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Prédiction de la DRC a un stade précoce a 1’aide

d’un ensemble d’algorithmes d’apprentissage
machine
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Abstract— At leading technology nodes, the industry is facing a stiff challenge to make profitable integrated
circuits (ICs). One of the primary issues is the design rule checking (DRC) violation. This research cohort
with the DARPA IDEA program aims for ‘“no-human-in-the-loop” and 24-h turnaround time to implement an
IC from design specifications. In order to reduce human effort, this work introduces the ensemble random
forest, gradient boosting, and Adaboost algorithms to predict DRC violations before detailed routing, which is
considered the most time-consuming step in an IC design flow. In addition, this work identifies the features that
critically impact DRC violations. The proposed algorithm has a 2% better F1-score compared to the existing
support-vector machine (SVM) classifiers. The proposed ensemble approach has up to an area-under-the-curve-
receiver operating characteristics (AUC-ROC) curve mean of 0.940 with £+ 0.011 standard deviation compared
to the state-of-the-art SVM classifier with an AUC-ROC curve mean of 0.854 with + 0.01 standard deviation.
The proposed ensemble approach exhibits up to 28.7% better DRC violation prediction rate compared to those
using SVM algorithms on the test data. In addition, the proposed gradient boosting algorithm requires 37.5x
lower average training time and 50x lower average testing time compared to the existing SVM methodologies.

Résumé—Dans les nceeuds technologiques de pointe, I’industrie doit relever un défi de taille pour fabriquer
des circuits intégrés (CI) rentables. L’un des principaux problémes est la vérification de la violation des regles de
conception (DRC). Cette cohorte de recherche du programme IDEA de la DARPA a pour objectif d’implémenter
un circuit intégré a partir des spécifications de conception sans intervention humaine dans la boucle et dans
un délai de 24 heures. Afin de réduire I’effort humain, ce travail introduit les algorithmes de forét aléatoire
d’ensemble, amplification de gradient et d’Adaboost pour prédire les violations de DRC avant le routage
détaillé, qui est considéré comme I’étape la plus longue dans un flux de conception de CI. En outre, ce travail
identifie les caractéristiques qui ont un impact critique sur les violations de la DRC. L’algorithme proposé
obtient un score F1 supérieur de 2 % a celui des classificateurs SVM (Machine a Vecteur de Support) existants.
L’approche d’ensemble proposée présente une zone sous la courbe - caractéristiques de fonctionnement du
récepteur (AUC-ROC) moyenne de 0,940 avec un écart type de + 0,011 par rapport au classificateur SVM
de pointe dont la moyenne de la courbe AUC-ROC est de 0,854 avec un écart type de £+ 0,01. L’approche
d’ensemble proposée présente un taux de prédiction de violation de la DRC jusqu’a 28,7 % supérieur a celui des
algorithmes SVM sur les données de test. En outre, I’algorithme d’amplification du gradient proposé nécessite
un temps d’entrainement moyen 37,5 fois inférieur et un temps de test moyen 50 fois inférieur par rapport aux
méthodologies SVM existantes.

Index Terms— Adaboost, design rule checking (DRC), ensemble learning, gradient boosting, physical design,
random forest.

I. INTRODUCTION

HE modern microprocessor industry started putting bil-
lions of transistors in a chip, which is a collaborative
effort of industry, academia, and government to continuous
technology scaling and improved electronic design automation
(EDA) tools. The standard integrated circuit (IC) design flow
starts from the behavioral design specification to the physical
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layout generation, commonly used by the design automation
community. Fig. 1 shows a traditional physical design flow,
starting from high-level hardware description language (HDL)
and ending with GDSII generation. In recent years, however,
the IC industry faces an enormous challenge in making reliable
ICs [1], [2]. This is primarily due to hostile technology scaling,
severe timing, and area budgets. Hence, the manufacturing
cost of the ICs is increasing in the below 10-nm technology
nodes [3], [4], [S]. Besides meeting timing constraints, another
major issue that critically affects the performance of the EDA
tool is the design rule checking (DRC) violation [2], [6], [7].

