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Abstract. In recent decades, the advance of information technology and abundant per-
sonal data facilitate the application of algorithmic personalized pricing. However, this
leads to the growing concern of potential violation of privacy because of adversarial attack.
To address the privacy issue, this paper studies a dynamic personalized pricing problem
with unknown nonparametric demand models under data privacy protection. Two con-
cepts of data privacy, which have been widely applied in practices, are introduced: central
differential privacy (CDP) and local differential privacy (LDP), which is proved to be stronger
than CDP inmany cases. We develop two algorithms that make pricing decisions and learn
the unknown demand on the fly while satisfying the CDP and LDP guarantee, respec-
tively. In particular, for the algorithm with CDP guarantee, the regret is proved to be at
most Õ(T(d+2)=(d+4) + ε−1Td=(d+4)). Here, the parameter T denotes the length of the time hori-
zon, d is the dimension of the personalized information vector, and the key parameter ε > 0
measures the strength of privacy (smaller ε indicates a stronger privacy protection).
Conversely, for the algorithm with LDP guarantee, its regret is proved to be at most
Õ(ε−2=(d+2)T(d+1)=(d+2)), which is near optimal as we prove a lower bound of Ω(ε−2=(d+2)
T(d+1)=(d+2)=d7=3) for any algorithmwith LDP guarantee.
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Keywords: differential privacy • dynamic pricing • local privacy • regret

1. Introduction
From the early day bargaining to customized prices
based on such as customer groups (e.g., student ver-
sus nonstudent), genders (e.g., personal care products;
De Blasio and Menin 2015), and regions (e.g., regional
prices of AIDS drug Combivir; Cowen and Tabarrok
2015), personalized pricing has long been imple-
mented in many commercial activities. With the recent
advance of information technology, the pricing plat-
form could use customer data more efficiently, and
personalized prices can be set algorithmically. For
example, insurance companies quote the premium
based on customers’ demographic and behavioral data
(Arumugam and Bhargavi 2019); hoteling websites
charge different prices based on customers’ locations
and devices (Vissers et al. 2014). Besides industry practi-
ces, there is also a growing body of academic research
on algorithmic personalized pricing (see related litera-
ture in Section 1.1).

With this surge of algorithmic personalized pricing,
there is growing concern of privacy issue because of

potential leakage of customers’ personal information.
As quoted in a report by the Organisation for Eco-
nomic Co-operation Directorate for Financial and
Enterprise Affairs,1 “Similarly, the collection and use
of personal data used in personalized pricing could
implicate privacy concerns.” However, most of the
practices in personalized pricing to protect data pri-
vacy are quite ad hoc such as anonymizing personal
information, which cannot guarantee the data security
(Federal Trade Commission 2012, Kolata 2019). Fur-
thermore, even if the adversary does not have direct
access to the data set, they are still able to reconstruct
customers’ personal information by interacting with
and observing the decisions made by the pricing
platform (Fredrikson et al. 2014, Hidano et al. 2017).
To address these malicious attack to personal data,
Dwork et al. (2006a, b) proposed an important con-
cept of the so-called differential privacy, which is the de
facto privacy standard in practice. More specifically,
there are mainly two types of differential privacy that
are widely used in practice: central differential privacy
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(CDP) (Dwork and Roth 2014) and local differential pri-
vacy (LDP) (Evfimievski et al. 2003; Duchi et al. 2013,
2018). Intuitively, CDP guarantees that for any time t,
the adversary is unlikely, depending on a privacy
parameter ε > 0 (smaller ε leads to higher security;
hence, it is also called ε-CDP) to infer the data of any
customer who has arrived before t. For example, the
U.S. Census Bureau (2020) applied the techniques of
CDP for the privacy of census data. Although for
LDP, the customer does not even trust the platform,
so that the platform can only use privatized historical
data to make decisions. As a result, an adversary is
unlikely (again, depending on ε, also known as
ε-LDP) to obtain other customers’ data even if it has
direct access to the platform’s data set. Examples of
practices of LDP include Google (2014) and Apple
(2019). We refer to Figure 1 for a graphical representa-
tion of CDP and LDP. As shown in the left panel of
Figure 1, for CDP, the trusted aggregator (i.e., the plat-
form) collects historical data and the query from the
arriving customer, and it outputs a privatized answer
(e.g., price) such that an adversary cannot infer sensi-
tive information from this answer. The LDP is illus-
trated in the right panel of Figure 1, where the
aggregator (e.g., the platform) is untrusted so that it can
only collect privatized/perturbed data from customers.
Please refer to Section 3 for the detailed formulation and
comparisons between CDP and LDP in our setting.

In this paper, we address the concern of protecting
customers’ data in a dynamic personalized pricing
problem with demand learning. Briefly, there is a
finite selling horizon with length T, and in each time

period t, there is one customer with a d-dimensional
feature/data vector xt ∈ R

d arriving at the platform for
purchasing a single product. To maximize the cumu-
lative revenue, the platform needs to decide a person-
alized price pt based on the knowledge of the
unknown demand model (from historical data) and xt
while at the same time protecting customer’s data.
Assuming the demand model to be nonparametric, we
propose two algorithms which protect data privacy
by satisfying ε-CDP and ε-LDP, respectively. The
main contributions of this paper are summarized as
follows.

Protecting data privacy with nonparametric de-
mand model. As mentioned, the demand model in
this paper is assumed to be nonparametric (see Chen
and Gallego 2021 for preceding work without data
privacy), as opposed to the existing literature on data
privacy in pricing which assumes parametric demand
(Lei et al. 2020, Han et al. 2021, Chen et al. 2022). The
preservation of data privacy in such nonparametric
settings gives rises to several technical challenges,
which we describe in more details later.

• In the work of Chen and Gallego (2021), the
authors divide the space of contextual vectors into local
hypercubes (i.e., each arriving customer belongs to a cer-
tain hypercube depending on his or her data xt), and a
pricing algorithm is proposed that runs some multi-
armed bandit algorithm for each hypercube. However,
the dynamic pricing method is different: in the work of
Chen and Gallego (2021), each hyper-cube is discre-
tized into �lnT� price candidates in parallel, and a suc-
cessive elimination type algorithm is used. In contrast,

Figure 1. (Color online) Illustration of CDP and LDP

Note. CDP (left) and LDP (right) in a general setting.
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our paper uses a local quadrisection search method
with a fixed update schedule within each context hyper-
cube. The motivation for this approach is to minimize
the number of statistics maintained by the algorithm at
any time (four instead of �lnT�), so that statistically effi-
cient de-anonymization could be effectively carried out.

• Many existing works on pricing with nonparamet-
ric demands (either contextual or not) use the trisection
search approach to search for the revenue-optimal pri-
ces by exploiting the concavity structures of the reve-
nue function (with respect to price) without other prior
knowledge (Lei et al. 2014, Wang et al. 2014). Although
the trisection search approach has the advantage of
maintaining a constant number of cumulative revenue
statistics (in contrast to the previously mentioned
multiarmed bandit approach), there is another subtle
technical difficulty of directly applying it in the privacy
preserving setting: when working with trisection
search, we need a preallocated sample budget for each
iteration to decide when to stop comparing the two
midpoints. With data privacy (especially local privacy)
constraints, it is difficult for the algorithm to maintain
the number of samples or customers already arrived
who belong to a certain hypercube. Therefore, the algo-
rithm has difficulty knowing when to stop comparing
midpoints in a trisection search procedure.

To address the previously mentioned technical chal-
lenges, in this paper, we use the idea of quadrisection
search within each hypercube of customers’ contextual
vectors. In quadrisection search, the price interval is
divided equally into four pieces with three midpoints.
This gives the algorithm more information to decide
the direction of price interval shrinkage, without the
need to maintain an accurate counting of customers
arriving in each hypercube during a certain time range.
It also avoids the regret inflation problem from multi-
armed bandit approaches because at each time the
quadrisection search method maintains only 5 (or 10)
anonymized statistics for each hypercube, which will
not add unreasonable cost due to privacy preservation.

Near-optimal pricing algorithms preserving data
privacy. We present two algorithms named CPPQ
and LPPQ for nonparametric personalized pricing
with privacy guarantees. Both algorithms satisfy
ε-CDP (for CPPQ) or ε-LDP (for LPPQ) constraints
regardless of choices of algorithm input parameters
(except ε); thus, in practice, we can tune the input
parameters for better performance without worrying
about privacy preservation. In addition to the local
quadrisection search method mentioned in the pre-
vious paragraph, the proposed privacy-preserving
algorithms also use several advanced techniques such
as tree-based aggregation and noisy statistical counts
to ensure customers’ data privacy, which we discuss
and explain in more details later in the paper when
we describe the proposed algorithms.

In addition to rigorous privacy guarantees, we also
demonstrate that when certain algorithm parameters
are carefully chosen, the proposed algorithms have near-
optimal regrets (up to logarithmic factors in T). More
specifically, for the CDP setting, the proposed algori-
thm enjoys a regret upper bound of Õ(T(d+2)=(d+4)
+ε−1Td=(d+4)), which is optimal when ε is not too small
because Ω(T(d+2)=(d+4)) is a known lower bound for per-
sonalized pricing with nonparametric demands even
when data privacy is not of concern (Chen and Gallego
2021). The notation Õ(·) hides some logarithmic factors
in T (see Theorem 1 for more details). For the more chal-
lenging LDP setting,2 our proposed LPPQ algorithm
achieves a regret upper bound of Õ(ε−2=(d+2)T(d+1)=(d+2))
(see Theorem 2). Although this regret upper bound is
considerably worse than the Õ(T(d+2)=(d+4)) scaling even
if ε �Ω(1), we show that it is indeed rate-optimal, as
explained in the next paragraph.

Minimax lower bound for locally private person-
alized pricing. In this paper, we prove a minimax
lower bound of Ω(ε−2=(d+2)T(d+1)=(d+2)=d7=3) on the re-
gret of any possible personalized pricing policy for T
sequentially arriving customers subject to the ε-LDP
constraint (see Theorem 3). Although minimax lower
bounds of locally private estimators have been previ-
ously studied (Duchi et al. 2018), the lower bound in
our problem setting is more complicated because the
prices offered to sequentially arriving customers are
adaptive and not independently distributed with
respect to any underlying distribution, which is the
case in the work of Duchi et al. (2018). To establish a
lower bound for any adaptive personalized pricing
strategy subject to local privacy constraints, we care-
fully generalize the information theoretical arguments
in Duchi et al. (2018) to adaptively collected data and
obtain a tight minimax lower bound. More details and
discussion is presented in Section 6.

1.1. Related Literature
This section reviews some related literature from two
streams: the theory and application of data privacy,
and the related paper in personalized pricing with
demand learning.

Literature in Data Privacy. The concept of data privacy
was first rigorously quantified by an important frame-
work called differential privacy (DP), which was first
introduced in Dwork et al. (2006a, b). The definition of
DP has become a de facto standard for data privacy in
both academic and industrial practice. We refer the
interested readers to Dwork and Roth (2014) and
Acquisti et al. (2016) for comprehensive reviews.
Based on this concept, different theories and techni-
ques have been developed, such as the technique of
tree-based aggregation (Chan et al. 2011), which is
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used in the design of our algorithm CPPQ, and the
mechanism of random perturbation (Dwork and Roth
2014), which is an important component in the design
of both CPPQ and LPPQ. For LDP, as discussed ear-
lier this notion is mentioned in Duchi et al. (2018).
Besides the difference of the problem and model (as
ours is a pricing problem which has specific struc-
tures), our paper considers an online decision-making
problem instead of a static statistical problem where
the data are collected passively as in Duchi et al.
(2018). As a result, both the notion of DP (CDP and
LDP) and the techniques used in our paper are signi-
ficantly different, which will be elaborated in our
main context.

