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Abstract

The vorticity of a two-dimensional perfect (incompressible and inviscid) fluid
is transported by its area preserving flow. Given an initial vorticity distribution
ω0, predicting the long time behavior which can persist is an issue of fundamental
importance. In the infinite time limit, some irreversible mixing of ω0 can occur.
Since kinetic energy E is conserved, not all the mixed states are relevant and it is
natural to consider only the oneswith energyE0 corresponding toω0. The set of said
vorticity fields, denoted byOω0

∗ ∩{E = E0}, contains all the possible end states of
the fluid motion. A. Shnirelman introduced the concept of maximally mixed states
(any further mixing would necessarily change their energy), and proved they are
perfect fluid equilibria. We offer a new perspective on this theory by showing that
any minimizer of any strictly convex Casimir in Oω0

∗ ∩ {E = E0} is maximally
mixed, as well as discuss its relation to classical statistical hydrodynamics theories.
Thus, (weak) convergence to equilibrium cannot be excluded solely on the grounds
of vorticity transport and conservation of kinetic energy. On the other hand, on
domains with symmetry (for example straight channel or annulus), we exploit all
the conserved quantities and the characterizations of Oω0

∗ ∩ {E = E0} to give
examples of open sets of initial data which can be arbitrarily close to any shear or
radial flow in L1 of vorticity but do not weakly converge to them in the long time
limit.

1. Introduction

Let M ⊂ R
2 be a bounded domain possibly with boundary ∂M having exterior

unit normal n̂, for example, the flat two-torus T2, the periodic channel T × [0, 1]
or the disk D. The Euler equations governing the motion of a fluid which is perfect
(inviscid and incompressible) and confined to M read [28] as

∂t u + u · ∇u = −∇ p, in M, (1.1)
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∇ · u = 0, in M, (1.2)

u|t=0 = u0, in M, (1.3)

u · n̂ = 0, on ∂M. (1.4)

In terms of the vorticity ω := ∇⊥ · u where ∇⊥ := (−∂2, ∂1), the system above
can be reformulated as

∂tω + u · ∇ω = 0 in M, (1.5)

ω|t=0 = ω0, in M, (1.6)

where u = KM [ω] = ∇⊥�−1ω is recovered by the Biot-Savart law. Equations
(1.5)–(1.6) say that the vorticity is transported by particle trajectories, namely the
solution admits the representation

ω(t) = ω0 ◦�−1t , (1.7)

where d

dt
�t = u(�t , t), �0 = id (1.8)

is the Lagrangian flowmap.
To formalize the study of the dynamics of two-dimensional fluids, let X be a

ball in L∞

X := {ω ∈ L∞(M) : ‖ω‖L∞(M) � 1}. (1.9)

Yudovich [45] proved that X is a good phase space for the Euler equations in that
(1.5)–(1.6) forms an infinite dimensional, time reversible, dynamical system on X
for all finite times. We call the time t ∈ R solution operator St : X ý. Our interest
is the long time behavior of this dynamical system. Since ω(t) = St (ω0) satisfies
‖ω(t)‖L∞(M) = ‖ω0‖L∞(M) � 1, we have

ω(ti )
*

⇀ ω along subsequences ti →∞
where, we recall that weak-∗ convergence is defined for fn ∈ L∞(M) by

lim
n→∞

∫
M

ϕ(x) fn(x)dx =
∫
M

ϕ(x) f (x)dx, ∀ϕ ∈ L1(M). (1.10)

If ‖ fn‖L∞ is uniformly bounded (as is the case for ‖ω(tn)‖L∞(M)), then this notion
of weak convergence agrees with others such as weak convergence in L2. Denoting
the weak-∗ closure in L∞(M) by (·)∗, we introduce the Omega limit set

�+(ω0) :=
⋂
s�0

{St (ω0), t � s}∗, (1.11)

which is the collection of all such weak-∗ limits as t → ∞ along the solution
ω(t) = St (ω0) passing through ω0 ∈ X at time 0. The set �+(ω0) represents all
possible ‘coarsened’ persistent motions launched by ω0.

Our interest is understanding what can be ruled out kinematically in �+(ω0),
based solely on the transport structure of the vorticity equation and accounting for
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the conserved quantities. Recall that the conservation laws for the Euler equation,
which hold on general planar domains (possibly multiply connected), are

energy: E(ω(t)) = E(ω0),

E(ω) := 1

2

∫
M
|KM [ω](x)|2dx = 1

2

∫
M
|u(x)|2dx,

Casimirs: I f (ω(t)) = I f (ω0),

I f (ω) :=
∫
M

f (ω(x))dx, for any continuous f : X → R,

circulation: Ki (ω(t)) = Ki (ω0),

Ki (ω) :=
∫

	i

u · d
, for connected components	i of ∂M.

If the domain has additional symmetries there can be additional invariants such as
linear momentum on the torus and channel1 and angular momentum on the disk:

linear momentum on M = T× [0, 1] : M(ω(t)) = M(ω0),

M(ω) :=
∫
M
e1 · u(x)dx =

∫
M

(x2ω(x)+ u1(x1, 1))dx,

angular momentum on M = D : A(ω(t)) = A(ω0),

A(ω) := −1

2

∫
M

(1− |x |2)ω(x)dx =
∫
M
x⊥ · u(x)dx .

However, for domains without Euclidean symmetries, linear and angular momen-
tum conservation are lost due to pressure effects. Casimirs and circulations are
the only invariants for general area preserving transformations of the vorticity (see
Izosimov and Khesin [25,26]). Together with energy, they are the only known con-
servation laws (first integrals) for perfect fluids in 2D which hold for all data and
on arbitrary domains. For simplicity of presentation, we will primarily work on
simply connected domains where the circulation does not impose any additional
constraints beyond the constancy of the domain-averaged vorticity.