A. Motivation

The first step of physical IC synthesis flow is logic synthesis
and followed by place and route, as shown in Fig. 1. The place
and route comprises partitioning, floorplanning, placement,
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Fig. 1. Conventional physical IC synthesis flow uses high-level HDL code
and design and technology libraries to generate a final GDSII layout; however,
at a low-technology node, a large number of DRC violations make a design
unroutable and increases design time significantly.

global routing, clock tree synthesis, and detailed routing. The
final step, detailed routing, consumes more time than all other
physical design flow stages. It can take days to several weeks
and require considerable computing resources, depending on
the design’s size [2]. In a design, the EDA tools locate a
significant number of DRC violations after routing is done.
Fixing DRC violations require expert skills, and a designer
can remove about 200 DRC violations in a day [8]. Hence,
resolving a large number of DRC violations is expensive
and requires a large number of person-hours. It is mostly
impossible to extract a routable design in the first pass with
all the careful steps and requires many iterations, as shown
in the feedback path in Fig. 1. As a result, early stage
routing prediction attracts great attention from the research
community [2], [7], [9], [10]. The existing synthesis tools use
only global routing congestion report for routability predic-
tion, however, disputed by the research community on the
effectiveness of this method [2], [10]. The EDA researchers
identified some critical features that are highly correlated with
DRC violations. Researchers started using machine learning
algorithms to predict DRC violations by building datasets from
the synthesis tools [7]. The primary idea is to convert a design
into virtual grids and extract features from those grids. Once
the dataset is built, the researchers identify the DRC violations’
locations by applying a supervised support-vector machine
(SVM) algorithm with moderate accuracy [2].

B. Primary Contributions

This article proposes an ensemble learning algorithm that
inherently combines multiple learning models to subdue each
model’s shortcomings to generate a weighted result. It success-
fully predicts DRC violations using ensemble learning-based
random forest [11], gradient boosting, and Adaboost classi-
fiers. Ensemble learning models incorporate multiple learning
models to come to a weighted and better prediction result. For
example, ensemble random forest generates random sets of
uncorrelated decision trees to the outcome to the best possible
prediction. This research shows that the proposed algorithm
performs comparable to or better compared to the existing
methodologies in terms of precision, recall, and Fl-scores.

IEEE CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING

This work also introduced the area-under-the-curve-receiver
operating characteristics (AUC-ROC) curve and feature
importances. To be precise, the primary contributions of this
article are given as follows.

1) From what the author knows, this is the first methodol-
ogy to predict early stage routing using three-ensemble
learning-based algorithms.

2) The proposed methodology identifies the best-suited
ensemble approach for early DRC violation prediction.

3) This work identifies the features that critically influence
the DRC violations.

4) Tt achieves the best precision, recall, and F1-scores of
99%, 99%, and 99%, respectively, which are better
results than those of the existing prediction models.

5) The proposed algorithms® AUC-ROC curve exhibits the
highest ratio among the true positive rate (TPR) and false
positive rate (FPR) of 0.94.

C. Article’s Organization

The remainder of this article is organized as follows.
In Section II, it gives a brief overview of existing machine
learning applications in the physical design flow. Section III
presents the proposed ensemble schemes. In Section IV,
the prediction accuracy and performance efficiency of the
proposed algorithms compared with state-of-the-art schemes
are investigated. Finally, Section V concludes with the key
findings of this work.

II. OVERVIEW OF MACHINE LEARNING APPLICATION IN
PHYSICAL DESIGN FLOW

Machine learning has widespread applications, including
text sentiment classification [12], [13], [14], [15], [16], [17],
natural language processing [18], [19], [20], and sarcasm
identification [21], while, in recent years, researchers have
shown a tremendous interest in machine learning applications
in IC physical design tools [2], [5], [6], [7], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34]. Static
timing analysis (STA) is a key step in the IC design flow, and
machine learning algorithms can play a key role in estimating
delay. The primary reason for this is that machine learning
algorithms can relate the complex interactions between differ-
ent design parameters, for example, wire and gate parasitics,
wire length, buffers, a number of gates, and a number of
primary inputs/outputs.

An incremental STA (iSTA) tool was proposed to model
wire delay/slew, and an offset-based timing correlation was
proposed to obtain an internal STA tool [35]. In order to model
wire delay and slew, this approach uses machine learning
least-squares regression (LSQR) [36] to correlate STA tool
values. Another machine learning approach estimated path
delay by fitting the slack delta before and after threshold
swap [37]. This approach primarily tried to reduce leak-
age power without affecting the path delay. An artificial
neural network (NN) was used, where different gate para-
meters were taken as input and the predicted gate delay
was the output [38]. Other researchers used a multivariate
regression-based machine learning technique to compute the
circuit delays considering IC manufacturing-related process
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variation in the presence of temperature-related temporal varia-
tion [39]. This method is also useful in predicting the dynamic
behavior of a circuit under various operating conditions.

