2HZ(N3,T3)

[ ]
;

|̂po − po| ≤ 2Ld

σ2

MLp(p − p)��
2

√
N3

+ ������������������
2pHZ(N3,T3)

√[ ]
,

where

HZ(N3,T3) �min 1,Z{ } +
�������������������
N3log(2N3T2)

T3

√

+ 2N3log(2N3T2)
T3

:

Algorithm 5 (A Meta-Algorithm Combining pc < po and
pc > po Policies)

1: Parameters: time horizon T, initial inventory level
xT � x0T, policies πo (Algorithm 1) and πc (Algo-
rithm 3).

2: Initialize: p̂c(0) � p and p̂o(0) � p; T0 � 
 ��
T

√ �;
3: for each epoch ζ � 1, 2, ⋯ until inventory runs out,
or T selling periods are reached do

4: Let T(ζ) � 2ζT0 and let T (ζ) be the next T(ζ) sell-
ing periods;

5: For each selling period in T (ζ), place it in an explo-
ration phase set G(ζ)with probability 1=

������
T(ζ)√

;
6: if p̂c(ζ− 1) < p̂o(ζ− 1) then
7: Run policy πo with po � (̂pc(ζ− 1) + p̂o(ζ−

1))=2 and initial inventory xζ � x0T(ζ) on
T (ζ)\G(ζ); *

8: Run Algorithm 4 with T3 � |G(ζ)| and N3 �

 ����

T3
√ � on G(ζ);

9: else
10: Run policy πc with initial inventory xζ �

x0T(ζ) on T (ζ)\G(ζ);*
11: Run Algorithm 4 with T3 � |G(ζ)| and N3 �


 ����
T3

√ � on G(ζ);
12: end if
13: Update estimates p̂o(ζ), p̂c(ζ) from Algorithm 4

run on G(ζ);
14: end for
*If the designated inventory level xζ runs out, then

offer price p in the rest of epoch τ, during which π̂
o or

π̂
c are run.

6.3. A Meta-Policy Combining pc< po and pc > po

Policies and the Lower Bound
Now, we are ready to introduce the meta-policy that
combines the cases of pc < po and pc > po. Suppose we
have access to two policies: The first policy in Algo-
rithm 1, denoted as πo, achieves Õ(εT+ ��

T
√ ) regret

over T selling periods under the condition that pc < po;
and the second policy in Algorithm 3, denoted as πc,
achieves Õ(εT + ��

T
√ ) regret under the condition that

pc > po. The first policy πo also requires a parameter po

that is between pc and po. In step 7 of Algorithm 5, we
simply set po to be (̂pc + p̂o)=2, where p̂c and p̂o are esti-
mated prices from Algorithm 4. Our meta-algorithm
is presented in Algorithm 5, and its regret bound is
presented in the next theorem. A schematic figure of
the meta-policy is also given in Figure 3.

Theorem 4. Suppose pc ≠ po, and the policies πo,πc satisfy
RT′′,εT(πo; f0,x0) � Õ(εT + ����

T′′√ ) and RT′′,εT(πc; f0,x0) �
Õ(εT + ����

T′′√ ) under the conditions of pc < po and pc > po,
respectively. Then, the regret of the Meta-Algorithm 5 can
be upper bounded by

RT,εT(Alg:6 ; f0,x0) � Õ(εT + ��
T

√ ),
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for sufficiently large T, where in the Õ(·) notation, we drop
polynomial dependency on po,pc,p,p,Lp,Lp,M2,σ2 and
logT.

Theorem 4 is optimal in the sense that no policy is
capable of achieving regret lower than Ω(εT + ��

T
√ )

when there are εT outlier customers, as shown by the
following theorem. Its proof is given in the supple-
mentary material.

Theorem 5. There exists a universal constant C > 0, such
that, for any policy π, time horizon T, and outlier portion
ε ∈ (0, 1), there exists f0 and x0 ∈ (0, 1] such that

RT,εT(π; f0,x0) ≥ C × (εT + ��
T

√ ):

7. Numerical Results
We use synthetic data to verify the effectiveness of
our proposed algorithms on dynamic pricing with
demand learning and outlier customers’ purchase
activities. We study a linear demand-rate model of
f0(p) � 1− p and set x0 � 0:8 for the pc < po case and
x0 � 0:2 for the pc > po case. Simple calculations show
that in the x0 � 0:8 case, the optimal price with respect
to the fluid approximation is p∗ � 0:5 with expected
per-period revenue r(p∗,x0) � 0:25. In the x0 � 0:2 case,
the optimal price is p∗ � 0:8, and the expected per-
period revenue is r(p∗,x0) � 0:16. For the outlier cus-
tomers, we corrupt the first 
εT� time periods with
ft(p) ≡ 0:05 for all advertised prices p. Our algorithm
has a robust performance under different ways of
corruptions.

We first test our proposed algorithms for the sepa-
rate cases of pc < po and pc > po, using Algorithms 1
and 3, respectively. Note that in both algorithms, the
corruption level ε is not known a priori. For a baseline
algorithm, we use a recent trisection algorithm devel-
oped in Lei et al. (2014), which has an Õ( ��

T
√ ) regret

without the existence of outlier customers. It should
be noted that the algorithm developed in Lei et al.
(2014) features a pure exploration phase, followed by
two completely separate bisection procedures for the

pc < po and pc > po cases. In the first comparison, we
abolish the pure exploration phase of the baseline
algorithm in Lei et al. (2014) because the relationship
between pc and po is known.

In Figure 4, we compare the average revenues ((a)
and (c); the higher the better) and the average regret
((b) and (d); the lower the better) of our proposed
algorithms with the baseline method under various
time horizons (T) and outlier levels (ε). Each setting is
repeated for 100 independent trials, and the mean
average revenue/regret is reported. The standard
deviation is relatively small and, thus, omitted for bet-
ter visualization. As we can see in Figure 4, our pro-
posed algorithms consistently outperform the baseline
method, which does not take into consideration the
presence of outlier customers. Indeed, with the pres-
ence of outliers, the bisection algorithms in Lei et al.
(2014) are heavily biased toward higher prices, result-
ing in very large and even increasing average regret.
On the other hand, our algorithms not only correctly
avoided the influences of the outlier customers, but
also deliver stable revenue and regret performances
under varying ε settings. We also remark that without
outlier customers (i.e., ε � 0), the regret of our pro-
posed algorithms is worse than the baseline algo-
rithm, due to the additional overhead incurred by
adapting to unknown outlier portions over T time
periods. We also note that when ε is large (e.g.,
ε � 0:2), the average revenue of our method (and
average regret) does not increase (decrease) with
respect to log2T. This is because in the accumulated
regret bound, the term εT becomes the dominating
term, and, thus, the average regret does not decrease
over T.

Next, we compare the performances of our pro-
posed meta-algorithm (Algorithm 5) with the baseline
method when the relationship between po and pc is not
known a priori and has to be learned in the process of
the dynamic pricing procedure, in order to determine
the right subalgorithm to use. The demand models
and initial inventory-level settings are identical to the
ones used in Figure 4.

Figure 5 shows the performances of our algorithm
and the baseline algorithm under various T and ε set-
tings, in which the relationship between po and pc is
unknown. As we can see from Figure 5, the regret of
the baseline algorithm (dotted lines) is small when
there is no outlier, but increases significantly with
even only 5% of customers being outliers. We also see
that, in the presence of outliers, the regret of the base-
line algorithm does not decrease and sometimes even
increases significantly with more time periods/cus-
tomers available. This is partly due to the fact that the
first εT customers are outliers, which could sway the
baseline algorithm’s judgment of the relationship
between po, pc, and the bisection procedure in the

Figure 3. (Color online) A Schematic Figure for Algorithm 5,
the AggregationMeta-Policy
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baseline algorithm might also eliminate good price
candidates due to the influence of outliers. On the
other hand, the performance of our proposed algo-
rithm is much more stable in the presence of outlier
customers.

