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Abstract—A fundamental challenge in wireless heterogeneous
networks (HetNets) is to effectively use the limited transmission
and storage resources in the presence of increasing deployment
density and backhaul capacity constraints. To alleviate bot-
tlenecks and reduce resource consumption, we design optimal
caching and power control algorithms for multi-hop wireless
HetNets. We devise a joint optimization framework to minimize
the average transmission delay as a function of the caching
variables and the signal-to-interference-plus-noise ratios (SINR)
as determined by the transmission powers, while explicitly ac-
counting for backhaul connection costs and the power constraints.

Using convex relaxation and rounding, we obtain a reduced-
complexity formulation (RCF) of the joint optimization problem,
which can provide a constant factor approximation to the globally
optimal solution. We characterize the necessary (KKT) conditions
for an optimal solution to RCF, and use strict quasi-convexity to
show that the KKT points are Pareto optimal for RCF. We then
devise a subgradient projection algorithm to jointly update the
caching and power variables, and show that under appropriate
conditions, the algorithm converges at a linear rate to the local
minima of RCF, under general SINR. We support our analytical
findings with results from numerical experiments.

Index Terms—Joint power-caching optimization, biconvexity,
quasi-convexity, Pareto optimality, subgradient algorithm.

I. INTRODUCTION

The energy and cost efficiencies of wireless heterogeneous
networks (HetNets) incorporating macro cells (MCs) and small
cells (SCs) are critical for meeting the performance require-
ments of 5G wireless networks [1]. Design of these HetNets
entails the fundamental challenge of optimally utilizing both
the bandwidth and storage resources of the network to reduce
the download or transmission delay and the energy costs.
With the increasing deployment density in wireless networks,
the backhaul capacity becomes the bottleneck. It is well
known that caching can alleviate this bottleneck by replacing
the backhaul capacity with storage capacity at SCs [2], i.e.,
moving content closer to the wireless edge. Caching reduces
transmission delay by bringing the popular data items in SCs
that are faster or computationally cheaper to access than MCs.
To optimize resource usage in wireless HetNets, designing
caching and power control policies and the interplay between
caching and transmission decisions remains an open challenge.
Enabling this will help control the interference and minimize
the transmission delay costs in wireless HetNet topologies.

A. Current State of the Art and Motivation

Research to date on cost optimization of caching has fo-
cused on different perspectives. There have been attempts to
devise replacement algorithms that aim to optimize the caching
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gain, which is the reduction in the expected total download
delay achieved by caching at intermediate nodes. Simple,
elegant, adaptive, and distributed approaches determining how
to populate caches in a variety of networking applications
abound. These include Che’s analytical approximation to com-
pute the probability of an item being in a Least Recently Used
(LRU) cache [3], and extension of Che’s decoupling approach
for a unified analysis for different replacement policies in [4].
Recently, information centric networking (ICN) architec-
tures have put emphasis on the traffic engineering and caching
problems [5] to effectively use both bandwidth and storage
for efficient content distribution and optimize the network
performance [6]. Alternatively, there have been works focusing
on jointly optimizing the caching gain and resource usage,
e.g., local caching and broadcasting as characterized in the
landmark paper [7], and a decentralized SC caching opti-
mization, i.e., femtocaching, to minimize the download delay
[2], distributed optimization of caching gain given routing
[5], jointly optimizing caching and routing to provide latency
guarantees by taking into account congestion [8], and elastic
and inelastic traffic [9]. Existing strategies have also focused
on separately optimizing the caching gain or the throughput
[10], and optimizing spatial throughput via scheduling [11].
From a resource management perspective, it is not sufficient
to exclusively optimize caching or throughput, or delay.
There exist several pertinent power control algorithms to
optimize the resource usage in wireless networks [12], or max-
imize throughput under latency considerations [13]. However,
delay optimization in wireless links is challenging because of
interference and congestion. There exist power-aware routing
algorithms for packet forwarding to balance the traffic between
high-quality links and less reliable links, such as [14], joint
optimization of power control, routing, and congestion [15],
and resource optimization under latency and power constraints
[16], as well as delay-optimal computation task scheduling
at the mobile edge [17], and the minimum delay routing
algorithm [18]. In addition, fog optimization-based effective
resource allocation schemes for wireless networks have been
devised in [19] to achieve high power efficiency and a high
Quality of Experience under latency constraints, and in [20] to
maximize the sum rate of cellular networks. However, none of
these approaches or research on ICN architectures has jointly
designed traffic engineering and cache placement strategies to
optimize network performance in view of traffic demands.
Despite the advent of different caching solutions, to the
best of our knowledge, none of them focuses on the joint
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optimization of caching and power allocation or provides
algorithmic performance guarantees in terms of the achievable
costs via caching. Although intermediate caching alleviates the
average download delay, it is hard to quantify how this delay is
affected by the resource allocation strategy in a HetNet setting.
In this paper, we focus on jointly optimizing the network level
performance in terms of transmission delay and caching, which
can be increasingly skewed away from a strategy that places
the items without accounting for the transmission delay.