In addition to STA, researchers have applied a machine
learning multivariate adaptive regression spline (MARS) algo-
rithm to predict global routing using pin density and con-
gestion maps as design features [26]. Using this prediction
model, the authors claimed 13% DRC violation reduction
compared to the existing analytical model-based routing pre-
dictor. An ensemble RUSBoost algorithm was proposed by
Tabrizi et al. [30] for DRC violations prediction. However,
this approach achieved only 84% overall prediction accuracy.
Another interesting approach used a supervised multivariate
adaptive regression algorithm for routability or DRC violation
prediction considering different design features collected after
the placement stage [7]. This method achieved 79.8% predic-
tion accuracy. Another approach, the back-end-of-line (BEOL)
stack-aware routability predictor, used machine learning and
data mining algorithms [2]. Besides the BEOL stack, this
approach can predict core utilization and aspect ratio with a
more than 85.4% accuracy rate.

Pin access point information and self-crossing net
information were used by Yu et al. and proposed a
convolutional neural network (CNN)-based pin pattern
recognition (PPR) and the design feature-aware PPR
(DFPPR) models. However, unlike the proposed algorithm,
which considers all kinds of DRC violations, this approach
only considered metal 2 related issues. Another CNN-based
DRC violation prediction method, namely, RouteNet, uses
features associated with macros [29]. However, this method
suffers from low accuracy due to the lack of incorporation
of other physical properties of layouts. Another deep CNN
model used pin-related features, region-based route map, and
trial routing-based features to predict DRC violations [33].
Similar to RouteNet, this approach exhibits low prediction
accuracy. An NN-based ensemble approach used soft voting
architecture and a principal component analysis-based subset
selection scheme to predict DRC violations [34]. Unlike
the proposed method, this technique utilized global routing
information to build the prediction model.

III. PROPOSED ALGORITHM

This article proposes ensemble learning-based algorithms
that inherently combine multiple learning models to subdue
each model’s shortcomings to generate a weighted result. The
proposed early stage DRC violation prediction methodology is
shown in Fig. 2. The proposed methodology collects features
after the placement stage of the conventional physical design
flow. Once features are collected, it applies different ensemble
machine learning algorithms to predict the routability of
design, as shown in Fig. 2.

A. Feature Selection

The proposed methodology collected data by implement-
ing different designs and will be discussed in detail in
Section IV-A. For data collection, it partitioned each design
by the same size grids. Each grid consists of 45 metal
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Fig. 2. Unlike existing methodologies, the proposed algorithm collects
features after the placement stage and applies ensemble algorithms to predict
a design’s DRC violation issues.

2 track x 45 metal 2 track. Then, it collected data features
from each grid. This article considered the following features
for building the dataset and experiments: total area, pin density,
cell density, buried nets, buried pins, intersecting cells, stan-
dard cell count, standard cell area, cell utilization, intersecting
nets, and intersecting pins. Now, it will discuss each feature
briefly.
1) Total Area: 1t is the total area of the grid.
2) Pin Density: It is the ratio of the number of pins in a
grid region and the total area of that region.
3) Cell Density: It is the ratio of the number of cells in a
grid region and the total area of that region.
4) Buried Nets: It refers to the number of nets within a
grid.
5) Buried Pins: It indicates the number of pins within a
grid.
6) Intersecting Cells: It indicates that the number of cells
intersects between two grid networks.
7) Std Cell Count: It refers to the number of standard cells
within a grid.
8) Std Cell Area: Tt refers to the total area occupied by
standard cells within a grid.
9) Cell Utilization: It is the ratio of total cell area of a grid
region and total area of a grid region.
Intersecting Nets: It refers to the number of nets intersect
between two grids.
Intersecting Pins: It refers to the number of pins inter-
sect between two grids.

10)
11)

Empirically, these features directly influence DRC violations
in a design, and the experimental results in Section IV-B
will provide more concrete evidence. After the features
are selected, they are classified into DRC-violated and
DRC-violation-free datasets. In order to identify the perfor-
mance of different ensemble algorithms on DRC violations
prediction, this work considers random forest, gradient boost-
ing, and Adaboosting algorithms.

B. Random Forest Algorithm

The ensemble learning algorithm random forests or ran-
dom decision trees fall in the supervised machine learning
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algorithm category. The random forest can be utilized for
predicting both classification and regression problems [40].
The individual ensemble model uses various learning methods
to reach a better predictive outcome. By creating a distinct
forest of random decision trees, this algorithm provides the
best possible decision.