We report additional sets of numerical results con-
cerning alternative adversarial customer patterns and
their associated outlier demand distributions. In this
experiment (and following ones), we fix ε � 0:1. We
first explore settings in which outlier customers are
not simply concentrated among the first εT time peri-
ods. In particular, for some η ∈ [0, 1), we assume ηεT
outlier customers still arrive during the first few time
periods, while the remaining (1− η)εT outliers are dis-
tributed uniformly at random among the remaining
time periods. Results of our algorithms and their

baseline competitors for different η settings are dis-
played in Figure 6. As we can see from Figure 6, the
difference in how outlier customers are distributed
has very little impact on the overall performance of
our proposed methods, validating their robustness
against diverse patterns of outliers.

We also study the performance of our algorithm
under settings where the outlier demand distributions
gt(·) differ from the demand of typical customers f0(·)
at different levels. More specifically, recall that the
demand distribution of typical customers is f0(p)
� 1− p. To construct outlier demand distributions gt(·)
that are different from f0, we consider gt(p) � 1− eatp,
where at ~U[0,u] is i.i.d. distributed from a uniform
distribution on the interval of [0,u], for a certain range
parameter u > 0. Clearly, the range parameter u

Figure 4. (Color online) The Average (Avg.) Revenues ((a) and (c)) and Regret ((b) and (d)) of Our Proposed Algorithm and the
Baseline Algorithm in the Separate Cases of pc < po (Algorithm 1 in (a) and (c)) and pc > po (Algorithm 3 in (b) and (d)) Under
Various Outlier Levels (ε)

Notes. The dashed lines correspond to performances of the baseline (comparative) algorithm, and the solid lines correspond to performances of
our proposed methods. More details are in the main text. (a) Avg. reward vs. log2T. (b) Avg. regret vs. log2T. (c) Avg. reward vs. log2T. (d) Avg.
regret vs. log2T.
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controls how far away gt deviates from the typical
demand distribution f0, with larger u values indicat-
ing that gt deviates farther away from f0 and vice
versa.

In Figure 7, we report the results of our proposed
policies and their baseline competitors for problem
settings with different u values. As we can see, with
smaller u values (i.e., less deviation of gt from f0),
the performance of our proposed robust policies
improves, which is intuitive, as less adversarial devi-
ation makes robust estimation of typical customers’
demands easier. We also remark that the perform-
ance of the baseline methods fluctuates quite signifi-
cantly compared with other experimental settings,
primarily because of the highly randomized nature
of adversaries (outlier customers) in this setting,
which is different from our previous experimental

settings, where gt is fixed at the constant level of
0.05.

7.1. Adding Outlier Detection
In this subsection, we compare our proposed algo-
rithm with the baseline algorithm (Lei et al. 2014)
equipped with an outlier-detection component. More
specifically, when an observation (pt, dt) arrives, the
baseline algorithm first tries to detect whether the
observation is an outlier. If an outlier is detected, the
observation (pt, dt) is discarded, and it will not affect
the execution flow of the underlying pricing algo-
rithm. Otherwise, the observation is regarded as
“trustworthy” by the algorithm and is handled just
like it is not corrupted by any adversary.

To perform outlier detection, we consider a paramet-
ric demand model f0(p) � a− bp. After every T0 � 
 ��

T
√ �

Figure 5. (Color online) The Average (Avg.) Revenues ((a) and (c)) and Regret ((b) and (d)) of our Proposed Algorithm and the
Baseline AlgorithmWithout Knowing the Relationship Between po and pc (Algorithm 5)

Notes. The dashed lines correspond to performances of the baseline (comparative) algorithm, and the solid lines correspond to performances of
our proposed methods. More details are in the main text. (a) Avg. reward vs. log2T. (b) Avg. regret vs. log2T. (c) Avg. reward vs. log2T. (d) Avg.
regret vs. log2T.
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selling periods, the algorithm uses the collected
data to fit a ordinary least-squares (OLS) estimate of
the model f̂ 0(p) � â − b̂p. With the estimated model,
a new observation (p,d) is deemed as an outlier if
|(̂d − d)= �����������������

MSE(1− hp)
√ | > ω, with ω � 2:0 correspond-

ing to the 2σ tail of a standard centered Gaussian dis-
tribution, and d̂ � â − b̂p is the estimated demand rate,
MSE is the mean-square error of the fitted OLS model,
and hp is the leverage score corresponding to the
observation (p, d). This outlier-detection procedure fol-
lows naturally the classical residual analysis in linear-
regression models. To warm-start the outlier detector,

for the first T0 selling periods, the algorithm sets prices
uniformly at random.

In Figure 8, we report average rewards and regrets
of our proposed algorithms and compare them with
the performance of the baseline algorithm equipped
with the above outlier-detection component. Figure 9
further shows the percentages of observations labeled
as outliers under different ε and time horizon (T) set-
tings. It also displays the accuracy/precision and
recall of the outlier-detection procedure.1

Finally, in Figure 10, we report the behavior of the
outlier-detection procedure with different cutoff thresh-
olds ω. Note that a smaller ω value means that more

Figure 7. (Color online) The Average (Avg.) Revenue ((a)) and Regret ((b)) of Our Proposed Algorithm and the Baseline Algo-
rithmUnder Different Levels of Deviations of Outlier Demand Functions Quantified by u (with ε � 0:1,η � 0:5)

Notes. The dashed lines correspond to performances of the baseline (comparative) algorithm, and the solid lines correspond to performances of
our proposedmethods. More details are in themain text. (a) Avg. reward vs. log2T. (b) Avg. regret vs. log2T.

Figure 6. (Color online) The Average (Avg.) Revenue ((a)) and Regret ((b)) of Our Proposed Algorithm and the Baseline Algo-
rithmUnder Different Outlier-Occurring Patterns Quantified by η (with ε � 0:1)

Notes. The dashed lines correspond to performances of the baseline (comparative) algorithm, and the solid lines correspond to performances of
our proposedmethods. More details are in the main text. (a) Avg. reward vs. log2T. (b) Avg. regret vs. log2T.
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observations will be detected as outliers, which would
potentially increase the recall (more actual outliers are
being detected), but decrease the accuracy (more false
positives in the detected outliers). As we can see from
the first graph on the second row in Figure 10, with
ω � 1:0, as many as 35% observations are detected as
outliers, and with ω ≥ 2:0, fewer than 10% of observa-
tions are marked as outliers, which sandwich the true
outlier proportion of ε � 0:1 � 10%. However, for this
wide range of cutoff thresholds ω, the accuracy and
recall of the outlier-detection procedure are still low.
From the first row of Figure 10, the overall revenue/
regret performances of the outlier-detection approach
still trail behind our proposed algorithm for larger time
horizons T.

8. Conclusion
In this paper, we study the robust dynamic pricing
problem under an online extension of the fundamen-
tal “ε-contamination model” from statistics and
machine learning. For both known and unknown
outlier-proportion ε cases, we propose efficient pric-
ing policies that are robust to adversarial corruptions
and establish near-optimal regret bounds.

As for future work, it is interesting to further
extend the paper to the fully adversarial setting. It is
also interesting to extend the methods developed in
this paper to network revenue management, where
multiple products are present for sale, and their
demand rates/resource consumptions are correlated.
However, both are technically challenging problems.

Figure 8. (Color online) The Average (Avg.) Revenues ((a) and (c)) and Regret ((b) and (d)) of Our Proposed Algorithm and the
Baseline Algorithmwith an Outlier-Detection Component, Without Knowing the Relationship Between po and pc (Algorithm 5)

Notes. The dashed lines correspond to performances of the baseline (comparative) algorithm, and the solid lines correspond to performances of
our proposed methods. More details are in the main text. (a) Avg. reward vs. log2T. (b) Avg. regret vs. log2T. (c) Avg. reward vs. log2T. (d) Avg.
regret vs. log2T.
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In addition, our work could motivate the investiga-
tion of many other operations problems with inven-
tory constraints under the online ε-contamination

model. For example, it would be interesting to extend
the robust online assortment optimization from Chen
et al. (2019) to the inventory-constrained setting.