From (1.7), we know that the vorticity function is, at every instant, an area
preserving rearrangement of its initial datum. Thus, letDμ(M) denote the group of
area preserving diffeomorphisms on M and denote the orbit of ω0 ∈ X in Dμ(M)

by

Oω0 := {ω0 ◦ ϕ : ϕ ∈ Dμ(M)}, (1.12)

where we understand ϕ to be in the component of the identity. Since ϕ are area
preserving, the Casimirs I f are constant along orbits Oω0 , just as they are for
Euler according to the representation (1.7). To get closer to the Euler dynamics, we
consider the intersection of this orbit with constant energy fields

Oω0,E0 := Oω0 ∩ {E = E0}. (1.13)

1 These can be related to conservation of circulation of the harmonic component of u
around fixed non-contractible loops.
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In fact, we have that ω(t) = St (ω0) ∈ Oω0,E0 for all t ∈ R. In the coarse-grained
infinite-timepicture capturedbyweak-∗ limits, there is amarkeddifference between
the energy (also circulations and, on domains with symmetry, momentum) and the
Casimirs: the energy is weak-∗ continuous whereas the non-linear Casimirs are not.

In fact, if ω(ti )
*

⇀ ω we can only deduce by lower-semicontinuity that

I f (ω) � lim inf
i→∞ I f (ω(ti )) = I f (ω0) for any convex f. (1.14)

Consequently, we have the following containments

�+(ω0) ⊂ Oω0,E0

∗ ⊂ Oω0

∗ ∩ {E = E0} (1.15)

where the last containment is a consequence of energy being weak-∗ continuous.
Loss of enstrophy on weak limits, namely ‖ω̄‖2L2 < ‖ω0‖2L2 (or, more generally
speaking, with a strict inequality in (1.14) for any convex Casimir) is associated
to fine-scale mixing. This behavior is often observed in the long time limit of the
Euler evolution and is conjectured to be typical [43]. Due to mixing, on Oω0

∗
the

Casimirs are no longer constant but convex Casimirs do not increase in view of
(1.14). Thanks to this, we have a partial ordering structure (a “mixing order”) on
Oω0

∗ ∩ {E = E0}:
Definition 1.1. Given ω1, ω2 ∈ Oω0

∗ ∩ {E = E0}, we say that ω1 
 ω2 if there
exists a strictly convex function f such that I f (ω1) � I f (ω2).

Such a partial order was first introduced by Shnirelman in [41] using an equivalent
characterization (see Lemma 2.3 below). In view of this ordering, it is natural to
introduce the notion of a minimal element:

Definition 1.2. An ω∗ ∈ Oω0

∗ ∩ {E = E0} isminimal if for all ω such that ω 
 ω∗
then ω∗ 
 ω.

Namely, a minimal element (termed minimal flow) ω∗ has the property that if
ω 
 ω∗ then I f (ω) = I f (ω∗) for all convex f . We can therefore think that minimal
elements are maximally mixed versions of ω0 at a given fixed energy. Shnirelman
[41] establishes the existence of a minimal flows in Oω0

∗ ∩ {E = E0} for any
ω0 ∈ X as an application of the Zorn’s Lemma. See also the discussion by Arnold
and Khesin [1].

One of the main purposes of this paper is to offer a different perspective of
certain minimal flows, specifically to those that naturally arise from Definition 1.2.
In §5 we prove the following:

Theorem 1. Let M ⊂ R
2 be a bounded planar domain with smooth boundary and

let f : X → R be a strictly convex function. Given any ω0 ∈ X with energy E0,
there exists a minimizer ω∗ ∈ X such that

I f (ω∗) = min
ω ∈ Oω0

∗∩{E=E0}
I f (ω). (1.16)

Any such minimizer ω∗ is a minimal flow in the sense of Shnirelman and enjoys the
following properties:
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(i) ω∗ is a stationary solution of the Euler equation having the property that there
exists a bounded monotone function F : R→ R such that ω∗ = F(ψ∗),

(ii) there exists a continuous convex function � and scalars α, β, γ ∈ R with
α2+β2 �= 0 such that ω∗ is a minimizer on X (the unconstrained space) of the
functional

J�(ω) = I�+α f (ω)+ β(E(ω)− E0)+ γ

∫
M

(ω − ω0)dx . (1.17)

The theorem above gives a method to produce stationary and minimal solutions
of the Euler equations by solving a variational problemonOω0

∗∩{E = E0}. Certain
characterizations of this set are available, see §2. Using these, in Appendix A, we
give a concrete and explicit instance of Shnirelman’s maximal mixing theory as it
applies to vortex patches with a finite number of regions. In this case, (1.16) can
be seen as an optimization problem with a finite number of inequality constraints.
Point (ii) of the Theorem 1 gives the natural extension of such characterization
for a general ω0, inspired by work of Rakotoson and Serre [35]. In fact, the main
purpose of Point (ii) is to get minimal flows by solving an unconstrained variational
problem, which can give more information about minimal flows in some cases. For
instance, if α �= 0, then �+ α f is strictly convex and thus the minimizer of (1.17)
is unique and satisfies ω = F(ψ) where F(z) := (�′ + α f ′)−1(−βz − γ ). In this
case, F is Lipschitz and strictly increasing or decreasing.

Remark 1.3. [Minimal flows as minimizers] The minimal flows obtained by
Shnirelman through the Zorn’s lemma need not to be same as the one given in Theo-
rem 1. However, a remarkable property ofminimal flows established by Shnirelman
(see also Lemma 3.2 herein) is that they are all stationary solutions of the Euler
equation having the property ω∗ = F(ψ∗) for some bounded monotone function
F . When F is strictly monotone increasing, then ω∗ is in fact a minimizer of the
strictly convex functional IF−1 , with F

−1 being the inverse of F . This follows by the
standard Lagrange multiplier rule in the set X ∩{E = E0}. It remains an open issue
to say that any minimal flow in the set Oω0

∗ ∩ {E = E0} (particularly those hav-
ing regions of constant vorticity, see Appendix B) are minimizers of some strictly
convex functional.