The decision tree-based random forest algorithm use a
top-down method in which the root node continuously per-
forms binary splitting until it reaches a specific criterion.
As a result, a predicted value is constructed on the inner
nodes reflecting the outer nodes. For classification algorithms,
a decision tree will produce an expected destination group for
every new leaf nodes. However, when the random forest uses
diverse training, they suffer from high variance and overfitting
issues—these issues due to the use of separate training and test
datasets from the same data. As a result, random forest often
performs inadequately on new data and limits their usage.
However, researchers surmount this issue with ensemble
techniques.

The random forest uses a standard bootstrap aggregating
or bagging method to form an ensemble of trees. This
method builds various training sets with replacement and
the likelihood of reusing data. Then, the algorithm uses
each subsample to train a model. At this point, a majority-
voter-type model is introduced to subdue the variance by
taking the average of the results. Besides, the bagging tree
uses the entire feature space for splitting the nodes. This
algorithm improves the prediction accuracy by permitting the
trees to develop without pruning, reducing tree-depth sizes,
and lowering bias at the expense of high variance. It also
compensates for the correlation issue by selecting only a sub-
sample of the feature space during each split—a termination
condition used to prune the trees and keep them away from
correlation.

For generating the real dataset for modeling a decision
tree algorithm, this study divides each design into equal-sized
grids and spends months collecting the required feature para-
meters from each grid. The ensemble method uses the Gini
impurity and entropy metrics to evaluate the uniformity of
the splits. These metrics generally provide foreknowledge
about the critical variables applied in the training of the
model. The entropy computes a pseudolinear logarithmic
function. As a result, it is computationally more expensive
than the Gini impurity. The impurity reaches zero when
all target class labels are alike. In this process, the author
learned what variables played a vital role in the model
predictions.

The proposed random forest DRC prediction methodology
is shown in Algorithm 1. It accepts grid data from synthesized
layouts as inputs and predicts whether the data (i.e., grid)
are DRC violated or clean. This research processes the data
and performs labeling using processData(grid_data) in Line 4.
It splits the data and labels into training and test sets and
fits the data into a random forest classifier model (RFmodel)
in Lines 5 and 6, respectively. It performs DRC violation
prediction in Line 7.
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Algorithm 1 Random Forest DRC Prediction Algorithm

: Input: Extracted grid data from layouts (grid_data);
: Output: Prediction; > DRC violated or DRC clean

: {data,labels} = processData(grid_data)

: train, test, trainLabels, test Labels =
trainTestSplit(data,labels) > Splitting the data and
labels for training and testing

6: RFmodel = RFClassifier(train,trainLabels) >

Training data using a random forest classsifiers

7. predictions = RFmodel.predict(test) > Making the

predictions

[T SR SR

C. Gradient Boosting Algorithm

Boosting can be categorized as observation filtering where
the hypothesis uses weak learners’ compatible observations
and builds new weak learners for difficult observations. A gra-
dient boosting algorithm has three elements: 1) an optimization
loss function; 2) a weak learner for prediction; and 3) a
cumulative model to accumulate weak learners to minimize the
loss function [41], [42]. In general, gradient boosting supports
the differentiable loss function [L(y, F;,(x))], where y is the
output and F;, (x) with v learning rate can be represented as

ey

where h,(x) is the expected fitting decision tree or
pseudo-residuals at the mth step and y,, is the multiplier. The
value of y,, can be computed using the line search, which
minimizes the loss function.

The advantage of this algorithm is that it does not need to
provide loss functions for each new boosting algorithm; rather,
one can use any generic differentiable loss function [41]. It fits
a regression tree on the gradient of the least-squares regression
loss function. However, the least absolute deviation is very
popular due to its robustness, while the Huber loss function
combines the first two and the quantile loss function allows
quantile regression.

Gradient boosting uses decision trees as weak learners.
It constructs the trees using the best split points based on a
minimum loss function. In order to keep weak learners stable,
it is common practice in weak learners to add constraints con-
sidering the maximum number of layers, nodes, and splits. The
learning rate shrinks the contribution of each tree. Empirically,
small v yields exhibit better generalization ability compared
to gradient boosting without shrinking. This work used v =
0.05 for the analysis.