Figure 9. (Color online) The Proportion of Observations Detected as Outliers and the Accuracy/Precision and Recall of Such
Detection Under Different ε Settings

Note. More details are in themain text.

Figure 10. (Color online) Regret, Revenue, Proportions of Outliers Detected, and Accuracy/Recall of Outlier Detection Under
Different ω Thresholds, with the Actual Outlier Proportion ε � 0:1

Note. More details are in themain text.
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Endnote
1 Accuracy/precision is defined as the number of true detections
among all those detected as outliers, and recall is defined as the
number of detections among those that are actual outliers. As we
can see, the performance of the baseline algorithm is still inferior to
our algorithm, despite adding the outlier-detection component. We
also note that both the accuracy and recall of the standard outlier-
detection procedure is quite low, which is, in general, below 10%
for accuracy and hovering around 1%–2% for recall. It suggests
that, with adversarial outlier arrival patterns, detecting outlier con-
sumer behaviors could be very difficult in a dynamic pricing
setting.
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Proofs of Statements

EC.1. Proof of Lemma 1

We first review some notations and concepts necessary to our proof. Let D⊆R
N1 be a convex open

set, and D be the closure of D. We say a function ψ :D→R is Legendre if it satisfies the following

conditions:

1. ψ is strictly convex and continuously differentiable on D;

2. limw→D\D ‖∇ψ(w)‖=∞.

It is easy to verify that our choice of ψ(w) =
∑N1

i=1−
√
wi −

√
1−wi is Legendre with D= (0,1)N1 .

Let D∗ =∇ψ(D) be the dual space of D. With our choice of ψ, D∗ =R
N1 . For a Legendre function

ψ : D → R, its Legendre-Fenchel transform (also known as the convex conjugate) ψ∗ : D∗ → R is

defined as

ψ∗(u) = sup
w∈D

〈w,u〉−ψ(w). (EC.1)

The following properties are standard results of convex conjugates. See for example, the reference

of (Cesa-Bianchi & Lugosi 2006, Rockafellar 1970), or (Audibert et al. 2014).

Fact 1 Suppose ψ is Legendre. Then ψ∗∗ = ψ and ∇ψ∗ = (∇ψ)−1. Furthermore, if ψ is also twice

continuously differentiable on D, then ∇2ψ∗(u) = [∇2ψ(w)]−1 for every pair of w = ∇ψ∗(u) or

u=∇ψ(w).

Given a Legendre function ψ :D→R, its Bregman divergence Dψ :D×D→R is defined as

Dψ(x, y) =ψ(x)−ψ(y)−〈x− y,∇ψ(y)〉. (EC.2)

If ψ is twice continuously differentiable on D, then by Taylor expansion with the Lagrangian

remainder, we have for every x, y ∈D that

Dψ(x, y)≤
1

2
(y−x)�∇2ψ(z)(y−x), (EC.3)

where z = x+α(y−x) for some α∈ (0,1).

At time period t, define ψt =
1
ηt
ψ, where ηt is the step size (or learning rate) at time t. Define

function φt :R
N1 →R as

φt(u) = sup
w∈ΔN1−1

〈w,u〉−ψt(w). (EC.4)
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Comparing φt with the convex conjugate ψ∗
t defined in Eq. (EC.1), the only difference lies in the

additional constraint of w ∈ΔN1−1 in the definition of φt. The following properties are simple and

elementary to verify.

Fact 2 For any Legendre ψt let ψ
∗
t be its convex conjugate and φt be defined in Eq. (EC.4). The

following properties hold:

1. For any u∈R
N1, φt(u)≤ψ∗

t (u);

2. For any u∈R
N1 and c∈R, φt(u+ c1) = φt(u)+ c, where 1= (1, · · · ,1)∈R

N1;

3. For any w ∈ΔN1−1, φt(∇ψt(w)) =ψ∗
t (∇ψt(w));

4. For any u ∈ R
N1, let w∗ = argmaxw∈ΔN1−1〈w,u〉 −ψt(w). Then there exists λ ∈ R depending

on u, such that ∇ψt(w
∗) = u+λ1.

Proof of Fact 2. The first property is obvious because φt has the same objective with ψ∗
t , but

with a smaller feasible region. The second property holds because φt(u+ c1) = supw∈Δk−1〈w,u+

c1〉−ψt(w) = c+supw∈Δk−1
〈w,u〉−ψt(w) = c+φt(u).

To see the third property, note that ∇ψ∗
t (∇ψt(w)) =w, thanks to Fact 1. This means that w is

the maximizer of 〈·,∇ψt(w)〉−ψt(·) on R
d. Since w ∈ΔN1−1, it is also the maximizer of the same

objective on R
d. Hence, φt(∇ψt(w)) =ψ∗

t (∇ψt(w)).

For the fourth property, consider the maximization question of maxw∈R
N1−1〈w,u〉 − ψt(w) and

let w∗ be the maximizer. Using the Lagrangian multiplier, we know that u−∇ψt(w
∗) + λ1 = 0.

Hence, ∇ψt(w
∗) = u+λ1, which is to be demonstrated. �

Let ei∗ = (0, · · · ,0,1,0, · · · ,0) ∈ R
N1 be the indicator vector corresponding to the price p(i∗).

Because it ∼wt, we know that E[�t,it ] =E[〈�t,wt〉]. Subsequently, the regret E[
∑T

t=1 �t,i∗ − �t,it ] can

be decomposed as follows:

E

[
T∑

t=1

�t,i∗ − �t,it

]
=E

[
T∑

t=1

〈�t, ei∗ −wt〉
]

=E

[
T∑

t=1

〈�t,−wt〉−φt(L̂t−1)+φt(L̂t)

]
︸ ︷︷ ︸

the stability term

+E

[
T∑

t=1

φt(L̂t−1)−φt(L̂t)+ 〈�t, ei∗〉
]

︸ ︷︷ ︸
the penalty term

. (EC.5)

In the rest of this proof, we will upper bound the stability term and the penalty term separately.
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EC.1.1. Upper bounding the penalty term

By definition of φt, φt(L̂t−1) = supw∈ΔN1−1〈w, L̂t−1〉 −ψt(w) where ψt(w) =
1
ηt
ψ(w). Because wt ∈

ΔN1−1 is the maximizer of 〈w, L̂t−1〉−ψt(w), we have that

φt(L̂t−1) = 〈wt, L̂t−1〉−
1

ηt
ψ(wt). (EC.6)

Similarly, for any w′ ∈ΔN1−1, it holds that

φt(L̂t)≥ 〈w′, L̂t〉−
1

ηt
ψ(w′). (EC.7)

Combine Eqs. (EC.6,EC.7) and set w′ in Eq. (EC.7) as w′ =wt+1 for t < T , and w′ = ei∗ for t= T .

We then have

T∑
t=1

φt(L̂t−1)−φt(L̂t)

=

[
T∑

t=1

〈wt, L̂t−1〉−
1

ηt
ψ(wt)

]
−
[
T−1∑
t=1

〈wt+1, L̂t〉−
1

ηt
ψ(wt+1)

]
−〈L̂T , ei∗〉+

1

ηT
ψ(ei∗)

=

[
T∑

t=2

(
1

ηt−1

− 1

ηt

)
ψ(wt)

]
− 1

η1
ψ(w1)−〈L̂T , ei∗〉+

1

ηT
ψ(ei∗),

where the last equality holds because L̂0 = 0 by definition. Notice that L̂T =
∑T

t=1 �̂t satisfies

E[L̂T ] =
∑T

t=1E[�̂t] =
∑T

t=1 �t. Hence,

E

[
T∑

t=1

φt(L̂t−1)−φt(L̂t)+ 〈�t, ei∗〉
]
=E

[
T∑

t=2

(
1

ηt−1

− 1

ηt

)
ψ(wt)−

1

η1
ψ(w1)+

1

ηT
ψ(ei∗)

]

=E

[
T∑

t=2

(
1

ηt−1

− 1

ηt

)
(ψ(wt)−ψ(ei∗))−

1

η1
(ψ(w1)−ψ(ei∗))

]
, (EC.8)

where the last equality holds because the terms involving ψ(ei∗) sum to 1
ηT

ψ(ei∗).