A more related stream of literature to ours is the
so-called online learning with differential privacy.
That is, the decision maker has to learn the environ-
ment and make decisions on the fly while preserving
the data privacy. For example, Mishra and Thakurta
(2015) proposed (central) differentially private upper-
confidence bound (UCB) and Thompson sampling
algorithms for multiarmed bandit (MAB) problems.
Shariff and Sheffet (2018) studied linear contextual
bandit under the CDP constraint, and Ren et al. (2020)
and Zheng et al. (2020) studied the (contextual) bandit
problem with ε-LDP guarantee. Later, Han et al.
(2021) extended the results to generalized linear ban-
dits with stochastic contexts. In particular, the authors
leveraged the idea of stochastic gradient descent and
proposed a novel LDP strategy so that their algo-
rithms are proved to have regret O((ln (T)=ε)2) or
Õ(T(1−β)=2=ε1+β), depending on whether some
“optimality margin” parameter β � 1 or β ∈ (0, 1). Our
work differ from the private MAB literature in that
our model is nonparametric as opposed to the (gener-
alized) linear model in MAB literature. Therefore, we
cannot preserve the privacy (either centrally or locally)
through protecting the demand parameters as in para-
metric models. Besides MAB problems, there are some
other differentially private online learning problems
such as private sequential learning (Xu 2018, Tsitsiklis
et al. 2021, Xu et al. 2021), and dynamic pricing (Chen
et al. 2022), which will be discussed later in literature
review in personalized pricing.

We also note that there is a growing body of litera-
ture on data privacy in service systems. For instance,
Hu et al. (2022) studied customer-centric privacy man-
agement under queueing models, where customers
are strategic in deciding whether to disclose private
personal information to the service provider.

Literature in Personalized Pricing with Demand Learn-
ing. As we discussed in the Introduction, algorithmic
dynamic pricing with demand learning has been
increasingly popular especially in recent years (for an
incomplete list of literature, see Araman and Caldentey

2009, Besbes and Zeevi 2009, Farias and Van Roy 2010,
Harrison et al. 2012, Broder and Rusmevichientong
2012, den Boer and Zwart 2013, Wang et al. 2014, Besbes
and Zeevi 2015, Chen et al. 2015, Cheung et al. 2017,
Ferreira et al. 2018, Chen and Gallego 2021, Miao et al.
2021, Wang et al. 2021). With the abundance of custom-
er’s personal data, there is also a growing trend of
implementing personalized prices based on customers’
contextual information. For instance, Qiang and Bayati
(2016) applied a greedy iterated least squares method
on linear demand function. Ban and Keskin (2021) and
Javanmard and Nazerzadeh (2019) studied the high-
dimensional personalized pricing with parametric
demand model and sparse parameters. Keskin et al.
(2020) leveraged data clustering for customized electric-
ity pricing. The most related work to ours is Chen and
Gallego (2021), who consider the same problem of non-
parametric personalized pricing but without privacy
guarantee. However, because of the privacy guarantee,
our paper has to use a different pricing technique that
is based on a “local quadrisection search” (to be speci-
fied later in the main context) instead of some succes-
sive elimination type of algorithm as in Chen and
Gallego (2021). Moreover, we further show that with
ε-LDP, the lower bound of the regret is significantly
different from the one in Chen and Gallego (2021),
showing that ensuring (local) privacy sets a fundamen-
tal limit on what we can achieve for any algorithm’s
performance.

With widespread public concern of personal data
security, several recent works in personalized pricing
start to take the data privacy into consideration (Lei
et al. 2020, Tang et al. 2020, Bimpikis et al. 2021, Chen
et al. 2022). Among this literature, the most related
work to this paper is Chen et al. (2022), which also
consider a dynamic personalized pricing problem
with differential privacy guarantee. Compared with
this paper, our work has the following differences.
First, Chen et al. (2022) studied a parametric demand
model, whereas this work considers a nonparametric
model, making the demand learning and privacy pro-
tection completely different. Second, the differential
privacy studied in Chen et al. (2022) is the ε-CDP,
whereas our paper not only proposes an algorithm for
ε-CDP but also develops an algorithm for ε-LDP—a
stronger notation of privacy than ε-CDP in many
cases. Because of these differences, especially for
ε-LDP, none of the techniques (e.g., UCB algorithm,
differentially private maximum likelihood estimation)
in Chen et al. (2022) can be applied to our problem.
Another related paper to ours is Lei et al. (2020), who
also studied pricing algorithms satisfying ε-CDP and
ε-LDP. The difference in their work is that their set-
ting is an offline pricing problem, whereas ours is
online dynamic pricing with demand learning, and
the demand model considered in Lei et al. (2020) is
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parametric (in contrast to the nonparametric model in
this paper). To the best of our knowledge, this paper
is the first to consider a dynamic personalized pricing
problem with nonparametric demand under both
CDP and LDP guarantees.

Other Related Literature on Dynamic Pricing with
Demand Learning. The work of den Boer and Keskin
(2020) studied the revenue management and pricing
question when the underlying demand/revenue
curve could have multiple discontinuity points.
Smoothness (twice continuous differentiability with
bounded derivatives) of the demand function is essen-
tial to the algorithm and analysis in this paper because
of the hyper-cube discretization technique adopted.
The works of Birge et al. (2021a, b) studied the dy-
namic pricing with demand learning question when
incoming customers exhibit certain strategic purchase
behaviors, such as evaluating price offerings over an
extended “patience” window (Birge et al. 2021a) or
being involved in strategic betting behaviors (“bluff-
ing”) to influence sellers’ revenue decisions (Birge
et al. 2021b). It is an interesting question to extend pri-
vacy considerations to pricing problems with strategic
customers. The work of Keskin and Zeevi (2018) stud-
ies the “myopic” policy (also known as greedy or fol-
low-the-leader policy) under stationary or changing
environments. It is shown that for many parametric
models, the myopic policy diverges and is suboptimal
with positive probability. It is an interesting research
question to study, at least under a parametric model,
whether artificial noise calibrated because of privacy
constraints could lead to “inherent exploration” on
top of a myopic policy, eventually leading to optimal
asymptotic regret (Keskin and Zeevi 2014).

1.2. Paper Organization
The rest of this paper is organized as follows. In Sec-
tion 2, the model and some technical assumptions are
introduced. Section 3 introduces the important defini-
tions of ε-CDP and ε-LDP in our problem setting, and
their relationship. After that, the algorithms satisfying
ε-CDP and ε-LDP are introduced in Section 4 and Sec-
tion 5, respectively. Furthermore, we develop a lower
bound for any algorithm with ε-LDP in Section 6. In
Section 7, some numerical experiments are used to
illustrate the performance of the proposed algorithms.
In the end, the paper is concluded in Section 8. Some
technical proofs can be found in the online appendix.

2. Model and Assumptions
We study a stylized dynamic personalized pricing
problem of a single type of product for T consecutive
selling periods. At the beginning of selling period t,
the pricing platform observes a contextual vector

xt ∈ X ⊆ R
d of the incoming customer. The platform

then offers a price pt ∈ [p,p], and the stochastically
realized demand yt ∈ Y ⊆ R

+ is being modeled by an
unknown nonparametric model λ : [p,p] × X → R

+ as

E[yt|xt,pt] � λ(pt,x), yt ∈ Y: (1)

Throughout the paper, we also define f (p,x) :� pλ(p,x)
as the function that gives the expected revenue of
price p conditioned on customer context x.

Clearly, when λ (and subsequently f ) is known a
priori to the platform, the optimal pricing strategy
(without considerations of privacy concerns) would
be to simply set pt � p∗(xt) � argmaxp∈[p,p] f (p,xt). With-
out knowing λ or f, on the other hand, requires the
platform to learn the unknown demand model and
offer near-optimal personalized prices simultaneously,
commonly known in the literature as the exploration-
exploitation tradeoff. We adopt the classical measure of
cumulative regret (we also call it regret for brevity) to
measure the performance of a pricing policy π over T
time periods. (See the next section for a rigorous defi-
nition of an admissible pricing policy and when it sat-
isfies privacy guarantees.) More specifically, the regret
of a policy π under model f is defined as

	T( f ,π) :� E

∑T
t�1

( f (p∗(xt),xt) − f (pt,xt))
[ ]

,

where p∗(xt) � arg max
p∈[p,p]

f (p,xt): (2)

We make the following assumptions throughout this
paper:

Assumption 1. The domains of (xt,yt,pt) satisfy X ⊆
[0, 1]d, Y ⊆ [0, 1] and [p,p] ⊂ [0, 1]. Furthermore, xt are
independent and identically distributed (i.i.d.) over t ∈ [T]
thatwhich follows an unknown underlying distribution PX

supported on X with probability density function χ : X →
R

+ that satisfies supx∈Xχ(x) ≤ CX almost surely.

Assumption 2. There exists a finite constant CL <∞ such
that | f (p,x) − f (p′,x′)| ≤ CL(|p− p′| + ||x− x′||2) for all
p,p′ ∈ [p,p] and x,x′ ∈ X .

Assumption 3. For any hypercube B ⊆ X and p ∈ [p,p],
define the expected revenue and the optimal price on the
hypercube B,

fB(p) :� EPX[ f (p,x)|x ∈ B], p∗(B) � arg max
p∈[p,p]

fB(p):

(3)

Then there exist uniform constants 0 < σH ≤ CH <∞ and
Cp <∞ such that

(a) p∗(B) ∈ (p,p); furthermore, fB(·) is twice continuously
differentiable in p and satisfies σ2H ≤ −f ′′B (p) ≤ C2

H for all
p ∈ (p,p);

(b) infx∈B p∗(x) ≤ p∗(B) ≤ supx∈B p
∗(x);
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(c) supx∈B p
∗(x) − infx∈B p∗(x) ≤ Cpsupx,x′∈B||x− x′||2.

Assumptions 1 and 2 are standard regularity as-
sumptions in the literature (Qiang and Bayati 2016,
Javanmard and Nazerzadeh 2019, Ban and Keskin
2021 for parametric demand models satisfying these
two assumptions). Assumption 3 follows the model
setup in the work of Chen and Gallego (2021). First,
the intuition of fB(p) is the average revenue of price p
when the context x is in the hypercube B. One can
think of a case where the retailer can only observe
1{x ∈ B} instead of the value of x, so that the best pric-
ing strategy is obviously to charge p∗(B). For the three
technical conditions of Assumption 3, (b) and (c) are
exactly the same as in Chen and Gallego (2021) (in
particular, parts 2 and 3 of assumption 3). The only
slightly different assumption compared with (part 1
of) assumption 3 in Chen and Gallego (2021) (which
basically assumes that |fB(p∗(B)) − fB(p)| �Ω((p∗(B)
−p)2)) is our (a). On one hand, as shown in proposi-
tion 1 of Chen and Gallego (2021), our Assumption
3(a) implies its counterpart in the first part of assump-
tion 3 in Chen and Gallego (2021). On the other hand,
for all the motivating examples studied in remark 1 in
Chen and Gallego (2021) (e.g., the linear covariate
case, separable demand functions, and localized func-
tions), our Assumption 3(a) is satisfied as well.

3. Central and Local Differential Privacy
This section introduces two important concepts of dif-
ferential privacy: the CDP and LDP. In the following
two sections, we will discuss each of these two con-
cepts adapted to our problem setting and illustrate
their relationship, especially their differences.

3.1. Central Differential Privacy
We first introduce the standard definition of (central)
differential privacy (Dwork et al. 2006a, b; Dwork and
Roth 2014) for offline problems.