Remark 1.4. (Examples of minimal and non-minimal flows) A privileged family
of minimal flows are the so called Arnold stable states. They satisfy ω = F(ψ) for
a Lipschitz F satisfying either of the following two conditions

− λ1 < F ′(ψ) < 0, or 0 < F ′(ψ) <∞, (1.18)

where λ1 := λ1(�) > 0 is the smallest eigenvalue of −� in M . These flows are
Lyapunov stable in the L2 topology of vorticity under the 2D Euler evolution. Any
Arnold stable steady state is a minimal flow, since any mixing of them necessarily
results in a change of energy. For an area preserving rearrangement, this follows
by the fact that they are local maximizers or minimizers of the energy on their
isovortical sheet Oω∗ , see for example [1,19]. On the other hand, any shear flow
(on the channel) or circular flow (on the disk) having an inflection point cannot be
a minimal flow. This is implied by [41] and Lemma 3.2 herein.
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Remark 1.5. (Non-uniqueness and regularity of minimal flows) Given ω0 ∈ X
with energy E0, there is no reason for the minimal flow in Oω0

∗ ∩ {E = E0} to be
unique—different convex functions f in the variational problem (1.16) can give
rise to distinct minimal flows. See Remark A.4 for a datum ω0 ∈ X with infinitely
many minimal flows on its orbit. This example also shows that minimal flows in
Oω0

∗ ∩ {E = E0} can have better regularity than the datum ω0 ∈ X .

Remark 1.6. (Connections toStatisticalHydrodynamics)Understanding the coarse-
scale features of the possible end-states of the fluid flow has been the subject of
statistical hydrodynamics theories, laid out by Onsager in his foundational paper
[34].Many of these theories [4,18,30] (see [5,37] for a review). lead to a variational
problem to minimize a given strictly convex Casimir in X ∩ {E = E0} (compare
to (1.16)), where in particular the minimizer will also be a stationary state of the
form ω = F(ψ). However, these motions may not be accessible dynamically s-
ince they do not account for all known constraints on the structure of the solution
given initial data. Notable exceptions are the theories of Miller, Robert, Somme-
ria [31,32,36–38], where the variational problem is for a probability distribution
whose mean represents the coarse-grained vorticity. This point of view is based on
the representation of weak-∗ limits through Young’s measures and it also lead to
vorticities satisfying ω = F(ψ). In some particular case, for example F ′ > 0, the
MRS variational approach is equivalent to solving (1.16) [5]. However, in general
it is not possible to deduce similar properties a priori.

Studying properties of certain states in the set Oω0

∗ ∩ {E = E0} sheds light
on some questions concerning relaxation to equilibrium. A consequence of The-
orem 1 is that, for any initial data with bounded vorticity, there always exist sta-
tionary solutions (with bounded vorticity, but not necessarily smooth) in the set
Oω0

∗ ∩ {E = E0}. We thus deduce that accounting for all known kinematic con-
straints on the solution is not enough to rule out relaxation to equilibrium via Euler
evolution for any initial datum, at least in a weak-∗ sense. In a similar direction,
Choffrut and Šverák [9] gave a full characterization of the steady states nearby
certain Arnold stable ones on annular domains. Izosimov and Khesin [25] gave
necessary conditions on ω0 to have smooth steady Euler solution in its orbit Oω0 .
In the other direction, Ginzburg and Khesin [20,21] showed that if M is a simply
connected planar domain and ω0 is Morse, positive and has both a local maximum
and minimum in the interior, then Oω0 contains no smooth Euler steady state.

Thus, convergence to equilibrium at long time can occur, although theorems
(and likely scenarios) are very rare. The results [2,23,24,29] are the only to fully
characterize the Omega limit sets for Euler, albeit for very smooth perturbations of
special equilibria. For instance, if ω is the vorticity of a (class of) strictly monotone
shear flow on T × [0, 1] or T × R, then for any ω0 in a Gevrey-2 neighborhood
of ω, one has �+(ω0) = {ωω0}, where ωω0 is the vorticity of a (slightly modified)
shear flow nearby ω. The convergence happens weakly, not strongly, in L2 so some
amount of mixing definitively occurs. These remarkable results—termed inviscid
damping—show that certain full neighborhoods in the (Gevrey) phase space relax
to equilibrium at long time, a feature consistent with Theorem 1 and the theories
of Statistical hydrodynamics mentioned in Remark 1.6. The fact that these stable
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equilibria are symmetric is no accident. On domainswith symmetry, also theArnold
stable steady states must inherit the symmetry of the domain they occupy [12]; all
such on the channel are shears, while on the annulus they are circular. It is unclear if
the flows ωω0 are minimal. On the other hand, convergence to symmetric equilibria
(even in this weak sense) seems to be the exception rather than the rule more
generally. For instance, Lin and Zeng [27] discovered non-shear Catseye steady
states nearby (at low regularity) to the Couette shear flow,and we refer to [8,15,33]
for related results. These results provide an obstruction to inviscid damping back to
a shear flow for general perturbations nearby certain shear flows of a given structure.
However, they do not rule out convergence to shear flow for some perturbations.

In a similar spirit, we show here that there exist open sets of small, sufficiently
coarse, perturbations of any shear flow on the periodic channel (actually, of any
bounded vorticity field on the channel) that cannot possibly damp back to a shear
flow. Unlike those previous works, we do this not by finding other nearby steady
states, but rather by excluding shear flows directly from a set containing the Omega
limit set.

Theorem 2. Let M = T × [0, 1] and ωb ∈ L∞(M). For any δ > 0, there exists
ξ ∈ C∞(M) such that

‖ξ − ωb‖L1 � δ (1.19)

and for which the set Oξ
∗ ∩ {E = E(ξ)} ∩ {M = M(ξ)} contains no shear flows.

The idea behind our construction, carried out in §6, is to insert a large perturbation
at small spatial scales in the form of regularized point vorticies of width ε, see
Fig. 1. Namely, the field ξ is comprised of highly peaked vortices embedded in the
background ωb, that is there is 0 < ε := ε(‖ωb‖L∞) < δ so that

‖ξ − ωb‖L∞ ≈ ε−2, |supp(ξ − ωb)| � ε2, E(ξ)− Eb ≈ δ2| log(ε)|,
|M(ξ)−Mb| � δ.