Next, we analyze the differences between ψ(wt) and ψ(ei∗). Recall that, for w ∈ΔN1−1, ψ(w) is

defined as ψ(w) =
∑N1

i=1−
√
wi −

√
1−wi. Also, because each component of ei∗ is either 1 or 0, we

have ψ(ei∗) =−N1. Subsequently,

ψ(ei∗)−ψ(wt) =

N1∑
i=1

√
wti +

√
1−wti − 1≤min{√wti,

√
1−wti}. (EC.9)
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Plugging Eq. (EC.9) into Eq. (EC.8), and noting that 1
ηt
− 1

ηt−1
= (

√
t−

√
t− 1)/η0 ≤ 1/(η0

√
t), we

have that

E

[
T∑

t=1

φt(L̂t−1)−φt(L̂t)+ 〈�t, ei∗〉
]
≤E

[
T∑

t=1

N1∑
i=1

min{√wti,
√
1−wti}

η0
√
t

]

≤ 1

η0
E

[
T∑

t=1

√
1−wti∗

t
+
∑
i�=i∗

√
wti

t

]
=

1

η0
E

⎡⎣ T∑
t=1

√∑
i�=i∗ wti

t
+
∑
i�=i∗

√
wti

t

⎤⎦
≤ 2

η0
E

[
T∑

t=1

∑
i�=i∗

√
wti

t

]
. (EC.10)

EC.1.2. Upper bounding the stability term

Recall the definition that wt = argmaxw∈ΔN1−1〈w, L̂t−1〉−ψt(w). By the fourth property of Fact 2,

there exists λt ∈R such that ∇ψt(wt) = L̂t−1 +λt1. Subsequently,

−φt(L̂t−1)+φt(L̂t) =−φt(∇ψt(wt)−λt1)+φt(∇ψt(wt)−λt1+ �̂t)

=−φt(∇ψt(wt))+φt(∇ψt(wt)+ �̂t), (EC.11)

where the second equality holds thanks to the second property of Fact 2 (so that the λt1 terms are

canceled), and that L̂t = L̂t−1 + �̂t. By the first and the third properties of Fact 2, we know that

φt(∇ψt(wt)) =ψ∗
t (∇ψt(wt)) and φt(∇ψt(wt)+ �̂t)≤ψ∗

t (∇ψt(wt)+ �̂t). Subsequently,

−〈�t,wt〉−φt(L̂t−1)+φt(L̂t)≤−〈�t,wt〉−ψ∗
t (∇ψt(wt))+ψ∗

t (∇ψt(wt)+ �̂t)

=Dψ∗
t
(∇ψt(wt)+ �̂t,∇ψt(wt)), (EC.12)

where the last equality holds because ∇ψ∗
t (∇ψt(wt)) =wt, thanks to the ∇ψ∗

t = (∇ψt)
−1 property

in Fact 1. Using Eq. (EC.3) and the relationship between ∇2
ψ∗
t
,∇2

ψt
in Fact 1, we have that

Dψ∗
t
(∇ψt(wt)+ �̂t,∇ψt(wt))≤

1

2
�̂�t ∇2ψ∗

t (∇ψt(wt)+αt�̂t)�̂t

=
1

2
�̂�t
[
∇2ψt(∇ψ∗

t (∇ψt(wt)+αt�̂t))
]−1

�̂t, (EC.13)

where αt ∈ (0,1) is a certain interpolation parameter.

The following lemma upper bounds the discrepancy between ∇ψ∗
t (∇ψt(wt) + αt�̂t) and

∇ψ∗
t (∇ψt(wt)) =wt.

Lemma EC.1. Let w̃=∇ψ∗
t (∇ψt(w)+αδ) for some w ∈ΔK1−1, α∈ (0,1) and δ ∈R

N1−1 satis-

fying − p
wi

≤ δi ≤ p. The potential function is chosen as ψt(w) =
1
ηt
ψ(w) where ψ(w) =

∑N1

i=1−
√
wi−

√
1−wi. Suppose ηt ≤ 1

4p
(1− 1√

2
). Then it holds for all i∈ [N1] that 2wi − 1≤ w̃i ≤ 2wi.
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We will prove Lemma EC.1 in the next section. For the rest of the proof, note that the condition

η0 = 0.07/p≤ 1
4p
(1− 1√

2
) in Lemma 1 implies the condition on ηt in Lemma EC.1 holds, because

ηt = η0/
√
t≤ η0. Note also that, for any w ∈ [0,1]N1 and j ∈ [N1],

∂2
jjψ(w) =

1

4

(
1

w
3/2
j

+
1

(1−wj)3/2

)
.

With Lemma EC.1 and the notation that w̃t =wt+αt�̂t, and conditioned on the event that it = i,

it holds that

�̂�t
[
∇2ψt(w̃t)

]−1
�̂t =

∑
j �=i

p2[∂2
jjψt(w̃tj)]

−1 +

(
p(i)dt − p

wti

+ p

)2

[∂2
iiψt(w̃ti)]

−1

≤
N1∑
j=1

p2[∂2
jjψt(w̃tj)]

−1 +
p2

w2
ti

[∂2
iiψt(w̃ti)]

−1 (EC.14)

= 4p2ηt

N1∑
j=1

(
1

w̃
3/2
tj

+
1

(1− w̃tj)3/2

)−1

+
4p2ηt
w2

ti

(
1

w̃
3/2
ti

+
1

(1− w̃ti)3/2

)−1

≤ 8
√
2p2ηt

N1∑
j=1

min
{
w

3/2
tj , (1−wtj)

3/2
}
+

8
√
2p2ηt
w2

ti

min
{
w

3/2
ti , (1−wti)

3/2
}
. (EC.15)

Here, Eq. (EC.14) holds because 0 ≤ p(i)dt ≤ p and hence |p(i)dt−p

wti
+ p| ≤ p

wti
. Eq. (EC.15) holds

because (w̃
−3/2
tj + (1− w̃ti)

−3/2)−1 ≤min{w̃3/2
tj , (1− w̃tj)

3/2} ≤min{(2wtj)
3/2, (2− 2wtj)

3/2}, thanks
to Lemma EC.1. Because it = i with probability wti, the right-hand side of Eq. (EC.15) can be

further upper bounded by

8
√
2p2ηt

N1∑
j=1

min
{
w

3/2
tj , (1−wtj)

3/2
}
+8

√
2p2ηt

N1∑
i=1

min{w3/2
ti , (1−wti)

3/2}
wti

≤ 16
√
2p2ηt

N1∑
i=1

min{w3/2
ti , (1−wti)

3/2}
wti

≤ 16
√
2p2ηt

N1∑
i=1

min{√wti,
√
1−wti}

≤ 16
√
2p2ηt

[
√
1−wti∗ +

∑
i�=i∗

√
wti

]
= 16

√
2p2ηt

⎡⎣√∑
i�=i∗

wti +
∑
i�=i∗

√
wti

⎤⎦
≤ 32

√
2p2ηt

[∑
i�=i∗

√
wti

]
= 32

√
2p2η0

[∑
i�=i∗

√
wti

t

]
. (EC.16)

EC.1.3. Proof of Lemma EC.1

Because ∇ψ∗
t = (∇ψt)

−1 thanks to Fact 1, we have that

∇ψt(w̃) =∇ψt(w)+αδ.
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Fix an arbitrary i∈ [N1] and let wi, w̃i be the ith components of w and w̃, respectively. The above

inequality then implies that

∂iψt(wi)−αδi ≤ ∂iψt(w̃i)≤ ∂iψt(wi)+αδi. (EC.17)

We first prove w̃i ≤ 2wi. If wi ≥ 1/2 then the inequality automatically holds because w̃ ∈

Range(∇ψ∗
t )⊆ [0,1]N1 . Hence, we shall assume that wi < 1/2. Assume by way of contradiction that

w̃i > 2wi. Because ∂iψt(wi) =
1
ηt
[− 1

2
√
wi

+ 1
2
√
1−wi

] is strictly monotonically increasing with wi, we

have that

αδi = ∂iψt(w̃i)− ∂iψt(wi)>∂iψt(2wi)− ∂iψt(wi).