In general, gradient boosting is considered to be robust to
overfitting. As a result, a high number of boosting stages
improves the accuracy. This model considered 200 boosting
stages for optimal performance. Empirically, shorter trees
are preferred over deeper complex trees, and trees of 4-8
levels exhibit better results. In addition, it considered up to
four individual regression estimators for optimal results. For
gradient boosting, it used a similar methodology, as shown

Fm ()C) = mel(x) + Vymhm (X)
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in Algorithm 1. However, Line 6 replaced with a gradient
boosting classifier.

D. Adaboost Algorithm

Similar to gradient boosting, the Adaboost algorithm tries
to fit on a sequence of weak learners on continuously mod-
ified version of data [43]. However, the weak learners are
small decision trees, marginally better than random guessing.
The final prediction is produced using the weighted sum
of all the weak predictors. At each boosting iteration, the
data modification is performed by applying a set of weights
(wy, wy, ..., w,) to each training dataset. The algorithm con-
firms the first sample to be a weak learner by initializing all
weights, w; = (1/n). At each iteration, these weights are
modified and the learning algorithm is continued to apply on
the updated data. The prediction is improved by continuously
increasing the incorrect predictors. On the other hand, the
better predictors’ weights are decreased due to the nature of
the algorithm. As a result, the corner cases receive the great-
est weight variation at each iteration. Hence, weak learners
improve prediction accuracy in the subsequent iteration.

This model uses up to 200 learning estimators. However,
if the model fits the dataset earlier than the given estimator
value, the algorithm converges early. Similar to gradient boost-
ing, it uses a learning rate of 0.05 for optimal performance.
For Adaboost, it used an identical methodology, as shown
in Algorithm 1. However, Line 6 replaced with an Adaboost
classifier.

1V. EXPERIMENTS AND RESULTS
A. Experimental Setup

For experiments, this work utilized community-developed
open-source hardware consisting of crypto cores: MDS5
pipeline, AES128, AES192, and AES256; arithmetic core:
field-programmable gate array (FPGA) median; processor:
OpenMSP and RISC16£84; co-processor: floating-point unit;
and video controller: JPEGEncoder benchmarks from Open-
Core [44]. It utilized Synopsys Design Compiler to perform
logic synthesis and extract gate-level netlist. The synthesis
features (i.e., clock period, aspect ratio, and utilization) are
shown in Table I. For example, this work considered clock
frequency ranging from 100 MHz to 2.5 GHz, aspect ratio
from 0.7 to 0.95, and core utilization from 70% to 95%.
In addition, it used the Synopsys 28-nm CMOS technology
library in the synthesis.

The author prepared a tool command language (TCL) script
to perform place and route using Synopsys IC Compiler. The
dataset size is nearly 60k grid points from the designs men-
tioned above. It considered 80% of the DRC-clean data and
60% of the DRC-violated data for training. Finally, it utilized
the rest of the data for testing. This research implements the
proposed algorithm using the Python programming language.

B. Experimental Results

1) Features Importance: To identify the features that influ-
ence the DRC violations most, it used both the entropy

TABLE 1
THIS RESEARCH USED COMMON SYNTHESIS FEATURES CONSIDERING
CLOCK FREQUENCY RANGES FROM 100 MHz 1O 2.5 GHz, ASPECT
RATIO FROM 0.7 TO 0.95, AND CORE UTILIZATION FROM 70% TO 95%

Design types Clock frequency | Aspect ratio | Utilization
(GHz) (%)
Crypto cores 0.1-1.0 0.75-0.85 80-90
Arithmetic cores 1.0-2.5 0.70-0.95 70-95
Processors 0.1-0.5 0.80-0.85 80-85
Co-processors 1.0-2.5 0.70-0.95 70-95
Video controller 0.1-0.5 0.70-0.90 70-90

Fig. 3. Gini impurity and entropy for identifying the feature importance
and considered features that have more than 5% impact on the proposed
prediction model. (a) Gini impurity to identify feature importance, and it
helps the algorithm to eliminate features that have a lesser impact on DRC
violations. (b) Validated Gini impurity-based feature importance results using
the entropy-based classifier.

and the Gini impurity index. The Gini impurity index-based
and the entropy-based feature importance are shown in
Fig. 3(a) and (b), respectively. The results are identical in
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Fig. 4. Random forest classifier key features tuning. (a) For random forest
classifier, the lowest OOB error was ~5% for the number of trees in the range
of 400-600. (b) It achieved the highest accuracy of 98% with the tree depth
of 17.

each method; however, the entropy-based classifier has slightly
more amplitude than the Gini impurity-based method. In addi-
tion, using Gini impurity, the pin density has slightly more
influence than buried pins in DRC violations, while when
using the entropy-based method, the buried pins have more
influence than the pin density on DRC violations. The pro-
posed algorithm considered only those features that had more
than a 5% impact on the DRC violations. As a result, only the
total area feature is removed from the analysis, and this result
is consistent between both methodologies.