In view of the Biot-Savart law, from which the velocity is recovered from the
vorticity by u = ∇⊥�−1ω, these perturbations exploit the (logarithmic) singularity

Fig. 1. Example of a datum ω0 from Theorem 2—a perturbation (at the level of the stream-
function) of the Kolmogorov flowωs = sin(y) by two equal and opposite approximate point
vortices. Vorticity colormap (left) and streamfunction contour plot (right)
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of the Green’s function of the Laplacian in two-dimensions and thus have energy
| log ε|. We show that for small ε, one cannot rearrange such a configuration into a
shear flow while conserving the energy. This is because shear flows are fundamen-
tally 1D objects in the sense that the Biot-Savart kernel is non-singular acting on
functions of one variable. Similarly, radial flows can be excluded on the annulus
by exploiting conservation of angular momentum.

In view of the containment (1.15), Theorem 2 implies that the Euler solution
starting from this data cannot weakly converge to a shear flow. In fact, Theorem
2 holds for fields ξ̃ in an open neighborhood of ξ in L∞. These results show that
the Euler dynamics cannot totally “shear out" highly peaked coherent vortices, but
they do not rule out damping to some asymmetric equilibria. However, numerical
simulations (see Fig. 2) suggest that it is more likely that the Euler solutions relax to
some time dependent (but recurrent) states. For additional discussion, see [17,42].

Remark 1.7. (Asymmetry of minimal flows) By including the constraint on the
momentum in (1.16), we can combine Theorem 1 and Theorem 2 to see that all
the minimal flows obtained as minimizers of strictly convex functionals in the set
Oξ

∗ ∩ {E = E(ξ)} ∩ {M = M(ξ)} cannot be shear flows, thus providing examples
of minimal flows which do not conform to the symmetries of the domain.

Remark 1.8. (Perturbations of shear flows) The ωb of Theorem 2 can be any shear
flow ub(x1, x2) := (v(x2), 0) with bounded vorticity ωb(x1, x2) := −v′(x2). Our
result shows that not only is the regularity important for convergence back to a

Fig. 2. Direct numerical simulations [13,14] of the time evolution (from left to right) of
initial data with localized vortices rotating with and against the background Kolmogorov
shear flow under Navier–Stokes evolution with Reynolds number Re ≈ 103. The long time
behavior exhibits no tendency to return to shear. In the case of the co-rotating vortices,
it appears possible that the evolution weakly damps to a non-shear equilibrium, possibly a
minimal flow. However, in both case, periodic or quasi-period structures appear to be present
at small scales it is unclear whether those can disappear in the long time limit
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shear flow, as highligthed by the results [8,15,27,33], but also the proximity must
be measured in a quite strong sense. In fact, our perturbation is extremely large in
any L p (on vorticity) with p > 1 and also in L2 velocity.

2. The weak-∗ closure of the orbit

To understand the maximal mixing theory, it is important to study the structure
ofOω0

∗∩{E = E0}. In fact, this problemwas considered in different mathematical
contexts [7,10,11,39,41,43]. Here, we present a self-contained description of the
different characterizations which we will exploit. Let us recall here a particular
characterization of theweak-∗ closure of the orbit of a scalar function in the group of
area preserving diffeomorphismsDμ(M), used in [7,11,41]. Denote the collection
of evaluation maps along area preserving diffeomorphisms by

Eμ(M) := {iϕ : ϕ ∈ Dμ(M)}, (2.1)

where iϕ is the evaluationmap, that is if f : M → R then (iϕ f )(x) = ∫
M f (y)δ(y−

ϕ(x))dy = f (ϕ(x)). We associate to iϕ the positive measure δ(y − ϕ(x))dy. The
following is established in [6,7]:

Proposition 2.1. We have

Eμ(M)
∗ = K (M), (2.2)

where K (M) is the convex space of polymorphisms or bistochastic operators

K (M) := {
K : M × M → R such that K � 0,∫
M
K (x, ·)dx =

∫
M
K (·, y)dy = 1

}
. (2.3)

Remark 2.2. (Examples of polymorphisms) Bistochastic operators are the infinite
dimensional extension of bistochastic matrices. Few important examples are the
following:

1) Let ϕ ∈ Dμ(M). Then the insertion operator Kϕ = iϕ is bistochastic and
(Kϕω)(x) = ω(ϕ(x))
2) The complete mixing operator Kmix given by

(Kmixω)(x) = 1

|M |
∫
M

ω(y)dy (2.4)

is bistochastic. On M = T
2, this operator is the projection onto the zero Fourier

mode.
3) On M = T

2, some frequency cut-offs define bistochastic operators, for
example the Fejér kernel:

FN (x) = 1

(2π)2

N∑
k1,k2=−N

(
1− |k1|

N

) (
1− |k2|

N

)
ei(k1x1+k2x2). (2.5)
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In view of
∫
T2 FN (x)dx = F̂(0) = 1, this kernel has the following properties:

a) FN (x) � 0,

b) F̂N (k) =
{(

1− |k1|
N

) (
1− |k2|

N

)
1 � |k1|, |k2| � N

0 max{|k1|, |k2|} > N
,

c)
∫
T2 FN (x)dx = 1.

Given ω ∈ L2, define a frequency cut-off as follows

(KNω)(x) =
∫
T2

FN (x − y)ω(y)dy = (FN ∗ ω)(x). (2.6)

Thanks to the properties of FN , it can be verified that KN is a bistochastic operator
(see [44, §3.1]).