Definition 1 (Differential Privacy). Let st :� (xt,yt,pt) ∈
S :� X × Y × [p,p]. Let π : (s1, ⋯ , sT) �→ o be an offline
randomized algorithm that takes customers’ sensitive
information as input and outputs statistics or decision
o ∈O. For any ε > 0, π satisfies ε-differential privacy if
for all s1, ⋯ , st, ⋯ , sT and s′t ≠ st, and any measurable
O ⊆O, it holds that

Pr[π(s1,⋯ ,st,⋯ ,sT) ∈O]≤ eε ·Pr[π(s1,⋯ ,s′t,⋯ ,sT)∈O]:

In Definition 1, the output domain O captures all
information released by the randomized algorithm π
to the general public, which would be the offered pri-
ces {pt}Tt�1 in our setting. Such a definition, however,
poses technical challenges in the context of dynamic
personalized pricing as the price pt for customer arriv-
ing at time t is highly indicative of the customer’s

personal information (section 4.2 in Chen et al. 2022).
More specifically, proposition 1 in Chen et al. (2022)
proves that any pricing policy satisfying Definition 1
will have worst-case regret at least Ω(T), suggesting
that this definition is too strong for our setting. As a
result, in the works of Shariff and Sheffet (2018) and
Chen et al. (2022), the notion of anticipating differential
privacy (for brevity of notation, we just call it central
differential privacy, or CDP) is introduced to focus on
the impact of sensitive customers’ information on
future prices as formalized here.3

Definition 2 (Central Differential Privacy for Persona-
lized Pricing). Let data of customer t be st :� (xt,
yt,pt) ∈ S :� X × Y × [p,p]. Let π � (A1,A2, ⋯ ,AT) be
an admissible personalized pricing policy, where
At(·|s1, ⋯ , st) is a distribution of pt ∈ [p,p] measurable
conditioned on {s1, ⋯ , st}. We say π satisfies ε-central
differential privacy (ε-CDP) if for all j < t, s1, ⋯
, sj, ⋯ , st−1 and s′j ≠ sj with yt,y′t ∈ Y, and measurable
U ⊆ [p,p], it holds that
At(U|xt,s1, ⋯ ,sj, ⋯ ,st−1) ≤ eεAt(U|xt,s1, ⋯ ,s′j , ⋯ ,st−1):

Intuitively, Definition 2 requires the pricing policy π
to be stable with respect to the sensitive information
of a customer prior to the current time period, so that a
malicious third party arriving at time t cannot reliably
infer protected information of previously arrived cus-
tomers. One key difference between Definitions 2 and 1
is the notable exclusion of st from the conditional set
(i.e., we do not require the pricing policy to be stable
with respect to xt), meaning that we assume the cus-
tomer arriving at time t is either (1) a malicious third
party who is therefore not interested in its own pro-
tected information or (2) a customer trusting that her
sensitive information will not be released to later cus-
tomers directly or indirectly through prices. We refer to
Figure 2 as a graphic illustration of ε-CDP.

3.2. Local Differential Privacy
One fundamental assumption being made in the
central differential privacy notions (including both
Definitions 1 and 2) is that the customers trust the plat-
form to protect their sensitive information and are
only worried about malicious third parties pretending
to be customers illegally extracting data indirectly
through offered prices. This is clear from the fact that
the pricing policy At is conditioned on the true data
{sj � (xj,yj,pj) : j < t} for all customers arriving before
t. That is, the platform can use the actual data of its
customers to make pricing decision in each time
period. On the other hand, in local differential privacy
formulations, it is essential to constrain the platform
(i.e., its pricing algorithm/policy) so that the platform
never stores the actual sensitive data of customers and
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instead make pricing decisions based on anonymized
information. More specifically, let zt ∈ Z be the priva-
tized/anonymized statistics the platform records at
time t and abbreviate z<t � (z1, ⋯ ,zt−1) as the anony-
mized statistics of all customers arriving prior to time
t. The firm’s (locally private) dynamic personalized
pricing strategy can be parameterized by two (sequen-
ces of) conditional distributions: the statistics recorder
Qt, and the pricing strategy At, as follows:

zt ~Qt(·|st,z<t); (4)
pt ~ At(·|xt,z<t): (5)

For notational convenience, in the rest of the paper we
write zt �Qt(st,z<t) and pt � At(xt,z<t) with the under-
standing that both Qt and At are randomized func-
tions/procedures. In nonprivate settings, one can
simply let zt� st and then pt � At(xt, s1, ⋯ , st−1)
reduces to the standard personalized pricing policy.
With (local) privacy constraints, however, the statis-
tics {zt} being recorded are constrained to be priva-
tized statistics (i.e., do not leak too much protected
information {st}) and the pricing decisions pt are
forced to be made on the anonymized statistics {zt}
instead of the sensitive data {st}. It is also clear from
Equation (4) that zt and sj are independent conditioned
on st,z<t, for all j < t. We refer to Figures 3 and 4 for
graphic representations ofQt and At, respectively.

The formal definition of local differential privacy, fol-
lowing the seminal works of Evfimievski et al. (2003)
and Duchi et al. (2018) in the literature, is given here.

Definition 3 (Local Differential Privacy for Personalized
Pricing). For any ε > 0, a personalized pricing policy
π � {Qt,At}Tt�1 satisfies ε-local differential privacy (ε-LDP)
if for every t, z<t and st ≠ s′t, it holds for every measur-
able Zt ⊆ Z that

Qt(Zt|st,z<t) ≤ eε ·Qt(Zt|s′t,z<t):

We provide some additional notes for the definition of
LDP. First, LDP guarantees the privacy of customer’s
data by the statistics recorder Qt instead of directly by
At as in CDP. More specifically, by privatizing st
through Qt, the pricing policy At can only use priva-
tized data for decision making. As a result, even if the
adversary in time t is able to infer any zj where j < t or
hack the whole data set of the platform, the jth cus-
tomer’s personal data are still protected as none of the
true data sj are stored in the system. Second, in LDP the
platform also makes pricing decision At conditioned on
customer’s raw data xt as in CDP. Again, this can hap-
pen when customer in t is the adversary, who will not
hack his/her own data. In the case of a normal cus-
tomer, statistics recorder Qt guarantees that xt is
unlikely to be leaked to others; thus, customer t can still
trust the platform to use his/her personal data.

Although local and central differential privacy are
not necessarily comparable, in the special case of the
“noninteractive regime” where {Qt} are independent
distributions, the following proposition shows that
local differential privacy is stronger than its central-
ized counterpart.

Proposition 1. Let π � {Qt,At}Tt�1 be a personalized pric-
ing policy satisfying ε-LDP. Suppose also that Qt(·) is
independent of z<t for all t. Then π satisfies ε-CDP.

Proof of Proposition 1. This is true because

At(U | xt, s1, : : : , sj, : : : , st−1)
� At(U | xt, z1, : : : , zj, : : : , zt−1)P(z1, : : : , zj, : : : , zt−1|s1, : : : ,

sj, : : : , st−1)
� At(U | xt, z1, : : : , zj, : : : , zt−1)

∏
s∈[t]\{j}

Qs(zs|ss)Qj(zj|sj)

≤ eεAt(U | xt, z1, : : : , zj, : : : , zt−1)
∏

s∈[t]\{j}
Qs(zs|ss)Qj(zj|s′j )

� eεAt(U | xt, s1, : : : , s′j , : : : , st−1),

Figure 2. (Color online) ε-CDP

Note. The arrows above and belowmean that two neighboring sequences of data (with the only difference in sj and s′j ) are not likely to be distin-
guished after privatization.
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where the second equality is because Qt(·) is inde-
pendent of z<t for all t, and the inequality is from the
definition of LDP, which states that Qj(zj|sj) ≤
eεQj(zj|s′j ) for any j < t and sj, s′j ∈ S. w

4. Centralized-Private-Parallel-
Quadrisection (CPPQ) Algorithm

In this section, we describe a personalized pricing algo-
rithm that satisfies the ε-CDP as defined in Definition 2.
The proposed algorithm is named CENTRALIZED-PRIVATE-
PARALLEL-QUADRISECTION (CPPQ) and its pseudocode
description is given in Algorithm 1. There are several
important techniques in CPPQ that will be used as build-
ing blocks for algorithms with ε-LDP (see Section 5).

Algorithm 1 (The CPPQ Algorithm)
1: Input: time horizon T, privacy parameter ε, algo-

rithm parameters J, c1, c′1, c2.
2: Initialize: partition [0, 1]d into J equally-sized hy-

percubes (each side’s length being h � J−1=d); for
each hypercube Bj, j ∈ [ J], let rj � (p, 14p+ 3

4p,
1
2p+ 1

2p,
3
4p+ 1

4p,p)∈ [p,p]5; rj,k(0) � μj,k(0) � 0 for
k ∈ {1, 2, 3, 4, 5}; ςj ← 0;

3: for t � 1, 2, ⋯ ,T do
4: Receive xt ∈ [0, 1]d and let jt ∈ [ J] be the index

such that xt ∈ Bjt ;
5: Offer price pt � ρjt,kt where kt ≡ t mod 5, and

receive yt ∈ [0, 1];
6: for j � 1, 2, ⋯ , J do
7: Let ut,j,k � 1{ jt � j� kt � k}ytpt and vt,j,k � 1{jt �

j� kt � k} for j ∈ [ J] and k ∈ [5];
8: Update rj,kt(t) ← TREEBASEDAGGREGATION

({uτ,j,kt}τ<t, t,ut,j,kt ,ε=2,T);

9: Update μj,kt(t) ← TREEBASEDAGGREGATION

({vτ,j,kt}τ<t, t,vt,j,kt ,ε=2,T);
10: Let rj,k(t) ← rj,k(t− 1) and μj,k(t) ← μj,k(t− 1)

for k≠ kt;
11: For k ∈ [5] compute r̂jk � rj,k(t) − rj,k(ςj) and

μ̂jk � μj,k(t) −μj,k(ςj);
12: Let μ1→3 �min{μ̂j1, μ̂j2, μ̂j3} and μ3→5 �

min{μ̂j3, μ̂j4, μ̂j5};
13: if μ1→3 ≥ c2 and min r̂ j3

μ̂ j3

− r̂ j2
μ̂ j2

, r̂ j2
μ̂ j2

− r̂ j1
μ̂ j1

{ }
>

3c1





μ1→3

√ + 3c′1
μ1→3

then

14: rj ← (ρj2,
1
4ρj2 + 3

4ρj5,
1
2ρj2 + 1

2ρj5,
3
4ρj2 + 1

4
ρj5,ρj5), ςj ← t;

15: else if μ3→5 ≥ c2 and min r̂ j3
μ̂ j3

− r̂ j4
μ̂ j4

, r̂ j4
μ̂ j4

− r̂ j5
μ̂ j5

{ }
>

3c1





μ3→5

√ + 3c′1
μ3→5

then

16: rj ← (ρj1,
1
4ρj1 + 3

4ρj4,
1
2ρj1 + 1

2ρj4,
3
4ρj1 + 1

4
ρj4,ρj4), ςj ← t;

17: end if
18: end for
19: end for

We first explain the intuitions and design principles
behind Algorithm 1 without data privacy considera-
tions. Algorithm 1 uses two main ideas to carry out
nonparametric personalized pricing with demand
learning. The first idea is to partition the space of con-
textual vectors {xt}Tt�1 ⊆ X � [0, 1]d into J small hyper-
cubes (denoted by Bj for j ∈ [ J]) with equal volume.
The algorithm then treats customers whose context
vectors belonging to the same hypercube Bj the same.
The effectiveness of this “localized” strategy is justi-
fied by the Lipschitz continuity of the expected reward
function f (Assumption 2) and similar conditions in

Figure 3. (Color online) Statistics RecorderQt of ε-LDP

Note. The arrows above and below mean that privatizing different st and s′t with the sequence of historical privatized data are not likely to be
distinguished.
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Assumption 3, implying that customers with similar
context vectors have similar demand. Clearly, with
more hypercubes (i.e., larger J) we are able to approxi-
mate customers’ demands more accurately as hyper-
cubes become smaller. On the other hand, we would
suffer from the insufficiency of sample size for each
hypercube as we are learning the localized demands
of more hypercubes. An appropriate selection of the
number of hypercubes (J) is vital for the good perform-
ance of the CPPQ policy, which we give more details
in Theorem 1, where J is set to be �Td=(d+4)�.

