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Invertebrate growth rates have been changing in the Anthropocene. We
examine rates of seasonal maturation in a grasshopper community that
has been declining annually greater than 2% a year over 34 years. As this
grassland has experienced a 1°C increase in temperature, higher plant bio-
mass and lower nutrient densities, the community is maturing more
slowly. Community maturation had a nutritional component: declining in
years/watersheds with lower plant nitrogen. The effects of fire frequency
were consistent with effects of plant nitrogen. Principal components analysis
also suggests associated changes in species composition—declines in the
densities of grass feeders were associated with declines in community matu-
ration rates. We conclude that slowed maturation rates—a trend
counteracted by frequent burning—likely contribute to long-term decline
of this dominant herbivore.

1. Introduction

In temperate climates, insects with annual life cycles have a limited time to convert
food into growing bodies and reproductive tissue. Developmental rate is thus a
basic component of fitness—one that has shown ubiquitous recent change [1]. In
grasshoppers, the phenology of individuals transitioning from egg to adult—
like the phenology of plant development [2] and avian migration [3]—responds
to a complex of drivers. At the same time, the maturation rate of this dominant her-
bivore has broad implications for grassland communities by altering the
availability of grasshoppers as prey. Here, we analyse a 34-year record of grasshop-
per community development in a North American prairie toward identifying
how trends in temperature, biogeochemistry and management account for
changes in a community’s developmental age.

For ectotherms, thermal performance curves (TPCs) reflect how activity and
growth are unimodal functions of temperature [4-6] generating different
responses to warming depending on average temperature and the size and
direction of the temperature change [7,8]. The importance of temperature in
grasshopper development is reflected in its frequent increase with degree
days (number of days above a biologically relevant temperature, [9-11]).
Indeed, warming typically results in faster animal development to smaller
size [6,12], but see [13], suggesting community temperatures are frequently
on the increasing side of the TPC.

A second constraint on development is the availability of the ca 25 elements
[14,15]—all essential—that, like temperature, vary in time and space [16].
Although the function of elements in vivo is still poorly understood [17,18],
three elements have consistently been shown to limit grasshopper abundance
in the field. Sodium (Na) is an electrolyte that frequently limits the abundance
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Table 1. Watersheds were grasshopper sampling occurred. Aboveground plant biomass and plant tissue chemistry was analysed for the three watersheds: 1d, [JEIi}

4b and 20b. U = ungrazed and G = bison grazed. Fire freq refers to the burn interval in years.

watershed latitude longitude
1d 39.07865 965626
2 390725 965775
2 39.06966 965626
W 300786 9657
4 39.07497 —96.598
i 39.07385 965712
nla 39.0936 96,5002
b 39.0813 965714
n20a 39.0953 96,5987
n20b 39.08685 —96.5706
nda 39.0803 —96.6059
d 39.07985 965834

of insect herbivores [19-22]. Phosphorus (P) is a key element
limiting growth rates [23] that tends to reach higher tissue
levels in smaller, developing organisms [24]. Nitrogen (N)
like temperature can have a unimodal effect on grasshopper
life history, limiting abundance in experimental studies
when added alone [25], see also [26,27] or in conjunction
with P [28]. However, reflecting the unimodal relationship
between N and fitness, a high ratio of N to carbohydrates
can inhibit growth in grasshopper nymphs [29].

Temperature, plant biomass and nutrient density also
vary with landscape level processes like grazing and fire.
Grazing can have positive effects on grasshopper populations
by warming the soil, increasing egg development tempera-
ture [9,10], and by enhancing the nutrient content of
vegetation through cropping and excretion [30]. Likewise,
as plant N content tends to accumulate with time since fire
[31], fire frequency can alter grasshopper fitness.

Here, we use a 34-year dataset of grasshopper abundance
and age structure + plant biomass and chemistry on a native
tallgrass prairie to refine our hypotheses as to the drivers of sea-
sonal community maturity—the weighted distribution of
individuals across five growth stages. In this Kansas grassland
[32], (1) grasshopper abundance has declined by greater than
2% year over this same period, (2) temperature has increased
by ca 1°C, (3) precipitation has not, (4) grass biomass has
doubled, and, in one watershed, (5) tissue density of N, P
and Na in plant samples has declined. We focus on the working
hypotheses that both temperature and nutrient density are
unimodal drivers, increasing or decreasing based on the state
of the system. We do so by first using the longest record on
annually burned ungrazed grasslands, then extend those find-
ings to experimentally burned and grazed watersheds, with
their own effects on temperature and nutrient density.

2. Methods

(a) Site description
Konza Prairie (KNZ) is a 3487-ha tallgrass prairie and long-
term ecological research (LTER) site in northeast Kansas, USA

[ BN = B ) B D BN D N ) W i o e e e

grazed

fire freq start year end year
1 1982 2019
20 198 2019
2 1987 2019
2 1984 2019
4 1982 2019
4 1984 2019
1 2002 2018
1 2002 2018
2 2002 2018
2 2002 2018
4 2002 2018
4 2002 2018

(39°05' N, 96°35' W). The site’s watersheds are experimentally sub-
jected to crossed design treatments of large-scale fire frequency
(1, 2,4 and 20 year fire return intervals) and grazing (bison grazed
and ungrazed). KNZ averaged 12.7°C and 839 mm rain yr™'
across the study period (1982-2019). Climate data collected at
KNZ headquarters were sourced from [33]. We calculated average
temperature and cumulative precipitation annually from January
to July (when grasshoppers were sampled) as climate predictors.