2) Key Parameters Tuning: The random forest algorithm
used two-thirds of the data for training each tree when building
the forest. As a result, one-third of unseen data could improve
accuracy without expensive cross validation. The bootstrap
aggregation fits new trees from the training observations [45].
However, the algorithm experienced an error in each obser-
vation for not using the entire data. The average prediction
error is called the out-of-bag (OOB) error. The proposed
methodology varied the number of trees and computed the
OOB, and according to the analysis, the number of trees in
the range of 400-600 achieved the lowest OOB, as shown
in Fig. 4(a). Another key feature that influences the perfor-
mance of a random forest classifier is the depth of the tree.
Empirically, the algorithm captures more information about
the data with the increase of the tree’s depth. In this analysis,
the author considered the depth of 1-20. The observed highest
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Fig. 5. Gradient boosting classifier key features tuning. (a) For gradient
boosting classifier, the highest accuracy 98.73% achieved using a v =
0.05 value. (b) For the gradient boosting classifier, the changes in maximum
depth have a negligible (i.e., less than 1%) impact on model accuracy.
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accuracy was about 98% with the tree depth of 17, as shown
in Fig. 4(b).
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Fig. 7. Proposed ensemble algorithms exhibit better receiver operating characteristics compared to the existing SVM classifier. (a) Random forest classifier

exhibits a mean area under the curve of 0.917 & 0.01. (b) Gradient boosting classifier exhibits a mean area under the curve of 0.924 £ 0.012. (c) Adaboost
classifier exhibits a mean area under the curve of 0.94 4+ 0.011 compared to (d) SVM’s 0.854 £ 0.01.

The gradient boosting algorithm uses an initial estimate and
then updates using the output of each tree. The v parameter
controls the value of this estimate. A lower v value makes
the model robust to the tree’s specific characteristics and
generalizes well. The analysis of v versus accuracy also
justifies this statement, as shown in Fig. 5(a). The maximum
depth or number of nodes in the tree is crucial for improving
the gradient boosting algorithm’s performance. Similar to the
random forest, this research considers the depth of 1-20.
However, unlike random forest, the accuracy varies less than
1% with the change in maximum depth, as shown in Fig. 5(b).

The Adaboost algorithm used the n_estimator parameter
to control the number of weak learners. This is a crucial
parameter where the model stopped learning if it could not fit a
smaller value. According to this analysis, the model achieved
its maximum accuracy using the ~200 value, as shown in
Fig. 6(a). Unlike the gradient boosting classifier, the Adaboost
was relatively robust with the variation of learning rate. The
accuracy varied less than 1% with the change in the learning
rate, as shown in Fig. 6(b).

3) Accuracy Measurements: In order to verify the pro-
posed methodology’s robustness, this research shuffled the
collected dataset into conventional ten-fold cross validation.

It considered nine sets for training and the remaining one for
testing in each step. To estimate the efficiency of the pro-
posed algorithm, it verified it with AUC-ROC [46]. Besides,
it computed the precision, recall, and Fl-scores. In general,
the AUC-ROC curve plays a significant role in evaluating
the performance of a classification algorithm. The ROC is a
probability diagram and the AUC signifies the classification
accuracy. A prediction model’s strength is represented by its
high AUC rate, implying a high prediction accuracy of TPR
and true negative rate.

Fig. 7(a) shows the AUC-ROC curve for the random forest
algorithm, and it exhibited a mean of 0.917 with £0.01 stan-
dard deviation. It verified the model using the evaluation
metrics on all ten folds of the shuffled data. The proposed
method exhibited a top precision, recall, and F1-score of 97%,
95%, and 96%, respectively. Table II shows the metrics score
on each of the ten folds for the random forest algorithm.

Fig. 7(b) shows the AUC-ROC curve for the gradient
boosting algorithm, and it exhibited a mean of 0.924 with
+0.012 standard deviation. It verified the gradient boosting
model using the evaluation metrics on all ten folds of the
shuffled data such as the random forest algorithm. The pro-
posed method exhibited a maximum precision, recall, and
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Proposed gradient boosting and Adaboost algorithms have comparable TPRs to the existing SVM classifiers [2]. In contrast, the proposed Adaboost

algorithm has a 28.7% better FPR than the SVM classifiers on the test data. (a) Random forest has a TPR of 95.27%. (b) Gradient boosting has a TPR of
99.83%. (c) Adaboost algorithm has a TPR of 99.97%. (d) SVM classifier has a TPR of 99.95%.