The second idea in Algorithm 1 is to use quadrisection
search to find the optimal price p∗(Bj) for all customers
belonging to the same hypercube Bj. The quadrisection
search procedure is justified by Assumption 3(a), which
asserts that the expected reward of all customers belong-
ing to hypercube Bj is strongly concavewith respect to the
offered price p. Although similar bisection or trisection
methods have been adopted in the dynamic pricing liter-
ature for concave objectives (Lei et al. 2014, Wang et al.
2014), the previous work does not require dividing price
intervals into four equally sized pieces. The reason
we need to use a quadrisection search approach is
because of the following: when dividing the price inter-
val into three equally sized pieces, the (noisy) compari-
son of objective values between the two midpoints in
this trisection search approach may be nonconclusive
(Figure 5). Under normal circumstances, the price inter-
val could still be updated and shrunk in case of noncon-
clusive comparison once a preallocated sample budget is
consumed. However, when the pricing platform is sub-
ject to privacy constraints (especially the local privacy
constraints), it is difficult for the algorithm to maintain
accurate sample counts for each hypercube. On the other
hand, by increasing the number of midpoints to explore,
we can ensure that at least one sets of conditions in lines
13 and 15 of Algorithm 1 are automatically satisfied
when a hypercube receives enough samples.

In the left panel of Figure 6, without noise, if we
have fj(ρj1) ≤ fj(ρj2) ≤ fj(ρj3), this must imply that p∗(Bj)
≥ ρj2 by concavity of fj(·) (i.e., Assumption 3(a)). There-
fore, by shrinking the price range from [ρj1,ρj5] to
[ρj2,ρj5], we still have p∗(Bj) contained in the new price
range. Similarly, the right panel of Figure 6 shows the
case that fj(ρj5) ≤ fj(ρj4) ≤ fj(ρj3) implies p∗(Bj) ≤ ρj4;
thus, we can shrink [ρj1,ρj5] to [ρj1,ρj4] without losing
p∗(Bj). When there is noise (from both demand realiza-
tion and privacy), we still have the same conclusion
(with high probability) given the data samples of all
prices are large enough.

In the work of Chen and Gallego (2021), an alternative
multiarmed bandit formulation based on successive
elimination strategies was adopted, which is asymp-
totically optimal under nonprivate settings. Because the

Figure 4. (Color online) Pricing StrategyAt of ε-LDP

Note. This graph shows that the platform only uses the privatized historical data (instead of the real historical data) for pricing.

Figure 5. (Color online) Trisection Search

Note. In this case, we observe similar revenue of two midpoints;
hence, it is difficult to decide whether it is better to shrink from left or
right.
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number of arms in the multiarmed bandit formulation
scales with logT, privatizing all arms will lead to consid-
erably larger noise variation and subsequently higher
regret.

It is worth explaining in more details of the con-
struction of the rj,k(t) and μj,k(t) values in Algorithm 1
and how they can be used to guide the parallel quadri-
section updates of rj in different hypercubes Bj. To
gain more intuitions, imagine for now that Algorithm
1 is no longer subject to any privacy constraints. In this
ideal scenario, we have ε→∞ and as a result rj,k(t) �∑

τ≤tuτ,j,k and μj,k(t) �
∑

τ≤tvτ,j,kt . Hence, rj,k(t) corre-
sponds to the cumulative reward received for custom-
ers in hypercube Bj to whom price ρjk is offered, and
μj,k(t) is the total number of customers in hypercube Bj

to whom price ρjk is offered. Because rj � (ρjk)rk�1 is
constantly updated in Algorithm 1, the ςj serves as a
“pointer” for hypercube Bj, meaning that the time peri-
ods after ςj correspond to rewards and customer counts
for the current version of the rj parameter. With r̂jk �
rjk(t) − rjk(ςj) and μ̂jk � μjk(t) −μjk(ςj), the ratio r̂jk=μ̂jk
would then approximate fBj(ρjk) by the law of large
numbers.

Finally, we explain how Algorithm 1 protects cus-
tomers’ data privacy in a centralized manner. The
main idea is to calibrate artificial Laplace noise into
the cumulative reward rj,k(t) and customer counts
μj,k(t), so that the price and realized demand of a sin-
gle customer will not affect much of the final reward/
customer counts. It is worth noting that the hypercube
index jt also reveals sensitive information of xt. To pre-
vent an adversary from identifying the hypercube jt
that xt belongs to, we need to calibrate artificial noise
into all hypercubes j � 1, : : : , J at each time period t,
regardless of whether xt belongs to a particular hy-
percube or not. In addition, to alleviate composition
of central differential privacy, our proposed CPPQ

algorithm uses a tree-based aggregation framework
(Chan et al. 2011, Dwork et al. 2014). For completeness
purposes, we provide the pseudo-code description of
this aggregation framework in Algorithm 2. The main
objective of this procedure is to release sequential pri-
vate data with provable central privacy guarantees.
More specifically, the rj,kt(t) statistics constructed in
Algorithm 2 is a (centralized) privatized version of the
cumulative statistic

∑
τ≤tuτ,j,kt , and similarly μj,kt(t) is a

privatized version of the cumulative statistic
∑

τ≤tvτ,j,kt .
We refer the readers to the works of Chan et al. (2011)
and Dwork et al. (2014), as well as the recent work of
Chen et al. (2022), for details and motivations of this
procedure and its analysis. Because of the space limit,
in this paper, we only give some high-level idea of this
tree-based method for illustration.

Let us consider how we can privatize the sequence
of the (true) customer counts {μj,k(t) :�

∑t
s�1vs,j,k : t ∈[T]}with j, k fixed as an illustrative example. A general

idea is based on the so-called partial sums (p-sums). In
particular, define a generic p-sum as μj,k([t1, t2]) :�∑t2

s�t1+1vs,j,k; then each μj,k(t) essentially can be decom-
posed into multiple p-sums, depending on how we
define each of them. The way we privatize all μj,k(t) is
simply to add a Laplace noise wt ~ Lap(O(1)=ε) to
each p-sum. Based on this concept, there are two sim-
ple (yet ineffective) methods. The first method is to
release each privatized μj,k(t) by a single t-sum
μj,k([0, t]) +wt (i.e., directly adding a noise to itself).
Unfortunately, this method leads to O(Tε)-CDP
because, for instance, a flip of the value v1,j,k will affect
all t-sums μj,k[0, t] with t � 1, : : : ,T. On the other hand,
the second method represents the privatized μj,k(t) by a
summation of t 1-sums as

∑t
s�1(μj,k([s− 1, s]) +ws). Al-

though it guarantees ε-CDP, this method accumulates
too much noise from all ws, which is roughly O( 

t√ =ε).

Figure 6. (Color online) Quadrisection Search

Note. The left/right panel satisfies condition in line 13/line 15 of Algorithm 1.
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As a result, we need to find a method which is in
between these two extreme cases, and this can be
achieved by the tree-based aggregation. More specifi-
cally, tree-based aggregation represents each privatized
μj,k(t) by O(log 2 t) number of p-sums. To do that, we
represent t by its binary expression as t �∑�log 2T�

ℓ�0
bℓ(t)2ℓ with bℓ(t) ∈ {0, 1}. For instance, when t � 10, its
binary form is 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20. Then the pri-
vatized μj,k(10) is equal to (μj,k([0, 23]) +w1) + (μj,k([23,
23 + 21]) +w2). By this tree-based aggregation method,
we achieve O(logTε)-CDP and the cumulative error is
at most O((logT)1:5=ε). Because the factor on both pri-
vacy and error is only logarithmic in T, we are able to
achieve the optimal rate by adjusting ε accordingly.

Algorithm 2 (Tree-Based Aggregation Procedure; Chan
et al. 2011, Dwork et al. 2014)

1: function TREEBASEDAGGREGATION({uτ}τ<t, t, st, ε, T)
2: (Initialization: αℓ � α̂ℓ � 0 for ℓ � 0, 1, ⋯ , �log2T�

when initialized;)
3: Let {αℓ , α̂ℓ}Lℓ�0 be associated with {uτ}τ<t, where

L � �log2 T� and ε′ � ε=(L+ 1);
4: Let t �∑L

ℓ�0bℓ(t)2ℓ with bℓ(t) ∈ {0, 1} be the
binary expression of t;

5: ℓmin(t) :�min{ℓ : bℓ(t) � 1};
6: Update αℓmin(t) ←

∑
ℓ<ℓmin(t)αℓ + ut and αℓ � α̂ℓ �

0 for all ℓ < ℓmin(t);
7: Calibrate noise α̂ℓmin(t) ← α̂ℓmin(t) +wt, where

wt ~ Lap(2=ε′);
8: return Û(t) �∑L

ℓ�0bℓ(t)α̂ℓ(t);
9: end function

Our next theorem proves that the proposed CPPQ
policy satisfies ε-CDP and establishes an upper bound
on the regret incurred by the algorithm.

Theorem 1. The CPPQ policy described in Algorithm 1
satisfies ε-CDP as defined in Definition 2. Further-
more, if Algorithm 1 is executed with J � �Td=(d+4)�, c1 �










ln (2T3)√

, c′1 � 4c2 and c2 � 76ε−1ln 2(2T3), then the
regret of Algorithm 1 can be upper bounded by

E

∑T
t�1

f (p∗(xt),xt) − f (pt,xt)
[ ]

≤ C1 × T(d+2)=(d+4)

+C
′
1 × ε−1Td=(d+4) +O(1),

where C1,C
′
1 are constants satisfying C1 ≤ const: × C2

H
(σ−4H +CH






CX

√ )ln 2(2C2
HT

3) +C2
HC

2
pd=2 and C

′
1 ≤ const: ×

C2
Hσ

−2
H ln 3(2C2

HT
3), where const: are numerical constants

that do not depend on any problem parameters.

Remark 1. The ε-CDP privacy guarantee of Algorithm 1
holds for any values of algorithm parameters J, c1, c′1, and
c2. This gives practitioners more flexibility in tuning
numerical constants in these algorithm parameters for
better empirical performances.

Remark 2. In this remark, we explain how to convert
the CPPQ policy in Algorithm 1 into an anytime pol-
icy (i.e., without prior knowledge of time horizon T)
with simple changes. Consider an infinite geometric
sequence {Tζ � 2ζ} with ζ � 1, 2, 3, ⋯ and run Algo-
rithm 1 repeatedly with T � Tζ, εζ � 6ε=(π2ζ2) and
other problem parameters (J, c1, c′1, c2) set accordingly
using Tζ and εζ. This revised any-time policy satisfies
ε-CDP with ε �∑∞

ζ�1εζ �
∑∞

ζ�16ε=(π2ζ2) ≤ ε because
of single composition of differentially private algo-
rithms. To upper bound the cumulative regret of such
an anytime algorithm, for a total of T time periods
elapsed and ζ0 � �log 2T� being the last “epoch,”
Theorem 1 implies that the total regret is upper
bounded by

∑ζ0
ζ�1 C1 × T(d+2)=(d+4)

ζ +C
′
1 × ε−1ζ Td=(d+4)

ζ +
O(1) ≤ C1 × T(d+2)=(d+4) log 2T+C

′
1 × 2ε−1Td=(d+4) log 2

2T
+O(log 2T).

Because the primary focus of the paper lies on the
more practical local privacy setting, we relegate the
proof of Theorem 1 to the online appendix. It is, how-
ever, interesting to discuss the regret upper bound
obtained in Theorem 1 and contrast it with existing
results of Chen and Gallego (2021) under nonprivacy
settings. The dominating term (as T→∞) in Theorem 1
is Õ(T(d+2)=(d+4)) with the coefficient C1 being independ-
ent from the privacy parameter ε. This term matches
the upper and lower bound in Chen and Gallego
(2021). The cost of performance arising from protecting
customers’ data privacy is reflected in the Õ(ε−1Td=(d+4))
term, with smaller ε corresponding to stronger privacy
guarantees and therefore larger regret. However, for
this term, the Td=(d+4) regret will be asymptotically
dominated by the T(d+2)=(d+4) regret in the other term,
showing that the impact of privacy constraints will
diminish as more customers and their data are available
to the platform. This is a unique feature of the central
privacy regime for which the platform has centralized
control over the release of sensitive information, which
is also observed in the work of Chen et al. (2022) for
parametric demand models (we will do a comparison
with their algorithm in numerical experiments in Sec-
tion 7). The situation will be completely different for
locally private settings, as we shall see in the next sec-
tion and Theorem 2.

