

RESEARCH ARTICLE

Watershed and fire severity are stronger determinants of soil chemistry and microbiomes than within-watershed woody encroachment in a tallgrass prairie system

Laura Mino^{1,†}, Matthew R. Kolp^{2,*†,‡}, Sam Fox¹, Chris Reazin¹, Lydia Zeglin¹ and Ari Jumpponen¹

¹Division of Biology, Kansas State University, Manhattan, KS 66506, USA and ²Department of Microbiology, University of Tennessee, 520B Ken and Blaire Mossman Bldg, 1311 Cumberland Ave, Knoxville, TN 37996, USA

*Corresponding author: Department of Microbiology, University of Tennessee, 520B Ken and Blaire Mossman Bldg, 1311 Cumberland Ave, Knoxville, TN 37996, USA. Tel: 1-517-285-4667; E-mail: matkolp@gmail.com

One sentence summary: High-severity burns result in a novel soil microbiome regardless of whether applied to grass-dominated or woody-plant invaded patches in a fire-protected, encroached prairie watershed.

†The first two authors contributed to research equally.

Editor: Ian Anderson

‡Matthew R. Kolp, <https://orcid.org/0000-0001-5025-8497>

ABSTRACT

Fire can impact terrestrial ecosystems by changing abiotic and biotic conditions. Short fire intervals maintain grasslands and communities adapted to frequent, low-severity fires. Shrub encroachment that follows longer fire intervals accumulates fuel and can increase fire severity. This patchily distributed biomass creates mosaics of burn severities in the landscape—pyrodiversity. Afforded by a scheduled burn of a watershed protected from fires for 27 years, we investigated effects of woody encroachment and burn severity on soil chemistry and soil-inhabiting bacteria and fungi. We compared soils before and after fire within the fire-protected, shrub-encroached watershed and soils in an adjacent, annually burned and non-encroached watershed. Organic matter and nutrients accumulated in the fire-protected watershed but responded less to woody encroachment within the encroached watershed. Bioavailable nitrogen and phosphorus and fungal and bacterial communities responded to high-severity burn regardless of encroachment. Low-severity fire effects on soil nutrients differed, increased bacterial but decreased fungal diversity and effects of woody encroachment within the encroached watershed were minimal. High-severity burns in the fire-protected watershed led to a novel soil system state distinct from non-encroached and encroached soil systems. We conclude that severe fires may open grassland restoration opportunities to manipulate soil chemistry and microbial communities in shrub-encroached habitats.

Keywords: fire severity and history; woody encroachment; tallgrass prairie ecosystem; soil bacteria and fungi; soil chemistry; alternate ecosystem states

Received: 6 June 2021; Accepted: 24 November 2021

© The Author(s) 2021. Published by Oxford University Press on behalf of FEMS. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

INTRODUCTION

In terrestrial ecosystems, fire impacts carbon (C), nitrogen (N) and phosphorus (P) cycling (Certini et al. 2005), combusted plant matter before decomposition (Pellegrini et al. 2018, 2020) and produces flushes of N and P, making these nutrients more readily available in the short term (Neary et al. 1999; Wan, Hui and Luo 2001). Some fire-adapted plants and pyrophilous bacteria and fungi benefit from fire and increase in abundance in the post-fire environment (e.g. Bruns et al. 2020; Prendergast-Miller et al. 2017; Pulido-Chavez et al. 2021). Recovery of microbial populations is crucial to nutrient cycling (Crowther et al. 2019) and plant community recovery after fire events (Pressler, Moore and Francesca Cotrufo 2019; Certini et al. 2021). Furthermore, variation in characteristics of the fire regime (e.g. fire history and severity) are hypothesized to increase the variability within ecosystems resulting in subsequent increases in diversity within the landscape—the pyrodiversity-biodiversity hypothesis that posits that pyrodiversity begets biodiversity (Martin and Sapsis 1992).

Fire history—some ecosystems are characterized by frequent fires whereas others have decadal or centennial fire intervals (Andela et al. 2017). Historically, North American prairies burned every 1–5 years, but fragmentation and fire suppression have resulted in substantial losses of prairie systems (Samson and Knopf 1994; Leach and Givnish 1996) and woody plant encroachment (Ratajczak et al. 2014a; Bond 2008; Collins et al. 2021). Without frequent fires, shrubs and trees are more likely to thrive by overtopping grasses and expanding root systems to draw in more water and nutrients (Ratajczak et al. 2011; Staver, Archibald and Levin 2011; Twidwell et al. 2013). The resultant increasingly woody landscape will likely differ in soil communities and below-ground system functions, including carbon sequestration and cycling of other nutrients (Zhou et al. 2018). After woody plants establish, the return of fire events may facilitate further encroachment, because post-fire rhizomatous expansion of encroaching woody species allows expedient sprouting to outcompete re-emerging grasses (Ratajczak et al. 2011). Woody encroachment can proceed relatively slowly (e.g. 2% increase in woody cover per year; Barger et al. 2011) but extended periods without fire can shift vegetation dynamics beyond the point of returning to a grassland state (i.e. hysteresis; Ratajczak, Nippert and Ocheltree 2014b; Bestelmeyer et al. 2011; Miller et al. 2017; Collins et al. 2021) with subsequent impacts on soil chemistry and soil-inhabiting microbial communities.

Fire severity—in grasslands, severe fires can result from an accumulation of woody biomass fuel from shrub encroachment. With less-frequent fires, sporadically distributed downed wood can generate a mosaic of different fire severities in the landscape (Brown et al. 2019) resulting in so called ‘pyrodiversity’ (Martin and Sapsis 1992; Jones and Tingley 2021). Fires of different intensities and severities differ in their impacts on biotic and abiotic soil attributes (Certini et al. 2021). Compared to low-severity fires, high-severity fires cause greater heat pulses that penetrate deeper into the soil profile (Smith, Cowan and Fitzgerald 2016), impacting soil chemistry (Tomkins et al. 1991; Close et al. 2011) and soil-inhabiting communities (Reazin et al. 2016; Smith et al. 2017; Whitman et al. 2019; Certini et al. 2021). Environmental change and anthropogenic drivers have altered fire frequencies and severities (Andela et al. 2017; Pellegrini et al. 2018), resulting in a need to better understand the impacts of differing fire severities on soil systems. Critical research gaps exist on how

fire severity impacts soil nutrients and soil microbial communities in local and landscape contexts (Certini et al. 2021), especially in grassland systems with different histories of fire suppression and woody encroachment.

In this study, we exploited a rare opportunity when a shrub-encroached, grassland watershed that had been protected from fire for 27 years was burned in 2017. This allowed us to compare two, adjacent watersheds with distinct fire histories (i.e. annually burned watershed vs. fire suppressed) for the past 27 years. We also manipulated fuel loads within and outside established patches of woody vegetation within the shrub-encroached watershed to evaluate the effects of woody encroachment as well as high and low-severity fires on soil chemistry as well as on soil bacterial and fungal communities. Our experimental design (Figure S1, Supporting Information) aimed to address effects of fire history, woody encroachment and recent fires of differing severities.

For clarity, we present our study as three distinct research questions (Q1–Q3). First, to explore the potential effects of fire history across the watersheds, we compared grass-dominated experimental units with no woody vegetation (Figure S2A and S2B, Supporting Information) assigned to low-severity fire treatments in two watersheds with distinct fire histories—one burned annually, another with continuous fire suppression for 27 years (Q1). We hypothesized that fire exclusion would shape soil abiotic and biotic attributes and that low-severity fire would have little effect regardless of landscape context. Second, to test local effects of woody encroachment, we compared experimental units within and outside established shrub islands (Figure S2B and S2C, Supporting Information) assigned to low-severity fire treatments within the fire-suppressed watershed (Q2). As in Q1, we hypothesized that the abiotic and biotic soil attributes within established shrub islands would differ from non-encroached grass plots and that low-severity fire would have little effect regardless of vegetation. Third, to test the effect of fire severity and its dependency on the vegetation context, we compared shrub-encroached and grass-dominated experimental units in the fire-protected watershed with two fire severity (low vs. high severity) treatments (Q3; Figure S2B–S2E, Supporting Information). We hypothesized that the high-severity fire would impact abiotic and biotic soil attributes similarly and regardless of vegetation, whereas low-severity fire would have a lesser impact on the abiotic and biotic attributes and depend on local vegetation.

MATERIALS AND METHODS

Study site

The study was conducted at the Konza Prairie Biological Station (KPBS, 39°05' N, 96°35' W), which hosts a Long-Term Ecological Research (LTER) site representative of native tallgrass prairie in the Flint Hills of KS, USA. The site spans 3487 ha and remains undisturbed by row-crop agriculture. The vascular flora at KPBS (Towne 2002) is dominated by native C₄ grasses: big bluestem (*Andropogon gerardii*), Indian grass (*Sorghastrum nutans*), little bluestem (*Schizachyrium scoparium*) and switchgrass (*Panicum virgatum*). The Flint Hills and KPBS are characterized by shallow soils overlaying chert-bearing limestones and shales (Ransom et al. 1998). Our study site is classified as typical chernozem according to the Food and Agriculture Organizations (FAO) soils classification used by the United Nations. Topographic relief divides the landscape into upland plateaus with shallow soils, slopes

with outcrops of limestone and lowlands with deeper alluvial and colluvial soils. January mean temperature is -3°C (range -9 to 3°C), and the July mean is 27°C (20 – 33°C). Annual precipitation averages 835 mm, 75% of which falls in the growing season between April and October. Historic fire intervals in the region ranged from 3 to 4 years (Knapp et al. 1998), while current and established conservation and rangeland management regimes use annual burning to suppress woody encroachment that threatens the tallgrass prairie ecosystems (Ratajczak et al. 2014a; Kollmorgen and Simonett 1965).

Experimental design

More than 20% of the 24 ha fire-protected watershed was covered by woody shrubs in the early 2000s (Briggs et al. 2005), but woody cover has since increased and exceeded 50% at the time of burning (Ratajczak et al. 2014a). The invading woody shrubs are mainly roughleaf dogwood (*Cornus drummondii*) and staghorn sumac (*Rhus glabra*) with intermittent wild plum (*Prunus americana*) and some other less frequent species (e.g. eastern red cedar—*Juniperus virginiana*; Briggs et al. 2005).

Within the fire-protected watershed, we selected a total of 10 established *C. drummondii* shrub islands (ranging from ~ 5 to 10 m in diameter) and set up two plots (1 m \times 2 m) within each island: one assigned to low-severity fire treatment (treatment 1 in Figure S1, Supporting Information) and the other to high-severity treatment (treatment 2). We also established similar plots outside of established shrub islands that were subjected to low (treatment 3) and high-severity fire treatment (treatment 4). The high-severity fire treatments were created by amending plots with 0.6 m^3 of supplemental small-diameter timber (native *Quercus* spp.), whereas low-severity treatments received no additional fuel. To compare the effects of the woody encroachment to a non-encroached watershed, we selected another, adjacent 35.9 ha watershed that had been annually burned each spring for the past three decades. Annual or semi-annual burning (i.e. usually every 1 – 5 years) is a common management practice that mimics historic fire intervals (Kollmorgen and Simonett 1965; Knapp et al. 1998; Andela et al. 2017). In this non-encroached watershed, we randomly selected ten plots for comparison between the two watersheds with distinct fire histories (treatment 5). This experimental design resulted in a total of 50 experimental units: 10 plots assigned to high-severity treatments within the established *C. drummondii* shrub islands; 10 plots assigned to low-severity treatments within the established shrub islands; 10 plots assigned to high-severity treatments outside the shrub islands; 10 plots assigned to low-severity treatments outside the shrub islands and 10 plots in the annually burned watershed assigned to low-severity treatments (Figure S1, Supporting Information). If not ignited by the broadcast burn, the additional fuel in the high-severity treatments was directly ignited. This was usually necessary within the shrub islands because the fire rarely carried through them.

Soil temperature measurements before, during and after burning

We randomly selected one plot from each of the five treatments to measure heat penetration during fire treatments. At each of the selected plots, we dug a 20 cm deep pit to install soil thermocouples. A type K thermocouple (stainless steel sheathed 24 gauge; Omega Engineering, Inc., Stamford, CT) was inserted at 2 -, 5 -, 10 - and 20 -cm depths into the wall of the pit in mid-March 2017 in anticipation of the burn treatment as weather

conditions would permit. Each thermocouple was attached by a PVC-insulated, type K extension wire to Omega OMPL-TC data loggers, which were placed in waterproof cases containing desiccant packs and buried in playground sand approximately 2 m outside the plot edge. Soil was replaced into the pit after thermocouple installation. Data Loggers were set to record every 5 min starting on March 15, 2017. Both the fire-protected watershed and the annually burned watershed were broadcast burned on April 15, 2017 as part of scheduled KPBS watershed management. Data loggers were collected on April 20, 2017.