The set of polymorphisms is relevant to the weak-∗ closure of the orbit since
(see Proposition 2.4 in §2), given any ω0 ∈ X , we have

Oω0

∗ = {ω ∈ X : ω = Kω0 for K ∈ K }. (2.7)

Shnirelman uses the characterization (2.7) ofOω0

∗
to impart a partial ordering

inOω0

∗ ∩{E = E0}; that is given ω1, ω2 ∈ Oω0

∗ ∩{E = E0}, we say that ω1 
 ω2
if there exists a polymorphism K ∈ K such that ω1 = Kω2. Minimal elements
(flows) are defined in the same way as Definition 1.2, only now using this new
partial order. However, these two definitions are entirely equivalent in view of the
following Lemma (which we prove in §3):

Lemma 2.3. Given ω ∈ X and K1 ∈ K , let ω1 = K1ω. There exists K̃ ∈ K such
that ω = K̃ω1 if and only if I f (ω1) = I f (ω) for any strictly convex f : R→ R.

The intuition that minimal flows aremaximallymixed, quantified by the conser-
vation of all Casimirs in their weak-∗ closure with our definition, can be rephrased
also with bistochastic operators. The application of a bistochastic operator K could
mix ω∗, but mixing is an irreversible process that prevent us from recovering ω∗
from Kω∗. On the other hand, for a minimal flow we can always go back. We are
therefore excluding any mixing of ω∗. Thus, the class of available transformations
of a minimal flow is a subset of area preserving maps (not necessarily a diffeomor-
phism). In fact, Lemma 2.3 shows that if ω = Kω∗ and ω∗ = K̃ω then ω and ω∗
are equimeasurable.

Here we prove the following characterizations of the weak-∗ closure of the
orbit:

Proposition 2.4. Consider X, K as in (1.9) and (2.3) respectively. Given any
ω0 ∈ X, we have

Oω0

∗ = {ω ∈ X : ω = Kω0 for K ∈ K }, (2.8)

=
{
ω ∈ X :

∫
M

ω dx =
∫
M

ω0 dx, and
∫
M

(ω − c)+ dx �
∫
M

(ω0 − c)+ dx for all c ∈ R

}
,

(2.9)
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=
{
ω ∈ X :

∫
M

ω dx =
∫
M

ω0 dx, and
∫
M

f (ω) dx �
∫
M

f (ω0) dx for any convex f

}
. (2.10)

The description of the set Oω0

∗
has been a classical topic in rearrangement

inequalities theory and the characterizations (2.8)-(2.10) can be found for exam-
ple in [10,11,39]. The (2.8) has been used by Shnirelman [41], while the char-
acterization (2.9) also appears in the lecture notes of Šverák [43]. In view of
Oω0

∗ ∩ {E = E0} = Oω0

∗ ∩ {E = E0}, see (1.15), Proposition 2.4 completes
our characterization of Oω0

∗ ∩ {E = E0}. In the following, we present a self con-
tained proof of these characterizations.

Proof. We divide the proof in several steps.
� Step 1: (Oω0

∗ = (2.8)) This characterization is a direct consequence of Proposi-
tion (2.1), whose proof can be found for example in [7] or [6, Sec 1.4].We review the
main arguments of the proof since in the sequel we need to exploit some technical
lemma used for it.

As observed in Remark 2.2, we know Eμ(M) ⊂ K (M). SinceK (M) is weak-
∗ closed, we infer Eμ(M)

∗ ⊆ K (M). Thus, to prove (2.2) we only have to show
that for every K ∈ K there exists a sequence {φn} ⊂ Eμ(M) such that

lim
n→+∞

∫
M

f (x, φn(x))dx =
∫∫

M×M
f (x, y)K (x, y)dxdy,

for all f ∈ C(M × M). (2.11)

Indeed, choosing f (x, y) = g(x)ω0(y), we see that any element in Oω0

∗
is of the

form Kω0, meaning that the characterization (2.8) is proved. The proof of (2.11)
relies on the following key lemma, which we prove below.

Lemma 2.5. Let Q1, Q2 ⊂ M be two squares with centers x1, x2 respectively and
|Q1| = |Q2|. Let p : M → M be a permutation of these two squares, namely

p(x) =

⎧⎪⎨
⎪⎩
x − x1 + x2 if x ∈ Q1,

x − x2 + x1 if x ∈ Q2,

x otherwise .

(2.12)

Then, there exists {ϕn} ∈ Eμ(M) such that ϕn → p in L2(M).

In particular, permutations of squares are inOω0

L2 . Themain idea is to discretize
the problem (2.11) and use permutations of squares as building blocks to construct
the approximating sequence φn . This is analogous to the decomposition of a doubly
stochastic matrix in terms of permutationmatrices, which is the classical Birkhoff’s
theorem. More precisely, given m sufficiently large, we can cover the interior of
M with Nm < +∞ squares {Qm

i }Nm
i=1 of area 4−m up to an error O(2−m). Then,

approximate the measure

μK (x, y) = K (x, y)dxdy
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by

γm =
∑
i, j

μK (Qm
i × Qm

j )δ(xmi ,xmj ), (2.13)

where xmi is the center of the cube Qm
i . The measure γm is discrete and can be

identified with a matrix A = (ai j ) where ai j = 4mμK (Qm
i × Qm

j ). Since K
is bistochastic, the matrix A is also bistochastic, that is

∑
i ai j =

∑
j ai j = 1.

We can therefore apply the Birkhoff’s theorem to rewrite the matrix as a convex
combination of permutation matrices, namely

ai j =
K∑

k=1
θkδσk (i), j ,

K∑
k=1

θk = 1, (2.14)

where K � N 2
m and σ is a permutation of {1, . . . Nm}. A permutation of squares

can be approximated with a permutation matrix. Indeed, if pσ is the permutation
of the squares Qm

i , Qm
σ(i), then

∑
i

∫
Qm
i

f (x, pσ (x))dx = 4−m
∑
i

f (xmi , xmσ(i))+ Cη(2−m), (2.15)

where η is the modulus of continuity of f . We are associating the discrete measure
4−mδ(xmi ,xm

σ(i))
to pσ up to a small error. Therefore, the proof of (2.11) is a standard

approximation argument combined with the Birkhoff theorem and Lemma 2.5. We
refer to [6, Sec 1.4] for a detailed proof of the approximation argument. Instead, let
us show the proof of Lemma 2.5, see [7, Lemma 1.2], which we are going to use
also in the proof of Theorem 1.