5. Locally-Private-Parallel-Quadrisection
(LPPQ) Algorithm

In this section, we describe a personalized pricing algo-
rithm that satisfies ε-LDP. The proposed algorithm is
named LOCALLY-PRIVATE-PARALLEL-QUADRISECTION (LPPQ)
and its pseudocode description is given in Algorithm 3.

Algorithm 3 (The LPPQ Algorithm)
1: Input: time horizon T, privacy parameter ε, algo-

rithm parameters J,κ1,κ2.
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2: Initialize: partition [0, 1]d into J equally sized
hypercubes (each side’s length being h � J−1=d);
for each hypercube Bj, j ∈ [ J], let rj � (p, 14p+ 3

4

p, 12p + 1
2p,

3
4p+ 1

4p,p)∈ [p,p]5, rj(0) � (0, 0, 0, 0, 0),
ςj � 0;

3: for t � 1, 2, ⋯ ,T do
4: Receive xt ∈ [0, 1]d and let jt ∈ [ J] be an integer

such that xt ∈ Bjt ;
5: Offer price pt � ρjtkt where kt ≡ t mod 5, and

receive yt ∈ [0, 1];
6: for j � 1, 2, ⋯ , J do
7: rj,kt(t) ← rj,kt(t− 1) + 1{ j � jt}ptyt + wj,t, wj,t ~

i:i:d

Lap(2=ε);
8: rj,k(t) ← rj,k(t− 1) for k≠ kt;
9: For k ∈ [5] compute r̂jk � rj,k(t) − rj,k(ςj); let

nj ← t− ςj;
10: if nj ≥ κ2 and min{̂rj2 − r̂j1, r̂j3 − r̂j2}=(5hdnj) >

3κ1=(εhd 


nj√ ) then
11: rj ← (ρj2,

1
4ρj2 + 3

4ρj5,
1
2ρj2 + 1

2ρj5,
3
4ρj2 + 1

4
ρj5,ρj5), ςj ← t;

12: else if nj ≥ κ2 and min{̂rj3 − r̂j4, r̂j4 −
r̂j5}=(5hdnj) > 3κ1=(εhd 


nj√ ) then

13: rj ← (ρj1,
1
4ρj1 + 3

4ρj4,
1
2ρj1 + 1

2ρj4,
3
4ρj1 + 1

4
ρj4,ρj4), ςj ← t;

14: end if
15: end for
16: end for

The main ideas and principles of the LPPQ algo-
rithm are the same as the CPPQ algorithm presented
in the previous section: the algorithm first partitions
the contextual vector space X � [0, 1]d into J equally
sized small hypercubes4 and then uses quadrisection
search to localize the optimal price p∗(Bj) (see (3)) for
all customers whose contextual vectors belong to
hypercube Bj. The major difference between CPPQ
and LPPQ lies in how the privatized statistics r̂jk, μ̂jk
are constructed, as central and local privacy impose
different constraints on the platform’s side. Here we
explain the difference in details.

1. In the central privacy setting, the per-period in-
stantaneous statistics uj,t,k � 1{xt ∈ Bj � kt � k}ptyt and
vj,t,k � 1{xt ∈ Bj � kt � k} involving sensitive data are
in complete possession of the pricing platform. The
platform calibrates noise whenever it needs to release
statistics rj,k(t) or μj,k(t) for pricing or model update
purposes. In this way, the pricing platform has full
knowledge of each customer’s sensitive data, but third-
party malicious agents would not be able to recover
these sensitive data through interactions with the plat-
form. It can also be shown (see Lemma EC.2 in the
online appendix) that the magnitude of noise calibrated
into rj,k(t) and μj,k(t) is on the order ofO(ε−1ln 2T), a rel-
atively small level because the cumulative statistics
rj,k(t) and μj,k(t) could be as large as nj.

On the other hand, in the local privacy setting, the
per-period instantaneous statistics 1{xt ∈ Bj� kt � k}ptyt
is directly privatized by a Laplace noise and then com-
municated to the pricing platform. In this way, the plat-
form keeps no copy of any customer’s sensitive data,
and the system/protocol is therefore more secure
compared with CPPQ. The downside is that the noise
calibrated to the privatized statistics is on the order of
Õ(ε−1 


nj√ ) (see Lemma 1), significantly larger than O
(ε−1ln 2T) achievable for central privatizingmechanisms.

2. Because the calibrated noise magnitude is too
large in local privacy settings, it is no longer feasible
to keep track of the customer count statistics μ̂jk like
CPPQ does as the signals in the customer counts are
too weak. Instead, in the LPPQ algorithm, we directly
use nj � t− ςj (i.e., the total number of time periods
after the previous pointer ςj) to construct confidence
intervals. This difference is more explicit if one com-
pares the conditions of lines 13 and 15 in Algorithm 1
with those in Algorithm 3, as the confidence intervals
in the former conditions are constructed using priva-
tized customer counts μ̂jk, whereas the confidence
intervals in the conditions of lines 10 and 12 in Algo-
rithm 3 are built directly using the total time period
counts nj.

As local privacy is the main focus of this paper, we
present detailed analysis of the privacy and regret
performance guarantees of the proposed LPPQ policy
in the next two sections. We also present an informa-
tion theoretical lower bound in Section 6 that nicely
complements our regret upper bound in Theorem 2.

5.1. Privacy Analysis
To see the LPPQ policy satisfies ε-LDP, we first explain
how the policy can be parameterized as {Qt,At}Tt�1 as
defined in Equations (4) and (5)). For each time period
t, the intermediate variable zt ∈ R

J is produced as
ztj � 1{j � jt}ptyt +wj,t, where wj,t ~

i:i:dLap(2=ε). Clearly,
the distribution of zt is measurable conditioned on st �
(xt,yt,pt), satisfying Equation (4). With {z1, ⋯ ,zt−1},
the algorithm can compute the values of {rj, rj,ςj,nj}Jj�1
without accessing any of s1, ⋯ , st−1. The offered price pt
only depends on kt, xt, and {rj}Jj�1. Hence, At is measur-
able conditioned on xt and z<t, satisfying Equation (5).
The following proposition then follows immediately.

Proposition 2. The LPPQ policy described in Algorithm 3
satisfies ε-LDP.

Proof of Proposition 2. Fix arbitrary t. Because yt ∈
Y ⊆ [0, 1] and pt ∈ [p,p] ⊆ [0, 1], the ℓ1-sensitivity of
ytptejt ∈ R

J is upper bounded by two (i.e., supst,s′t||ytptejt − y′tp′tej′t ||1 ≤ 2). Hence, the ε-LDP of ztj � 1{j � jt}
ptyt +wj,t, j ∈ [ J], wj,t ~

i:i:d:Lap(2=ε) is guaranteed by the
Laplace mechanism (Dwork and Roth 2014). w
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5.2. Regret Analysis
The main objective of this section is to establish the
following theorem upper bounding the cumulative
regret of LPPQ when algorithm parameters are care-
fully chosen.

Theorem 2. SupposeAssumptions 1–3 hold, andAlgorithm 3
is executed with J � �(ε 

T√ )d=(d+2)�, κ1 � 1:7











ln (2T)√

, and
κ2 � 31 lnT. Then the regret of Algorithm 3 can be upper
bounded by

E

∑T
t�1

f (p∗(xt),xt) − f (pt,xt)
[ ]

≤ C2 × ε−2=(d+2)T(d+1)=(d+2),

where C2 :� σ−1H (160κ1 +CX





κ2

√ ) 

















2ln (2CXCLT)
√ + 0:5C2

H
C2
pCXd.

Remark 3. The ε-LDP privacy guarantee of Algorithm 3
holds for any values of algorithm parameters J,κ1, and
κ2. This gives practitioners more flexibility in tuning
numerical constants in these algorithm parameters for
better empirical performances.

Remark 4. In the setting where customers’ personal
data privacy is not of concerns, the work of Chen and
Gallego (2021) achieves a cumulative regret upper
bound of Õ(T(d+2)=(d+4)). In contrast, the regret upper
bound in Theorem 2 is on the order of Õ(ε−2=(d+2)
T(d+1)=(d+2)), which is a polynomial factor worse even if
the privacy parameter 1=ε is on a constant level. Such
a performance guarantee, although seemingly unde-
sirable, is the best one can achieve, as we show in The-
orem 3 in the next section that no locally differentially
private policy can achieve regret significantly smaller
than Õ(ε−2=(d+2)T(d+1)=(d+2)).
Remark 5. In this remark we explain how to convert
the LPPQ policy in Algorithm 3 into an anytime pol-
icy (i.e., without prior knowledge of time horizon T)
with simple changes. Consider an infinite geometric
sequence {Tζ � 2ζ} with ζ � 1, 2, 3, ⋯ and run Algo-
rithm 3 repeatedly with T � Tζ, ε, and other problem
parameters (J,κ1,κ2) set accordingly using Tζ and ε.
This revised any-time policy satisfies ε-LDP because
of the properties of the LDP definition. To upper
bound the cumulative regret of such an any-time algo-
rithm, for a total of T time periods elapsed and ζ0 �
�log 2T� being the last “epoch,” Theorem 2 implies
that the total regret is upper bounded by

∑ζ0
ζ�1C2 ×

ε−2=(d+2)T(d+1)=(d+2)
ζ ≤ C2 × 2ε−2=(d+2)T(d+1)=(d+2).

In the rest of this section, we prove Theorem 2. We
first establish a technical lemma showing that the r̂jk
values are faithful estimates of fBj(·) evaluated on price
vectors rj.

Lemma 1. For j ∈ [ J], define χ(Bj) :� J × Prx~PX[x ∈ Bj].
With probability 1−O(T−1) the following holds uniformly
for all t, j ∈ [ J], and k ∈ [5] that satisfies nj ≥ κ2:

r̂jk
5hdnj

−χ(Bj)fBj(ρjk)
∣∣∣∣∣

∣∣∣∣∣ ≤ κ1

εhd 


nj√ :

Proof of Lemma 1. Fix j, k and a particular time
period t. Note that J � h−d. Without loss of generality
assume the time periods are t � k, 5+ k, ⋯ , tj where tj
is the largest integer not exceeding nj that is equiva-
lent to k modulo 5, and r̂jk �∑tuj,t, where uj,t �
1{ jt � j}ytpt +wj,t, wj,t ~

i:i:d:Lap(2=ε). It then holds that
uj,t � μj + ξj,t +wj,t, where μj � χ(Bj)hdfBj(ρjk), E[ξj,t] �
E[wj,t] � 0 and |ξj,t| ≤ 1 almost surely. Furthermore,
{ξj,t,wj,t}t are independent random variables. By
Hoeffding’s inequality (Hoeffding 1963) and the fact
that

∑
tξj,t is the sum of nj=5 independently distrib-

uted centered random variables, we have with proba-
bility 1−O(T−3) that∑

t
ξj,t

∣∣∣∣∣
∣∣∣∣∣ ≤ 1:2














nj ln (2T)
√

: (6)

For the
∑

twj,t term, invoke Chan et al. (2011, lemma
2.8) for concentration inequalities of independently
distributed Laplace random variables. We have that
for all nj ≥ 31lnT, with probability 1−O(T−3) it holds
that ∑

t
wj,t

∣∣∣∣∣
∣∣∣∣∣ ≤ 7ε−1














nj ln (2T)
√

: (7)

Combining Equations (6) and (7), we have with proba-
bility 1−O(T−3) that

r̂jk
5hdnj

−χ(Bj)fBj(ρjk)
∣∣∣∣∣

∣∣∣∣∣
≤ 1
5hdnj

1:2













nj ln (2T)
√

+ 7













nj ln (2T)
√

ε

[ ]
≤ 1:7











ln (2T)√

εhd 


nj√ :

Lemma 1 is then proved by applying the union bound
over all t and j ∈ [ J]. w

With Lemma 1, the concavity of fBj(·) immediately
yields the following corollary.