Soil sampling

We sampled all 50 plots 4 days before and 28 days after the fire. Our previous fire-response experiments indicated that responses to fire are rapid and fungal communities turn over within a few weeks following a fire event (Reazin et al. 2016). After removing litter or residual coals when present, we sampled two 15 cm deep mineral soil cores from each plot with a 6.35 cm diameter slide hammer impact soil corer with 15 cm plastic liners (AMS Inc., American Falls, ID). Samples were placed in plastic bags and transported on ice to the laboratory where they were manually homogenized and subsampled for soil chemistry and nucleic acid analyses. After homogenization, two subsamples were transferred into 50 mL Falcon tubes (Corning Inc., Corning, NY) and stored at -20°C until further processing.

Soil chemistry analyses

When adequate soil homogenate was available, a 50 g subsample was analysed for soil chemistry at the Kansas State University soil testing laboratory ([www.agronomy.k-state.edu/service/soiltesting/](http://www.agronomy.k-state.edu/services/soiltesting/)). One of the two frozen subsamples was thawed and immediately oven dried overnight at 60°C and ground to pass through a 2 mm sieve. This subsample was further divided for analyses of pH, soil organic matter (SOM), total carbon (TotC), total nitrogen (TotN), total phosphorus (TotP), readily available inorganic nitrogen (ammonium [NH_4^+] and nitrate [NO_3^-]), and plant available phosphorus (Mehlich P). A 10 g subsample was used to measure soil pH directly in a $1:1$ soil slurry in deionized water. A total of 1 g of dry soil was used to estimate organic matter content through loss on ignition as described in Combs and Nathan (1998). TotC and TotN were measured using a LECO TruSpec CN combustion analyser (LECO, St. Joseph, MI) on a weight % basis from a 0.45 g subsample of prepared soil. TotP was analysed colorimetrically using a modified Kjeldahl digestion and a flow analyser from a 1 g subsample of prepared soil. Inorganic nitrogen (NH_4^+ and NO_3^-) was colorimetrically estimated from a 2 g subsample extracted with 1 M KCl and cadmium reduction for nitrate (Gelderman and Beegle 1998) and run in separate channels in a flow analyser to measure the ions simultaneously. Plant available phosphorus was estimated from a 2 g subsample using Mehlich 3 soil test extractant (Mehlich 1984) as described in Frank et al. (2018).

DNA extraction, PCR amplification and sequencing

Total genomic DNA was extracted from ~ 0.5 g soil subsamples using E.Z.N.A Soil DNA Kit (Omega Bio-Tek, Norcross, GA) following the manufacturer's instructions and stored at -20°C until PCR amplification. The DNA was quantitated using an ND1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) and standardized to 2 ng/ μL for PCR amplification. For fungi, we

chose the Internal Transcribed Spacer 2 (ITS2) region of the ribosomal RNA gene (Schoch et al. 2012) for our analyses. We used the fITS7 (Ihrmark, Bōdker and Cruz-Martinez 2012) and ITS4 (White et al. 1990) primers with unique 12 bp barcodes in each 5'-end in 50 μ L PCR reactions. The volumes and final concentrations of reagents were as follows: 10 μ L forward and reverse primer (1 μ M), 10 μ L template DNA (2 ng/ μ L), 5 μ L dNTP (200 μ M) and 0.5 μ L (1/2 unit) Phusion Green Hot Start II DNA polymerase (ThermoScientific, Pittsburg, PA), 10 μ L of Phusion 5X HF Buffer with 7.5 mM MgCl₂ and 14.5 μ L molecular grade water. The PCR began with an initial denaturing step for 30 s (98°C) and was followed by 35 cycles with 10 s of denaturing (98°C); 30 s of annealing (54°C); 1 min of extension (72°C) and concluding with a 10 min final extension (72°C). For bacteria, we targeted the highly variable V4 region of 16S ribosomal RNA gene with forward primer 515f and reverse primer 806r (Caporaso et al. 2012) appended with 12 bp barcodes in each 5' end in 50 μ L reactions. The reaction volumes and conditions were identical to those used for fungi except for the 55°C annealing temperature and 30 PCR cycles used to generate bacterial amplicons.

For fungi and bacteria, amplification of PCR contaminants was determined by a negative PCR control in which templates were replaced with ddH₂O. Each sample was PCR-amplified in triplicate and 30 μ L of each amplicon was combined into one per experimental unit. The pooled 90 μ L amplicons were purified using the Mag-Bind RxnPure Plus Magnetic Bead Clean-up solution (Omega Bio-Tek) following a modified manufacturer protocol with a 1:1 ratio of PCR product to magnetic bead solution and two rinse steps with 80% ethanol. Following cleanup, a total of 200 ng of amplified DNA per experimental unit was pooled. Because the negative controls yielded little measurable DNA, the entire elution volume from the cleanup (40 μ L) was included. Illumina adapters and indices were added using four PCR cycles, KAPA Hyper Prep Kit (Roche, Pleasanton, CA) and 0.5 μ g starting DNA. The library was sequenced (2 \times 300 cycles) using the Illumina MiSeq Personal Sequencing System at the Integrated Genomics Facility (Kansas State University, Manhattan, KS). The sequence data are available through the Sequence Read Archive under BioProject PRJNA718337, samples SAMN18529080–SAMN18529179.

Sequence data processing

Sequence data were processed using the mothur pipeline (v. 1.38.0; Schloss et al. 2009) following the MiSeq standard operating protocol to generate OTUs (Kozich et al. 2013). Paired fastq files were contiged, quality-filtered and primer sequences removed. Sequences with > 1 bp difference with the primers or without an exact match to the sample-specific identifiers were omitted. Bacterial and fungal sequences were analysed independently. Bacterial sequences were aligned against a mothur-formatted 16S Silva Alignment (v. 132; www.arb-silva.de), whereas fungal sequences were truncated to the length equal to the shortest high-quality read (237 bp excluding primers and sample-specific identifiers). Bacterial and fungal data were then pseudo single-linkage clustered (99%; Huse et al. 2010) to control for platform generated errors and screened for potential chimeras (UCHIME; Edgar et al. 2011), with putative chimeras culled. The sequence data were assigned to taxon affinities using mothur-embedded Naïve Bayesian Classifier (Wang et al. 2007) using the default cutoff of 80% sequence similarity. Bacterial sequences were screened against the Ribosomal Database Project's 16S reference training set (v.9) and sequences assigned to Eukarya, mitochondria, plastids or unknown were

removed. Fungal data were assigned to taxa using the UNITE taxonomy reference (Kõljalg et al. 2013) and sequences with no match in the UNITE reference or assigned to Protista and Plantae were removed. A sequence distance matrix was generated for aligned bacterial sequences. Fungal sequences were clustered using vsearch (Rognes et al. 2016). Both bacterial and fungal data were assigned to Operational Taxonomic Units (OTUs) at 97% similarity or greater. Rare OTUs represented by fewer than ten sequences in the entire dataset were removed as potential artifacts (Brown et al. 2015; Oliver et al. 2015).

We estimated Good's coverage (i.e. complement of the ratio between local singleton OTUs and the total sequence count) for each experimental unit to evaluate the representativeness of our sampling. To estimate richness and diversity, we iteratively (100 iterations) calculated observed (S_{obs}) richness, diversity (i.e. Shannon–Weiner diversity [H']) and evenness (i.e. Shannon's equitability) with subsampled data (1000 fungal and 5000 bacterial sequences per experimental unit), as recommended by Gihring, Green and Schadt (2012) to avoid biased comparisons of diversity and richness estimators in samples with unequal sequence yields. Although five times more bacterial (5000 sequences per sample) than fungal (1000 sequences per sample) sequence data were subsampled, coverage was lower for bacteria (0.85 ± 0.03 ; mean \pm standard deviations) than fungi (0.95 ± 0.02). Fungal coverage estimates were generally high indicating reasonable sampling of soil communities regardless of shallow subsampling.

Statistical analyses

Since the same experimental units were sampled before and after fire, we used repeated measures analyses of variance (ANOVA; Tables S1–S3, Supporting Information). Tukey's post-hoc comparisons were performed for the univariate response variables for each research question. To test the watershed and low-severity fire effects (Q1), we compared only non-encroached plots assigned to low-severity fire treatments before and after the fire in two watersheds with distinct fire histories—one burned annually, another protected from fire for 27 years (treatments 3 and 5 in Figure S1, Supporting Information). These analyses included main effects watershed and time (i.e. before and after fire) and their interaction. To test the effect of woody encroachment (Q2), we compared low-severity fire treatment plots within and outside shrub islands in the fire protected watershed before and after the fire (treatments 1 and 3). These analyses included main effects vegetation and time and their interaction. To test the effect of fire severity and its dependency on the vegetation context (Q3), we compared plots in a fire-protected watershed representing two vegetation types (shrub-encroached vs. grass-dominated) and two fire severity (low vs. high [treatments 2 and 4]) treatment combinations. These analyses included main effects vegetation, severity and time as well as their two- and three-way interactions.

The soil chemistry data, as well as both bacterial and fungal richness and diversity data were non-normal (Shapiro–Wilk Goodness of Fit tests: $W > 0.59$; $P < 0.02$) and heteroscedastic (Welch's tests: $F_{7,34} > 2.79$; $P < 0.04$). As such, these data were *in*-transformed, except for the proportional community data and % data (OM, total N and total C) that were arcsine-square root transformed.

To visualize and infer compositional differences within bacterial and fungal communities, we calculated pairwise Bray–Curtis distances and visualized these data with Principal Coordinates Analysis (PCoA) using R package 'vegan' (Oksanen et al.

2019). The optimal number of dimensions (k) was determined based on stabilizing stress less than 0.20 using 1000 runs with empirical data and a random seed starting value. Community data were compared using a nonparametric permutational analog of traditional analysis of variance (PERMANOVA) (Oksanen et al. 2019) using function 'adonis', the 'vegan' implementation of PERMANOVA (Anderson 2001). To address questions about shifts in the degree of variability among groups, we used the function 'betadisper' as the multivariate analog of Levene's test for homogeneity of molecular variances (HOMOVA). Similarities between samples were calculated for PERMANOVA using the function 'betadiver()' method 'beta.z'. Function 'envfit' was used to explore goodness of fit (r^2) correlations of soil chemistry variables with PCoA axes created for pairwise distances among soil microbiome samples (Table S4, Supporting Information). To identify OTUs associated with observed community differences, if any, we performed indicator species analysis with package 'indicspecies' (Cáceres and Legendre 2009) using function 'multipatt' (alpha = 0.05) to test associations between taxa and treatments for each of our three research questions for the 100 most abundant bacterial and fungal OTUs. To visualize trends in taxonomic level indicators of change, heatmaps were created using package 'ampvis2' (Andersen et al. 2018). Heatmaps included the ten most abundant bacterial and fungal OTUs by % read abundance within samples corresponding to each research question.

RESULTS

The fuel addition resulted in a distinct peak in soil temperatures. The maximum temperatures in the high-severity fire treatment at 2 cm measured 94.9°C outside the established shrubs and 78.6°C within. The heat pulse was ephemeral, as > 60°C temperatures were maintained for 10 or 11 h at a depth of 2 cm in the two plots with instrumentation. Heat penetration from the high-severity fires declined rapidly with soil depth. Although high maximum temperatures were measured in both instrumented plots at 5 cm depth (84.7°C outside and 68.4°C within the shrub island), the maximum at 10 cm was only 39°C outside the shrub island, whereas the 10 cm thermocouple within the shrub was lost during the experiment. At 20 cm, the temperature differences in the high and low-severity treatments were relatively small: 24.0°C in high and 20.8°C in low-severity treatment outside a shrub island, or 25.6°C in high and 17.8°C in low-severity treatment within a shrub island. The low-severity fire treatment did not generate a strong heat pulse, although the maximum temperatures during the fire were higher at 2, 5 and 10 cm than they were either before or after the fire. Notably, a warm day on April 2, roughly 2 weeks prior to the fires, resulted in higher peak temperatures in the topmost soil profiles than those observed during the fire in low-severity treatments in the non-encroached watershed. There was no visible heat pulse in the low-severity treatment within the shrub island. However, the low-severity fire often did not carry through the established shrub island.

Q1: Responses to fire frequency and low-severity fire across watersheds

Soil chemistry was distinct between the fire-protected and annually burned watersheds but largely unaffected by the low-severity fire (Fig. 1A–H; Table S1, Supporting Information). TotC ($F_{1,18} = 12.9$, $P = 0.002$), TotN ($F_{1,18} = 19.0$, $P < 0.001$), inorganic N ($\text{NH}_4^+ - F_{1,18} = 22.5$, $P < 0.001$; $\text{NO}_3^- - F_{1,18} = 8.54$, $P = 0.009$) and TotP ($F_{1,18} = 7.59$, $P = 0.013$) were higher in the fire-protected

watershed than in the annually burned watershed. Soil NH_4^+ was higher in the fire-protected watershed than in the annually burned watershed but decreased after low-severity fire ($F_{1,18} = 22.8$, $P < 0.001$; Fig. 1F). In contrast to NH_4^+ , Mehlich P increased after fire ($F_{1,18} = 75.5$, $P < 0.001$) but was not observed to differ between watersheds. In addition, we observed neither a change in soil pH after low-severity fire ($F_{1,18} = 2.23$, $P = 0.143$) nor a soil pH difference between watersheds ($F_{1,18} = 0.06$, $P = 0.816$).