Proof of Lemma 2.5. First observe that if ϕ1
n , ϕ

2
n ∈ Eμ(M) and ϕ1

n → h1, ϕ2
n →

h2 in L2(M) then ϕ1
n ◦ ϕ2

n → h1 ◦ h2 in L2(M). Hence, it is enough to prove that
we can exchange two adjacent squares, since any permutation of squares can be
written as a combination of exchanges between adjacent squares (refining further
the grid covering M if necessary). To exchange adjacent squares, it is enough to
approximate the central symmetry with respect to squares and rectangles.2 For
instance, given Q = [−a, a]2, we need to approximate the map c(x) = −x if
x ∈ Q and c(x) = x otherwise. Notice that Q can be written as the union of the
level sets for the function

g(x) = max{|x1|, |x2|}, so that Q = {x | g(x) � a}.
The idea is now to use the function g to construct a velocity field which moves the
particles along the streamlines, where the velocity can be tuned in order to reach
the point −x at time t = 1 (a rigid rotation), see Fig. 3.

2 Equivalently, we could also exchange adjacent triangles. This can be useful to extend
the proof to smooth compact manifolds.
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Fig. 3. First we act with the central symmetry for the rectangle. Then we use the central
symmetry in each squares

In this case, since g is not differentiable everywhere, we cannot directly use
∇⊥g. However, it is enough to approximate g on a smaller domain. In polar coor-
dinates one has

g(r, θ) = r2 max{cos2(θ), sin2(θ)} = r2(1+ | cos(2θ)|) := r2 f (θ), (2.16)

so that a possible approximation of g is given by

r2 fε(θ) := r2(1+
√

ε2 + cos2(2θ)). (2.17)

Also at the origin we may have problems, but since we are looking for an approxi-
mation up to zero Lebesgue measure sets, it is enough to prove that we approximate
the central symmetry on the set Qε = {ε < r2 fε(θ) � 2− ε}. This can be proved
by defining the streamfunction

ψε(r, θ) = 1

2
λεr

2 fε(θ), λε =
∫ π

0

ds

f (s)
> 0, (2.18)

with associated velocity field vε = ∇⊥ψε, for which it is not difficult to show
that v moves a particle x to −x in time t = 1, see [7]. The flow generated by
∂tφε = vε(φε) is such that φε(1, x) = −x on Qε. Once this is is done, we can
choose ε = 2−n and define cn = id on M\Q, cn(x) = φε(1, x) on Qε and any
smooth approximation between id and φε on Q\Qε. Then, c and cn are equal up
to a set of measure O(2−n) and thus, being clearly uniformly bounded, cn → c in
L2(M).

For the central symmetrywith respect to a rectangle R = [−a, a]×[−b, b], just
notice that R = {x |max{|x1|/a, |x2|/b} � 1}, so we can repeat the construction
above modifying the function g. ��
� Step 2: ((2.8) = (2.9)) Since K is bistochastic and (·)+ is convex, by Jensen’s

inequality (see (3.1)) it follows that

Kω0 := {ω ∈ X : ω = Kω0 for K ∈ K }
⊆ Sω0 :=

{
ω ∈ X :

∫
M

ω dx =
∫
M

ω0 dx,
∫
M

(ω − c)+ dx

�
∫
M

(ω0 − c)+ dx for all c ∈ R

}
. (2.19)

It thus remain to prove that given an element ω ∈ Sω0 , there exists K ∈ Kω0 such
that ω = Kω0. This is indeed a classical result in rearrangement inequalities [11]
which we prove below.
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For any set A ∈ R
2 define A# as the ball centered at the origin such that

|A| = |A#|. Given a function f , its distribution function is given by

d f (t) = |{x ∈ M : f (x) > t}| for any t ∈ R. (2.20)

The Hardy-Littlewood-Polya decreasing rearrangement [22] is defined as

f ∗(s) = sup{τ ∈ R : d f (τ ) > s} for s ∈ [0, |M |), (2.21)

and the Schwarz spherical decreasing rearrangement is given by

f #(x) = f ∗(4π |x |), for x ∈ BR(0), R = |M |. (2.22)

The function f # is obtained by rearranging the level sets of f in a symmetric and
radially decreasing way. The functions f, f ∗ are equimeasurable, and hence also
f #. This imply that

{ f > t}# = { f # > t}, (2.23)

since both sets are balls centered at the origin with the same volume. We are also
going to use the Hardy-Littlewood-Polya inequality which read as∫

M
f g dx �

∫
BR

f #g# dx =
∫
[0,R]

f ∗g∗ ds. (2.24)

This can be easily proved through the layer cake decomposition.
To prove Sω0 = Kω0 t , we first observe that the following conditions are

equivalent:

(i) f ∈ Sg

(ii)
∫ r
0 f ∗ �

∫ r
0 g∗ for any r ∈ [0, R] and ∫ R

0 f ∗ = ∫ R
0 g∗

(iii)
∫
Br

f # �
∫
Br

g# for any r ∈ [0, R] and ∫
BR

f # = ∫
BR

g#.

The equivalence between (ii) and (iii) is straightforward, while (i) ⇐⇒ (ii) is
proved in [10, Theorem 1.6].

If (ii) holds, for any u � 0 we have∫
M

f u dx �
∫
BR

f #u# dx �
∫
BR

g#u# dx (2.25)

where the first inequality is (2.24). To prove the last inequality above, let u =∑N
i=0 aiχAi with ai > ai+1 � 0. Then u∗ =∑N

i=0 aiχ[ri ,ri+1] with

r0 = 0, rN+1 = R, ri+1 − ri = |Ai |.
Defining F(r) = ∫ r

0 f ∗, G(r) = ∫ r
0 g∗, observe that

∫
BR

( f # − g#)u# dx =
∫ R

0
u∗ d

dr
(F − G)dr =

N∑
i=0

ai ((F(ri+1)− G(ri+1))

−(F(ri )− G(ri ))). (2.26)

Then, since F(0) = G(0) = 0 and F(R) = G(R) by the conservation of the mean,
we deduce that
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N∑
i=1

ai ((F(ri+1)− G(ri+1))− (F(ri )− G(ri ))

=
N−1∑
i=1

(ai−1 − ai )(F(ri )− G(ri )) � 0 (2.27)

and the last inequality follows by ai−1 � ai and the fact that F(ri ) � G(ri ) in
account of (ii) above. The general case is recovered by a standard approximation
argument.