B. Methodology and Contributions

We study jointly optimal caching and power control for
arbitrary multi-hop wireless HetNet topologies with nodes
that have caching capabilities. As the networks are becoming
increasingly heterogeneous, MCs and SCs can co-exist in 5G
and beyond [1]. Dense SC deployment is the key for 5G
networks to enhance the capacity, rendering a cost-efficient
backhaul solution a key challenge.

For a given caching HetNet topology with multi-hop trans-
missions, we devise an algorithm for jointly optimal caching
and power control to minimize the average transmission delay
cost, i.e., the average download delay, per request. While
end-to-end delay in systems is due to several key sources,
including transmission, propagation, processing and queuing,
we are primarily interested in a lightly loaded regime for which
congestion-dependent latency costs can be neglected, and each
node can sustain a high service rate relative to the average
rate at which items are arriving to be serviced. To accurately
determine the transmission delay, we explicitly account for the
transmission power, backhaul costs, and wireless interference.

Finding the optimum placement of files is proven to be
NP-complete [2]. Hence, jointly optimal power control and
caching to minimize the transmission delay is also NP-
complete. Our joint optimization framework is significantly
different from the traditional approach which maximizes the
caching gain only. This approach has been widely studied in
the literature, such as in [2], [5], [21] and their follow-up
works, where the link costs are fixed. This assumption is only
true when the links are granted orthogonal frequencies and
do not interfere, and the transmission powers are fixed, which
is not the case in HetNets. Furthermore, when link costs are
deterministic, caching gain always improves with increasing
link costs. This requires high transmission powers and violates
the purpose of cost minimization. In other words, savings
via intermediate caching do not inform us about the actual
achievable delay-cost via caching. This justifies our proposed
framework in Sect. III, where we consider the minimum
achievable cost via caching by taking into account the joint
behavior of link costs under resource constraints.

Our main technical contributions include the following:

¢ A reduced-complexity formulation (RCF) to the joint

optimization problem. We provide a constant factor ap-
proximation to the minimum average transmission delay-
cost D°(X,.S) of serving a request via jointly optimizing
binary caching variables X and real valued transmission
powers S. Using convex relaxation techniques, we obtain
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an RCF of the joint optimization problem, with cost
function D(Y,.S) which is not jointly convex, where Y
denote the relaxed caching variables. We then round Y to
obtain an integral solution within a constant factor from
the optimal solution to D°(X, S).

« Sufficient conditions for biconvexity of D(Y,S). We
provide a sufficient condition for the convexity of RCF
in the logarithm of powers which yields a biconvex
RCF objective. This condition pertains to the high SINR
regime and does not hold for general SINR values.

o Joint optimization framework. We jointly optimize
RCF under the general setting which is not jointly convex.
We obtain the following results: a) strict quasi-convexity
of D(Y,S), b) generalized necessary conditions for opti-
mality of D(Y,S) assuming strict convexity of Dg, and
¢) Pareto optimality of the solution to D(Y,5).

o Subgradient projection algorithm. We provide a sub-
gradient projection algorithm which is guaranteed to
converge to a local minimum of the RCF. Due to the
non-differentiability and non-convexity of the relaxed
problem, we propose a subgradient projection algorithm
with a modified Polyak’s step size. We also give a simple
method to calculate the projection and show that the
algorithm converges at a linear rate.

II. WIRELESS CACHING MODEL

We consider a multi-hop wireless HetNet topology consist-
ing of different types of nodes, e.g., small cells (SCs), macro
cells (MCs), and users. The network serves content requests
routed over different paths. We assume that radio range of each
node is smaller than network coverage area, and nodes have
multi-hop capability. We represent the network as a directed
graph G(V, E) where V is the set of nodes such that a node
v € V is either an MC, an SC or a user. All nodes V' transmit
on the same frequencyl, i.e., all transmissions interfere with
each other. In G, F is the set of edges, where given v, u € V,
the edge (v,u) € E denotes the transmission link from v to
u. In Fig. 1, we illustrate the network and possible multi-hop
paths where the users request different items.