Soil bacterial and fungal richness and diversity responded differently across watersheds and low-severity fire. Bacterial richness ($F_{1,18} = 15.1$, $P = 0.001$) and diversity ($F_{1,18} = 16.8$, $P < 0.001$) increased after the low-severity fire (Fig. 2A and B; Table S1, Supporting Information) with neither any evidence for differences in bacterial richness ($F_{1,18} = 0.10$, $P = 0.754$) and diversity ($F_{1,18} = 0.03$, $P = 0.857$) between watersheds nor for interactions between watershed and low-severity burn (Table S1, Supporting Information). Fungal richness ($F_{1,16} = 45.4$, $P < 0.001$) and diversity ($F_{1,16} = 41.4$, $P < 0.001$) were both greater in the encroached watershed compared to the annually burned grassland (Fig. 2C and D; Table S1, Supporting Information). Fungal richness was not affected by the low-severity fire ($F_{1,16} = 2.88$, $P = 0.109$; Fig. 2D), and similar to bacterial richness and diversity, we observed no evidence of an interaction between watersheds and the low-severity fire (Table S1, Supporting Information).

Both bacterial (PERMANOVA: $F_{1,39} = 3.40$, $P < 0.001$) and fungal ($F_{1,37} = 6.70$, $P < 0.001$) communities differed compositionally between the annually burned and fire-protected watersheds (Fig. 3A and B). Watershed explained 15% of the variation (r^2) in fungal turnover and 8% for bacteria. Fungal communities (PERMANOVA: $F_{1,37} = 1.98$, $P < 0.01$) also differed before and after fire, whereas bacterial communities did not (PERMANOVA: $F_{1,39} = 1.98$, $P = 0.063$). The low-severity fire accounted for 5% of variation between pre- and post-fire fungal communities. We observed no evidence for shifts in the degree of variability among bacterial (HOMOVA: $F_{3,36} = 0.44$, $P = 0.724$) or fungal (HOMOVA: $F_{3,34} = 1.72$, $P = 0.182$) communities after the low-severity fire or between watersheds (Fig. 3A and B). Bacterial communities correlated more strongly with soil pH and TotP relative to other soil chemistry variables fitted onto community pairwise distances in ordination space (Figure S3A, S3B and Table S4, Supporting Information). Conversely, fungal but not bacterial, communities correlated strongly with NH_4^+ —the only high correlate of community change that also differed by watershed and fire treatment (Fig. 1F).

Among the 100 most abundant bacterial and fungal OTUs, indicator taxon analyses identified 17 bacterial and 50 fungal indicators that were significantly ($P < 0.05$) more frequent in one of the four watershed-by-time treatment combinations (Table S5, Supporting Information). Proteobacteria were most abundant among the indicator taxa (7 of 17 watershed-by-time indicator OTUs), whereas no bacterial families were clearly disproportionately more abundant in any treatment combination (Figure S4, Supporting Information). Ascomycota dominated among fungal watershed indicator OTUs (36 of 50), especially in the fire-protected watershed before fire. *Neurospora terricola* (Ascomycota) responded to fire positively within the fire-protected watershed, but only minimally in the annually burned watershed (Figure S4, Supporting Information). *Malassezia* (Basidiomycota) increased 6-fold in the annually burned watershed post-fire compared to a 2-fold increase in the encroached watershed. The family Mortierellaceae (Mucoromycota) was represented by 3 of the 10 most abundant OTUs in these analyses, including *Mortierella exigua*, which was more abundant in the fire-protected watershed but did not change in abundance after

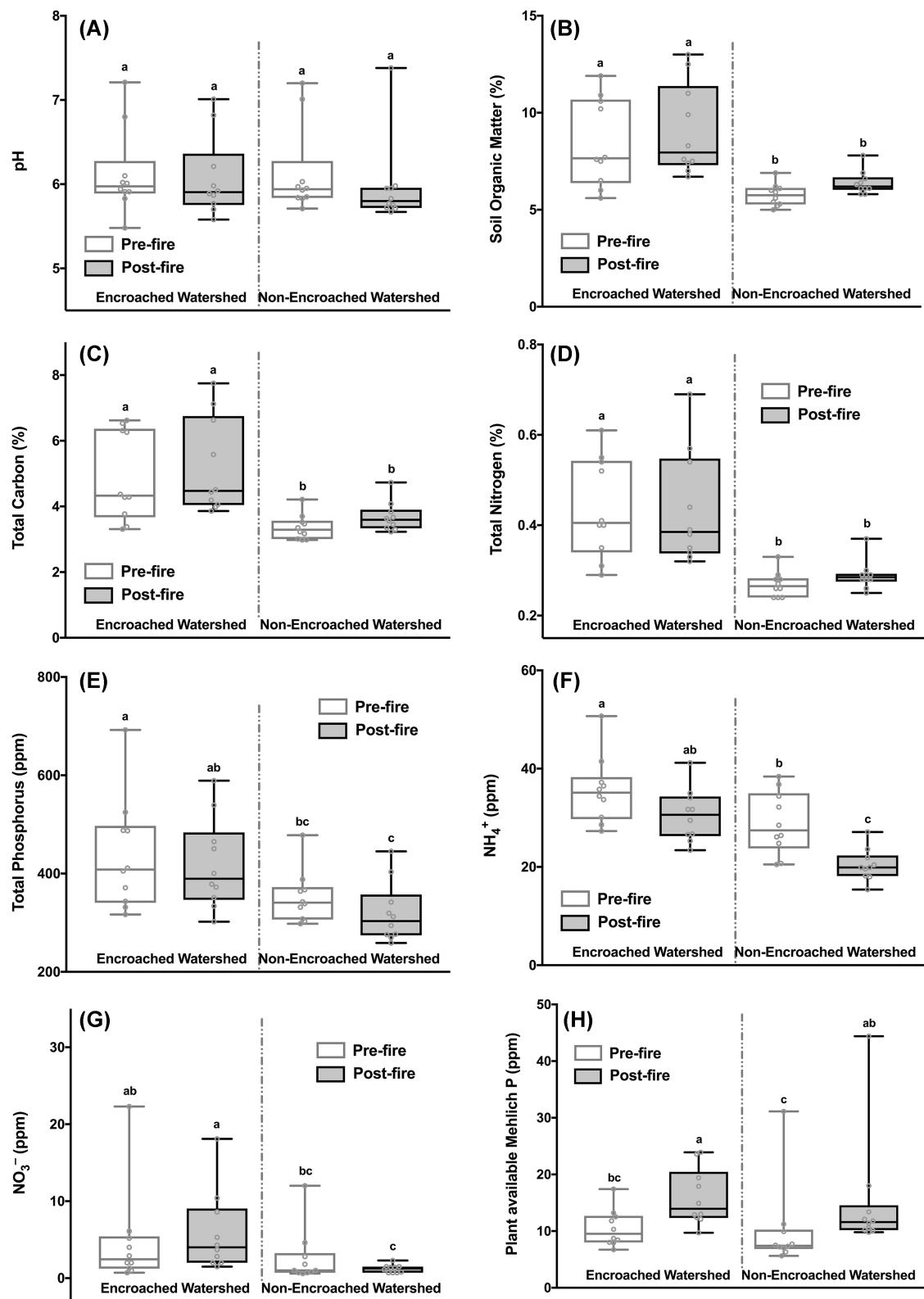
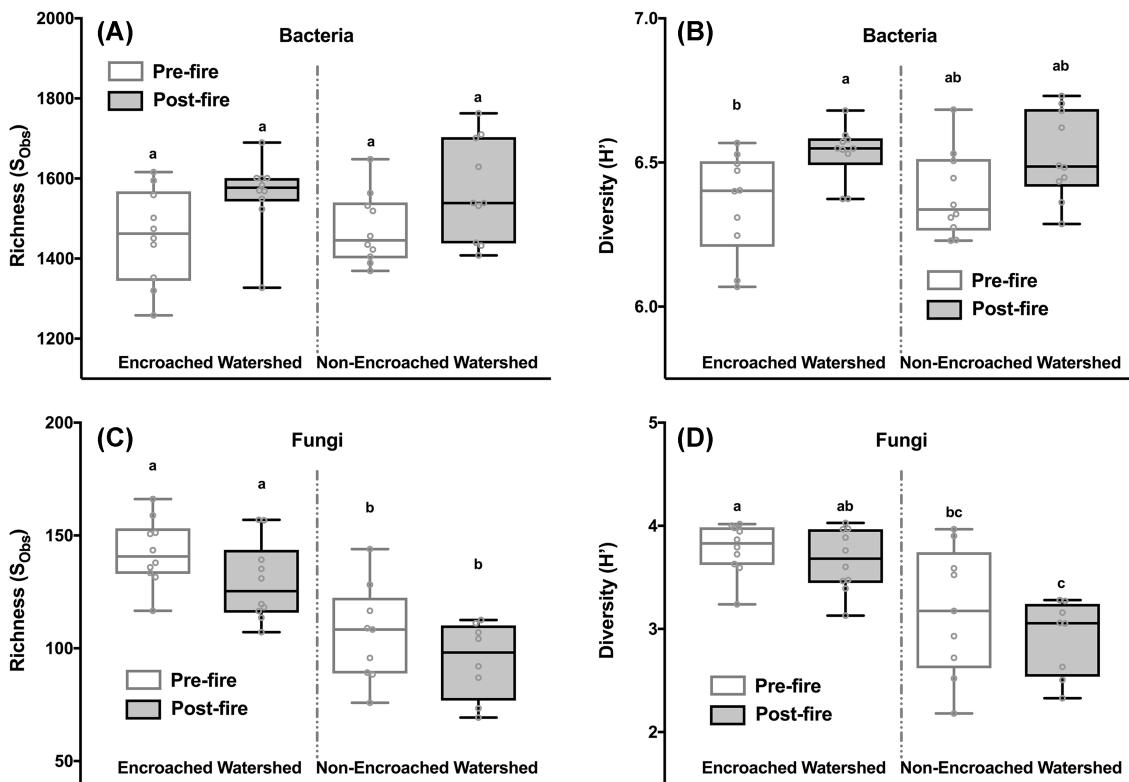
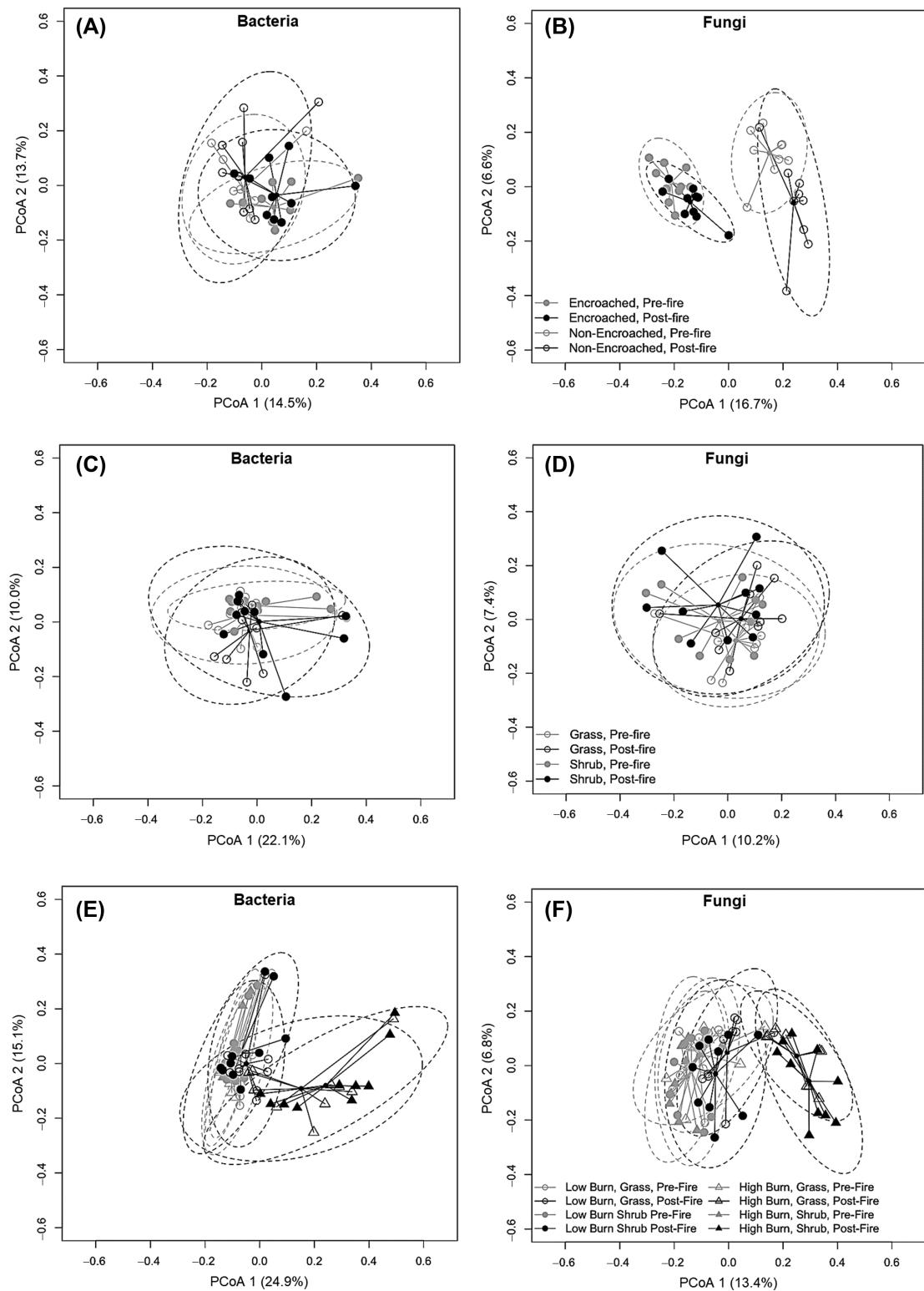