Finally, given ω ∈ Sω0 , assume that ω /∈ Kω0 . We now follow the arguments
in [16,39]. Since Kω0 is convex and weakly closed in L1, if ω ∈ L∞(M)\Kω0 ⊂
L1(M)\Kω0 , by the Hahn-Banach theorem there exists g ∈ L∞ such that

∫
M
gKω0 dx <

∫
M
gω dx, for any K ∈ K . (2.28)

Since
∫
Kω0 =

∫
ω0 =

∫
ω, we can assume that g � 0. Then, for each f ∈ L1

there exists a measure preserving map σ f : M → BR such that f = f # ◦ σ f [16].
Hence, let g = g# ◦ σg and ω0 = ω#

0 ◦ σω0 . Now, if σg and σω0 are one-to-one it is
enough to choose K (x, y) = δ(y − (σ−1ω0

◦ σg)(x)) to get
∫
M
gKω0 dx =

∫
M

(g#ω#
0) ◦ σg dx =

∫
BR

g#ω#
0 dx �

∫
BR

g#ω# dx �
∫
M
gω dx

(2.29)

where the last two bounds follows by (2.25), but this is a contradiction and hence
ω ∈ Kω0 . When σg and σω0 are not one-to-one, we need to define bistochastic
operators K̃ : L1(BR)→ L1(M) with adjoint K̃ ∗ : L∞(M)→ L∞(BR) where

∫
M

f K̃ g dx =
∫
BR

gK̃ ∗ f dx . (2.30)

The operators K̃ are the weak-∗ closure of area preserving diffeomorphisms from
BR to M . If K̃ is associated to an area preserving map then

K̃ ∗ K̃ = id.

This extension is necessary since if K̃ (x, y) = δ(y − σ(x)) for σ : BR → M
area preserving map then K̃ ∗ is not in general associated to an area preserving map
[39]. Anyway, we know that g = g# ◦ σg := K̃1g# and ω0 = ω#

0 ◦ σω0 := K̃2ω
#
0.

Choosing K = K̃1 K̃2
∗ : L∞(M)→ L∞(M), with K ∈ K , we conclude

∫
M
gKω0 dx =

∫
M

(K̃1g
#)K̃1(K̃2

∗
K̃2ω

#
0) dx =

∫
BR

g#ω#
0 dx

�
∫
BR

g#ω# dx �
∫
M
gω dx, (2.31)

which is a contradiction with (2.28), meaning that we must have ω ∈ Kω0 .
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� Step 3: ((2.9) = (2.10)) This was proved in [10, Theorem 2.5] and also used
in [3,44]. The inclusion (2.9)⊆ (2.10) is obvious. Let us show a short proof of the
remaining inclusion. We first observe that in (2.9) it is enough to consider

c ∈ [min{ω0},max{ω0}] := I0.

Indeed, if c � max{ω0} the inequality is trivial. Then, from the characterization
(2.8) we know that ω ∈ I0. Thus, for all c < min{ω0} we have

∫
M

(ω − c)+ dx =
∫
M

(ω − c) dx =
∫
M

(ω0 − c) dx =
∫
M

(ω0 − c)+ dx, (2.32)

where the identity in the middle follows by the conservation of the mean. Then, to
prove that (2.10)⊂ (2.9) let us first consider f ∈ C2. Given s ∈ I0, integrating by
parts we have

∫
I0
(s − c)+ f ′′(c)dc = f ′(c)(s − c)+

∣∣max{ω0}
min{ω0} −

∫ max{ω0}

s
f ′(c)dc

= f (s)+ f ′(min{ω0})(s −min{ω0})− f (max{ω0}).
(2.33)

Using conservation of the mean again, since f ′′ � 0 by convexity, combining
(2.33) with (2.9) we get

∫
M

f (ω)− f (ω0)dx =
∫
M
dx

∫
I0
((ω − c)+ − (ω0 − c)+) f ′′(c)dc

=
∫
I0

f ′′(c)dc
∫
M

((ω − c)+ − (ω0 − c)+)dx � 0. (2.34)

For any convex function f , the representation (2.33) is given by

f (s) = α0 + α1s +
∫

(s − c)+dα(c), (2.35)

where α0, α1 are constants and α(c) is a positive measure. This again follows by
approximation. ��

3. Characterization of the minimizers

In this section, we aim at proving Theorem 1 in different steps. We first prove
the existence of a minimizer. Then we show (i) and (ii).
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3.1. Existence

We exploit the characterization (2.8). Define

inf
Oω0

∗∩{E=E0}
I f (ω) = α.

Let ωn ∈ Oω0

∗ ∩ {E = E0} be a minimizing sequence, namely I f (ωn) → α.
Thanks to Proposition 2.4, we know that ωn = Knω0 for Kn ∈ K . Since K is
weakly compact in L2, there exists a converging subsequence Kn j ⇀ K ∗ so that
ωn j ⇀ ω∗ := K ∗ω0 in L2. SinceE(ωn j ) = E0, by compactness we haveE(ω∗) =
E0. Hence, ω∗ ∈ Oω0

∗ ∩ {E = E0}. In account of the lower semicontinuity, we
get I f (ω∗) � lim inf I f (ωn j ) = α, so that I f (ω∗) = α. Therefore, the minimum is

attained in Oω0

∗ ∩ {E = E0}.

3.2. Minimizers are minimal

To argue that the minimizers are minimal, we must use Lemma 2.3 which we
now prove.