(b) Grasshopper sampling

Grasshoppers in the family Acrididae were collected on KNZ
from 1982 to 1991 and 1996 to 2019 [34]. Grasshoppers are col-
lected using 38 cm diameter sweep nets in 10 subsamples of
20 sweeps each (totalling 200 sweeps per sample) in two
locations per watershed and twice per year (usually mid-July
and early August). For consistency, we included only samples
collected in July and August and in the watersheds which had
no change in land management across sampling periods
(table 1). The developmental stage of each grasshopper was
recorded in categories of 1st, 2nd-3rd, 4th and 5th instar or adult.

(c) Plant sampling

Aboveground plant biomass is quantified at the end of the
growing season on three watersheds (watersheds: 1d, 4b and
20b; all ungrazed, with fire return intervals of 1, 4 and 20 year,
respectively); data are available from 1984 to 2015 [35]. All
aboveground biomass was clipped from 20 plots per
watershed per year in 0.1 m* quadrats and sorted into categories
of grass, forbs and woody plants before being dried and
weighed.

Elemental chemistry was analysed for each plant category for
the three watersheds and years with sufficient plant tissue. Per
cent N was quantified using combustion analysis while the
parts per million (ppm) of P and Na were analysed using hot
plate digestion and inductively coupled plasma atomic emission
spectroscopy by the Cornell Nutrient Analysis Laboratory
(https://cnal.cals.cornell.edu/).

(d) Analysis
For each sample, we calculated a weighted mean of the develop-
mental stage (DSWM) using the formula:
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Figure 1. Changes in the residual of grasshopper weighted mean of the developmental stage (DSWM) after accounting for the effect of the DOY over time (a) and
with concentrations of plant nitrogen for three watersheds (b). Points in (a) are coloured according to fire frequency and were horizontally jittered to improve

visualization.

no. 1st instars + no. 2nd and 3rd instars * 2.5 + no. 4th instars * 4 + no. 5th instars * 5 + no. adults x 6

DSWM =

To test the effects of plant quantity and quality on grasshopper
DSWM, we fit generalized least-squares (gls) model using the
three watersheds where plant biomass was sampled. These three
watersheds were all ungrazed by bison. Independent model terms
included total plant biomass, and plant tissue per cent N, ppm Na
and ppm P (plant terms), in addition to year, mean temperature
and cumulative precipitation of Dec-Aug, fire treatment, the abun-
dance of grasshoppers in the sample (to control for density
dependence), the first two axes of a principle component analysis
(PCA) of the grasshopper community—using the annual abundance
of 52 taxa—to identify changes due to community composition,
and the numerical day of year the sample was collected on to control
for seasonal period. The model additionally included a correlation
structure to group watershed and year of sample.

To test the effects of year, climate and grassland management
on grasshopper DSWM, we fit a similar model but with three
differences: the model was fit to all 12 watersheds, plant terms
were not included, and grazing treatment was included.

Total grasshoppers per sample were log;, transformed and
numerical variables were scaled to unit standard deviation prior
to analyses. Model selection was conducted by comparing all poss-
ible model combinations and using Akaike’s information criterion
corrected for small sample size (AIC,.) with models with AAIC. <2
considered equally parsimonious [36]. Gls models were run using
the nlme package [37], PCA was conducted using vegan [38], and
AAICc selection was done using the MuMIn package [39] in
program R v. 4.0.5 [40].

3. Results

We draw on a 34-year span of grasshopper data from 84773
individuals generating 1244 weighted means of a community’s
developmental stage (DSWM) from 1983 to 2019. DSWM
averaged 4.03, s.e.: 0.02 and ranged from 1.3 to 6.

(a) Testing the effects of forage quality and
temperature

We first analysed communities from three watersheds that
were monitored for plant biomass and ppm N, P and Na.

total abundance

7

One top model was generated accounting for 53% of the vari-
ation in DSWM, with four significant terms (all p <0.001)
contributing roughly equally (electronic supplementary
material, tables S1-S3). Accounting for sampling date
(DSWM increases over the season: Est: 0.34, s.e.: 0.06), grass-
hopper communities matured more slowly (Est: —0.45, s.e.:
0.09; figure 1a) over the same interval during which grass bio-
mass doubled, N, P and Na had declined, and average
temperature increased ca 1°C [32]. Grasshopper communities
also matured more slowly in watersheds and years with
higher plant ppm N (Est: —0.26, s.e.: 0.07; figure 1b). How-
ever, consistent with the unimodal effects of N on fitness, in
the annually burned watershed—with the lowest plant N
levels—this trend was reversed: more plant N led to faster
grasshopper development (figure 1b). Notably, temperature
did not enter the model.