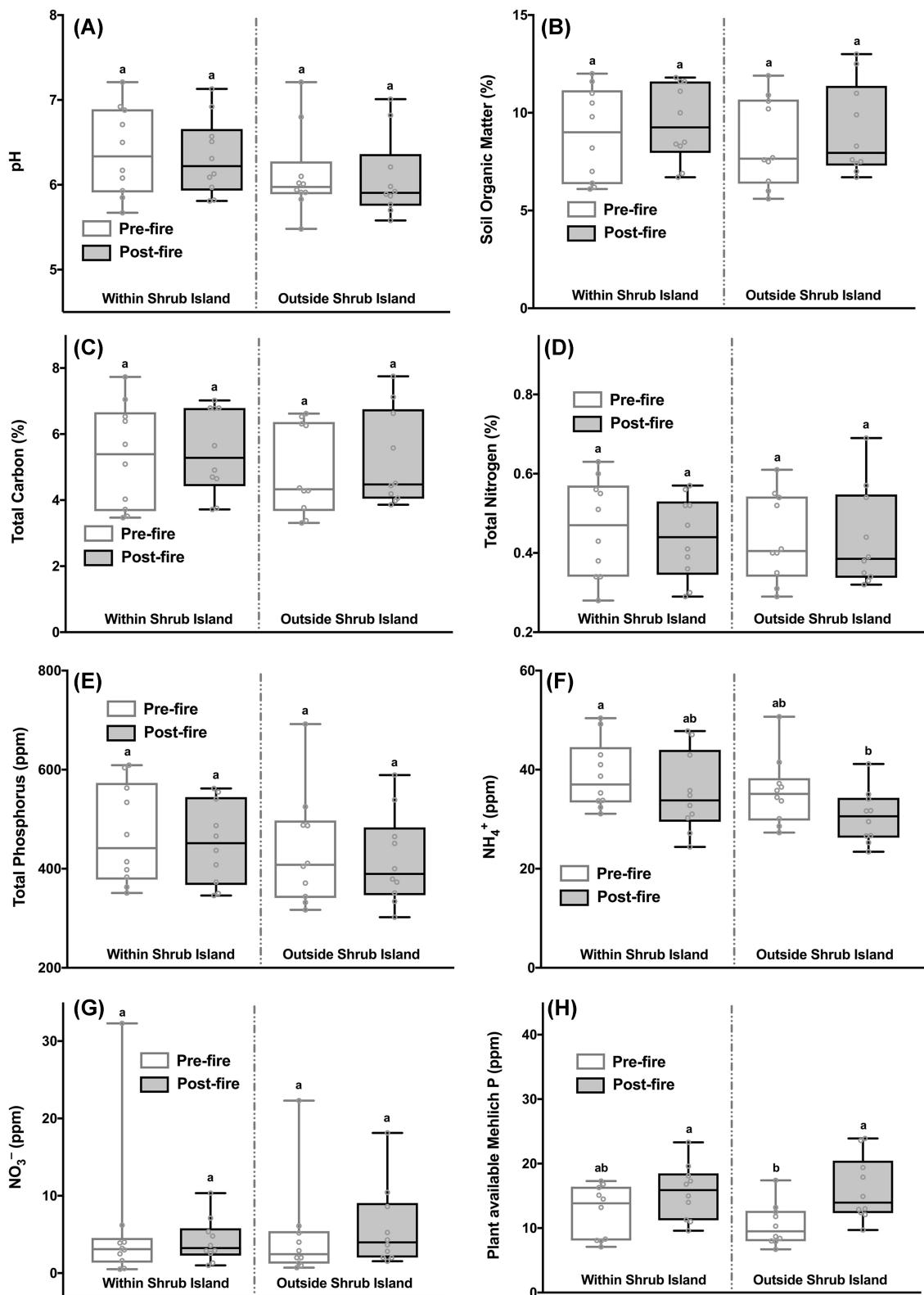
Figure 1. (A)–(H). Soil (A) pH, (B) organic matter, (C) TotC, (D) TotN, (E) TotP, (F) ammonium, (G) nitrate and (H) plant available (Mehlich) phosphorus in watersheds that had been either protected from fire and encroached by *C. drummondii* shrubs (encroached) or burned annually and void of *C. drummondii* encroachment (non-encroached) 4 days before (pre-fire) and 28 days after (post-fire) prescribed burning (Q1 in text). Letters show the Tukey post-hoc results of Analysis of Variance for model that includes watershed (W) and time (T) main effects as well as their interaction (W × T).

Figure 2. (A)–(D). Bacterial (A) and (B) and fungal (C) and (D) observed (S_{Obs} —A and C) richness and diversity (Shannon's H' —B and D) in watersheds that had been either protected from fire and encroached by *C. drummondii* shrubs (encroached) or burned annually and void of *C. drummondii* encroachment (non-encroached) 4 days before (pre-fire) and 28 days after (post-fire) prescribed burning (Q1 in text). Letters show the Tukey post-hoc results of Analysis of Variance for a model that includes watershed (W) and time (T) main effects as well as their interaction (W × T).

fire. In contrast, *Mortierella rishikeshia* was more abundant in the annually burned watershed and decreased after the fire (Figure S4, Supporting Information). Analyses focusing on pre- vs. post-fire indicators (i.e. pooled across watersheds) revealed only one bacterial indicator and no fungal indicators for post-fire samples (Table S5, Supporting Information). Comparing watersheds (i.e. pooled across pre- and post-fire samples), however, we identified 45 fungal and 17 bacterial indicator OTUs that were disproportionately more abundant in the fire-protected watershed, compared to just four fungal and two bacterial indicators in the annually burned watershed (Table S5, Supporting Information).


Q2: Responses to woody encroachment and low-severity fire within a fire-protected watershed

Most measured soil variables did not differ between shrub-encroached and grass-dominated patches within the fire-protected watershed and seemed unresponsive to low-severity fire (Fig. 4A–H; Table S2, Supporting Information). The exception was NH_4^+ , which declined after the fire ($F_{1,18} = 6.01$, $P = 0.025$) but did not differ between *C. drummondii* islands and grass-dominated patches ($F_{1,18} = 2.91$, $P = 0.105$), with no evidence of a significant interaction ($F_{1,18} = 0.22$, $P = 0.643$). Plant available Mehlich P increased after low-severity fire ($F_{1,18} = 45.9$, $P < 0.001$) but was unaffected by vegetation ($F_{1,18} = 0.29$, $P = 0.597$; Fig. 4H), as was the case between watersheds (Q1).


Within the fire-protected watershed, bacterial and fungal richness and diversity responded to low-severity fire but was

not affected by local vegetation (Fig. 5A–D; Table S2, Supporting Information). Bacterial richness ($F_{1,18} = 15.7$, $P < 0.001$) and diversity ($F_{1,18} = 14.7$, $P = 0.001$) were higher after the low-severity fire (Fig. 5A and B). We observed a decline in fungal richness following the fire ($F_{1,18} = 15.8$, $P < 0.001$), but there was no evidence for change in fungal diversity ($F_{1,18} = 0.67$, $P = 0.424$; Fig 5C and D).

There was no strong evidence that low-severity fire (PERMANOVA: $F_{1,39} = 1.57$, $P = 0.058$) or vegetation ($F_{1,39} = 1.37$, $P = 0.108$) affected bacterial community composition (Fig. 3C). In contrast, fungal communities differed within and outside established shrub islands (PERMANOVA: $F_{1,39} = 2.27$, $P < 0.001$) as well as before and after fire ($F_{1,39} = 1.80$, $P < 0.001$; Fig. 3D). Vegetation and fire explained 6% and 4% of fungal community variation, respectively. As in Q1 comparing encroached and non-encroached watersheds, we observed no interaction between local shrub encroachment and low-severity fire for either bacterial (PERMANOVA: $F_{1,39} = 0.635$, $P = 0.983$) or fungal (PERMANOVA: $F_{1,39} = 0.88$, $P = 0.773$) community responses. In addition, there was no evidence for shifts in the degree of variability among bacterial (HOMOVA: $F_{3,36} = 0.86$, $P = 0.470$) or fungal (HOMOVA: $F_{3,36} = 1.65$, $P = 0.194$) communities among vegetation or pre- and post-fire samples (Fig. 3C and D). Both bacterial and fungal communities correlated with soil pH at the local scale (Figure S3C, S3D and Table S4, Supporting Information), which was not the case for fungal communities across watersheds (Q1). Except for pH, soil chemistry correlation coefficients were higher for fungal than bacterial communities. Among the high correlates, only NH_4^+ (Fig. 4F) and Mehlich P (Fig. 4H) were affected by fire treatment.

Figure 3. (A)–(F). Bacterial and fungal mean community compositions (shapes) and dispersions (solid lines) with 95% confidence intervals (broken-line clouds) for comparing samples in: Q1 (A) and (B) from the encroached and non-encroached watershed before and after burning; Q2 (C) and (D) from shrub islands and grass plots before and after burning in the non-encroached watershed; Q3 (E) and (F) from shrub islands and grass plots in the non-encroached watershed before and after either high or low-severity burning. Community divergence or convergence measured as median distances to centroid with groups compared using ANOVA.

Figure 4. (A)-(H). Soil (A) pH, (B) organic matter, (C) TotC, (D) TotN, (E) TotP, (F) ammonium, (G) nitrate and (H) plant available (Mehlich) phosphorus in watershed encroached by *C. drummondii* shrubs within shrub islands or outside shrub islands 4 days before (pre-fire) and 28 days after (post-fire) prescribed burning (Q2 in text). Letters show the Tukey post-hoc results of Analysis of Variance for a model that includes location relative to shrub island (S) and time (T) main effects as well as their interaction (S \times T).

