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pattern explains why most of the N imported to the grain at maturity was 
originated from the leaves/stem N pool and recognizes N mobilization as 
a key trait in N-efficient genotypes (Chen and Mi, 2018; Masclaux-
Daubresse et al., 2010; Tian et al., 2015). Despite the improvements in N 
uptake capacity, the P1197 hybrid also had an enhanced internal utili
zation of N for grain production. This was achieved by lowering the 
grain N requirements which predominantly alleviated the demand for 
endogenous-N per grain. This strategy allowed a more efficient utiliza
tion of the endogenous-N pool to sustain optimal growth in a greater 
number of grains in this genotype, at the expense of their nutritional 
value. These findings underscore the necessity to consider the internal N 
efficiency in crops by considering both exogenous- and endogenous-N as 
sources for the grain N requirement (Schiltz et al., 2005). 

4.2. Carbon fixation as affected by adjustments in leaf N allocation and 
mobilization 

A consistent increase in the proportion of exogenous-N allocated to 
leaves was observed in the modern hybrid P1197. Regardless of whether 
N uptake was increased or not, P1197 showed an improved mobilization 
of new N absorbed through the photosynthetic organs linked to an in
crease in post-silking C gain. The increment in post-silking C fixation 
with the greater leaf N allocation raised up the question if the N allo
cation to leaf has been modified. Leaf N can be categorized as N asso
ciated with photosynthetic enzymes and thylakoid N, and the soluble- 
and insoluble-N pool constituents of cell walls, membranes, and other 
structures (Mu et al., 2016). In Arabidopsis mutants with greater leaf N 
allocation by means of greater biomass but unchanged content per unit 
leaf area, enhanced C fixation was a consequence of also an improved 
investment of N into the synthesis of the photosynthetic components 
(Perchlik and Tegeder, 2018). Studies in maize (although from a distinct 
genetic background from the ones used here), showed higher leaf C 
exchange rates in newer hybrids but only under N-deficiency, by means 
of improved chlorophyll content and thylakoid electron transport 
(Echarte et al., 2008). Considering the correlation between leaf N and 
Rubisco (ribulose-1,5-bisphosphate carboxylase) content, electron 
transport, and photosynthesis (Dwyer et al., 1995; Eichelmann et al., 
2009; Evans, 1989; Meinzer and Zhu, 1998), these outcomes seem to 
confirm that selection and breeding in maize hybrid development have 
improved leaf N status under N stress conditions (Boomsma et al., 2009; 
McCullough et al., 1994). While the specific impacts on the light and 
dark photosynthetic reactions remains to be determined, the small dif
ferences between 3394 and P1197 in green leaf biomass and leaf area 
under low N (Fernandez et al., 2021) suggest that the enhanced 
post-silking C fixation may result from adjustments in the leaf N content 
induced by an optimized exogenous-N supply. 

When maize plants were grown under favorable N conditions and the 
optimum specific leaf N (SLN) content for growth was attained (Sinclair 
and Horie, 1989), modifications in the chlorophyll and soluble protein 
content [among which are Rubisco and phosphoenolpyruvate carbox
ylase (PEPC)] per unit of leaf N hardly affects the net photosynthetic 
rates (Mu et al., 2016). These findings suggest that the modern hybrid 
P1197 increased C fixation under high-N by means of a greater total leaf 
area and a longer retention of green leaves. It therefore seems likely that 
the enhanced leaf N allocation in P1197 may have been triggered by a 
greater leaf/shoot ratio (Mueller et al., 2019) and an improved exoge
nous N supply to preserve the photosynthetic machinery during late 
grain development (Mu et al., 2018). Furthermore, both genotypes used 
in this research showed similar SLN content under high N supply (Fer
nandez et al., 2021). This would imply that the optimized plant N dis
tribution also resulted in a better C fixation efficiency per unit of leaf N, 
as seen in other species (Atkin et al., 2015; Perchlik and Tegeder, 2018). 
These results establish that direct selection for yield have indirectly 
favored N allocation to leaves in modern maize hybrids resulting in an 
improved post-silking C fixation under high- and low-N availability. 