The caching model is as follows. The entire set of content
items, i.e., the catalog, is denoted by C. Each item in C is
of equal size. Each node is associated with a cache that can
store a finite number of content items. The cache capacity at
node v € V' is ¢,. The variables z,,; € {0, 1} indicate whether
v € V stores item ¢ € C. Due to this finite capacity constraint,
> ice Tvi < €y, Yo € V. Each item i € C is associated with a
fixed set of designated sources S; C V, i.e., nodes that always
store i: x,; = 1, Vv € §;. The designated sources could be
users, SCs or MCs.

Users issue requests for content items. The set of all requests
is denoted by R. A request r € R is a pair (¢,p) jointly
determined by the item ¢ € C being requested, and the fixed
path p traversed (request is forwarded from the user toward

11f subsets of nodes are allocated different frequencies, as in OFDMA-based
networks, then we can determine the resulting subset of interfering nodes [22].
This also reduces the interference and improves the coverage performance.
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a designated source over a fixed path) to serve this request.
The routing strategy of a user with respect to (i,p) € R is
predetermined, e.g., the shortest path in terms of the number
of hops to the nearest designated source. We assume that (i)
the collection of requests for the same content item 4, i.e., {p :
(i,p) € R}, are served separately instead of being aggregated,
(ii) the response of request (4, p) travels the same path p, in the
reverse direction, (iii) different frequency bands are used for
the uplink and downlink, (iv) transmission delays are solely
due to response messages carrying desired items assuming that
request forwarding and cache downloads are instantaneous.

Request rates are known a priori, where choices of requested
items are independent. The arrivals of requests are Poisson
where the arrival rate of 7 = (i,p) is A; ). A path p on G of
length |p| = K is a sequence {p1,p2,...,pK } of nodes py €
V such that edge (px,pr+1) € E, for k € {1,...,|p| — 1}.
Let k,(v) = {k € {1,...,|p|} : pr = v} denote the position
of v in p. For each request (¢, p), p1 is the requesting user and
pyp| is the designated source of item ¢, and we assume that p
is a simple path, i.e., p contains no loops.

End-to-end delay includes several key components, such as
transmission delay, propagation delay, processing delay, and
queueing delay. In this paper, we primarily focus on lightly
loaded systems, where transmission delay is the dominant one
and the other delay components are negligible. We assume
there is one queue for each link (v,u) € E that serves in a
first-in-first-out (FIFO) manner all requests traversing (u, v).

To determine the transmission delay of link (v, u) € E cor-
responding to (¢, p), we first derive the signal-to-interference-
plus-noise ratio (SINR) on link (v,u), which we denote by
SINR,,(S), where S = [s,,] € RIZ| represents the set of
transmission powers at all links (v,u) € E. To decode the
requests (7, p) traversing link (u, v), we calculate the SINR on
link (v, u), where we treat all other transmissions from nodes
j € V\v , as well as the transmissions from v to w # u as
noise. Therefore, the SINR on link (v,u) is given as

GouSou
INR,., = , (1
SINR (S) N, + Z Gjuzsjw + Gou Z Sow M
JjEV\Y w w#u

where N, is the receiver noise power at node u, and S,
is the transmit power from v € V to w. The total transmit
power of node v is 3°,.(, ,ycp Svu- The parameter G, is the
channel power gain that includes only path loss, where we use
the standard power loss propagation model, i.e., Gy, = 7.,
given distance r,,,, between v and u, and the path loss exponent
n > 2. In our model, the transmission delays are coupled,
in contrast to [2], [21], because the decoding model captures
the interference due to simultaneous wireless transmissions.
Because the SINR analysis in (1) is for a single frequency
band, the set of nodes with nonzero transmission powers
causes interference to the unintended receiver node. Employ-
ing OFDMA-based schemes allows frequency multiplexing
by moving the interfering nodes to orthogonal resources and
eliminates the out-of-band interference, and improves the
SINR quality. However, we leave this extension to future work.
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Fig. 1: A caching network scenario with possible connections between the
users, SCs or MCs, and to the backhaul. A path p = {p1, p2, p3} for request
(4,p) is indicated where pj is a user, p2 is a SC, and p3 is the MC.

To model the wireless transmission delay on link (v,u) €
E, we use the following composite relation:

1
~ logy (1 + SINR,,(S))’

which is the delay in number of channel uses per bit corre-
sponding to the data rate of link (v,w). This model captures
interference, and thus provides a more sophisticated way of
modeling delay in a lightly loaded network than simple hop
count. When the SINR is high, (2) yields a low delay and vice
versa. From (1)-(2), it is clear that f(SINR,,(S)) is convex
and decreasing in SINR,,,(.S) but non-convex in S.

Our goal is to jointly optimize the transmission power
allocations along with the caching decisions to minimize the
average transmission delay of requested items over the multi-
hop network. We next formulate this problem.