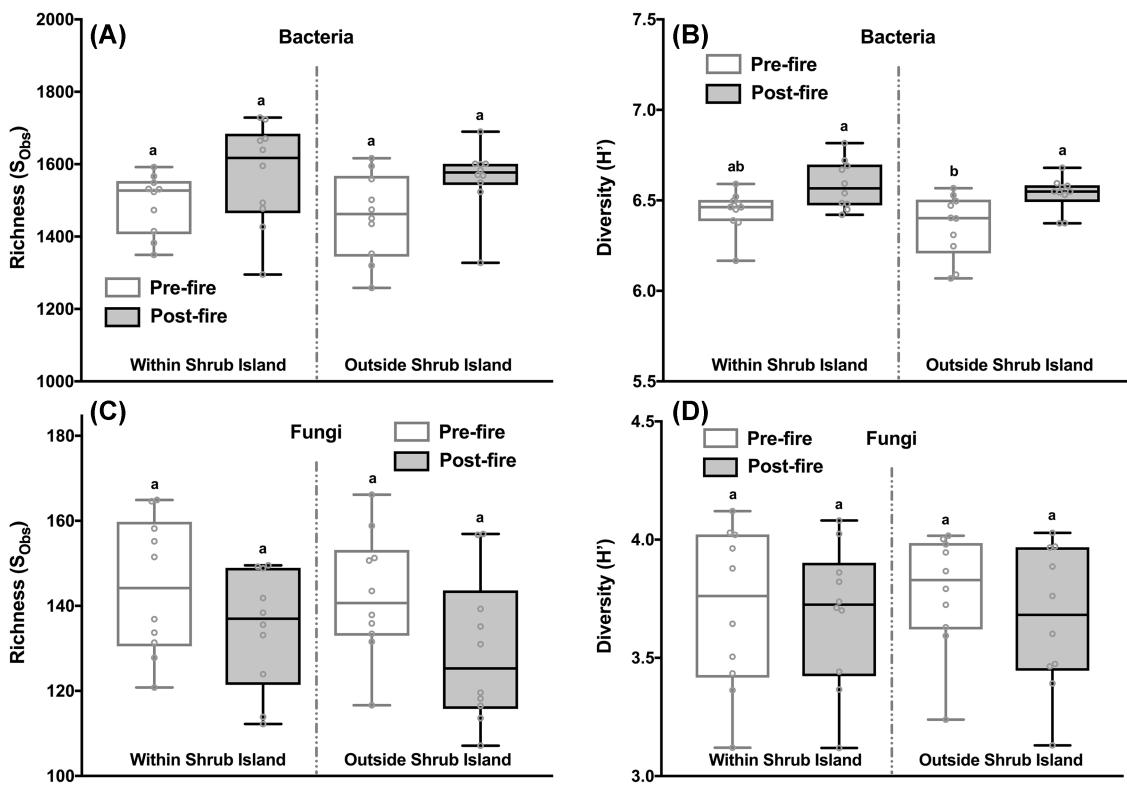
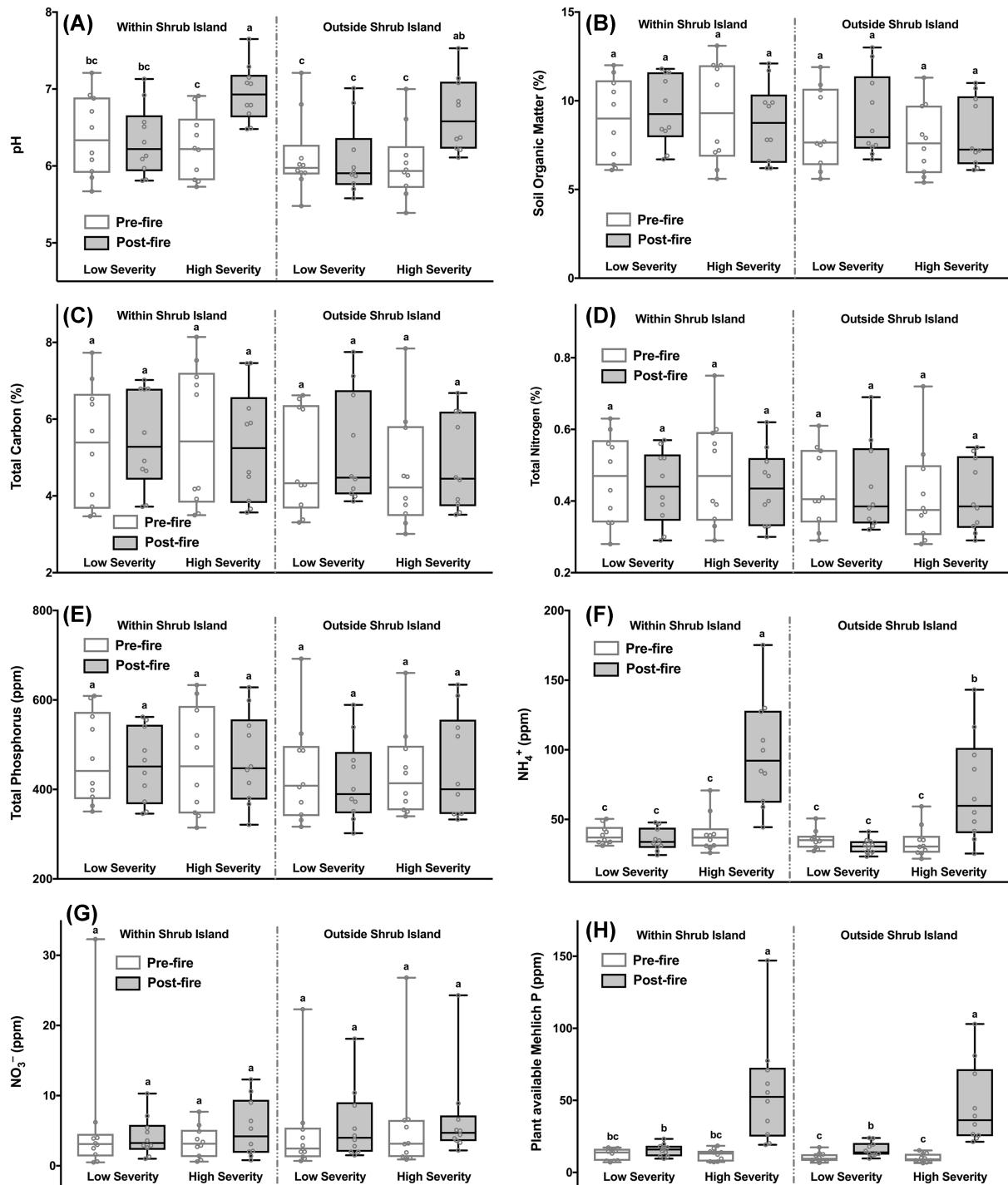


Figure 5. (A)–(D). Bacterial (A) and (B) and fungal (C) and (D) observed (S_{Obs})—A and C richness and diversity (Shannon's H')—B and D) in watershed encroached by *C. drummondii* shrubs within shrub islands or outside shrub islands 4 days before (pre-fire) and 28 days after (post-fire) prescribed burning (Q2 in text). Letters show the Tukey post-hoc results of Analysis of Variance for a model that includes location relative to shrub island (S) and time (T) main effects as well as their interaction ($S \times T$).

We identified 30 bacterial and 14 fungal indicator OTUs among the four vegetation-by-time combinations (Table S6, Supporting Information). Like Q1, when assessing the pre- or post-fire indicators, there were few indicators of the low-severity fire—two bacterial and no fungal OTUs. When assessing bacterial indicators of vegetation, there was little change overall at the phylum (Table S6, Supporting Information) or family level (Figure S5, Supporting Information). Fungal OTUs that were abundant in the Q1 indicator analyses were also abundant for Q2, and responses to fire among the most abundant OTUs were similar but less pronounced (Figure S5, Supporting Information). For example, *Malassezia* sp. (OTU3) doubled in read abundance after low-severity fire in the encroached watershed grass habitat but increased 6-fold after fire within the annually burned, non-encroached watershed (Figure S4, Supporting Information).


Q3: Responses to woody encroachment and high-severity fire

Fire severity and vegetation rarely revealed interactions with time among soil chemistry responses (Fig. 6A–H; Table S3, Supporting Information). However, soil pH and NH_4^+ changed differently after low and high-severity burn treatments. Soil pH was marginally higher within shrub islands ($F_{1,36} = 3.52$, $P = 0.069$), after fire ($F_{1,36} = 37.1$, $P < 0.001$) and after the high-severity fire ($F_{1,36} = 51.4$, $P < 0.001$). Dissection of the within subject interaction terms indicated that the post-fire soil pH increase was mostly attributable to the high-severity fire treatment (Fig. 6A). Like pH, NH_4^+ concentration was higher within

the shrub islands ($F_{1,36} = 6.02$, $P = 0.019$), after fire ($F_{1,36} = 24.3$, $P < 0.001$) and after high-severity fire ($F_{1,36} = 47.2$, $P < 0.001$), as there were no comparable responses to low-severity fire (Fig. 6F). Mehlich P did not vary with vegetation ($F_{1,36} = 1.06$, $P = 0.311$), but was higher after fire ($F_{1,36} = 207.8$, $P < 0.001$), and after high-severity fire ($F_{1,36} = 82.7$, $P < 0.001$). The significant within subject interaction between time and burn severity was attributable to the greater increase in Mehlich P after the high-severity burn than after the low-severity one (Fig. 6H).

Richness and diversity analyses indicated community fire responses similar to soil chemistry: pre- and post-fire responses depended on fire severity but not vegetation (Fig. 7A–D; Table S3, Supporting Information). Bacterial ($F_{1,36} = 41.0$, $P < 0.001$) and fungal richness ($F_{1,35} = 70.8$, $P < 0.001$), and diversity (bacteria— $F_{1,36} = 43.2$, $P < 0.001$; fungi— $F_{1,35} = 77.4$, $P < 0.001$) declined substantially after high-severity fire. Fungal richness was more sensitive to the severe fire and declined by ~60% (Fig. 7C), whereas bacterial richness declined by ~23% (Fig. 7A). Like Q2, there was no evidence that either bacterial or fungal richness and diversity were affected by shrub encroachment.

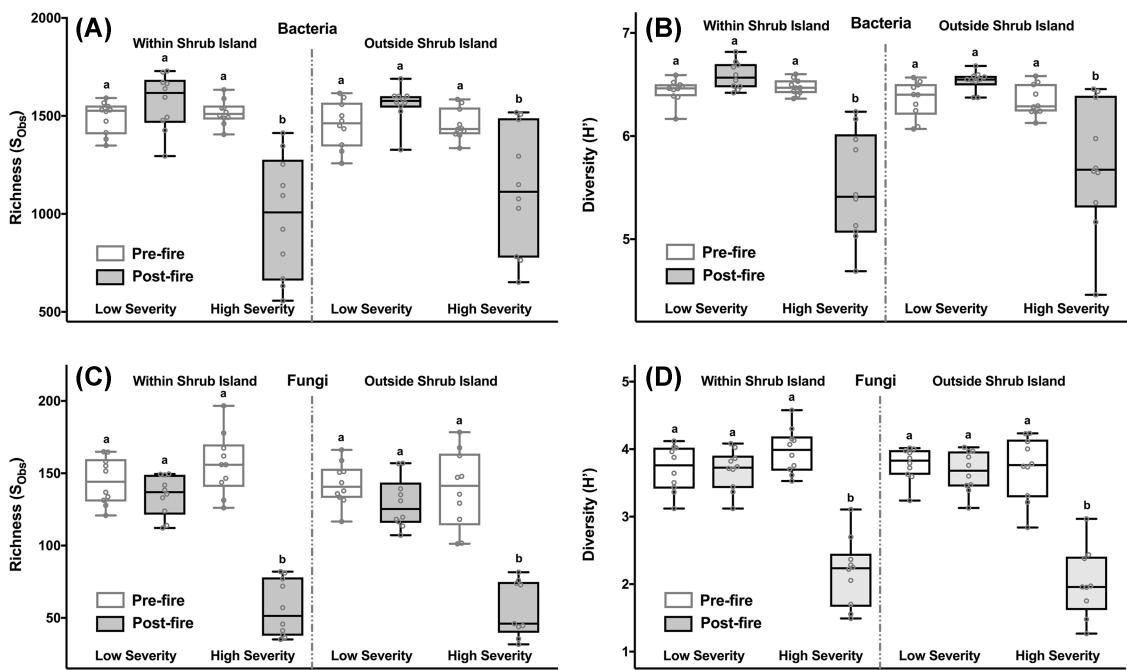

Bacterial (PERMANOVA: $F_{1,78} = 2.79$, $P < 0.001$) and fungal ($F_{1,77} = 5.91$, $P < 0.001$) communities also responded compositionally to high-severity fire treatments. A total of 6% of bacterial and 3% of fungal community composition was explained by the interaction between fire severity and time (Fig. 3E and F). In addition, we found evidence for shifts in the degree of variability for both bacterial and fungal communities after the high-severity fire as measured by median distances from ordination centroids (Fig. 3E and F). Bacterial communities were more heterogeneous in their composition after high-severity fires both outside (P_{adj}

Figure 6. (A)–(H). Soil (A) pH, (B) organic matter, (C) TotC, (D) TotN, (E) TotP, (F) ammonium, (G) nitrate and (H) plant available (Mehlich) phosphorus in watershed encroached by *C. drummondii* shrubs within shrub islands or outside shrub islands burned by low or high-severity fire 4 days before (pre-fire) and 28 days after (post-fire) prescribed burning (Q3 in text). Letters show the Tukey post-hoc results of Analysis of Variance for a model that includes location relative to shrub island (V), fire severity (S) and time (T) main effects as well as two- and three-way interactions.

$= 0.017$) and within shrub islands ($P_{adj.} < 0.001$) based on pairwise Tukey's post-hoc comparisons. Fungal communities were compositionally more heterogeneous within shrub islands ($P_{adj.} = 0.036$) and marginally so outside them ($P_{adj.} = 0.055$) after the high-severity fire (Fig. 3E and F). Mehlich P and NH_4^+ cor-

related with both bacterial and fungal community shifts after high-severity fire (Figure S3E, S3F and Table S4, Supporting Information), whereas NO_3^- correlated with neither. These three soil chemistry correlates were also affected by the severity-by-time interaction (Fig. 6).

Figure 7. (A)–(D). Bacterial (A) and (B) and fungal (C) and (D) observed (S_{obs})—A and C) richness and diversity (Shannon's H' —B and D) in watershed encroached by *C. drummondii* shrubs within shrub islands or outside shrub islands burned by low or high-severity fire 4 days before (pre-fire) and 28 days after (post-fire) prescribed burning (Q3 in text). Letters show the Tukey post-hoc results of Analysis of Variance for a model that includes location relative to shrub island (V), fire severity (S) and time (T) main effects as well as two- and three-way interactions.