4.3. Implications of N dynamics on yield productivity and N utilization 
efficiency 

As shown in this study, the P1197 genotype achieved greater grain 
yields and kernel number than the 3394. Breeding progress has 
increased reproductive resilience and grain set at flowering over time 
(Messina et al., 2021), establishing a larger reproductive N sink. Here, 
we provided evidence that the modern genotype could support this 
larger N demand through two mechanisms, but in a different proportion 
depending on N availability. First, an increase in post-silking N uptake 
(i.e. exogenous-N to the grains) under all N conditions. Even more, the 
greater number of kernels not only increased grain N demand in P1197 
but also stimulated post-silking C accumulation and growth. Increased 
photosynthetic activity may have stimulated N uptake and assimilation 
in vegetative tissues (Lillo, 2008; Masclaux-Daubresse et al., 2010), re
flected here by the ability of P1197 to accommodate more exogenous-N 
in leaves during post-silking. This led to a greater pool of N to support an 
increase in N mobilization from the stover (i.e. endogenous-N mostly 
from leaves), reflecting a second mechanism for the higher N produc
tivity of P1197. The P1197 showed a better remobilization capacity by 
means of post-silking N allocated to vegetative tissues, which is 
demonstrated by the fact that both genotypes achieved a similar plant N 
content at silking. This second mechanism was especially important 
under high N conditions, where P1197 also evidenced increments in N 
utilization efficiency relative to 3394. Furthermore, the greater N uti
lization efficiency was linked to a reduction in grain N concentration. 
This study establish that the reduction in grain N concentration was 
linked to the endogenous-N supply to the kernel (i.e. from N-remobili
zation) rather than to the N derived from post-silking uptake to the 
grains. It seems improving the N-storage capacity of maize (i.e. either 
increasing intrinsic N uptake, more N capture per unit of mass or via 
greater leaf mass) could be key to support further increases in yield with 
less reduction of the grain N concentration. These findings motivate 
future research of the significance and alteration of pre-silking N storage 
and remobilization in maize crops with long-term breeding selection. 

Understanding the supply-demand relationship of endogenous-N at a 
whole-plant scale requires additional consideration on the variation 
pattern of grain N requirements. In this sense, a lower target of N per 
grain in P1197 was observed only under high N, which would imply a 
greater accumulation of starch and therefore lower growth costs per 
grain (Penning de Vries et al., 1974; Van Iersel, 2003). Although the 
energetic balance in the plant has not been formally quantified, P1197 
showed a superior whole-plant endogenous-N mobilization suggesting 
altered rates of protein turnover and re-allocation of N (Irving et al., 
2010). While recognizing the complexity of reactions involved, it can be 
argued that further work needs to be conducted evaluating the plant 
respiratory kinetics across different maize genotypes. Moreover, inte
grating this information within the two-way flux framework of 
exogenous-N absorbed and pre-existing endogenous-N may bring an 
opportunity for models that can account for the protein turnover rates 
across organs in crops (Loomis and Amthor, 1999). 

5. Conclusions 

The present study presents a novel approach to study post-silking N 
allocation and translocation processes for two historical maize geno
types as affected by N availability. By using a dynamic framework of N 
fluxes considering the external N supply (exogenous-N) and the pre- 
existing internal N (endogenous-N) in the plant, this research ad
vances our understanding in the adaptive changes in N use with genetic 
selection over time in these hybrids. Results revealed that the 
improvement in exogenous-N uptake during post-silking in the newer 
genotype was induced by both a greater number of grains and an 
enhanced supply of N to the leaves. Indeed, in proportional terms, 
hybrid P1197 had a larger partitioning of absorbed N to the photosyn
thetic organs relative to the older genotype which lead to a better C 
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assimilation. This greater amount of N into leaves was re-translocated as 
endogenous-N to the grains and signified a critical N source for final 
grain N content, especially under high N. These findings establish that 
direct selection for yield have indirectly favored N allocation to leaves in 
modern maize hybrids resulting in an improved post-silking C fixation 
under high- and low-N availability. Moreover, we propose further 
investigation of the underlying implications on photosynthesis and 
respiratory system as involved in plant growth. Ultimately, the 15N 
multi-stage labelling allows for the opportunity to develop meaningful 
crop models characterizing the internal allocation and recycling of N, 
and informs selection strategies towards N-efficient genotypes. 
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