Subsequently,

αδi >
1

ηt

[
− 1

2
√
2wi

+
1

2
√
1− 2wi

+
1

2
√
wi

− 1

2
√
1−wi

]
≥ 1

2

(
1− 1√

2

)
1

ηtwi

≥ p,

where the last inequality holds because wi ≤ 1 and ηt ≤ 1
2p
(1− 1√

2
). This contradicts the condition

that α∈ (0,1) and δi ≤ p.

We next prove w̃i ≥ 2wi − 1. If wi ≤ 1/2 then the inequality automatically holds because w̃ ∈

Range(∇ψ∗
t )⊆ [0,1]N1 . Hence we shall assume that wi > 1/2. Assume by way of contradiction that

w̃i < 2wi − 1. Again by the strict monotonicity of ∂iψt, we have that

αδi = ∂iψt(w̃i)− ∂iψt(wi)<∂iψt(2wi − 1)− ∂iψt(wi).

Subsequently,

αδi <
1

ηt

[
− 1

2
√
2wi − 1

+
1

2
√

2(1−wi)
+

1

2
√
wi

− 1

2
√
1−wi

]
≤ 1

ηt

[
1

2
√

2(1−wi)
− 1

2
√
1−wi

]

≤−1

2

(
1− 1√

2

)
1

ηt
√
1−wi

≤−1

2

(
1− 1√

2

)
1

2ηtwi

,

where the last inequality holds because
√
1−wi ≤ 2wi for all wi ∈ (1/2,1]. Because ηt ≤ 1

4p
(1− 1√

2
),

we have that

αδi <−p/wi,

which contradicts the condition that α∈ (0,1) and δi ≥−p/wi.
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EC.1.4. Putting everything together

Combine Eqs. (EC.5,EC.10,EC.16). We have that

E

[
T∑

t=1

�t,i∗ − �t,it

]
≤
(
32

√
2p2η0 +

2

η0

)
×E

[
T∑

t=1

∑
i�=i∗

√
wti

t

]
.

Plugging in the scaling that η0 = 0.07/p we complete the proof of Lemma 1.

EC.2. Proof of Theorem 1

Recall that �t,i = p(i)ft(p(i)) and i∗ = argmaxi∈[N1] p(i)f0(p(i)) is the revenue maximizer among

prices {p(i)}N1
i=1 for typical customers.

We then have

RT,εT (Alg.3;f0, x0)≤ T
∣∣pof0(po)− p(i∗)f0(p(i

∗))
∣∣+E

[
T∑

t=1

�t,i∗ − �t,it

]
. (EC.18)

To upper bound the second term on the right-hand side of Eq. (EC.18), note that because

{p(i)}N1
i=1 are N1 prices evenly partitioning [po, p], there exists i� ∈ [N1] such that |p(i�) − po| ≤

(p−p)/(2N1). Other the other hand, because r(d) = df−1
0 (d) is strongly smooth thanks to Assump-

tion (A2), we have that r(do)− r(d(i�))≤ M2

2
|do − d(i�)|2, where do = f0(p

o) and d(i�) = f0(p(i
�)).

Subsequently,

pof0(p
o)− p(i∗)f0(p(i

∗))≤ pof0(p
o)− p(i�)f0(p(i

�)) = dof−1
0 (do)− d(i�)f−1

0 (d(i�))

= r(do)− r(d(i�))

≤ M 2

2

∣∣do − d(i�)
∣∣2 ≤ M 2

2
L

2

d

∣∣po − p(i�)
∣∣2 (EC.19)

≤ M 2L
2

d

2

(p− p)2

4N 2
1

=
M 2L

2

d(p− p)2

8
√
T

. (EC.20)

Here the second inequality in Eq. (EC.19) holds because |do − d(i�)| = |f−1
0 (po) − f−1

0 (p(i�))| ≤

Ld|po − p(i�)|. Subsequently,

T
∣∣pof0(po)− p(i∗)f0(p(i

∗))
∣∣≤ 1

8
M 2L

2

d(p− p)2
√
T . (EC.21)
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We next turn to the third term on the right-hand side of Eq. (EC.18). By Lemma 2, for every

I ⊆ [N1]\{i∗}, it holds that

E

[
T∑

t=1

�t,i∗ − �t,it

]
≤ 64p

√
|I|T +

T∑
t=1

∑
i/∈I,i �=i∗

1

2

(32p)2

tΔμi

+
1

2
pεT, (EC.22)

where Δμi = p(i∗)f0(p(i
∗)) − p(i)f0(p(i)). For any i ∈ [N1], define γ = |i − i�| where i� =

argmini∈[N1] |p(i)− po|. By Lemma 3, if γ ≥ 1
2
+

MLp√
2σLp

then it holds that

Δμi ≥ p(i�)f0(p(i
�))− p(i)f0(p(i))≥

σ2L2
p(γ− 1/2)2ζ2

4
,

where ζ = (p − po)/N1. Now let I = {i ∈ [N1] : i �= i∗, |i − i�| ≤ 1
2
+

MLp√
2σLp

}. Clearly |I| ≤ 2 +
√
2MLp/(σLp). Subsequently, Eq. (EC.22) can be reduced to

E

[
T∑

t=1

�t,i∗ − �t,it

]

≤ 64p
√

(2+
√
2MLp/(σLp))T +

1

2
pεT +

N1∑
γ=1

512p2(lnT +1)×
[
σ2L2

p(γ− 1/2)2ζ2

4

]−1

≤ 128

√
MLpT

σLp

+
1

2
pεT +

2048p2 ln(eT )

σ2L2
pζ

2
×

N1∑
γ=1

1

(γ− 1/2)2

≤ 128

√
MLpT

σLp

+
1

2
pεT +

2048p2 ln(eT )

σ2L2
pζ

2
× π

3
. (EC.23)

Note that ζ = (p− po)/N1 and N1 ≈ T 1/4. Combining Eqs. (EC.18,EC.21,EC.23) we obtain

RT,εT (Alg.3;f0, x0)≤
1

8
M 2L

2

d(p− p)2
√
T +128

√
MLpT

σLp

+
1

2
pεT +

2145p2
√
T ln(eT )

σ2L2
p(p− po)2

= Õ(
√
T + εT ),

which is to be demonstrated.

EC.3. Proof of Proposition 1.

For notation simplicity we shall omit the π superscript in this proof. For every t < T , it holds that

E[
∑

t′≤t dt′ ]≤min{xT , x0t+E[
∑

t′≤t δt′ ]+E} ≤ x0t+E[δ]+E. Using Hoeffding’s inequality and the

union bound, we have with probability 1−T−1 that

1

t

∑
t′≤t

dt′ ≤ x0 +
E[δ] +E

t
+

√
lnT

t
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for every t < T . Or equivalently,

∑
t′≤t

dt′ ≤ x0t+E[δ] +E+
√
t lnT . (EC.24)

Now let T+ ≤ T be the random variable of the last episode such that x(T+)> 0. This implies

that
∑

t′≤T+ dt′ >xT = x0T . Comparing this with Eq. (EC.24), we have that

E[x0T
+ + δ+ εT +

√
T+ logT ]≥ x0T.

Re-arranging the inequality and noting that T+ ≤ T , x0 ∈ (0,1], we have that

E[T −T+]≤ 1

x0

(
E[δ] + εT +

√
T logT

)
.

This completes the proof, because p(T −T+) is an upper bound on the regret incurred by lost sales

over the T time periods.

To prove the high-probability claim, note that the above argument remains valid if one condition

on the event that δ≤B and taking expectations over the randomness of {ft(pt)− dt} only. �

EC.4. Proofs of Technical Results in Sec. 5.1

To prove the Theorem 2, we first introduce some technical lemmas. The following lemma shows

that for an epoch τ , [d(τ), d(τ)] covers the expected demand at the price p(τ) with high probability.