To further investigate how bacterial and fungal community compositions were affected by the severity-by-time interaction, we analysed: pre-fire communities in low and high-severity treatments; post-fire communities in low and high-severity treatments; low fire severity communities before and after fire and high fire severity communities before and after fire. Before the fire, communities in low and high-severity treatments were indistinguishable (PERMANOVA: bacteria— $F_{1,38} = 0.95$, $P = 0.46$; fungi— $F_{1,38} = 0.73$, $P = 0.99$). After fire, these communities were distinct or marginally so: low-severity fire affected the bacterial (PERMANOVA: $F_{1,38} = 1.57$, $P = 0.06$) and fungal communities ($F_{1,37} = 1.74$, $P = 0.004$). Evidence for community dispersion after low-severity fire was marginal as well (bacteria— $F_{1,38} = 2.12$, $P = 0.15$; fungi $F_{1,38} = 4.75$, $P = 0.04$). In contrast, the high-severity fires drove divergence in both bacterial ($F_{1,38} = 37.4$, $P < 0.001$) and fungal ($F_{1,37} = 12.7$; $P < 0.001$) communities and changed their overall composition (PERMANOVA: bacteria— $F_{1,38} = 12.6$; $P < 0.001$; fungi— $F_{1,37} = 7.22$; $P < 0.001$).

We also investigated microbial communities across local vegetation in the context of fire severity. Within and outside the established shrubs, the pre-fire bacterial communities did not differ compositionally before low (PERMANOVA: $F_{1,18} = 1.07$, $P = 0.32$) or high ($F_{1,18} = 1.22$, $P = 0.21$) severity fire treatments. After fire, regardless of severity, bacterial communities remained indistinguishable within and outside shrub islands (PERMANOVA: low severity— $F_{1,18} = 0.95$, $P = 0.46$; high severity— $F_{1,18} = 0.97$, $P = 0.41$), but were distinct from those before the fire (see above). In contrast, fungal communities were distinct within and outside shrub islands before fire (PERMANOVA: low severity— $F_{1,18} = 1.66$, $P = 0.003$; high severity— $F_{1,18} = 1.65$, $P = 0.002$), as well as after the low-severity fire ($F_{1,18} = 1.50$, $P = 0.001$). However, fungal communities were no longer distinct within and outside shrub islands after the high-severity fire ($F_{1,17} = 1.09$,

$P = 0.21$) such that the high-severity fire homogenized the fungal community composition across the vegetation patches. For both bacteria and fungi, there were no significant differences in community dispersion within or beyond shrub islands before or after the two experimental fire severities.

Across the eight treatment combinations addressing Q3, we identified three indicators—all three were fungi associated with high-severity burning (Table S10, Supporting Information). One fungal indicator (OTU10, *Pyronema* sp.) was disproportionately more abundant after high-severity fire in shrub islands. In a BLAST search, the *Pyronema* sp. OTU10 matched closely with pyrophilous *Pyronema omphalodes* (GenBank accession MK886722.1) and *Pyronema domesticum* (GenBank accession MT816457.1) with equal 100% sequence similarity and 100% query coverage. The other two indicators (OTU7, *Scutellinia* sp.; OTU44, *Penicillium melinii*) were disproportionately more abundant after high-severity fire regardless of vegetation. The *Scutellinia* OTU7 matched closely *Anthracobia* sp. in Pyronemataceae (100% query coverage and 100% sequence similarity to GenBank accession MK840934.1)—a likely pyrophilous fungus (Claridge, Trappe and Hansen 2009; Hughes et al. 2020). To focus on fire effects, we also analysed samples from within and outside the shrub islands together. We identified the same three fungal indicators (described above), as well as two high-severity, post-fire bacterial indicators (OTU54 and OTU79) within the family Moraxellaceae (Table S9, Supporting Information). Among the 10 most abundant bacteria in these analyses, OTU7 (Micromonosporaceae) and OTU6 (Planococcaceae) responded positively to high-severity fire and increased 20- and 60-fold in read abundance, respectively. In contrast, OTU5 (Bradyrhizobiaceae) and OTU8 (Gaiellaceae) decreased by 65% and 54% after high-severity fire, respectively (Figure S6, Supporting Information). Fungal responses to low and high-severity fires also differed. For example, *N. terricola* (OTU1) and *Alternaria porri* (OTU5)

increased in abundance twenty and 6-fold, respectively, after high-severity fire, whereas both only increased 3-fold after low-severity fire (Figure S6, Supporting Information). In addition, *M. rishikeshi* (OTU2) and *M. exigua* (OTU4) both decreased more dramatically after high-severity than low-severity fire.

DISCUSSION

Adjacent watersheds with different fire histories had distinct soil chemistries and microbial communities that were rarely altered after a low-severity burn. We acknowledge that our experimental design does not account for the potential spatially confounding factors that may have attributed to the observed watershed-level differences. Notwithstanding, we emphasize that indeed, it is often fire history and management that drives ecosystem dynamics in this tallgrass prairie system, rather than typical low-severity prescribed fire events. Within the fire-protected watershed, high-severity fires led to dramatic changes in soil chemistry as well as in bacterial and fungal communities. These changes were minimal or absent after low-severity fires and were rarely affected by woody encroachment within the fire-protected watershed.

In our study, only high-severity fire affected soil chemistry and microbial communities similarly regardless of woody encroachment suggesting that high-severity fire can homogenize abiotic and biotic grassland attributes. Bacterial and fungal diversity and community composition often correlated with changes in the soil chemistry, although this was not true for NO_3^- after high-severity fires. In addition, soil pH correlated with observed differences in bacterial communities but not fungal communities between the annually burned and fire-protected watersheds. Instead, changes in SOM correlated with changes in fungal communities, and soil pH correlated with bacterial communities after both low- and high-severity fires. Soil chemistry is a critical determinant of soil-inhabiting communities post-fire (Certini et al. 2021), and bacteria and fungi mediate major biogeochemical transformations including decomposition, soil fertility and C storage (Crowther et al. 2019). Understanding the effects of fire history, fire severity and woody encroachment on post-fire microbial communities will help inform future land management decisions that aid in preserving these important ecosystem services (van der Putten et al. 2013). Further, elucidating how soil chemistry and microbial communities are coupled is a critical step toward understanding how fire history and severity affect abiotic and biotic ecosystem attributes directly and indirectly. Studies that compare fire severities in grasslands are rare, and we were motivated to investigate how woody encroachment and fire suppression that potentially fuel greater fire intensities and burn severities may interact to affect abiotic and biotic soil attributes.

We acknowledge the limitations of our experimental design stemming from spatially and temporally confounding variables. By sampling plots within two watersheds rather than multiple replicate watersheds, we are confined to extrapolating our results from these watersheds. However, our experiments targeting soil chemistry and microbial community responses to encroachment on a watershed level (Q1) or to encroachment locally within a watershed (Q2) focused on encroachment but accounted for fire history effects differently. These experiments yielded consistent results that corroborate an existing knowledge base. In addition, the low and high fire severities differed in impacts, as we attempted to decouple history of fire suppression and encroachment, despite being constrained to the local characteristics of the local ecosystem.

It remains unclear whether different fire severities facilitate or suppress woody encroachment over time and whether they could be employed as a grassland restoration tool (Twidwell et al. 2016). Whether high-severity fire could be exploited as a restoration opportunity to encourage system transition from one state (encroached grassland) to another (native non-encroached prairie) remains an open question. Although we lack the long-term data to assess how our microbial community states progress along different trajectories, our data suggest that high-severity fire initiates a novel state that is distinct from either the grass- or shrub-dominated ones. Indeed, pyrodiversity may beget biodiversity on the landscape level in this system as predicted by the pyrodiversity-biodiversity hypothesis (Martin and Sapsis 1992; Jones and Tingley 2021). However, this was only true for the high-severity treatments; the low-severity fire at the local or landscape scale only minimally impacted abiotic and biotic system attributes, retaining communities that were distinct between watersheds (Q1) or local vegetation patches (Q2, Q3).

Soil chemistry

Woody encroached watershed that was protected from fire for 27 years at the time of our sampling differed in SOM, TotC and TotN accumulation compared to an annually burned, non-encroached watershed (Q1). This effect of fire suppression and the absence of aboveground biomass removal on soil C is consistent with other studies of woody encroachment increasing soil C accumulation (McKinley and Blair 2008; Barger et al. 2011; Connell, Nippert and Blair 2020) but contrasts others (Smith and Johnson 2003). Our casual observations that *C. drummondii* islands also include abundant understory grasses and some forbs (personal observation) suggest that C inputs from grasses may not be replaced but rather supplemented by shrub inputs over time.

Overall, recent low-severity fire had little impact on soil chemistry that was distinct between the watersheds and remained so after the low-severity fire treatment. Within the fire protected watershed, our comparison between *Cornus*-encroached and grass-dominated patches (Q2) indicated minimal differences attributable to vegetation. These results suggest that the watershed context—most likely reflecting differences in fire history—is a more important determinant of soil chemical attributes than the woody encroachment that is driven by fire exclusion. It is also of note that the *Cornus* shrubs likely established at different times, and thus vary in age, whereas the two watersheds have experienced 27 years of compounding effects of distinct fire histories. Our analyses also suggest that low-severity fires had only little impact on soil chemistry, a result of minimal heat penetration into the soil profile paralleling that of a warm, sunny day as indicated by our recorded heat sensor data. A notable exception was plant available P that increased after the low-severity burn. At KPBS, P is limiting (Collins-Johnson et al. 2010) and mineralization of plant available P after low-severity fires may be biologically important, particularly as the low-severity prescribed fires are most commonly employed early in the growing season. In contrast to the low-severity fire, the high-severity fire (Q3, Fig. 6) distinctly altered soil chemistry and increased soil NH_4^+ , plant available P and pH regardless of woody encroachment.

While low-severity fires may not substantially impact abiotic soil attributes, high-severity fires clearly do. Burn severity directly links to heat penetration in soil (Smith, Cowan and

Fitzgerald 2016) and subsequent impacts of heat on the abiotic and biotic soil properties (Massman 2012; Reazin et al. 2016). Depending on fire intensity and burn severity, fires can lead to immediate loss of N and C through combustion. High surface temperatures during a severe burn can combust the ligno-cellulosic biomass, and large volumes of living or detrital biomass can transform into partially burned pyrogenic carbon (Keiluweit et al. 2010). This can result in smaller organic matter pools near the soil surface (Certini 2005). However, general fire impacts on soil C and N pools remain unresolved. A meta-analysis concluded that forest fires increase soil C and N storage (Johnson and Curtis 2001) due to charcoal sequestration and post-fire succession by N-fixing plants. In contrast, a later meta-analysis concluded that fires reduce soil C and N in temperate forest systems (Nave et al. 2011). Fire suppression in a grassland system was associated with the accumulation of SOM and nutrients (TotN and TotP; Fig. 1) in the absence of frequent fire that had resulted in woody encroachment (Q1), although we cannot rule out other, unmeasured watershed-specific drivers. Our data also highlight the loss of soil C as a result of recent high-severity fire regardless of the vegetation. Taken together, these data indicate system (encroached vs. non-encroached grassland) and burn severity dependencies that need to be considered when generalizing about abiotic responses to fire.

An alternative possibility to direct fire effects on soil chemistry is that biological uptake was simply higher following low-severity fire because of the high mortality in high-severity treatment (Figure S2, Supporting Information). We collected soil samples 28 days following burning, which is unlikely enough time for microbial uptake to make up the difference in Mehlich P and NH_4^+ in the high-severity fire treatments (Fig. 6). A meta-analysis by Wan, Hui and Luo (2001) concluded that fires substantially increased soil NH_4^+ and NO_3^- in the short term, but that NH_4^+ returned to pre-fire levels 1 year later and NO_3^- within 2 years, on average. In addition, fires immediately increase available P (Serrasolsas and Khanna 1995) due to conversion of organic P to orthophosphate in soil (Cade-Menun et al. 2000). Our results align with these findings, particularly so in the high-severity fire treatments, in which inorganic nutrient responses (Mehlich P, NH_4^+) were most obvious, regardless of the vegetation. In contrast, after low-severity fires, we observed a smaller post-fire increase in Mehlich P and a decrease in NH_4^+ . In sum, bioavailable P consistently increased after fire, whereas N responses depended on fire severity. These results again highlight that the fire severity can affect the direction and magnitude of changes in soil chemistry.

Bacterial and fungal communities

Long-term fire suppression in watersheds that differed in their fire histories differed in woody encroachment and had distinct bacterial and fungal communities (Q1). Like soil chemistry, the community responses depended on burn severity and rarely on the vegetation within the encroached watershed. However, after a high-severity burn (Q3), bacterial and fungal richness and diversity decreased (Fig. 7), and communities shifted and diverged in both grass-dominated and shrub-encroached soils (Fig. 3). Following the low-severity burn, such bacterial community responses were not evident across the two watersheds or vegetation. However, low-severity burns increased bacterial richness and diversity regardless of fire history (Fig. 2) or vegetation (Fig. 4). In contrast, fungal richness and diversity consistently declined after both severity treatments, but the

extent of decline following high-severity fires was more pronounced. These observed community responses to fire corroborate reviews (Dooley and Treseder 2012; Pressler, Moore and Francesca Cotrufo 2019) highlighting that fungal communities are generally more sensitive to fire than bacteria, with coinciding declines in fungal richness. Although both bacterial and fungal communities were distinct in the two watersheds that differed in fire histories and in woody encroachment, only fungal communities responded to a low-severity fire in these watersheds. The experimental high-severity fire, however, caused substantial losses of diversity and changed both bacterial and fungal communities compositionally.