J(SINRyu(5))

2

III. JOINT POWER CONTROL AND CACHING
OPTIMIZATION FOR TRANSMISSION DELAY MINIMIZATION

We formulate the delay minimization problem that jointly
considers power control and caching allocations. Due to its
NP-hard nature, in Sect. III-A we first develop a RCF based
on convex relaxation and its optimal solution, which yields an
integral solution (via rounding) whose cost is within a constant
factor from that of the optimal solution to the original problem.
Next in Sect. III-B we provide a sufficient condition for the
convexity of RCF in the logarithm of powers which yields
a biconvex objective. This sufficient condition corresponds to
the high SINR regime. In Sect. III-C under the general setting
which is not jointly convex, we provide various results on the
RCF objective. We demonstrate a) strict quasi-convexity of
D(Y, S), b) generalized necessary conditions for optimality of
D(Y, S) under strict convexity of Dg, and ¢) Pareto optimality
of the solution to D(Y,S). Later in Sect. III-D we provide
a subgradient projection algorithm that attains the necessary
conditions, along with a linear convergence rate guarantee.

A. Caching Optimization for RCF

A goal in caching systems is to minimize the expected total
file downloading delay, i.e., the expected delivery time of con-
tent items averaged over the demands and the placement. Since
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end-to-end delay in our setup is mainly due to the transmission
delay, by letting matrix X = [z,;] € {0, 1}/V1*I¢l denote the
global caching strategy, we can express the cost function for
serving a request (7,p) in terms of the transmission delay as

lp[-1 k
&P) (X S) = Z f(SINRkarlpk (S)) H(l - -Tpli) , (3)
k=1 =1
where D( ) (X, S) includes the transmission delay of an edge

(Pk+1,pr) in the path p = {p1,...px} if none of the nodes
D1, - - . pi caches <. The last node of p is the designated source,
hence a request is always served. Let D° be the aggregate
expected cost in terms of the average number of channel uses

per bit, which equals
Z A D

(i,p)ER

) (X,5) - (4)

The gain of intermediate caching is equivalent to the achiev-
able reduction in the overall transmission delay. An upper
bound on the expected cost is obtained when all requests are
served by the designated sources at the end of each path, i.e.,

[p|—1

= > MmeSINRpmpk( ). )

(i,p)ER

Dub

Our primary objective is to solve the problem
min{D°(X,S) : X € Dx, S € Dg} , (6)

where Dx is the feasible set of X satisfying the capacity,
integrality, and source constraints:

DX:{Ziecl‘m < Co, Vv e ‘/’ Toui € {071}7 v E ‘/7 ZEC,

2y =1, VieC, veSi}. 7

Letting O, = {u € V : (v,u) € E}, the feasible set of S is
specified by the individual power budget for each node:

DS = {ZuGO“ Sou < é’uy Spu = 07 Y € V}7 (8)

Minimization of D°(X, S) for a given S subjectto X € Dx
is a reduction from the 2-disjoint set cover problem [2], which
is NP-hard. Thus, we devise a centralized algorithm to produce
an allocation within a constant approximation of the optimal,
without prior knowledge of the topology, edge weights, or the
demand distribution. We next formulate a convex relaxation.

a) Convex Relaxation: To approximate the non-convex
function D°(X,S), we construct a convex relaxation, fol-
lowing the approach of [5], [2]. Suppose that x,;,, v € V,
i € C, are independent Bernoulli random variables. Let v be
the corresponding joint probability distribution defined over
matrices in {0, 1}VI*I€l and denote by P,[] and E,[] the
probability and expectation with respect to v, respectively.

Relaxing the integrality constraints of X, let marginal
probabilities y,; = Pl = 1] = Ey[zy] € [0,1],Vv €
V,i € C. Denote the feasible set of Y = [y,;] € RIVIx[C
by Dy = {D ;cc Yvi = Co,Yvi € [0,1],Yv € Vi € C; yyi =
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1,Vi € C,v € S;}, representing the collection of (marginal)

probabilities satisfying the capacity and source constraints.
Using the definition of Y, and from the fact that z,;’s are

independent and path p is simple (no loop), we observe that

D°(Y, S) =E,[D°(X, S)] . )

The extension of D° to the domain [0, 1]IV1*I€l is known
as the multi-linear relaxation of the optimization problem [2],
where (6) is relaxed to

min{D°(Y,S):Y € Dy, S € Dg} .