F1-score of 99%, 99%, and 99%, respectively. Table II shows
the metrics score on each of the ten folds using the gradient
boosting algorithm.

Fig. 7(c) shows the AUC-ROC curve for the Adaboost
algorithm, and it exhibited a mean of 0.940 with &+ 0.011 stan-
dard deviation compared to the existing SVM classifier-based
model, which showed a mean of 0.854 with £ 0.01 standard
deviation, as shown in Fig. 7(d). Like the other ensemble
approaches, it verified the Adaboost model using the eval-
uation metrics on all ten folds of the shuffled data. The
proposed Adaboost method displayed a top precision, recall,
and F1-score of 98%, 98%, and 97%, compared to the state-of-
the-art SVM classifiers’ [2] 98%, 98%, and 97%, respectively.
Table I shows the metrics score on every ten folds using the
Adaboost algorithm.

The author proposed methodologies were compared by
implementing the existing SVM classifiers for the metrics
of all ten folds, as shown in Table II. The average AUC
(training and test) values for the proposed random forest,
gradient boosting, and Adaboost algorithms were (0.9525 with
+ 0.0014 standard deviation and 0.9207 with & 0.0101 stan-
dard deviation), (0.9456 with 4= 0.0018 standard deviation and
0.9266 with £ 0.0123 standard deviation), and (0.9432 with
4 0.0012 standard deviation and 0.9432 with + 0.0112 stan-
dard deviation), respectively, while the average AUC (train-
ing and test) values for the existing SVM classifier were
(0.9981 with £+ 0.0005 standard deviation and 0.8544 with
+ 0.0104 standard deviation), as shown in Table II.

Fig. 8 shows the confusion matrices of the proposed ensem-
ble methods compared to the existing SVM classifiers on
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TABLE II

AMONG ALL THE PROPOSED ENSEMBLE ALGORITHMS, THE GRADIENT BOOSTING (GB) AND ADABOOST (ADAB) ALGORITHMS HAVE SIMILAR
ACCURACY AND ARE SLIGHTLY BETTER THAN THE RANDOM FOREST (RF) ALGORITHM IN TERMS OF PRECISION, RECALL, AND F1-SCORES

Type K-fold AUC training AUC test Precision (%) | Recall (%) | Fl-score (%) | T, time (sec) | T time (sec)

Fold 1 0.9521 0.9168 97 94 95 3.90 91.2
Fold 2 0.9534 0.9194 97 94 95 4.94 63.2
Fold 3 0.9520 0.9234 97 94 96 3.11 63.1
Fold 4 0.9499 0.9374 97 94 96 3.13 79.8
Fold 5 0.9535 0.9242 97 94 95 3.15 71.7
RF Fold 6 0.9550 0.8975 97 95 96 4.26 732
Fold 7 0.9528 0.9155 97 94 95 3.54 74.4
Fold 8 0.9518 0.9237 97 94 95 3.30 64.2
Fold 9 0.9536 0.9259 97 95 96 3.18 62.4
Fold 10 0.9512 0.9235 97 95 96 3.18 74.7
Avg. | 09525 £+ 0.0014 | 0.9207 + 0.0101 97 94.3 95.5 3.57 72.4
Fold 1 0.9459 0.9182 99 99 98 2.79 22.1
Fold 2 0.9456 0.9321 99 99 99 2.79 21.3
Fold 3 0.9430 0.9402 99 99 99 2.76 235
Fold 4 0.9442 0.9404 99 99 99 2.81 19.3
Fold 5 0.9465 0.9153 98 99 98 2.81 18.5
GB Fold 6 0.9494 0.9091 99 99 98 2.84 24.1
Fold 7 0.9459 0.9169 99 99 99 2.81 16.5
Fold 8 0.9466 0.9179 98 99 98 2.79 17.5
Fold 9 0.9453 0.9337 99 99 99 2.71 19.3
Fold 10 0.9433 0.9417 99 99 99 2.85 18.6
Avg. | 0.9456 + 0.0018 | 0.9266 + 0.0123 98.8 929 98.6 2.80 20.1
Fold 1 0.9439 0.9371 98 99 98 4.50 823
Fold 2 0.9416 0.9571 98 98 97 4.57 88.5
Fold 3 0.9418 0.9559 98 98 97 4.50 81.3
Fold 4 0.9415 0.9584 98 98 97 4.50 78.1
Fold 5 0.9439 0.9360 98 98 97 4.54 87.1
AdaB Fold 6 0.9451 0.9259 98 98 97 4.57 91.2
Fold 7 0.9440 0.9353 98 98 97 4.56 100.2
Fold 8 0.9441 0.9356 98 98 97 5.13 90.5
Fold 9 0.9425 0.9491 98 98 97 4.57 89.6
Fold 10 0.9433 0.9417 98 98 97 4.63 88.5
Avg. | 0.9432 £ 0.0012 | 0.9432 + 0.0112 98 98 97 4.61 87.7
Fold 1 0.9984 0.8613 99 99 98 115.3 952.0
Fold 2 0.9979 0.8410 98 98 97 94.2 962.0
Fold 3 0.9973 0.8599 98 98 97 99.2 952.0
Fold 4 0.9977 0.8727 98 98 97 102.8 1025
Fold 5 0.9982 0.8444 98 98 97 99.1 982.0
SVM [2] | Fold 6 0.9984 0.8461 98 98 97 103.2 1202
Fold 7 0.9989 0.8450 98 98 97 142.8 1003
Fold 8 0.9981 0.8653 98 98 97 102.2 982.0
Fold 9 0.9977 0.8528 98 98 97 98.8 895.1
Fold 10 0.9982 0.8557 98 98 97 93.3 986.3