Soil bacterial communities did not differ between grass-dominated areas and shrub islands. In contrast, the fungal communities were distinct within and beyond established shrubs before the fire and after low-severity fire (Q2). However, our data indicate that these communities were homogenized by the high-severity fire such that fungal communities were no longer distinct after fire either underneath or beyond established shrub islands (Fig. 3). Reazin et al. (2016) demonstrated that, in a Ponderosa pine forest, high-severity fires impacted fungal soil communities more substantially than low-severity fires. Our results extend these findings to show that high-severity fire not only impacted fungal communities more dramatically, but that it erased community differences between adjacent encroached and non-encroached landscape units. In other words, physically adjacent systems in distinct system states (grass vs. shrub—exemplifying hysteresis in this prairie system) inhabited by distinct fungal communities transitioned after high-severity fire to a system state characterized by non-distinct soil fungal communities. However, bacterial communities in soils within and beyond established shrubs were similar before fires and did not change after the low-severity fire. In contrast to the low-severity fire, high-severity fire resulted in a strong community response and the post-fire bacterial communities were indistinguishable regardless of where that high-severity fire had been applied. So, while both bacterial and fungal communities transitioned to a novel community state after the high-severity fire, bacterial communities were compositionally resistant to the effects of local vegetation and low-severity fire.

Overall, bacterial and fungal communities differed in their responses to fire, watershed fire history and fire severity. Bacterial richness and diversity consistently increased in response to low-severity fires, whereas fungal richness and diversity remain unchanged. We speculate that this was due to rapid post-fire dispersal of bacteria to the soil surface (Kobziar et al. 2018), as burning the top-most soil horizons may have wiped out a substantial proportion of the most abundant taxa/OTUs. This conclusion is consistent with the observed increase in bacterial diversity (H') following the low-severity fire. For fungi, univariate measures of richness and diversity were responsive to fire history albeit less so to our experimental low-severity fire. Compositionally, however, fungal communities did respond to low-severity fire at both the local and watershed levels. With a combination of uni- and multi-variate measures of diversity and community composition, our results further corroborate evidence that fungi are sensitive to fire events in the short- and long-term (Dooley and Treseder 2012; Pressler, Moore and Francesca Cotrufo 2019) and more so than bacterial communities (Carson et al. 2019).

Taxon-specific responses to fire

Our analyses identified taxa that were associated with high-severity burns, including bacteria and fungi that were rare in

both pre-fire and post-low-severity fire communities (e.g. fungal OTU44 *P. melinii*; bacterial OTUs 54 and 79 in the family Moraxellaceae). Importantly, our indicator taxon analyses highlighted the presence of pyrophilous Pyronemataceae (OTUs 7 and 10 putative *Anthracobia* sp. and *Pyronema* sp., respectively, as suggested by BLAST searches, even though the former was initially assigned to *Scutellinia* in the UNITE reference-based analyses). The most abundant fungal indicator taxon was *N. terricola* (Figure S6, Supporting Information), a species in a genus often associated with burned vegetation and characterized by fire-stimulated spores (Turner, Perkins and Fairfield 2001; Jacobson et al. 2004; Dettman, Jacobson and Taylor 2006). *Penicillium* spp. commonly occur after high-severity burns (Mikita-Barbato, Kelly and Tate 2015; Whitman et al. 2019; Hopkins, Semenova-Nelsen and Sikes 2020; Pulido-Chavez et al. 2021), although these fungi are more likely abundant opportunists and fast colonizers than fire adapted taxa *per se*. Such opportunists may be capable of utilizing fire-affected organic matter or cytoplasmic contents released from dead cells taking advantage of newly available nutrients in the soil matrix (Whitman et al. 2019).

Removal of aboveground vegetation and altered soil chemistry make for a harsh post-fire environment where microbes are potentially exposed to increased solar radiation and low soil moisture (Marcolin et al. 2019). An open question is to what extent species from local and regional pools vegetatively expand into fire-disturbed habitats from adjacent, less fire-exposed patches and/or deeper soil profiles or arrive and colonize by air. Although there is a long history of research on post-fire effects in ecosystems, there is a still debate on whether pyrophilic organisms are already present within the environment and respond to physical or chemical fire-generated cues or whether pyrophilic organisms disperse into the fire-disturbed environments anew (Kobziar et al. 2018; Mims and Mims 2004; Moore et al. 2021). Whitman et al. (2019) proposed a conceptual model of fire-responsive microbial traits analogous to plant traits (e.g. heat surviving, opportunistic growth and affinity for post-fire environment). Several such microbial traits have been tested for fire-responsive fungi. Resting structures and spores may be heat (*Rhizophagus*, Bruns, Hale and Nguyen 2019) or chemically stimulated by fire (*Neurospora*, Dettman, Jacobson and Taylor 2006), residing in the soil for years between fire events (Bruns, Hale and Nguyen 2009; Peay, Garbelotto and Bruns 2009; Glassman et al. 2016). Fire-responsive bacteria such as species within *Bacillus* and *Clostridium* can also produce spores that resist temperatures above 100°C (Theodorou and Bowen 1982). Rhizosphere bacteria may be stimulated by fire to some extent and aid in post-fire nitrogen cycling (Cobo-Díaz et al. 2015; Fernández-González et al. 2017).

We posit that there is less resistance to high-severity fires than low-severity fires within the soil profile that is directly impacted by combustion during a high-severity burn or exposed to extended periods of high temperatures. Thus, communities there must largely re-establish. Soil community negative responses can be highlighted by the direct mortality of many saprobes as the substrates that they inhabit combust (Hopkins, Semenova-Nelsen and Sikes 2020) as well as the indirect mortality of plant-associated microbes (e.g. mycorrhizal fungi, fungal and bacterial endophytes) as a result of fire-induced mortality or altered physiology of their hosts. Fire may reduce competition in the soil (El-Abiad and Webster 1968a), trigger spore germination (El-Abiad and Webster 1968b), raise the pH (Certini 2005) and produce a pulse of available nutrients (Kutiel (Certini 2005)

and Naveh 1987). Any combination of these factors may alter relative competitiveness in the resident communities and stimulate organisms that respond positively and proliferate across fire-impacted landscapes. High-severity fires may be unique in that they may open niches for opportunistic taxa that a low-severity fire would not (Figure S6, Supporting Information), and these taxa may thrive in post-fire grasslands (Yang et al. 2020) or forests (Fujimura et al. 2005; Hughes et al. 2020).

CONCLUSION

Fires can dramatically influence both biotic and abiotic ecosystem attributes (Certini 2005; Pressler, Moore and Francesca Cotrufo 2019; Certini et al. 2021). Fire frequencies and severities are currently changing because of changing climate and many anthropogenic drivers (Andela et al. 2017; Pellegrini et al. 2018). Thus, it is crucial to understand how ecosystems respond to changing fire regimes. Our study demonstrates that soil chemistry as well as fungal and bacterial communities respond to high-severity burns regardless of woody encroachment in a grassland system. In contrast, low-severity fires had divergent effects on soil nutrients as well as bacterial and fungal communities and depended on whether encroaching shrubs were present. Contrasting fire histories between the two watersheds suggest a stronger effect of fire suppression on soil chemistry and microbial communities than encroaching vegetation within the fire-protected watershed. Historically, North American prairies burned frequently (Knapp et al. 1998), but extensive habitat loss, fragmentation and changes in fire management have resulted in substantial losses of prairie systems (Samson and Knopf 1994; Leach and Givnish 1996). In the context of tall-grass prairie ecosystems in the central United States, our results suggest that a high-severity fire may lead to novel system states, the trajectory of which remains unknown. Since the watershed effects, including a history of fire suppression, were a stronger influence on microbial communities than local encroachment, the importance of frequent fires to prevent woody encroachment is supported and extreme interventions like high-severity fires require further investigation.

SUPPLEMENTARY DATA

Supplementary data are available at [FEMSEC](https://femsec.oup.com/article/97/12/fab154/6445025) online.

AUTHOR CONTRIBUTIONS

We use this to justify author invitations. LM—coordinated field sampling, generated soil chemistry and microbial community data and edited final manuscript; MRK—analysed soil chemistry and microbial community data, wrote the manuscript and edited the final manuscript; SF—established the field experiment, sampled the field experiment, processed acquired field samples and edited the final manuscript; CR—established the field experiment, sampled the field experiment, processed acquired field samples, generated microbial community data and edited the final manuscript; LZ—conceptualized and designed the experiment and edited the final manuscript; AJ—conceptualized and designed the experiment, established the field experiment, sampled the field experiment, processed acquired field samples, wrote the manuscript and edited the final manuscript.

ACKNOWLEDGMENTS

Many thanks to Kyle Ismert for field assistance, to Patrick O'Neal for help with site selection and logistics and to Achala Naryanan, Jie Ren and Alina Akhunova for preparing sequences. Ellen Meyer-Jumpponen provided illustrations for Figure S1 (Supporting Information) and the graphical abstract. We are grateful to Konza Prairie Biological Station and the Long-Term Ecological Research program for access to the sites used in this research.

FUNDING

This work was supported in part by National Science Foundation (DEB# 1457309) to AJ. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. LM was supported by DoEd GAANN award number P200A160188. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Conflict of interest. None declared.

REFERENCES

Andela N, Morton DC, Giglio L et al. A human-driven decline in global burned area. *Science* 2017;356:1356–62.

Andersen KS, Kirkegaard RH, Karst SM et al. "Ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. *Bioinformatics* 2018. DOI:10.1101/299537.

Anderson MJ. A new method for non-parametric multivariate analysis of variance. *Austral Ecol* 2001;26:32–46.

Barger NN, Archer SR, Campbell JL et al. Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. *J Geophys Res* 2011;116:G00K07.

Bestelmeyer BT, Ellison AM, Fraser WR et al. Analysis of abrupt transitions in ecological systems. *Ecosphere* 2011;2:129.

Bond WJ. What limits trees in C4 grasslands and savannas. *Annu Rev Ecol Evol Syst* 2008;39:641–59.

Briggs JM, Knapp AK, Blair JM et al. An ecosystem in transition: causes and consequences of the conversion of mesic grassland to shrubland. *Bioscience* 2005;55:243–54.

Brown SP, Veach AM, Horton J et al. Context dependent fungal and bacterial community shifts in response to recent wildfire in the Southern Appalachian Mountains. *Forest Ecol Manag* 2019;451:117520.

Brown SP, Veach AM, Rigdon-Huss AR et al. Scraping the bottom of the barrel: are rare high throughput sequences artifacts? *Funct Ecol* 2015;13:221–5.

Brunn TD, Chung JA, Carver AA et al. A simple pyrocosm for studying soil microbial response to fire reveals a rapid, massive response by *Pyronema* species. *PLoS ONE* 2020;15:e0222691.

Brunn TD, Hale ML, Nguyen NH. *Rhizopogon olivaceotinctus* increases its inoculum potential in heated soil independent of competitive release from other ectomycorrhizal fungi. *Mycologia* 2019;111:936–41.

Brunn TD, Peay KG, Boynton PJ et al. Inoculum potential of *Rhizopogon* spores increases with time over the first 4 yr of a 99-yr spore burial experiment. *New Phytol* 2009;181:463–70.

Cáceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. *Ecology* 2009;90:3566–74.

Cade-Menun BJ, Berch SM, Preston CM et al. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. II. The effects of clear-cutting and burning. *Can J For Res* 2000;30:1726–41.

Caporaso JG, Lauber CL, Walters WA et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *ISME J* 2012;6:1621–4.

Carson CM, Jumpponen A, Blair JM et al. Soil fungal community changes in response to long-term fire cessation and N fertilization in tallgrass prairie. *Fung Ecol* 2019;41:45–55.

Certini G, Moya D, Esteban Lucas-Borja M et al. The impact of fire on soil-dwelling biota: a review. *Forest Ecol Manag* 2021;488:118989.

Certini G. Effects of fire on properties of forest soils: a review. *Oecologia* 2005;143:1–10.

Claridge AW, Trappe JM, Hansen K. Do fungi have a role as soil stabilizers and remediaters after forest fire? *Forest Ecol Manag* 2009;257:1063–9.

Close DC, Davidson NJ, Swanborough PW et al. Does low-intensity surface fire increase water- and nutrient-availability to overstorey *Eucalyptus gomphocephala*? *Plant Soil* 2011;349:203–14.

Cobo-Díaz JF, Fernández-González AJ, Villadas PJ et al. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean forest after a wildfire. *Microb Ecol* 2015;69:895–904.

Collins SL, Nippert JB, Blair JM et al. Fire frequency, state change and hysteresis in tallgrass prairie. *Ecol Lett* 2021. DOI: 10.1111/ele.13676.