Corollary 1. With probability 1−O(T−1) it holds for all
j ∈ [ J] and t that p∗(Bj) ∈ [ρj1,ρj5].

To introduce the next key technical lemma, we need
to define some notations. For a hypercube Bj, j ∈ [ J],
we partition the entire T selling periods into epochs
denoted as τ � 1, 2, 3, ⋯, with each epoch starting
with a time period at which ςj is reset (at the start of T
time periods or as a result of the execution of line 10
or 12 in Algorithm 3), and ending when either line 10
or line 12 is executed again to reset the ςj pointer. Let
T j(τ) be the collection of time periods during epoch τ
for hypercube j, and define nj(τ) :� |T j(τ)|. Note that
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T j(τ) includes selling periods during which customers
with xt ∉ Bj arrive as well. The following technical
lemma upper bounds the cumulative regret incurred
by customers with xt ∈ Bj during epoch τ.

Lemma 2. Fix hypercube Bj, j ∈ [ J], and let τ be an epoch.
Then conditioned on the success event in Lemma 1, it holds that

nj(τ) ≥ κ2
1

ε2h2dC2
XC

2
Lδ

2
τ

, (8)

where δτ � (p − p) · (3=4)τ−1. Furthermore,

E

[ ∑
t∈T j(τ)

1{xt ∈ Bj}( f (p∗(xt),xt) − f (pt,xt))
]

≤ 64κ1 +CX





κ2

√
σHε

E









nj(τ)
√[ ]

+ 1
2
C2
HC

2
pCXdhd+2E[nj(τ)]: (9)

Proof of Lemma 2. Decompose the difference f (p∗(xt),
xt) − f (pt,xt) as

f (p∗(xt),xt) − f (pt,xt) � [ f (p∗(xt),xt) − f (p∗(Bj),xt)]
+ [ f (p∗(Bj),xt) − f (pt,xt)]:

To upper bound the first term, invoke Assumption
3(a) with B � {xt} and Assumption 3, (b) and (c), with
B � Bj. We have

f (p∗(xt),xt) − f (p∗(Bj),xt) ≤ C2
H

2
|p∗(xt) − p∗(Bj)|2

≤ C2
HC

2
p

2
sup
x,x′∈Bj

||x− x′||22

≤ C2
HC

2
pd

2
h2:

Subsequently, the left-hand side of Equation (9) can
be upper bounded by

E

[ ∑
t∈T j(τ)

1{xt ∈ Bj}(fBj(p∗(Bj)) − fBj(pt))
]

+ C2
HC

2
pd

2
h2nj(τ)Pr [x ∈ Bj]: (10)

In epoch τ, define δτ :� ρj5 − ρj1 � (p − p) · (3=4)τ−1,
where the equality is by update rule of price range.
Because p∗(Bj) ∈ [ρj1,ρj5] thanks to Corollary 1, and
fBj(·) is σH-strongly concave because of Assumption
3(a) with B � Bj, we have that either min{ fBj(ρj2) − fBj

(ρj1), fBj(ρj3) − fBj(ρj2)} ≥ σ2H
32 δ

2
τ (if p∗(Bj) ≥ ρj3), or min

{ fBj(ρj3) − fBj(ρj4), fBj(ρj4) − fBj(ρj5)} ≥ σ2H
32 δ

2
τ (if p∗(Bj) ≤

ρj3). Without loss of generality assume p∗(Bj) ≥ ρj3

and min{ fBj(ρj2) − fBj(ρj1), fBj(ρj3) − fBj(ρj2)} ≥ σ2H
32 δ

2
τ. By

Lemma 1, this implies that throughout the epoch τ,

5 × κ1

εhd 


nj√ ≥ χ(Bj)(fBjmin{ fBj(ρj2) − fBj(ρj1),
fBj(ρj3) − fBj(ρj2)} ≥ σ2H

32 χ(Bj)δ2τ,

where χ(Bj) � J × Pr [x ∈ Bj] ∈ [0,CX], because of As-
sumption 1, and the first inequality is by Lemma 1
and the fact that in any time period of τ before its end,
line 10 is not executed. Inverting the previous inequal-
ity and noting that nj(τ) ≥ κ2 almost surely, we have

nj(τ) ≤max κ2,
25,600κ2

1

σ2Hε
2h2dχ(Bj)2δ4τ

{ }
: (11)

Again within epoch τ and recall the definition that
δτ � ρj5 − ρj1. Because f (·) is CL-Lipschitz continuous
thanks to Assumption 2, we have that

max
k

|fBj(ρj,k+1) − fBj(ρjk)| ≤ CLmax
k

|ρj,k+1 − ρjk| ≤ CLδτ:

(12)This implies that nj(τ)must satisfy
κ1

εhd








nj(τ)
√ ≤ χ(Bj)CLδτ,

which yields nj(τ) ≥ κ21
ε2h2dχ(Bj)2C2

Lδ
2
τ

≥ κ21
ε2h2dC2

XC
2
Lδ

2
τ

. This com-

pletes the proof of Equation (8).
Additionally, because p∗(Bj) ∈ [ρj1,ρj5], and fBj(·) is

twice continuously differentiable with its second
derivative bounded by C2

H and f ′Bj
(p∗(Bj)) � 0 because

p∗(Bj) is an interior maximizer of fBj(·), we have that

fBj(p∗(Bj)) − fBj(pt) ≤ C2
H

2
δ2τ

≤ 160κ1

σHεhdχ(Bj)
1







nj(τ)
√ + C2

H





κ2

√
2








nj(τ)
√ ,

(13)

where the last inequality holds by inverting Equation
(11). Subsequently, Equation (10) can be upper bound-
ed by the expectations of

Pr [x ∈ Bj] × 160κ1








nj(τ)
√

σHεhdχ(Bj) +
1
2












κ2nj(τ)
√[ ]

+ C2
HC

2
pd

2
h2nj(τ)Pr [x ∈ Bj]

� hdχ(Bj) × 160κ1








nj(τ)
√

σHεhdχ(Bj) +
1
2












κ2nj(τ)
√[ ]

+ C2
HC

2
pd

2
h2nj(τ) × hdχ(Bj)

≤ 160κ1 +CX





κ2

√
σHε









nj(τ)
√

+ 1
2
C2
HC

2
pCXdhd+2nj(τ):

This completes the proof of Lemma 2. w

We are now ready to prove Theorem 2.
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Proof of Theorem 2. The entire proof is conditioned
on the success event of Lemma 1, with an extra O(1)
term in the upper bound of the regret because the fail-
ure probability is O(T−1) and in the event of failure
the cumulative regret of Algorithm 3 is at most O(T).

For each j ∈ [ J], the result in Lemma 2 establishes that

E

∑T
t�1

1{xt ∈ Bj}( f (p∗(xt),xt) − f (pt,xt))
][

≤ 160κ1 +CX





κ2

√
σHε

E

∑
τ









nj(τ)
√[ ]

+1
2
C2
HC

2
pCXdhd+2E

∑
τ

nj(τ)
[ ]

≤ (160κ1 +CX





κ2

√ ) 

















2 ln (2CXCLT)
√

σH




T

√
ε

+1
2
C2
HC

2
pCXd × hd+2T, (14)

where the last inequality holds by invoking the
Cauchy-Schwarz inequality and noting that

∑
τnj(τ) ≤

T and that the total number of epochs for each Bj is
upper bounded by 2ln (2CXCLT), thanks to Equation
(8) in Lemma 2. Define C′

1 :� σ−1H (160κ1 +CX





κ2

√ )


















2ln (2CXCLT)
√

and C′
2 :� 0:5C2

HC
2
pCXd. Summing both

sides of Equation (14) over all hypercubes j ∈ [ J], and
noting that J � h−d, we have

E

∑T
t�1

f (p∗(xt),xt) − f (pt,xt)
[ ]

≤ C′
1




T

√
hdε

+C′
2h

2T: (15)

With J � �(ε 

T√ )d=(d+2)� and h � J−1=d ≈ (ε 

T√ )−1=(d+2),
Equation (15) yields the results in Theorem 2, with
C2 � C′

1 +C′
2. w

6. Lower Bound of Algorithms with ε-LDP
In this section, we establish the following lower
bound, showing that the Õ(T(d+1)=(d+2)) regret obtained
in Theorem 2 is minimax optimal when the LDP
parameter ε is finite. More specifically, we will prove
the following result.

Theorem 3. Let π � {Qt,At}Tt�1 be any personalized pric-
ing policy that satisfies ε-LDP for some ε ∈ (0, 1]. Let PX

be the uniform distribution on [0, 1]d. Then there exists
λ(·, ·) and its associated revenue function f (·, ·) satisfying
Assumptions 1–3 with CX � 1, CL � 4, σH � 



2
√

, CH � 2,
and Cp � 1, such that

E
π
∑T
t�1

f (p∗(xt),xt) − f (pt,xt)
[ ]

≥ C × ε−2=(d+2)T(d+1)=(d+2)

d7=3
,

where C > 0 is a universal numerical constant.

To prove Theorem 3, we use similar construction of
adversarial instances as in the work of Chen and Gal-
lego (2021), but with different analytical tools such as
the Assouad’s method (Assouad 1983, Yu 1997) and
strong data processing inequalities as consequences of
local privacy constraints, as developed in the work of
Duchi et al. (2018).

6.1. Construction of Adversarial
Problem Instances

We adopt the same construction of adversarial prob-
lem instances as in the work of Chen and Gallego
(2021). For readers who are not familiar with the con-
struction, we recapture it here in this section for com-
pleteness purposes. Suppose [0, 1]d is being partitioned
into J equally sized hypercubes, each of length
h � J−1=d, with J being specified later in the proof. Let
{Bj}Jj�1 be the J hypercubes that partition [0, 1]d. For
each vector n ∈ {0, 1}J, define problem instance Pn asso-
ciated with demand model λn as

λn(p,x) :� 2
3
− p
2
+∑J

j�1
νj

1
3
− p
2

( )
d(x,∂Bj), (16)

where d(x,∂Bj) :� infy∈∂Bj ||x− y||2. It is proved in Chen
and Gallego (2021, proposition 2) that all λn and their
associated revenue functions fn(p,x) � pλn(p,x) satisfy
Assumptions 2 and 3 with CL � 4, σH � 



2
√

, CH � 2,
and Cp � 1.

The demands {yt}Tt�1 are stochastically realized
as Prn[yt � 1|pt,xt] � λn(pt,xt) and Prn[yt � 0|pt,xt] �
1−λn(pt,xt). It is easy to verify that Ent[yt|pt,xt] � λn

(pt,xt). With PX being the uniform distribution on
[0, 1]d and [p,p] � 1, all constructed problem instances
satisfy Assumption 1 with CX � 1, [p,p] � [0, 1], and
Y � {0, 1} ⊆ [0, 1].

Although the construction of the adversarial prob-
lem instances are the same with the work of Chen and
Gallego (2021), the analysis of “distinguishability”
between problem instances are significantly different
from Chen and Gallego (2021). More specifically, when
the personalized pricing policy is subject to ε-LDP con-
straints, we need much sharper upper bounds on the
distinguishability between problem instances to derive
the Ω(T(d+1)=(d+2)) minimax lower bound, which is
larger by polynomial factors of T compared with the
Ω(T(d+2)=(d+4)) regret lower bound proved in Chen and
Gallego (2021). The sharper lower bound also requires
us to use different choices of J compared with the argu-
ments in Chen and Gallego (2021). More details of the
analysis is given in subsequent sections.