Avg. | 0.9981 + 0.0005 | 0.8544 + 0.0104 98 98 97 105.1 1002.94

the test data. Fig. 8(a) and (b) shows the random forest and analysis, TPR and FPR are inferred to the accuracy of DRC
gradient boosting algorithms results with TPR of 95.27% and  violation-free data and data with DRC violations. The pro-
99.83% and FPR of 73.15% and 50.96%, respectively. In this posed Adaboost algorithm exhibited TPR and FPR of 99.97%
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and 86.59%, while the existing SVM classifier has 99.95%
and 57.92%, as shown in Fig. 8(c) and (d), respectively. The
proposed random forest, gradient boosting, and Adaboost algo-
rithms exhibited 94.52%, 98.73%, and 98.09% classification
accuracy, respectively, compared to the existing supervised
machine learning algorithm with 79.8% average accuracy [7].
Besides, the proposed ensembled approaches exhibit better
accuracy compared to the NN ensemble approach [34], which
has only 90% prediction accuracy.

Among different deep learning models, the PPR model [6]
exhibited 92.35% accuracy, which is lower than the proposed
Adaboost algorithm’s accuracy of 98.09%. RouteNet [29]
exhibits an average FPR of 46%, and the proposed Adaboost
algorithm showed a much better FPR of 86.59%.

4) Algorithms Training and Test Times: Table II shows the
training time (7}) and testing time (7) of each fold of all the
ensemble algorithms. According to this research, the gradient
boosting algorithm required the lowest average training and
testing time, and the AdaBoost algorithm required the highest
training and testing time, compared to the other ensemble
methods. However, the proposed Adaboost algorithm showed
22.8x and 11.1x lower average training time and testing
time, respectively, compared to the SVM classifiers [2]. The
proposed gradient boosting algorithm required 37.5x lower
average training time and 50x lower average testing time
compared to the existing SVM methodologies.

V. CONCLUSION

In this article, we presented a new 16T SEDU-hardened
storage cell and its usage in a latch design. The proposed
latch is 81% faster, requires a lower silicon area, and consumes
25% less power compared to a recently reported DNCS latch
at 2.5 GHz. In addition, the proposed latch has 86% lower
PDP than the DNCS latch. Better yet, the unconstrained sizing
architecture of the proposed 16T cell makes it more attractive
for dense memory or register file design.

In addition, we presented the first SEDU-hardened flip-flop
using our 16T cell. The flip-flop consumes up to 50% lower
power and is 29% faster compared to the existing partial
SEDU-hardened flip-flop. In addition, the proposed flip-flop
consumes 27% lower area than the competing flip-flop. Due to
the internal feedback loop, the flip-flop consumes lower power
at low data activity. The proposed flip-flop consumes 25%
lower static power and has 45% lower setup time compared
to the competing flip-flop. Better yet, the negative hold time
of the proposed flip-flop makes it more attractive for high-
frequency operations.
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