Lemma EC.2. Suppose for some epoch τ , the inventory levels kept positive throughout the epoch.

Then with probability 1−O(T−2), d(τ)≤ f0(p(τ))≤ d(τ).

Proof of Lemma EC.2. To prove Lemma EC.2 we first present and prove another lemma, where

we try to bound the gap between “the averaged realized demand over T ′ periods” during which

the price p was offered and the actual demand at price p.

Lemma EC.3. Let T be a set of T ′ selling periods during which the inventory level remained

positive. Let p ∈ [p, p] be a fixed price, which is offered at each selling period t ∈ T with probability

q ∈ (0,1]. Let d̂ be the total realized demands over t ∈ T during which price p is offered. Suppose

also that the total number of corrupted periods during the T ′ selling periods considered is upper

bounded by εT almost surely. Then for any δ ∈ (0,1), with probability 1− δ it holds that∣∣∣∣∣ d̂

qT ′ − f0(p)

∣∣∣∣∣≤min{1, εT/T ′}+
√

log(2/δ)

qT ′ +
2 log(2/δ)

qT ′ .
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Proof of Lemma EC.3. For each t ∈ T , let νt = 1{pt = p} be the indicator random variable

denoting whether price p is offered at time t. Recall that ιt ∈ {0,1} indicates whether t is an outlier

period. Define also zt := ft(p). We then have

d̂=
∑
t∈T

νtιtzt + νt(1− ιt)f0(p) =
∑
t∈T

νt[ιt(zt − f0(p))+ f0(p)].

Because νt is statistically independent from both ιt and zt, and that Pr[νt = 1] = q, we have that

E[d̂] = qZ + qT ′f0(p),

where Z =
∑

t∈T ιtzt.

To upper bound the deviation of d̂ from E[d̂], we need the following result, which is Theorem

1.2A cited from (Victor 1999).

Lemma EC.4. Let {wi,Fi} be a martingale difference sequence with E[wj|Fj−1] = 0,

E[w2
j |Fj−1] = σ2

j , V
2
n =

∑n

j=1 σ
2
j . Furthermore, assume that Pr[|wj| ≤ c|Fj−1] = 1 for some 0< c <

∞. Then, for all ε, y > 0, it holds that

Pr

[
n∑

i=1

wi ≥ ε, V 2
n ≤ y for some n

]
≤ exp

{
− ε2

2(y+ cε)

}
.

We now go back to the definition of d̂ and write it as d̂−E[d̂] =
∑

t∈T wt−E[wt|Ft−1], where wt =

νt[ιt(zt−f0(p))+f0(p)] and Ft−1 denotes the filtration prior to time t. Clearly {wt−E[wt|Ft−1]}t∈T

forms a martingale difference sequence with zero mean. Furthermore, |wt| ≤ 1 almost surely, and

E[w2
t |Ft−1]≤ E[νt|Ft−1] = q. This means that V 2

n in Lemma EC.4 satisfies V 2
n ≤ T ′q almost surely.

With n= T ′, c= 1, y= T ′q and ε appropriately set in Lemma EC.4, we have with probability 1− δ

that ∣∣∣∣∣∑
t∈T

wt −E[wt|Ft−1]

∣∣∣∣∣≤ log(2/δ)+

√
log2(2/δ)+ y log(2/δ)≤ 2 log(2/δ)+

√
T ′q log(2/δ).

Recall that
∑

t∈T wt = d̂ and
∑

t∈T E[wt|Ft−1] =E[d̂] = qZ+ qT ′f0(p). We then have with probabil-

ity 1− δ that

∣∣d̂− qT ′f0(p)
∣∣≤ qZ +2 log(2/δ)+

√
T ′q log(2/δ)≤ qmax{T ′, εT}+2 log(2/δ)+

√
T ′q log(2/δ),

where the last inequality holds since at most εT periods in T can be corrupted. Dividing both

sides of the above inequality by qT ′ we proved Lemma EC.3. �
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Invoking Lemma EC.3 with T ′ = T (τ), q = 1 and δ = 1/T 2. We then have with probability

1−O(T−2) that

∣∣∣∣ d

T (τ)
− f0(p(τ))

∣∣∣∣≤min

{
1,

εT

T (τ)

}
+

√
log(2T 2)

T (τ)
+

2 log(2T 2)

T (τ)
=Cε(τ),

which proves Lemma EC.2. �

Given Lemma EC.2, we are ready to state the next key Lemma for proving Theorem 2. The next

lemma provides an upper bound on the length of the searching interval |I(τ)| := (b(τ)− a(τ)).

Lemma EC.5. With probability 1−O(T−2 logT ) the following holds: at the beginning of every

epoch τ , pc ∈ I(τ) and the length of I(τ) is upper bounded by:

|I(τ)|= (b(τ)− a(τ))≤ 2LdCε(τ − 1).

Proof of Lemma EC.5. Throughout this proof we will assume that f0(p(τ)) ∈ [d(τ), d(τ)] for

every τ , at the end of each epoch. By Lemma EC.2, this occurs with probability 1−O(T−2 logT ).

We first prove pc ∈ I(τ) for any epoch τ . Recall that pc is the unique price for which f0(p
c) = x0.

Also note that f0 is strictly monotonically decreasing in p. Hence, in the cases of x0 /∈ [d(τ), d(τ)],

it is clear that pc remains in the shrunk interval I(τ + 1). For the other case of x0 ∈ [d(τ), d(τ)],

denote d(τ) := f0(p(τ)). Since f0 is strictly decreasing, f−1
0 is also a strictly decreasing function.

By Assumption (A1), we have that

pc = f−1
0 (x0)≥ f−1

0 (d(τ))≥ f−1
0 (d(τ))−Ld(d(τ)− d(τ))≥ f−1

0 (d(τ))−Ld(d(τ)− d(τ));

pc = f−1
0 (x0)≤ f−1

0 (d(τ))≤ f−1
0 (d(τ))+Ld(d(τ)− d(τ))≤ f−1

0 (d(τ))+Ld(d(τ)− d(τ)).

Note that f−1
0 (d(τ)) = p(τ) and d(τ)− d(τ) = 2Cε(τ). This justifies that pc ∈ I(τ +1) in the case

of x0 ∈ [d(τ), d(τ)].

We next use induction to prove that |I(τ)| ≤ 2LdCε(τ − 1). The base case of τ = 1 clearly holds

because |I(τ)| ≤ 1 and Cε(0) = 1. Now consider epoch τ +1, assuming the claim holds for epoch τ ,

or more specifically |I(τ)| ≤ 2LdCε(τ − 1). If x0 ∈ [d(τ), d(τ)] then clearly |I(τ +1)| ≤ 2LdCε(τ) by

definition. For the other case of x0 /∈ [d(τ), d(τ)] we have that |I(τ +1)|= |I(τ)|/2≤ LdCε(τ − 1).

Note that Cε(τ)≥Cε(τ − 1)/2. The lemma is thus proved. �
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EC.4.1. Proof of Theorem 2

We first consider the regret incurred by potential running out of inventory (at the end of the T total

selling periods). Recall the definition that δt =max{0, f0(pt)− x0}. By the Lipschitz continuity of

f0, we have that ∑
t≤T

δt ≤
∑
t≤T

∣∣f0(pt)−x0

∣∣≤∑
t≤T

Lp |pt − pc| .

Invoking Proposition 1, the regret of Algorithm 2 can be upper bounded by

RT,εT (Alg.2;f0, x0)≤E

[
T∑

t=1

pcx0 − ptf0(pt)+Lp

∣∣pt − pc
∣∣]+ 1

x0

(εT +
√
T lnT )

≤ (max{pcLp,1}+Lp)×E

[
T∑

t=1

∣∣pt − pc
∣∣]+ 1

x0

(εT +
√
T lnT ). (EC.25)

Here the second inequality holds because, if pt > pc then pcx0 − ptf0(pt) ≤ pc(f0(p
c) − f0(pt)) ≤

pc ×Lp|pt − pc|, and if pt < pc then pcx0 − ptf0(pt)≤ (pc − pt)x0 ≤ |pc − pt|.