Let X* and Y* be the optimal solutions to (6) and (10),
respectively. Because the integrality constraints are relaxed,
the cost with relaxed variables Y* satisfies for any S € Dg:

D°(Y*,S) < D°(X*,S) . (11)

The multi-linear relaxation D°(Y, S) in (9) is non-convex.
Therefore, we next approximate it by another cost function D
defined as follows:

(10)

D(Y,S)= > MipDip .5, (12)
(i,p))ER
where the relaxed delay-cost for request (i,p) € R is
[p|—1
D(H’ Y S Z f SINRPkJrlpk (S))gpki(y) ) (13)

where f is given in (2) and g,,; is given by

k
pi(Y)=1— min{l,zypli}a Vyps €[0,1].  (14)
=1

From the Goemans-Williamson inequality [23], (12) gives an
upper bound on (9). Due to the concavity of the min operator,
E, [0p,i(Y)] > gpi(EL[Y]). In (14), gp,:(Y) is a piecewise
linear function which is not smooth or strictly convex, and its
partial derivatives do not exist everywhere. To that end, we
devise a subgradient method in Sect. III-D.

The approximated delay-cost D(Y,S) is convex in the
caching variables Y due to the convexity of gp,;(Y"). Note
that D(Y, S) is nonconvex in S because f is nonconvex in S.
We aim to solve the following reduced-complexity formulation
(RCF) of the joint optimization problem:

min{D(Y,S):Y € Dy, S € Dg} . (15)

The optimal value of D(Y,.S) in (15), is within a constant
factor from the optimal values of D°(Y,S) in (10), and of
D°(X,S) in (6). In particular, we have the following theorem.

Theorem 1. Constant factor approximation for fixed S [2],
[24]. For any given S € Dg, let Y* and Y** be the optimal
solutions that minimize D°(Y,S) and D(Y,S) in (10) and
(15), respectively. Then,

0<D(Y*™,S)—D°(Y*,S) <

(D) - D", 9))

Proof. Tt follows from relaxing and bounding techniques and
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by employing Goemans-Williamson inequality [23], [24]. We
refer the reader to [2], [5] for existing similar methods. [

b) Rounding: To produce an integral solution to (6), we
round the solution Y** of (15). For any given S € Dg and
given a fractional solution Y € Dy, there is always a way to
convert it to a Y’ € Dy with at least one fewer fractional entry
than Y, for which D°(Y”,S) < D°(Y, S) [5]. Each rounding
step reduces the number of fractional variables by at least
1. Thus, the above algorithm concludes in at most |V| x |C]
steps (assuming fixed power allocations), producing an integral
solution X’ € Dx such that D°(X’,S) < D°(Y**,S)
because each rounding step can only decrease D°. Hence, from
Theorem 1 and (11) we have the following corollary.

Corollary 1. The integral solution X' € Dx as a result of
rounding satisfies for any given S € Dg:

DHZ(S> + (1 - 1)DO(X*,S) .

D°(X*,S) < D°(X',9) <

Note that the rounding step produces a (1 — f) -approximate

solution, along with an offset of b (S) to RCF. The offset
in Cor. 1 is eliminated if instead of RCF in (15) we use
a maximum caching gain formulation which concerns the
ultimate gain that can be obtained via caching at intermediate
nodes, such as in [2] and [5]. In maximizing the caching gain,
the objective function is given by the difference D"P(S) —
D(Y,S), where D"P(S) is given by (5). However, in this
formulation D"P(S) — D(Y, S) increases in S, requiring high
powers. Hence, despite its offset, RCF formulation in (15) is
preferable as it can jointly optimize power.

¢) D° and D are not jointly convex in' Y and S: The
transmission delays are coupled due to the interference from
simultaneous transmissions. From (2), f is not convex in S.
Furthermore, (9) is not convex in Y for given S and not convex
in S for given Y, hence not jointly convex in (Y, .S). Note that
D(Y,S) is jointly convex at low interference or low power
because the logarithm function in (2) changes linearly in power
when SINR is low in all paths, which is true in the power-
limited regime.

For the general setting, the joint convexity of D(Y,.S)
requires its Hessian matrix H with respect to (Y,S) to be
positive semi-definite (PSD). Since (14) is not differentiable,
the Hessian matrix for D(Y, S) with respect to Y, i.e., V3D
is not defined. However, from [25, Theorem 2.1], the second
order derivatives for maximum functions are defined in each
interval and the subhessians of (12) or (14) with respect to Y,
i.e., {d2 D}, exist and we can define a subhessian matrix d3 D.
However, since (14) is piecewise linear, d%/D is a zero matrix.
Combining this with the Schur’s complement condition for H
to be PSD [26], D(Y,S) is jointly convex only if the off-
diagonal blocks of H are singular. However, in our setting,
the partial derivatives VgD with respect to S are nonzero,
and the subhessian matrix formed by their subgradients with
respect to Y is non-singular. Therefore, in general, D(Y,.S) is
not jointly convex in (Y, .S). Note however that if we define D
in the logarithms of the power variables, the function can be
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biconvex under a certain condition we provide next, in Sect.
III-B in Prop. 1.