6.2. Reduction to Classification and
Assouad’s Lemma

Recall the definitions that st � (xt,yt,pt) ∈ S � X × Y ×
[p,p] and z1, z2, ⋯ , zT ∈ Z are intermediate quantities
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satisfying ε-LDP, as defined in Equations (4) and (5)
and Definition 3. Our first technical lemma shows
that, for the problem instances {Pn}n∈{0, 1}J constructed
in the previous section, a personalized pricing policy
with low worst-case regret over {Pn}n∈{0, 1}J must have
prices hitting the right subset in different cubes.

Lemma 3. Let π � {Qt,At}Tt�1 be a personalized pricing
policy that satisfies ε-LDP. Define 	(π) :� supn∈{0, 1}J
E
π
n

∑T
t�1fn(p∗(xt),xt) − fn(pt,xt)[ ]

. Let also S0 :� p : p < 2
3

{
− ηh

12} and S1 :� p : p > 2
3− ηh

12

{ }
, where η � (1− 2−1=d)=2.

Then

	(π) ≥ η2h2

K1

∑T
t�1

1
2d
∑

n∈{0, 1}d
1
2J

∑J
j�1

Pr [pt ∈ Sνj |xt

∈ Bj,d(xt,Bj) ≥ ηh;Pπ
n ], (17)

where h � J−1=d and K1 > 0 is a universal numerical
constant.

To derive a lower bound on the classification error
of ψ, we shall use the celebrated Assuard’s method in
the mathematical statistics and information theory
literature (Assouad 1983, Yu 1997). To state the me-
thod, we need some additional notations. For each n ∈
{0, 1}J, let Mπ

n be the distribution of the intermediate
quantities {z1, ⋯ ,zT} under model fn and personal-
ized pricing policy π. For each j ∈ [ J], define

Mπ
+j :� 1

2J−1
∑
n:nj�1

Mπ
n , Mπ

−j :� 1
2J−1

∑
n:nj�0

Mπ
n (18)

as the mixture distribution by fixing the jth bit of n to
either one or zero. We also define, for any t ∈ [T] and
xt ∈ [0, 1]d, Wπ

n,t(xt), a conditional distribution over p ∈
[0, 1] such that

Wπ
n,t(xt)(p ∈ S) :� Pr pt ∈ S|π,xt; z1, ⋯ ,zt−1 ~Mπ

n

[ ]
:

(19)

For any measurable X ⊆ [0, 1]d, define
W

π

n,t(X ) :�
∫
x∈X

Wπ
n,t(x)dx

[ ]
=

∫
x∈X

1dx
[ ]

: (20)

Notations similar to Equation (18) are also defined
as

W
π

+j,t(X)(p∈S) :�Pr pt∈S|π,xt∈X ;z1,⋯ ,zt−1~Mπ+j
[ ]

� 1
2J−1

∑
n:nj�1

W
π

n,t(X )(p∈S);

W
π

−j,t(X)(p∈S) :�Pr pt∈S|π,xt∈X ;z1,⋯ ,zt−1~Mπ
−j

[ ]
� 1
2J−1

∑
n:nj�0

W
π

n,t(X)(p∈S):

For two distributions P, Q let ||P−Q||TV � 1
2

∫ |dP−dQ|
be the total variation distance between P and Q,
and Dsy

KL(P,Q) �DKL(P||Q) +DKL(Q||P) � ∫ (dP−dQ)ln
(dP=dQ) be the symmetric Kullback-Leibler (KL)
divergence between P and Q. Let Hj :� {x ∈ Bj : d

(x,∂Bj) ≥ ηh}, where η � (1− 2−1=d)=2. Using a deriva-
tion that is similar to Assouad’s lemma (lemma 1
and equation (29) of Duchi et al. 2018), the right-
hand side of Equation (17) can be lower bounded as∑T

t�1

1
2J

∑J
j�1

1
2d
∑

n∈{0, 1}d
Pr [pt ∈ Sνj |xt ∈ Bj,d(xt,Bj) ≥ ηh;Pπ

n ]

�∑T
t�1

1
2J

∑J
j�1

1
2d
∑

n∈{0, 1}d
W

π

n,t(Ht)(p ∈ Sνj)

�∑T
t�1

1
2J

∑J
j�1

[
1
2
W

π

+j,t(Ht)(p ∈ S1) + 1
2
W

π

−j,t(Ht)(p ∈ S0)
]

≥∑T
t�1

1
4J

∑J
j�1

(1− |Wπ

+j,t(Ht)(p ∈ S1) −W
π

−j,t(Ht)(p ∈ S1)|)

≥∑T
t�1

1
4J

∑J
j�1

(1− ||Wπ

+j,t(Ht) −W
π

−j,t(Ht)||TV)

≥∑T
t�1

1
4J

∑J
j�1

(1− ||Mπ
+j −Mπ

−j||TV), (21)

≥ T
4J

∑J
j�1

1−






















1
4
Dsy

KL(Mπ+j,Mπ−j)
√( )

≥ T
4

1−




























1
4J

∑J
j�1

Dsy
KL(Mπ+j,Mπ−j)

√√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠: (22)

Here, Equation (21) holds by the standard data proc-
essing inequality (the W

π

6j,t distributions are derived
from Mπ

6j); Equation (22) holds because of Pinsker’s
inequality (the first inequality) and Jensen’s inequality
applied to the concavity of the f (x) � 



x
√

function (the
second inequality).

The question of upper bounding the symmetric KL
divergence between Mπ+j and Mπ−j, crucial to lower
bounding the right-hand side of Equation (22), is
addressed in the next section.

6.3. Strong Data Processing Inequality
The main objective of this section is to provide techni-
cal tools to upper bound Dsy

KL(Mπ+j,Mπ−j). We first
define some notations. Let z<t � (z1, ⋯ ,z<t), and
Mπ

6j,<t be the marginal distributions of z<t under Pπ
6j,

where Pπ+j � 1
2J−1
∑

n:nj�1P
π
n and Pπ−j � 1

2J−1
∑

n:nj�0P
π
n . Let

Pπ
6j,t be the distribution of st, which is measurable con-

ditioned on z<t because the price pt being offered by
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At can only depend on xt and z<t (see Equation (5)).
We establish the following lemma.

Lemma 4. Let π be a personalized pricing policy that satis-
fies 2ε-LDP. Then∑J
j�1

Dsy
KL(Mπ

+j,M
π
−j)

≤2(e2ε−1)2∑T
t�1

sup
||γ||∞≤1

∑J
j�1

∫
Zt−1

∣∣∣∣∫
S

γ(st,z<t)[dPπ
+j,t(st|z<t)

−dPπ
−j,t(st|z<t)]

∣∣∣∣2dMπ

<t(z<t)

≤8(e2ε−1)2∑T
t�1

∑J
j�1

Ez<t~M
π

<t(z<t) ||P
π
+j,t(·|z<t)−Pπ

−j,t(·|z<t)||2TV
[ ]

,

where M
π

<t � 1
2J
∑

n∈{0, 1}JM
π
n,<t, and γ(st,z<t) is any arbi-

trary function of st,z<t with |γ(st,z<t)| ≤ 1 for any st,z<t.

Lemma 4 is a version of “strong data processing
inequality” (Anantharam et al. 2013) that is in princi-
ple similar to theorem 3 of Duchi et al. (2018), with
one significant difference: for all the results in the
work of Duchi et al. (2018), the sensitive data {st}Tt�1
are distributed independently and identically with
respect to an unknown distribution that does not
depend on the estimator or algorithm used (i.e., the
classical statistical estimation setting). In contrast, for
our personalized pricing problem, the distribution of
the sensitive information {st}Tt�1 depends on both the
underlying demand model fn and the (locally private)
pricing policy π, as shown in the Pπ+j,t and Pπ−j,t meas-
ures that are measurable conditioned on z<t. This
leads to a more sophisticated upper bound on the
symmetric KL divergence betweenMπ+j andMπ−j meas-
ures as shown in Lemma 4.

Note that Pπ
6j,t(xt,yt,pt|z<t) � χ(xt)At(pt| xt,z<t)Pr6j

(yt|pt,xt), where χ is the PDF of PX being the uniform
distribution on [0, 1]d, At(·|xt,z<t) is the pricing distri-
bution of π that is measurable conditioned on xt and
z<t by its definition in Equation (5), and Pr+j(yt|pt,xt) �
1

2J−1
∑

n:nj�1Pr (yt|fn(pt,xt)) and Pr−j(yt|pt,xt) � 1
2J−1
∑

n:nj�0
Pr (yt|fn(pt,xt)). We then have the following lemma
upper bounding the total variation between Pπ

6j,t(·|z<t).
Lemma 5. For every j ∈ [ J], t ∈ [T] and z<t ∈ Zt−1, it
holds that

||Pπ
+j,t(·|z<t) −Pπ

−j,t(·|z<t)||2TV
≤ dh2

16J2
Ex~U(Bj)Ep~At(·|x,z<t)[(p− p0)2],

where p0 � 2=3 and U(Bj) is the uniform distribution
on Bj.

Combining Lemmas 4 and 5, and noting that Pr [x ∈
Bj] �

∫
Bj

dPX(x) � 1=J for all j ∈ [ J], we arrive at the fol-

lowing corollary.

Corollary 2. Let π be a personalized pricing policy that
satisfies 2ε-LDP, and p0 � 2=3. Then∑J

j�1
Dsy

KL(Mπ
+j,M

π
−j) ≤

dh2(e2ε − 1)2
2J

×∑T
t�1

E[(p− p0)2|p ~ At(·|x,z<t),x ~ PX,z<t ~M
π

<t]
:

6.4. Completing the Proof of Theorem 3
We first establish the following technical lemma
showing that, if a personalized pricing policy π has
small regret then it must produce prices that are close
to p0 � 2=3.

Lemma 6. Let π be a personalized pricing policy, p0 � 2=3,
and φ(x,δ) :� x1{|x| ≥ δ} be the hard-thresholding opera-
tor. Then

	(π) ≥ 1
4

∑T
t�1

E[φ(|pt − p0|2,h2)|pt ~ At(·|xt,z<t),

xt ~ PX,z<t ~M
π

<t]
:

We are now ready to prove Theorem 3.

Proof of Theorem 3. First, if 	(π) ≥ ε−2=(d+2)T(d+1)=(d+2),
we have already proved Theorem 3. Hence, in the rest
of the proof, we assume that 	(π) ≤ ε−2=(d+2)
T(d+1)=(d+2) ≕ R. Note that φ(|p− p0|2, h2) ≥ (p− p0)2−
h2, and e2ε − 1 ≤ 8ε for all ε ∈ (0, 1]. Also, J � h−d by
definition. Corollary 2 and Lemma 6 together yield∑J

j�1
Dsy

KL(Mπ
+j,M

π
−j) ≤ 128dh2+dε2(h2T +R): (23)

Set hypercube size h as

h :� (8−1ε 



dT√ )−1=(d+2): (24)

It is then easy to verify that 1
4J
∑J

j�1D
sy
KL(Mπ+j,Mπ−j) ≤ 1

2.
Subsequently, Equation (22) and Lemma 3 yield

	(π) ≥ η2h2T
8K1

�Ω
h2T
d2

( )
�Ω

ε−2=(d+2)T(d+1)=(d+2)

d2+1=(d+2)

( )
�Ω

ε−2=(d+2)T(d+1)=(d+2)

d7=3

( )
,

which proves the regret lower bound in Theorem 3. w

7. Numerical Experiments
In this section, we conduct some illustrative numerical
experiments to show the effect of central and local dif-
ferential privacy on the regret. Moreover, we will
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compare the performance of our CPPQ with a bench-
mark algorithm (for parametric demand function)
introduced in Chen et al. (2022) to illustrate the impact
of nonparametric demand.