Collins-Johnson N, Wilson GWT, Bowker MA et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. *Proc Nat Acad Sci Eco* 2010;107:2093–8.

Combs SM, Nathan MV. Soil organic matter. In: *Recommended Chemical Soil Test Procedures for the North Central Region*. North Central Regional Publication No. 221(Revised), 1998. University of Missouri Agricultural Experiment Station, Columbia, MO. p. 53–8.

Connell RK, Nippert JB, Blair JM. Three decades of divergent land use and plant community changes alters soil C and N content in tallgrass prairie. *JGR Biogeosci* 2020;125:e2020JG005723.

Crowther TW, van den Hoogen J, Wan J et al. The global soil community and its influence on biogeochemistry. *Science* 2019;365:eaav0550.

Dettman JR, Jacobson DJ, Taylor JW. Multilocus sequence data reveal extensive phylogenetic species diversity within the *Neurospora discreta* complex. *Mycologia* 2006;98:436–46.

Dooley SR, Treseder KK. The effect of fire on microbial biomass: a meta-analysis of field studies. *Biogeochemistry* 2012;109:49–61.

Edgar RC, Haas BJ, Clemente JC et al. UCHIME improves sensitivity and speed of chimeral detection. *Bioinformatics* 2011;27:2194–200.

El-Abyad M, Webster J. Studies on pyrophilous discomycetes: II. Competition. *Trans Br Mycol Soc* 1968a;51:369–75.

El-Abyad MSH, Webster J. Studies on pyrophilous discomycetes: I. Comparative physiological studies. *Trans Br Mycol Soc* 1968b;51:353–67.

Fernández-González AJ, Martínez-Hidalgo P, Cobo-Díaz JF et al. The rhizosphere microbiome of burned holm-oak: potential role of the genus *Arthrobacter* in the recovery of burned soils. *Sci Rep* 2017;7:6008.

Frank K, Beegle D, Denning J. Phosphorus. In: *Recommended Chemical Soil Test Procedures for the North Central Region*. North Central Regional Publication No. 221(Revised), Columbia, MO: University of Missouri Agricultural Experiment Station, 2018. 21–6.

Fujimura KE, Smith JE, Horton TR et al. Pezizalean mycorrhizas and sporocarps in ponderosa pine (*Pinus ponderosa*) after prescribed fires in eastern Oregon, USA. *Mycorrhiza* 2005;15: 79–86.

Gelderman RH, Beegle D. Nitrate-nitrogen. In: *Recommended Chemical Soil Test Procedures for the North Central Region*. North Central Regional Publication No. 221(Revised), Columbia, MO: University of Missouri Agricultural Experiment Station, 1998, 17–20.

Gihring TM, Green SJ, Schadt CW. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. *Environ Microbiol* 2012;14:285–90.

Glassman SI, Levine CR, DiRocco AM et al. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. *ISME J* 2016;10:1228–39.

Hopkins JR, Semenova-Nelsen T, Sikes B. Fungal community structure and seasonal trajectories respond similarly to fire across pyrophilic ecosystems. *FEMS Microbiol Ecol* 2020;97. DOI: 10.1093/femsec/fiaa219.

Hughes KW, Matheny PB, Miller AN et al. Pyrophilous fungi detected after wildfires in the Great Smoky Mountains National Park expand known species ranges and biodiversity estimates. *Mycologia* 2020;112:677–98.

Huse SM, Welch DM, Morrison HG et al. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. *Environ Microbiol* 2010;12:1889–98.

Ihrmark K, Boëdeker ITM, Cruz-Martinez K. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. *FEMS Microbiol Ecol* 2012;82:666–77.

Jacobson DJ, Powell AJ, Dettman JR et al. *Neurospora* in temperate forests of western North America. *Mycologia* 2004;96:66–74.

Johnson DW, Curtis PS. Effects of forest management on soil C and N storage: meta analysis. *Forest Ecol Manag* 2001;140: 227–38.

Jones GM, Tingley MW. Pyrodiversity and biodiversity: a history, synthesis, and outlook. *Diver Distrib* 2021;00:1–18.

Keiluweit M, Nico PS, Johnson MG et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar). *Environ Sci Technol* 2010;44:1247–53.

Knapp AK, Briggs JM, Hartnett DC et al. *Grassland Dynamics: Long-Term Ecological Research in Tallgrass Prairie*. New York, NY: Oxford University Press, 1998.

Kobziar LN, Pingree MR, Larson H et al. Pyroaerobiology: the aerosolization and transport of viable microbial life by wildland fire. *Ecosphere* 2018;9:e02507.

Köljalg U, Nilsson RH, Abarenkov K et al. Towards a unified paradigm for sequence-based identification of fungi. *Mol Ecol* 2013;22:5271–7.

Kollmorgen WM, Simonett DS. Grazing operations in the Flint Hills—bluestem pastures of Chase County Kansas, *Ann Assoc Am Geog* 1965;55:260–90.

Kozich JJ, Westcott SL, Baxter NT et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. *Appl Environ Microbiol* 2013;79:5112–20.

Kutiel P, Naveh Z. The effect of fire on nutrients in a pine forest soil. *Plant Soil* 1987;104:269–74.

Leach MK, Givnish TJ. Ecological determinants of species loss in remnant prairies. *Science* 1996;273:1555–8.

Marcolin E, Marzano R, Vitali A et al. Post-fire management impact on natural forest regeneration through altered microsite conditions. *Forests* 2019;10:1014.

Martin RE, Sapsis DB. Fires as agents of biodiversity: pyrodiversity promotes biodiversity. In: *Proceedings of the Conference on Biodiversity of Northwest California Ecosystems*. Berkeley, CA: Cooperative Extension, University of California, Berkeley, 1992, 150–7.

Massman WJ. Modeling soil heating and moisture transport under extreme conditions: forest fires and slash pile burns. *Water Resour Res* 2012;48:W10548.

McKinley DC, Blair JM. Woody plant encroachment by *Juniperus virginiana* in a mesic native grassland promotes rapid carbon and nitrogen accrual. *Ecosystems* 2008;11:454–68.

Mehlich A. Mehlich 3 soil test extractant: a modification of the Mehlich 2 extractant. *Commun Soil Sci Plant Anal* 1984;15:1409–16.

Mikita-Barbato RA, Kelly JJ, Tate RL. Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands. *Soil Biol Biochem* 2015;86: 67–76.

Miller JED, Damschen EI, Ratajczak Z et al. Holding the line: three decades of prescribed fires halt but do not reverse woody encroachment in grasslands. *Landsc Ecol* 2017;32: 2297–310.

Mims SA, Mims FM. Fungal spores are transported long distances in smoke from biomass fires. *Atmos Environ* 2004;38:651–5.

Moore RA, Bomar C, Kobziar LN et al. Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles. *ISME J* 2021;15:461–72.

Nave LE, Vance ED, Swanston CW et al. Fire effects on temperate forest soil C and N storage. *Ecol Appl* 2011;21: 1189–201.

Neary DG, Klopatek CC, DeBano LF et al. Fire effects on below-ground sustainability: a review and synthesis. *Forest Ecol Manag* 1999;122:51–71.

Oksanen J, Blanchet FG, Friendly M et al. *vegan: community ecology package*. R package version 2.5-6, 2019.

Oliver AK, Brown SP, Callaham MA et al. Polymerase matters: non-proofreading enzymes inflate fungal community richness estimates by up to 15%. *Funct Ecol* 2015;15: 86–9.

Peay KG, Garbelotto M, Bruns TD. Spore heat resistance plays an important role in disturbance mediated assemblage shift of ectomycorrhizal fungi colonizing *Pinus muricata* seedlings. *J Ecol* 2009;97:537–47.

Pellegrini A, Ahlström A, Hobbie SE et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. *Nature* 2018;553:194–8.

Pellegrini A, Hobbie S, Reich P et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil organic matter decomposition in multiple ecosystems. *Ecol Monogr* 2020;90. DOI: 10.1002/ecm.1409.

Prendergast-Miller MT, de Menezes AB, MacDonald LM et al. Wildfire impact: natural experiment reveals differential short-term changes in soil microbial communities. *Soil Biol Biochem* 2017;109:1–13.

Pressler Y, Moore JC, Francesca Cotrufo M. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. *Oikos* 2019;128:309–27.

Pulido-Chavez MF, Alvarado EC, DeLuca TH et al. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. *Forest Ecol Manag* 2021;485:118923.

Ransom B, Kim D, Kastner M et al. Organic matter preservation on continental slopes: importance of mineralogy and surface area. *Geochim Cosmochim Acta* 1998;62:1329–45.

Ratajczak Z, Nippert JB, Hartman JC et al. Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. *Ecosphere* 2011;2:article 121.

Ratajczak Z, Nippert JB, Ocheltree TW. Abrupt transition of mesic grassland to shrubland: evidence for thresholds, alternative attractors, and regime shifts. *Ecology* 2014b;95:2633–45.

Ratajczak Zak, Nippert JB, Briggs JM et al. Fire dynamics distinguish grasslands, shrublands and woodlands as alternative attractors in the Central Great Plains of North America. *J Ecol* 2014a;102:1374–85.

Reazin C, Morris S, Smith JE et al. Fires of differing intensities rapidly select distinct soil fungal communities in a Northwest US Ponderosa pine forest ecosystem. *Forest Ecol Manag* 2016;377:118–27.

Rognes T, Flouri T, Nichols B et al. VSEARCH: a versatile open source tool for metagenomics. *PeerJ* 2016;4:284.

Samson F, Knopf F. Prairie conservation in North America. *Bio-science* 1994;44:418–21.

Schloss PD, Westcott SL, Ryabin T et al. Introducing mothur: open-source, platform independent, community-supported software for describing and comparing microbial communities. *Appl Environ Microbiol* 2009;75:7537–41.

Schoch CL, Seifert KA, Huhndorf S et al. Nuclear ribosomal Internal Transcribed Spacer (ITS) region as a universal DNA barcode marker for fungi. *Proc Natl Acad Sci* 2012;109:6241–6.

Serrasolsas I, Khanna PK. Changes in heated and autoclaved forest soils of SE Australia. Phosphorous and phosphatase-activity. *Biogeochemistry* 1995;29:25–41.

Smith DL, Johnson LC. Expansion of *Juniperus virginiana* L. in the Great Plains: changes in soil organic carbon dynamics. *Glob Biogeochem Cycles* 2003;17:article 1062.

Smith JE, Cowan AD, Fitzgerald SA. Soil heating during the complete combustion of mega-logs and broadcast burning in central Oregon USA pumice soils. *Int J Wildland Fire* 2016;25:1202–7.

Smith JE, Kluber LA, Jennings TN et al. Does the presence of large down wood at the time of a forest fire impact soil recovery? *Forest Ecol Manag* 2017;391:52–62.

Staver AC, Archibald S, Levin SA. The global extent and determinants of savanna and forest as alternative biome states. *Science* 2011;334:230–2.

Theodorou C, Bowen GD. Effects of a bushfire on the microbiology of a south Australian low open (dry sclerophyll) forest soil. *Austr Forest Res* 1982;12:317–27.

Tomkins IB, Kellas JD, Tolhurst KG et al. Effects of fire intensity on soil chemistry in a eucalypt forest. *Aust J Soil Res* 1991;29:25–47.

Towne EG. Vascular plants of Konza Prairie Biological Station: an annotated checklist of species in a Kansas tallgrass prairie. *Sida* 2002;20:269–94.

Turner BC, Perkins DD, Fairfield A. *Neurospora* from natural populations: a global study. *Fung Genet Biol* 2001;32:67–92.

Twidwell D, Rogers WE, Fuhlendorf SD et al. Refining thresholds in coupled fire-vegetation models to improve management of encroaching woody plants in grasslands. *Front Ecol Environ* 2013;11:e64–71.

Twidwell D, Rogers WE, Wonkka CL et al. Refining thresholds in coupled fire-vegetation models to improve management of encroaching woody plants in grasslands. *J Appl Ecol* 2016;50:1585–96.

van der Putten WH, Bardgett RD, Bever JD et al. Plant-soil feedbacks: the past, the present, and future challenges. *J Ecol* 2013;101:265–76.

Wan S, Hui D, Luo Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. *Ecol Appl* 2001;11:1349–65.

Wang Q, Garrity GM, Tiedje JM et al. Naïve Bayesian classifier for rapid assignment of rRNA sequences into new bacterial taxonomy. *Appl Environ Microbiol* 2007;73:5261–7.

White TJ, Bruns T, Lee S et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ et al. (eds). *PCR Protocols: A Guide to Methods and Applications*. New York, NY: Academic Press, Inc., 1990, 315–22.

Whitman T, Whitman E, Wooley J et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. *Soil Biol Biochem* 2019;138:107571.

Yang S, Zheng Q, Yang Y et al. Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning. *Glob Change Biol* 2020;26:431–42.

Zhou L, Li H, Shen H et al. Effects of shrub encroachment on vertical changes in soil organic carbon in Mongolian grasslands: using a multi-biomarker approach. *Plant Soil* 2018;431:217–30.