B. Power Optimization for RCF

We next provide a sufficient condition for f(SINR,, , p,)
to be convex in log power variables P £ (log(svu)) (v,u)er in
which P,, = log(s,,) denotes power measured on link (v, u)
corresponding to request (é,p) in dB.

Proposition 1. Convexity in log power variables. A sufficient
condition for the composite function f(SINR,,  ,,) to be
convex in P £ (10g(suu)) (v,u)ck is given as follows.

2f/(m)2 — I.T ”.’,E T
ot @S @)

Proof. Tt follows from extending the approach in [27]. O

Ve >0. (16)

The sufficient condition (16) of Prop. 1 holds in the high
SINR regime where log(1+ SINR) ~ log(SINR), i.e., where
SINR > 1. Given the sufficient condition in (16), it is clear
that the program (15) is convex in terms of power measured
in dB. Hence, we define the log-power variables P, belonging
to the feasible set

Dp={Py,, €R: Z

where O, = {u €V : (v,u) € E}.

The condition of Prop. 1 ensures that D(Y, P) is biconvex,
i.e., D(Y,P) is convex in Y for given P and convex in P
for given Y [28]. However, this condition does not ensure the
biconvexity of D(Y,S) because it is nonconvex in S when
interference is non-negligible, i.e., at low SINR.

ePre <5, Yo €V, Y(u,v) € E},
ue0,

C. General Joint Optimization

We extend the approach of [5] to develop centralized
algorithms for the joint power-caching optimization of RCF
which is not biconvex, i.e., the sufficient condition in log
powers imposed by Prop. 1 does not hold.

We first present a general result on the relaxed cost function
D(Y,S) without putting any assumptions on the log powers
or the caching variables.

a) Strict quasi-convexity of D(Y, S):
Proposition 2. The relaxed delay-cost function D(Y,S) of
RCF in (15) is strictly quasi-convex.

Proof. Due to space limits we refer the reader to the full
version of the work. See [29, Appendix C]. O

The partial derivatives of the relaxed delay-cost function
D (Y, S), (i,p) € R : (u,v) € p with respect to s,,, and
the subgradients of D; ) (Y, S) with respect to y,; satisfy

Dipy @ Diipy @
Wip @y & T L, je Ve,

17
Dy = 2. 17)
Dy ©  8*Dgy ©
) L W) N
OSpu  — 9s2,
© @
dymiD(i,p) S 07 dymiD(i,p) Z 07 m e p, (18)
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where (a) follows from that f(SINR,,(S)) is a decreasing
function of SINR,,,(S) which is decreasing in s;,, for j €
V\v, and similarly (b) from that SINR,,,(S) is linearly pro-
portional to s, and f(SINR,,(S)) is inversely proportional
to log(1 + SINR,,,(S)) and convex in SINR,,(S). Note that
(¢) is from (14), and (d) from the convexity of D(Y,.S) in Y.
The following characterizes the optimality conditions for
the relaxed delay-cost function D(Y, .S) with a general convex
power allocation region Dg which is true from linearity of (8),
and a general convex cache allocation region Dy .
b) Generalized KKT conditions that requires strictly con-
vex Dg for unique optimal solution:

Proposition 3. Assume that the cost functions D(; (Y, S)
satisfy (17) and (18), and Dg is convex. Then, for a feasible set
of cache and power allocations (Y )vev,icc and (Svu) (v,u)eE
to be a solution of (15), the following conditions are necessary:

For all v € V, i € C, there exists a constant .,,; for which

dyviD = Qlyj, if Yvi € (07 1)7
dym'D > g, if Yo =0,

dyviD < Qui, if Yvi = 1, (19)
holds. For all feasible (Asyy)wuycE @t (Svu)wu)eE
0D
Z 68( ) (K S) “Asyy > 0, (20)
(17]7)67?, VU
S (Y8 Aspy 20, jE VI, @1)

S
(iper 7
where S** is the optimal power, sy, at Sy, is an incremental

direction that is feasible Ui there exists & > 0 such that Sy, +
§ - Asyy € Ds, V 0 € (0,0).

Proof. See Proof of Prop. 3 in [29]. O]

If D (Y,8) is jointly convex in (Y,S), the above con-
ditions are also sufficient when (19) holds for all v € V.
Furthermore, the optimal S** is unique if Dg is strictly
convex. Moreover, if D(; (Y, S) is strictly convex in Y,
then the optimal cache allocations Y** for the relaxed cost
function are unique as well. This statement can be proven
using arguments similar to the those in [15, Theorem 3].