We next upper bound the E[
∑T

t=1 |pt − pc|] term in Eq. (EC.25). We condition on the success

event of pc ∈ I(τ) for all epochs τ , which occurs with probability 1−O(T−2 logT ) thanks to Lemma

EC.5. Let τ0 be the last complete epoch with positive inventory levels, satisfying that 2τ0 ≤ T . We

then have that

T∑
t=1

∣∣pt − pc
∣∣≤ τ0∑

τ=1

T (τ)×
∣∣b(τ)− a(τ)

∣∣≤ τ0∑
τ=1

2τ × 2LdCε(τ − 1) (EC.26)

≤
τ0∑
τ=1

2Ld

(
εT +2τ/2

√
ln(2T 2)+ 2 ln(2T 2)

)
≤ 2LdεT log2 T +

2
√

2T ln(2T 2)√
2− 1

+2Ld ln(2T
2) log2 T. (EC.27)

Here Eq. (EC.26) holds thanks to Lemma EC.5, and the last inequality holds because 2τ0 ≤ T .

Combining Eqs. (EC.25) and (EC.27) we have that

sRT,εT (Alg.2;f0, x0)

≤O(1)+
1

x0

(εT +
√
T lnT )+ (max{pcLp,1}+Lp)

[
2LdεT log2 T +

2
√

2T ln(2T 2)√
2− 1

+2Ld ln(2T
2) log2 T

]
≤ (x−1

0 +4pLpLd)εT log2 T +(x−1
0 +14pLp)

√
T ln(2T 2)+ 6pLpLd ln

2(2T 2)+O(1)

= Õ(εT +
√
T ),

which completes the proof of Theorem 2.
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EC.5. Proofs of Technical Lemmas in Sec. 5.2

EC.5.1. Proof of Lemma 4

Fix a specific epoch τ and thread j such that εj ≥ ε. Invoke Lemma EC.3 with δ= 1/T 2, T ′ = T (τ)

and q= ℘j, we have that with probability 1−O(T−2),∣∣∣∣∣ d̂j(τ)

℘jT (τ)
− f0(pj(τ))

∣∣∣∣∣≤min

{
1,

εT

T (τ)

}
+

√
log(2T 2)

℘jT (τ)
+

2 log(2T 2)

℘jT (τ)

≤min

{
1,

εjT

T (τ)

}
+

√
log(2T 2)

℘jT (τ)
+

2 log(2T 2)

℘jT (τ)
,

where the second inequality holds because ε≤ εj. The first property of Lemma 4 is then proved,

by the definition of Cεj (τ) in Algorithm 3 and that ℘jT (τ) = Tj(τ).

The second and third properties can be proved in the same vein as the proof of Lemma EC.5,

via an induction argument with the union bound over all epochs and threads.

EC.5.2. Proof of Corollary 1

According to Algorithm 3, J only decreases when IJ(τ) = ∅. If εJ ≤ ε, then by Lemma 4 it holds

that pc ∈ Ij(τ) for all j ≤ J and τ . This means that J will never be further decreased since IJ(τ) �= ∅
throughout.

EC.6. Proofs of technical results in Sec. 6

EC.6.1. Proof of Lemma 5.

Invoking Lemma EC.3 with T ′ = T3, q= 1/N3, εT =ZT3 and δ= 1/(N3T
2), it holds with probability

1−T 2 uniformly over all i∈ [N3] that∣∣∣∣∣N3d̂(i)

T3

− f0(p(i))

∣∣∣∣∣≤min{1,Z}+
√

N3 log(2N3T 2)

T3

+
2N3 log(2N3T

2)

T3

=HZ(N3, T3). (EC.28)

We now prove the upper bound on |p̂c− pc|. Recall that pc is the unique solution to f0(p
c) = x0,

or equivalently pc = f−1
0 (x0). Because of the Lipschitz continuity of f0 (Assumption 2) and the fact

that p(i) and p(i+1) are (p−p)/N3 distance apart, there exists i
� ∈ [N3] such that |f0(p(i�))−x0| ≤

Lp(p− p)/N3. This implies that, with probability 1−O(T−2),

∣∣f0(p(̂ic))−x0

∣∣≤ ∣∣d̃(̂ic)− f0(p(̂i
c))
∣∣+ ∣∣d̃(̂ic)−x0

∣∣
≤
∣∣d̃(̂ic)− f0(p(̂i

c))
∣∣+ ∣∣d̃(i�)−x0

∣∣ (EC.29)
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≤
∣∣d̃(̂ic)− f0(p(̂i

c))
∣∣+ ∣∣d̃(i�)− f0(p(i

�))
∣∣+ ∣∣f0(p(i�))−x0

∣∣
≤ 2HZ(N3, T3)+Lp(p− p)/N3. (EC.30)

Here, Eq. (EC.29) holds because îc minimizes |d̃(i)−x0| by definition, and the last inequality holds

with probability 1−O(T−2) by applying Eq. (EC.28). Consequently,

∣∣p(̂ic)− pc
∣∣≤ ∣∣f−1

0 (x0 ± [Lp(p− p)/N3 +2HZ(N3, T3)])− f−1
0 (x0)

∣∣
≤Ld ×

[
Lp(p− p)

N3

+2HZ(N3, T3)

]
,

where the last inequality holds thanks again to Assumption (A1). This proves the upper bound on

|p̂c − pc|.

Next we prove the upper bound on |p̂o−po|. Let do = f0(p
o) and i∗ ∈ [N3] be the index such that

|p(i∗)− po| ≤ (p− p)/N3. By the Lipschitz continuity of f0 (see Assumption A2) this means that

|d(p(i∗))− do| ≤Lp(p− p)/N3. Recall also the definition that r(p) := pf0(p) and r(d) = df−1
0 (d). By

the strong smoothness of r(d) (see Assumption A3), we have that

∣∣r(d(p(i∗)))− r(do)
∣∣≤ M 2

2

∣∣d(p(i∗))− do
∣∣2 ≤ M 2L

2

p(p− p)2

2N 2
3

. (EC.31)

On the other hand, îo is selected such that p(̂io)d̃(̂io)≥ p(i∗)d̃(i∗). Therefore,

r(p(i∗))− r(p(̂io)) = p(i∗)f0(p(i
∗))− p(̂io)f0(p(̂i

o))

≤ p
∣∣d̃(̂io)− f0(p(̂i

o))
∣∣+ p

∣∣d̃(i∗)− f0(p(i
∗))

∣∣+ p(i∗)d̃(i∗)− p(̂io)d̃(̂io)

≤ p
∣∣d̃(̂io)− f0(p(̂i

o))
∣∣+ p

∣∣d̃(i∗)− f0(p(i
∗))

∣∣≤ 2pHZ(N3, T3). (EC.32)

Combining Eqs. (EC.31) and (EC.32), we have that

r(do)− r(f0(p(̂i
o)))≥

M 2L
2

p(p− p)2

2N 2
3

+2pHZ(N3, T3), (EC.33)

By strong concavity of r(d) (see Assumption A3), Eq. (EC.33) implies that

∣∣do − f0(p(̂i
o))
∣∣≤ 2

σ2

√
M 2L

2

p(p− p)2

2N 2
3

+2pHZ(N3, T3)≤
2

σ2

[
MLp(p− p)

√
2N3

+
√
2pHZ(N3, T3)

]
.

Subsequently, using the Lipschitz continuity of f−1
0 (see Assumption A2) we have that

∣∣p̂o − po
∣∣= ∣∣f−1

0 (f0(p(̂i
o)))− f−1

0 (do)
∣∣≤Ld

∣∣f0(p(̂io))− do
∣∣
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≤ 2Ld

σ2

[
MLp(p− p)

√
2N3

+
√
2pHZ(N3, T3)

]
,

which is to be demonstrated.