(b) Testing the effects of land management—burning

and grazing

The top model reported seven significant terms (all p <0.001,
except precipitation: p=0.003) accounting for 36% of the
variation in DWSM. We focus here on the four that account
for greater than 1% of the variation in DWSM. After account-
ing for seasonality (Est: 0.39, s.e.: 0.02; figure 2), grasshoppers
again matured more slowly over time (Est: —0.11, s.e.: 0.03).
Grasshopper communities matured more slowly in water-
sheds burned less frequently (Est: —0.21, s.e. 0.03;
figure 2a,b). Grazing did not enter the model.

(c) Evaluating species composition as a covariate
Finally, in both the forage quality and land management ana-
lyses above, the PC2 axis reflecting community composition
(electronic supplementary material, tables S1-S3) covaried
with DSWM. It accounted for 16% of the variation (Est:
0.73, s.e.: 0.1; correlated (r> 10.31) in the first; and 10% in
the second (PC2 Est 0.48, s.e.: 0.04]).
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Figure 2. Changes in grasshopper weighted mean of the developmental stage (DSWM) with (a) sample date and (b) those residuals with fire frequency (years

between controlled burns).

4. Discussion

Over the past four decades, the grasshopper communities of a
North American tallgrass prairie matured more slowly (i.e.
lower DSWM) despite the ca 1°C increase in average tempera-
ture and the doubling of grass biomass [32]. This slowed rate of
community maturation—and the potential decrease in time for
adults to build egg mass—Ilikely contributed to the 20+ year
grasshopper declines on this grassland preserve [32] and may
be an important proximate mechanism for other insect declines
(e.g. [41-43]). We found mixed evidence for the direct effects of
temperature and plant elemental chemistry on this slowdown
in grasshopper community maturation, and evidence that
both play a role via a key source of disturbance that maintains
tallgrass prairie: burning.

The decrease in maturation rate over a period when temp-
erature increased by 1°C is consistent with a community that
crossed the peak and is on the decline side of the thermal per-
formance curve [7], but we found no effect of annual variation
in temperature. However, we note that soil temperature, via
effects on egg mortality and development [44,45] may be buf-
fered, or even cooled, by enhanced plant biomass, negating the
1°C long-term increase [46,47]. Soil monitoring would clarify
the effects of temperature in future studies.

The increases in plant biomass in the ungrazed watersheds
can also dilute nutrient concentrations in the grasshopper’s
host plants as taller plants are increasingly made up of low-
nutrient stem tissue (i.e. ‘dilution by growth, [48-50]). After
accounting for daily and annual changes in DSWM, our best
models revealed a unimodal effect of increasing plant N (enhan-
cing maturation in the low-N annually burned grasslands and
reducing maturation as burn frequency decreased). Fire fre-
quency may modify this effect. As fires increased from once
every 20 years to once every 1 year (generating a gradient of
decreasing N, [31]) so did grasshopper community maturation
rates, reinforcing evidence for an inhibitory effect of high N
when N level was higher, and having the opposite effect when
annual fires burns deplete local N supplies.

The contribution of species composition via PC2 suggests
a role for species differences on community growth rates.
Based on DNA analysis of Konza grasshopper diets [51],
the four species whose abundance was most associated
with high community growth rates were all grass feeders;
those associated with low growth rates were forb feeders.
The cause/effect of this association—do grass feeders

develop more slowly, or do they perform better in years
favouring rapid community development?—deserves further
investigation.

It is notable that both temperature and N’s hypothesized
unimodal effect on grasshopper fitness can generate a diver-
sity of responses to ecosystem change, making broad
predictions a challenge. Comparative studies, while vital,
cannot unambiguously rule out other interactions caused
by, (i) the effects of woody encroachment [52], (ii) shifts in
the dietary macromolecules like N-rich proteins and plant
defenses, and C-rich carbohydrates, lipids, built by elements
[53] and (iii) the effects of increasing plant biomass on preda-
tion risk [54] and, via shading, microclimate [46,55]. To this
list of interactions, we add the intriguing possibility that
decreasing nutrient density of food enhances the herbivore’s
metabolic rate and decreases its growth rate [56].

Finally, body mass is the third key variable linking abun-
dance and development rate to fitness [6]. When resources
are scarce, invertebrate growth rates tend to decrease, and
when temperatures increase, size at maturity decreases [12]
a pattern that may be reversed as season length declines
[13]. Understanding the role of body size in the Konza grass-
hopper decline is the next step toward understanding the
future of grasshopper communities on this tallgrass prairie.

Data accessibility. All but one dataset is publically available via the US
LTER network data archives. Climate data: https://doi.org/10.
6073/ pasta/2483e2420b65d82{23513091956138a7 Grasshopper data:
doi:10.6073/ pasta/aec67f5d71d14cd39fe8b6b34b4719f4 Plant  bio-
mass data: doi:10.6073/pasta/eebbc157d1cf9be85a7327961c89859a.

The plant chemistry data can be found in the Open Science
Framework repository: doi:10.17605/OSF.I0/ZSXBP.

The data are provided in the electronic supplementary material [57].
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