¢) Pareto optimality of D(Y,S): When f(SINR,,(S))
is chosen to be (2), we infer that D(; ,,)(Y,.S) is in general not
jointly convex in (Y,.5). Hence, we further need to establish
the conditions for a Pareto optimal operating point for strictly
quasi-convex cost functions (as shown in Prop. 2). We next
show that for a solution (Y**, 5**) that both satisfies (19)
and (20), we have the following Pareto optimal property.

Theorem 2. Pareto optimality of D(Y,S). From Prop. 2
on the strict quasi-convexity we have f(SINR,.,(S)) in (2),
Gpi(Y') in (14), and the relaxed delay-cost function for RCF
in (15) are strictly quasi-convex. If a pair of feasible cache
and power allocations ((y}}), (sht)) satisfies conditions (19)-
(20) simultaneously, then the vector of transmission delays
(Dipy (Y™, 5%)) (i,pyer is Pareto optimal, i.e., there does
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Algorithm 1 Projected Subgradient Method

: Choose S°, yO, small scalar e > 0 and let t =0

do
Compute subgradient ds, d, by (23)
Determine step sizes &}, £§ according to (24)
Compute projected variables * and S* by (22)
Update S°*™! and 4! by (22)
Lett=t+1

while D' — D71 > ¢

: Let (y:uw S:ub) = (yt7st)

: Implement b) Rounding.

SOVRIDINDR LN

not exist another pair of feasible allocations ((yfi), (s7))
such that D; ,y(Y#,S#) < D ) (Y**,8%), ¥(i,p) € R,
with at least one inequality being strict.

Proof. See [29, Appendix E]. O

Given the relaxed delay-cost function D(Y, S) of the form
(12), Theorem 2 implies that at the Pareto optimal point, the
cost of a request (i, p) € R cannot be strictly reduced without
increasing the cost of another request (i’,p’) € R.

We next devise a subgradient algorithm to attain the local
minima. This is the Pareto optimal solution for D(Y,.S)
provided that the conditions in Prop. 3 hold. In that case,
from Theorem 1, at each rounding step, the subgradients will
guarantee a constant factor approximation for any S € Dg.

D. Joint Caching and Power Optimization via Subgradient

Due to the non-differentiability and non-convexity of
D(Y, S) in general SINR condition, we adopt a subgradient
projection method solving for the local minima.

a) Algorithm overview: Let y to denote the vectorized
caching variable Y, namely y € [0,1]VII€*1 with y,; =
y(ifl)\VHmvv eV,iel.

For the t-th iteration, the subgradient projection method can
be summarized by the following:

ST =8"+65(S -8, 8" =1[5" —widlh,,
y =y + @ -y, 7= 5

t gt
- dey]Dya

where &£, 5; € (0, 1] are step sizes respectively corresponding

to S and y , wh and w! are positive scalars, [z]] denotes

projection of vector = on a convex constraint set A, and

dy = VsD(Y', S, d., ed,D(Y", 5",

(22)

(23)

where dY and d; are the subgradients at iteration ¢ with respect
to S and y, respectively. 9, D(Y*, S*) is the subdifferential
with respect to y.

b) Subgradient: Note that since D(Y,.S) is continuously
differentiable in S over set Dg, the subdifferential of D(Y, .S)
with respect to .S will only contain the gradient. Meanwhile,
OyD(Y*,S") could be explicitly calculated by evaluating
Oy, 9pyi’s inside the term (13) and using (12), where

{1}7 if Z;C:l Ypi < L,
. k

{0}, if 22:1 Ypii > 1,

[07 1]) if Zl:l Ypii = L.

ayvi Ipri =
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Fig. 2: D¢ versus increasing cache capacity. All SC cache capacities are equal
to ¢se, MC cache capacity is ¢me = min(2¢sc, 8), v = 0.25 and §,, = 100.

c) Step size: The gradient/subgradient magnitudes might
be significantly different for Y and S, and thus we compute
their step sizes separately. Note that D(Y,.S) is not Lipschitz
continuous in S [30, Sect. 1.2.2], we use a modified Polyak’s
step size [31]. Let D* = D(y*, S*), then
. D'—Dt Dt — D!

T R T

(24)
lds |2

where D! = min;—,...  D(y*, S*) — 6, is an estimation of
the local minima, {d;};>0 is a sequence of positive scalars
satisfying lim; 0 0¢ = 0, limy_ o0 anzo O = 00.

d) Convergence: Using the modified Polyak’s step size
in (24), the subgradient projection algorithm is guaranteed to

converge to a local minima D7, ,, which we provide next.

Lemma 1. Let (y',S%) be generated by the subgradient
projection algorithm with modified Polyak’s step size (24).