7.1. Effect of Central and Local Differential Privacy
To do that, we assume the dimension d � 2 and the
demand yt(p) is a linear demand, that is, yt(p) � θ0+
θ1xt,1 +θ2xt,2 +θ3p+ νt, where νt is an independent
zero-mean noise. Because this example is for illus-
trative purpose, the value of u is taken as (0:4, 0:6, 0:6,
−0:2), νt ∈ [−0:1, 0:1] is a uniform distribution, and p ∈
[0:5, 4:5]. Customer’s data xt is taken uniformly from
[0, 1]2. For the input parameters of the two algorithms
(CPPQ and LPPQ), we simply fix c1 � 0:001










ln (T)√

,
c′1 � 0:01c2, c2 � ε−1ln 2(T), and κ1 � 0:001










ln (T)√

,κ2 �
0:1 ln (T) for LPPQ. Both algorithms have 30 inde-
pendent runs with T ∈ {500,2, 500,12,500,62,500} and
ε ∈ {0:01,0:1, 1, 10}, and for each T and ε, the average
is taken as the output.

Results of the two algorithms are summarized in
Table 1 (for CPPQ), Table 2 (for LPPQ), and Figure 7.
To compare the performance of the algorithms across
different T and ε, we compute the percentage regret,
which is defined as 	T( f ,π)=∑T

t�1 f (p∗(xt),xt). For the
nonprivate benchmark, we adopt the nonprivate ver-
sion of CPPQ (i.e., without adding noise) because it
estimates the revenue more directly. According to
these results, we can see that larger ε in general leads
to better regrets, which are closer to the one with no
privacy. Moreover, it can be observed that the per-
formance of CPPQ is quite sensitive to ε (especially
when ε is relatively large). This is in line with Theo-
rem 1 as the impact of ε on the regret is by the factor
of ε−1. For LPPQ, our observation is similar. That is,
higher privacy leads to higher percentage regret.
However, it shall be noted that the difference of per-
centage regret with respect to privacy parameter ε is
not very significant. This observation is consistent
with our theoretical results in Theorem 2, which
shows that the dependency of regret on ε is ε−2=(d+2).
Moreover, in Figure 8, we plot the log-log scale of
cumulative regret 	T( f ,π)=ln (T) (it is divided by
ln (T) because the regret upper bound has ln (T) factor
as shown in Theorem 2) of LPPQ with all values of ε.

The slopes of the fitted lines are {0:79,0:77,0:77, 0:75}
with respect to ε ∈ {0:01, 0:1, 1, 10}, which are quite
close to (d+ 1)=(d+ 2) � 0:75 when d � 2. Thus, our
numerical results verify the regret upper bound
Õ(ε−2=(d+2)T(d+1)=(d+2)) (with respect to T) of LPPQ.
In the end, comparing the result of CPPQ and

LPPQ, we see that CPPQ does not necessarily have
better performance than LPPQ, even though ε-CDP is
weaker than ε-LDP in many cases. One reason is that
in CPPQ, the Laplace noise has a scale of 2(L+ 1)=ε as
opposed to 2=ε in LPPQ. As a result, for small ε,
Lap(2(L+ 1)=ε) can be quite significant especially in a
relatively short horizon. This result is actually not sur-
prising from the theoretical performance of CPPQ
(i.e., Õ(ε−1Td=(d+4)) for the part with ε) versus LPPQ
(i.e., Õ(ε−2=(d+2)T(d+1)=(d+2))). That is, when ε is small
and T is not very large, it is very likely ε−1Td=(d+4) >
ε−2=(d+2)T(d+1)=(d+2) (e.g., ε < o(T−5=12)when d � 2).

7.2. Comparison Between CPPQ and
the Benchmark

As we mentioned in the Introduction, to the best of
our knowledge, this paper is the first to consider both
central and local differential privacies in dynamic
pricing with nonparametric demand; thus, there is no
direct benchmark in the literature to compare with. In
this section, we select a benchmark algorithm (for con-
venience, named Benchmark) introduced in Chen et al.
(2022), which is most related to ours in the literature.
In particular, this benchmark solves a dynamic pricing
problem with parametric demand (in particular, gener-
alized linear model) under central differential privacy.
Therefore, for fair comparison, we compare its per-
formance with our algorithm CPPQ in two scenarios.
The first scenario is the same as in our previous sec-
tion, where the demand is a linear function and
Benchmark correctly specifies its function format. In
the second scenario, we assume the demand is a more
sophisticated nonlinear function, but Benchmark mis-
specifies it as a linear function because model misspe-
cification is quite prevalent in real application.

7.2.1. First Scenario with Linear Demand. This sce-
nario is exactly the same as in our previous ex-
periment, and Benchmark correctly specifies the
demand function as a linear function. For illustration,
we demonstrate the comparisons between CPPQ and

Table 2. Percentage Regret (%) for LPPQ

T � 500 T � 2,500 T � 12,500 T � 62,500

Nonprivate 15.79 7.40 3.33 1.76
ε � 10 21.82 17.53 15.50 13.27
ε � 1 20.81 17.40 15.73 14.29
ε � 0:1 22.89 17.66 15.95 14.80
ε � 0:01 22.53 20.70 17.20 16.74

Table 1. Percentage Regret (%) for CPPQ

T � 500 T � 2,500 T � 12,500 T � 62,500

Nonprivate 15.79 7.40 3.33 1.76
ε � 10 26.77 20.68 12.65 8.68
ε � 1 34.61 31.48 25.89 21.04
ε � 0:1 34.81 33.06 29.89 26.72
ε � 0:01 34.70 33.63 30.51 27.21
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Benchmark with T ∈ {500,2, 500,12, 500, 62,500} and
ε ∈ {1, 10} (and for Benchmark, achieving ε-CDP is the
same as setting ε1 � ε2 � ε) and no privacy. Because
Benchmark requires several learning parameters as
input, we choose all of them the same as in numerical
experiments in Chen et al. (2022) except ρ � 1,γ � 3, as
we found they achieve better empirical performance
for Benchmark.

Results are summarized in Figure 9. We can see that
when there is no privacy, Benchmark significantly out-
performs CPPQ. This is not surprising because Bench-
mark correctly specifies the linear demand and makes
pricing decision based on this information, whereas
CPPQ still treats the demand as a generic nonparamet-
ric function. However, when we have privacy guaran-
tee, for example ε � 10, Benchmark only outperforms
CPPQ when T is large; on the other hand, when ε � 1,
CPPQ has better performance than Benchmark overall,
although its advantage becomes smaller as T grows.
This result is indeed consistent with the theoretical
performance of both CPPQ and Benchmark. In particu-
lar, the regret upper bounds related to ε for CPPQ and
Benchmark are Õ(ε−1 Td=(d+4)) and Õ(ε−2d2) (see theo-
rem 2 in Chen et al. 2022 as our method of generating xt

satisfies their assumption 1), respectively. Therefore,
CPPQ is less sensitive to ε, whereas Benchmark will
have better performance when T is relatively large com-
pared with ε−1.

7.2.2. Second Scenario with Nonlinear Demand. In
this experiment, we assume a separable demand func-
tion (as described in Chen and Gallego 2021) defined
as yt(p) � g1(p)h1(xt) + g2(p)h2(xt), where g1(p) :� 1−
p2, g2(p) :� 2:5− 0:9exp (p), h1(xt) � ||xt||2, h2(xt) � ||xt||22.
With this nonlinear function, our Assumptions 1–3 are
satisfied. For Benchmark, it still assumes the demand is
linear like in the first scenario; hence, we want to test the
effect of model misspecification of Benchmark (whereas
our algorithm CPPQ does not assume any function for-
mat of the demand). For learning parameters of both
algorithms, we still use the same ones in the previous
experiment, but this time, we let the range of price
be [0, 1].

Figure 10 demonstrates the performance of CPPQ
and Benchmark. We can see that CPPQ outperforms
Benchmark in all scenarios as expected. Because of the
model misspecification, even without privacy guaran-
tee, the percentage regret of Benchmark is constantly
greater than 8%.

8. Conclusion
This paper studies the online personalized pricing prob-
lem with nonparametric demand and data privacy (to
the best of our knowledge, our paper is the first result
on this problem). That is, over a finite time horizon, the
platform decides a price for each arriving customer
based on her personal data to maximize the cumulative
revenue and protect customer’s privacy. Two defini-
tions of data privacy have been investigated: ε-CDP
and ε-LDP, each of which depends on a parameter ε > 0
(i.e., smaller ε means higher security). Two algorithms
are developed in this paper: CPPQ for ε-CDP and LPPQ
for ε-LDP. Both algorithms are based on the idea of split-
ting the domain of customer’s data into hypercubes

Figure 7. (Color online) Performance of CPPQ and LPPQ

Notes. Percentage regret with respect to T of CPPQ (left) and LPPQ (right). In both cases, the percentage regrets converge to zero as T grows, and
a larger ε (i.e., less privacy protection) leads to a smaller percentage regret.

Figure 8. (Color online) Log-log Plot of	T( f ,π)=ln (T) for
LPPQ for All ε and T. The Slopes of Fitted Lines with
ε ∈ {0:01, 0:1,1, 1} are {0:79,0:77, 0:77, 0:75} Respectively
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and applying a novel quadrisection search of optimal
price in each hypercube. To satisfy ε-CDP, CPPQ uses
a tree-based aggregation method to estimate the reward
of the tested prices in each hypercube. Results show
that this algorithm has regret at least Õ(T(d+2)=(d+4) +
ε−1Td=(d+4)) (Theorem 1), where the first term matches
the near-optimal regret of Õ(T(d+2)=(d+4)) without ε-CDP
(Chen and Gallego 2021). On the other hand, LPPQ
protects the privacy by adding noise to each data sample,
and it achieves a regret of Õ(ε−2=(d+2) T(d+1)=(d+2)) (Theo-
rem 2). Moreover, this regret is proved to be near-
optimal in Theorem 3, which shows that any algorithm
satisfying ε-LDP has the regret at least Ω(ε−2=(d+2)
T(d+1)=(d+2)).

For potential future research, one direction is to
consider data privacy protection with nonparametric
model in other operations management problems
(e.g., healthcare, assortment selection, ranking). Sec-
ond, one may consider other techniques of protecting
differential privacy in personalized pricing problem.
For instance, the platform may add noise directly to

historical customers’ data xt, and a potential technique
of demand learning in this scenario is the so-called
nonparametric regression with error in variables (Fan
and Truong 1993). Developing near-optimal online
learning algorithms using this technique is an interest-
ing open problem.

Another interesting direction for future research is
to establish rigorous lower bounds of cumulative
regret for dynamic personalized pricing policies satis-
fying ε-CDP constraints. Showing lower bound for
CDP requirement is significantly more difficult com-
pared with lower bounds for LDP algorithms. As far
as we know, information-theoretical tools such as the
ones established in (Duchi et al. 2013, 2018) do not
exist for CDP, and virtually all existing lower bounds
on CDP estimators rely on ad hoc techniques such as
the construction of “tracing attack” mechanisms that
reliably identify certain datum with the help of a very
accurate summary statistics (Dwork et al. 2015; Cai
et al. 2020, 2021). As a result, existing lower bounds
on CDP algorithms are only established for parametric

Figure 9. (Color online) Percentage Regret of CPPQ (Solid Lines) vs. Benchmark (Dashed Lines) under Different CDP Levels
with Linear Demand

Figure 10. (Color online) Percentage Regret of CPPQ (Solid Lines) vs. Benchmark (Dashed Lines) Under Different CDP Levels
with Nonlinear Demand
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models with independently and identically distributed
samples, and relaxation of either parametric or i.i.d.
constraints is significantly more challenging because
of the delicate nature of the lower bound proof
techniques.
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Endnotes
1 See https://www.oecd.org/competition/personalised-pricing-in-
the-digital-era.htm.
2 Proposition 1 shows that LDP is a stronger data privacy notion
compared with CDP under certain assumptions.
3 The anticipating privacy notion defined here is slightly weaker
than the definitions in Shariff and Sheffet (2018) and Chen et al.
(2022), which considered joint distributions of future prices. Never-
theless, we adopt this definition here to be more compatible with
existing definitions of local privacy notations, which is also appro-
priate for practical usage.
4 The choice of J is, however, different from the CPPQ algorithm.
See Theorems 2 and 1 for more details.
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