
2124 |   wileyonlinelibrary.com/journal/gcb Glob Change Biol. 2022;28:2124–2132.© 2022 John Wiley & Sons Ltd

| |

R E S E A R C H  A R T I C L E

Precipitation effects on nematode diversity and carbon 
footprint across grasslands

André L. C. Franco1 |   Pingting Guan2,3 |   Shuyan Cui3 |   Cecilia M. de Tomasel1 |   
Laureano A. Gherardi4 |   Osvaldo E. Sala5 |   Diana H. Wall6

André L. C. Franco, Pingting Guan and Shuyan Cui contributed equally.  

1

University, Fort Collins, Colorado, USA
2State Environmental Protection 

and Vegetation Restoration, School 

University, Changchun, China
3

China
4

Arizona, USA

USA
6

Global Environmental Sustainability, 
Colorado State University, Fort Collins, 
Colorado, USA

Correspondence

Present address

Funding information

Abstract

tems and are critical to the global soil carbon (C) cycling through their role in organic 

×

semiarid and arid grasslands.
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deluge events.

et al., 2010), which is increased by moisture in the soil habitat and 
thus tends to be higher in moist than in dry environments (Treonis 

water availability in a given site could be within minutes to hours 

|

|

including three grassland ecosystems in the United States. The arid 

Bouteloua 
eriopoda

Bouteloua gracilis, con

dominant vegetation is Andropogon gerardii, Panicum virgatum, and 
Sorghastrum nutans
in both the arid and semiarid sites, and silty clay loam at the mesic 
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large and small water reduction, large and small water addition, and 

×

across sites had drought/deluges that were similarly relative to their 

× × 3 

|

× 

x, Fux x, and Prx (where x =

equivalent).

|

p

r2

3 and 
Pr

4, Fu3, Pr3, and 
Pr4

at the p <

|

|
temporal precipitation gradients

× 10  ± 3 × 10 , p = pinteraction = .0022, 
r2 =

http://nemaplex.ucdavis.edu/Ecology
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psite < .0001, p  < .0001, pinteraction = .1301, 
r2 = .43; Figure 1b). Across sites, the mesic site showed lower even

± 0.02, p = .0104; Figure 1c).

the mesic site (Tables S1– S3). The most abundant genera in the drier 

Aphelenchoides
these sites were Acrobeles, Cervidellus, Cephalobus, Aphelenchoides, 
and Thonus Panagrellus, 
Achromadora, Cylindrolaimus, Alaimus and Enchodelus.

indicate the p
variable (***<.001, **<.01, *< =

at wileyonlinelibrary.com]

(a) (b)

(c)

= Rhabditis, 2 = Panagrolaimus, 3 = Panagrellus, 4 = Acrobeles = Chiloplacus, 6 = Acrobeloides, 
= Cervidellus, 8 = Acrolobus = Cephalobus, 10 = Anaplectus, 11 = Plectus, 12 = Eucephalobus, 13 = Eumonhystera, 14 = Wilsonema, 

= Rhabdolaimus, 16 = Achromadora = Prismatolaimus, 18 = Metateratocephalus = Teratocephalus, 20 = Cylindrolaimus, 21 = Alaimus, 
22 = Aphelenchoides, 23 = Paraphelenchus, 24 = Aphelenchus = Diphtherophora, 26 = Tylencholaimus = Tripyla, 28 = Thonus, 

= Microdorylaimus, 30 = Dorydorella, 31 = Eudorylaimus, 32 = Epidorylaimus, 33 = Pungentus, 34 = Enchodelus = Prionchulus, 
36 = Mylonchulus = Aporcelaimellus, 38 = Paraxonchium = Torumanawa, 40 = Discolaimium, 41 = Discolaimus, 42 = Ecumenicus, 
43 = Mesodorylaimus, 44 = Prodorylaimus = Dorylaimellus, 46 = Axonchium = Carcharolaimus, 48 = Chrysonemoides
be viewed at wileyonlinelibrary.com]
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|
community structure along spatial and temporal 
precipitation gradients

= 2, f =
r2 = .33, p =

= 1, f = r2 = .02, p = .001). The semiarid 

×

1 2

2 (Figure 3) which com

2 3, Fu2  

|

× site interaction; p  = r
2
respired

 = .82, 

p  = .0001, r2
production

 = pbiomass = r
2
biomass

 =

μ

all C variables increased or remained relatively stable with increas

|

|
spatial precipitation gradient

2

omnivorous genera occurred in the mesic site. This change in domi

2

|
temporal precipitation gradients

both genus diversity and evenness (Figure 1a,b). At arid and semi

1 2
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Panagrolaimus and Acrolobus (Table S3).

|
carbon footprint

tive to null at semiarid and arid grasslands (Figure 4). Thus, consistent 

in semiarid and arid conditions may be related to the increased abun

1 2 3

turnover in semiarid and arid grasslands but not in mesic ecosystems. 

4, 
Fu3, Pr3, and Pr4 p <.001, **<.01, *<
ns =

(a) (b) (c)

(d) (e) (f)

(g) (h)
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