Then, the algorithm converges to a local minima D7 ,, i.e.,
liminf D' = D%, . (25)

t—o00

We omit the proof of Lemma 1 as convergence of subgra-
dient projection has been widely studied, e.g., in [32, Ch. 7].

The subgradient projection algorithm converges linearly. To
see this, define (y?,,, S%,;) to be the set of y and .S that attains
the local minima D? ,. Given the objective D(y,S) and its
subgradients are bounded near (y%,,,S%,,), we say D(y,.S)
has a sharp set of minima near and inside (y?,,, S%,,), namely

there exists g > 0 such that for any S € Dg and y € Dy,

where L(y,S) = miney  ses:, /o~ yE + 15 3|
denotes the distance from (y,.S) to (Y2, Si.s)-

The existence of sharp set of minima further leads to a
bound of improvement by each step, i.e.,

D' - D:ub
U2
where L' = L(y',S*). Lemma 2 below then follows by
aggregating the bounds for iteration O through ¢ — 1.

(L) < (1)
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Fig. 3: D° versus §,, which is the same for all v € V. All SC cache capacities
are equal to csc = 2, and ¢yme = 4. v = 0.25.
Lemma 2. Let (yt,S*) be generated by the subgradient
projection algorithm with modified Polyak’s step size in (24).
Then, L linearly converges according to

L(y', S" < o EL( 0,59
y ) — U2 y ) 9
where L is the finite positive scalar in (26), and U is a finite
positive scalar with ||dL||* + ||d%||* < U for any t.

Proof. See [29, Appendix G]. O

27)

We summarize the subgradient projection method that
achieves the local minima in Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we present numerical results obtained
from several simulation scenarios. We simulate a network
in accordance with the model in Sect. II and compare the
performance of Algorithm 1 (SUB) to the LRU, LFU and
FIFO cache replacement policies. We pair these policies with
power optimization to have a fair comparison. To make this
distinction clear, we name these power optimal (PO) policies
POLRU, POLFU and POFIFO when reporting results.

Simulation setup. We simulate a network with 30 users, 4
SCs and a single MC. Users are distributed uniformly, while
SCs are distributed using Lloyd’s algorithm [33], inside the
coverage area of the MC. The users do not cache items, and
each one requests a single item at a given time, from a catalog
of 10 items, based on a Zipf distribution with parameter ~y
which can be interpreted as the popularity distribution of
content items. The backhaul is the source for all items while
the MC and SCs are not designated sources for any item.
When a request for an item arrives at the MC or an SC, if
the item is not already cached there, it is retrieved from an
uplink node that caches the item or from the backhaul and then
cached. We calculate gains using pathloss exponent n = 3.7
and we set noise power to IV, = 1 for all v € V. For SUB,
we set the initial points S° and Y° so that 0, = 5,/|0,]
and yY;, = 0 for all v,u € V and i € C. While SUB can
optimize a snapshot of the network, LRU, LFU and FIFO
policies assume a cache history. Therefore, we simulate these
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policies in a time-slotted fashion and compare their average
results to SUB. We now discuss our observations from three
distinct simulation settings. We include any other necessary
parameters and details in these discussions.

Effect of cache capacity constraints. We present the results
of this setting in Fig. 2. We see that, with increasing cache
capacities, our joint optimization algorithm, SUB, reduces
delay at a much faster rate compared to traditional replacement
policies. SUB also achieves a point of minimum delay given
large enough caches, while traditional policies do not converge
to such a point and perform worse than SUB with all values
of the cache capacity constraint. Numerically, SUB achieves
at least 15% less delay, with up to 50% less delay at c;. = 4,
with the given parameters.

Effect of power constraints. We present the results of this
setting in Fig. 3. We observe that traditional policies and
SUB show a similar decreasing trend in delay when the total
power budget is increased. However, we can still observe
the benefit of jointly optimizing power with caching: our
algorithm achieves 25% less delay compared to the best
performing traditional method, POLFU.

V. CONCLUSION

We considered the problem of joint power and caching op-
timization to minimize the transmission delay for a stationary
request process in wireless HetNets. Because this problem is
NP-complete, we studied several approximation methods that
rely on convex relaxation and rounding of caching variables
to construct an integral solution. We demonstrated Pareto
optimality of the solution to RCF, and devised a subgradient
projection algoritm for general non-convex RCF. The results of
our approach can enable wireless HetNets to optimally exploit
resources to minimize the use of backhaul connections, thus
minimizing the transmission delays in both mobile devices
and the infrastructure, and to support latency-sensitive appli-
cations. They also quantify the potential cost savings from
the deployment of SCs. More generally, optimal caching and
power control algorithms represent a key enabling technology
for realizing the potential of mobile edge computing and fog
computing.
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