The next lemma is an immediate corollary of Lemma 5, showing that (with high probability)

the estimation errors of pc and po are smaller relative to the gap between pc and po, when the

parameters in Lemma 5 are tuned appropriately.

Corollary EC.1. Suppose pc �= po, and for some positive constants β′ > γ′ > 0, that T3 =

T β′
and N3 = T γ′

. Suppose also that the Z parameter defined in Lemma 5 satisfies Z ≤
1
3
max{ |po−pc|

40Ld
, 1
2p
(σ

2|po−pc|
40Ld

)2}. Then there exists a polynomial function ϕ(logT,Ld,Lp, p,1/|po−pc|),
whose degrees depend on β′, γ′, such that if T ≥ϕ(logT,Ld,Lp, p,1/|po− pc|), then with probability

1−O(T−2) it holds that ∣∣p̂c − pc
∣∣+ ∣∣p̂o − po

∣∣≤ 0.2
∣∣po − pc

∣∣.

EC.6.2. Proof of Corollary EC.1.

Following Lemma 5, it suffices to prove, separately, that all of
LdLp(p−p)

N3
, 2LdHZ(N3, T3),

2LdMLp(p−p)√
2σ2N3

and 2σ−2Ld

√
2pHZ(N3, T3) terms are upper bounded by 0.05|po − pc|. to simplify notations, we

shall also denote Δp := |po − pc| throughout the rest of this proof.

First we consider the
LdLp(p−p)

N3
≤ 0.05Δp constraint. Re-arranging the terms we have that N3 ≥

LdLp(p−p)

0.05Δp
. Since N3 = T γ′

, the condition can be reduced to

T ≥
[
LdLp(p− p)

0.05Δp

]1/γ′

. (EC.34)

Second we consider the
2LdMLp(p−p)√

2σ2N3
≤ 0.05Δp constraint. Again, with N3 = T γ′

, the constraint is

satisfied if

T ≥
[
2LdMLp(p− p)

0.1σ2Δp

]1/γ′

. (EC.35)

We next consider the constraints 2LdHZ(N3, T3)≤ 0.05Δp and 2σ−2Ld

√
2pHZ(N3, T3)≤ 0.05Δp.

We first simplify both constraints as conditions involving HZ(N3, T3) only, as

HZ(N3, T3)≤max

{
Δp

40Ld

,
1

2p

(
σ2Δp

40Ld

)2
}
=:H.
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By definition of HZ(N3, T3), it suffices to prove that Z ≤ H/3,
√

N3 log(2N3T2)

T3
≤ H/3 and

2N3 log(2N3T
2)

T3
≤H3/3. Note that Z ≤H/3 holds directly from the condition imposed on Z in Corol-

lary EC.1. On the other hand, noting that T3 = T β′
, T3/N3 = T β′−γ′

and log(2N3T
2)≤ 3 log(2T ),

the conditions can be reduced to

T ≥ (3
√
3 log(2T )/H)2/(β

′−γ′); (EC.36)

T ≥ (18 log(2T )/H)1/(β
′−γ′). (EC.37)

Corollary EC.1 is subsequently proved, by noting that the right-hand sides of all Eqs. (EC.34)

through (EC.37) are low-degree polynomials of Ld,Lp, p,1/|po−pc|,M,1/σ and logT , with degrees

depending only on α′, β′ and γ′.

EC.6.3. Proof of Theorem 4.

The key step in this proof is to establish the first epoch ζ after which the estimates p̂c, p̂o are

(with high probability) consistent. By consistency, we mean that |p̂c − pc|+ |p̂o − po| ≤ 0.2|pc − po|,
the consequence of Corollary EC.1 established in the previous section. It is easy to verify that,

with this inequality, pc < po implies p̂c < p̂o and vice versa. Furthermore, po = (p̂c − p̂o)/2 satisfies

pc ≤ po ≤ po. With these conditions, the regret upper bounds proved in Theorems 1 and 3 can be

directly applied.

To show |p̂c − pc|+ |p̂o − po| ≤ 0.2|pc − po| with probability 1−O(T−2), we only need to prove

the conditions in Corollary EC.1 are satisfied. Consider an arbitrary epoch ζ in Algorithm 5.

By definition, E[|G(ζ)|] =
√

T (ζ) and |G(ζ)| is the sum of T (ζ) i.i.d. binary random variables.

By multiplicative Chernoff bound and the union bound, if T (ζ)≥ T0 ≥ 16 lnT then it holds with

probability 1 − O(T−1) uniformly over all ζ that |G(ζ)| ≥
√

T (ζ)/2. Hence, T3 ≥
√

T (ζ)/2 and

N3 ≥ [T (ζ)]1/4/2. Additionally, because there are at most εT selling periods being corrupted in

epoch τ , and G(ζ) are selected uniformly at random, we have with probability 1−O(T−2) that

Z =
1

|G(ζ)|
∑

t∈G(ζ)
ιt =E[Z] +O(

√
E[Z2] logT + logT/T3)≤O(εT/T (ζ)).

To satisfy the condition Z ≤ 1
3
max{ |po−pc|

40Ld
, 1
2p
(σ

2|po−pc|
40Ld

)2}=:BZ , it suffices for ζ to be large enough

such that T (ζ)≥ εT/BZ . Because BZ is a polynomial of problem parameters and is independent

of T , it suffices that T (ζ) = Ω(εT ). To satisfy the conditions that T3 = T β′
and N3 = T γ′

for some

0<γ′ <β′, we will simply set β′ = 0.2 and γ′ = 0.1. Subsequently, T (ζ) must satisfy
√

T (ζ)≥ T 0.2,

[T (ζ)]1/4 = T 0.1, or more specifically T (ζ) ≥ T 0.4, to allow T3 = T β′
and N3 = T γ′

to hold. Since

T0 = �
√
T �, we conclude that all ζ satisfies T3 = T β′

and N3 = T γ′
.
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Now let ζ� be the first epoch such that T (ζ�) =Ω(εT ), such that Z ≤ 1
3
max{ |po−pc|

40Ld
, 1
2p
(σ

2|po−pc|
40Ld

)2}
holds on and after epoch ζ�. Per the above discussion, this implies that epochs later than ζ� will

have consistent p̂c, p̂o estimates, and therefore the regret of πc or πo selected by Algorithm 5 can

be upper bounded by Õ(εT +
√
T ). Let also ζ0 be the last epoch, which must satisfy |T (ζ0)| ≤ T .

The regret of Algorithm 5 can then be upper bounded as

RT,εT (Alg.4;f0, x0)≤
∑
ζ≤ζ�

T (ζ)+
∑
ζ>ζ�

Õ(εT +
√
T ) (EC.38)

≤O(T02
ζ�)+ Õ(εTζ0)+ Õ(

√
Tζ0)

≤O(εT )+ Õ(εT )+ Õ(
√
T ) = Õ(εT +

√
T ). (EC.39)

Here, in Eq. (EC.38) we apply the upper regret bounds for πo and πc, and Eq. (EC.39) holds

because |T (ζ�)|= 2ζ
�
T0 � εT and ζ0 =O(logT ). This proves Theorem 4.

EC.7. Proof of Theorem 5

It suffices to prove thatRT,εT (π;f0, x0)≥C ′max{εT,
√
T} for some constant C ′ > 0. It is a standard

result RT,0(π;f0, x0) ≥ Ω(
√
T ) when there are no outlier customers (Wang et al. 2014). On the

other hand, by setting the first εT customers as outliers who never make any purchases, it is clear

that RT,εT (π;f0, x0)≥Ω(εT ) because the regret is defined as Tr∗−E
π[
∑T

t=1 rt] where r∗ > 0 is the

expected per-period revenue of typical customers. This complete the proof of Theorem 5.


	opre.2022.2280
	s1
	s2
	s2A
	s2B
	s2C
	s3
	s3A
	s3B
	s4
	s5
	s5A
	s5B
	s6
	s6A
	s6B
	s6C
	s7
	s7A
	s8

	opre.2022.2280.sm1