Proof of Lemma 2.3. We first show that I f (Kω) � I f (ω) for any K ∈ K . Since
K is bistochastic, we know that μx (dy) = K (x, y)dy is a probability measure. By
Jensen’s inequality, we have

I f (Kω) =
∫
M

f

(∫
M

ω(y)μx (dy)

)
dx �

∫∫
M×M

f (ω(y))μx (dy)dx = I f (ω),

(3.1)

where the last identity follows by
∫
K (x, y)dx = 1. Therefore, we know that

I f (ω1) � I f (ω) and if ω = K̃ω1 also I f (ω) � I f (ω1) meaning that I f (ω) =
I f (ω1).

It thus remain to prove that if I f (ω1) = I f (ω) then there exists K̃ ∈ K such
that ω = K̃ω1. Since the bound (3.1) is obtained pointwise for the integrand, when
equality holds we have that for a.a. x ∈ M

f

(∫
M

ω(y)μx (dy)

)
=

∫
M

f (ω(y))μx (dy). (3.2)

Since f is strictly convex, the equality case in the Jensen’s inequality holds if and
only if ω(y) = cxμx -almost everywhere for cx constant in y. Given a function
g : M → R, define the set

Sga,b = {y ∈ M : a < g(y) < b}. (3.3)

Since ω is μx -almost everywhere constant, observe that

μx (S
ω
a,b) =

{
1 a < cx < b

0 otherwise
. (3.4)
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In addition, since ω1 = K1ω =
∫

ω(y)μx (dy) and ω(y) is μx -almost everywhere
constant, we infer

|Sω1
a,b| = |{x ∈ M : a < ω1(x) < b}| = |{x ∈ M : a <

∫
ω(y)μx (dy) < b}|

= |{x ∈ M : a < cx < b}| = |{x ∈ M : μx (S
ω
a,b) = 1}|. (3.5)

Since K1 is bistochastic we also have

|Sω
a,b| =

∫
{y∈M : a<ω(y)<b}

dy =
∫∫

M×{y∈M : a<ω(y)<b}
K1(x, y)dydx

=
∫∫

M×{y∈M : a<ω(y)<b}
μx (dy)dx

=
∫
M

μx (S
ω
a,b)dx = |{x ∈ M : μx (S

ω
a,b) = 1}| = |Sω1

a,b|,

meaning that ω and ω1 are equimeasurable. Indeed, choosing a = −∞, b = −t
and a = t, b = +∞, we get

|{x ∈ M : |ω1(x)| > t}| = |{x ∈ M : |ω(x)| > t}|. (3.6)

Through the layer-cake representation, this implies that

‖ω1‖L p = ‖ω‖L p , for any 1 � p <∞. (3.7)

We now have to “invert” K1. From (2.11), since ω1 = K1ω we know that there
exists a sequence of permutations pn such that ω ◦ pn ⇀ ω1 in L2. Combining the
weak convergence with (3.7) and the fact that pn is area preserving, notice that

‖ω ◦ pn − ω1‖2L2 = ‖ω ◦ pn‖2L2 + ‖ω1‖2L2 − 2
∫
M

ω1(ω ◦ pn) dx
n→∞−→ ‖ω‖2L2

+‖ω1‖2L2 − 2 ‖ω1‖2L2 = 0. (3.8)

Namelyω◦ pn → ω1 in L2. Since pn is area preserving, we also getω1 ◦ p−1n → ω

in L2. We can then define K̃ ∈ K as the operator obtained in the weak limit of
i p−1n

(see Step 1 in §4), that is

lim
n j→∞

∫
M
g(x)(ω1 ◦ p−1n j

)(x)dx =
∫
M
g(x)

∫
M

ω1(y)K̃ (x, y)dydx . (3.9)

Since ω1 ◦ p−1n → ω in L2, we get ω = K̃ω1, whence the lemma is proved. ��
As a consequence of Lemma 2.3 we have

Corollary 3.1. Any minimizer ω∗ of the variation problem (1.16) is a minimal flow.

Proof of Corollary 3.1. Let ω∗ be a minimizer of I f with f strictly convex, see
(1.16). Consider ω1 ∈ Oω0

∗ ∩ {E = E0} and let K be such that ω1 = Kω∗. As
shown in the proof of Lemma 2.3, we have I f (ω1) � I f (ω∗). However, being ω∗
a minimizer we must have I f (ω1) = I f (ω∗). Thus, ω∗ is minimal in the sense of
Definition 1.2. ��
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Fig. 4. The operator Kφ
ε is a proper mixing if we are exchanging squares where ω has

different values

3.3. Minimal flows are stationary

Having at hand a minimal flow as a solution to the problem (1.16), it remains
to show that is indeed a stationary solution.

Lemma 3.2. (Minimal flows are Euler steady states) For any minimal flow ω∗ ∈
Oω0

∗ ∩ {E = E0}, there exists a bounded monotone function F : R→ R such that
ω∗ = F(ψ∗) where �ψ∗ = ω∗.

The lemma above was proved by Shnirelman in [41] with an alternative (but
equivalent in light of Lemma 2.3) definition of minimal flows. We show this can
be directly proved directly using Definition 1.2.

Proof of Lemma 3.2. We adapt the variational argument used by Shnirelman in
[41, Theorem 2] (and also by Segre and Kida in [40, Sec A.2]) to our situation.
Let φ be a permutation of two arbitrary squares Q1, Q2 in M . By Lemma 2.5, we
know that we can associate a bistochastic operator to φ. Then, by convexity ofK ,
notice that the operator Kε defined as

K φ
ε ω = (1− ε)ω + ε(ω ◦ φ) (3.10)

is bistochastic. See Fig. 4 for a visualization of such operator.
By the choice of φ, computing the first variation of the energy we have

d

dε
E(K φ

ε ω∗)|ε=0 =
∫
Q1∪Q2

(ω∗(x)− ω∗(φ(x)))ψ∗(x)dx

=
∫
Q1

(ω∗(x)− ω∗(φ(x)))(ψ∗(x)− ψ∗(φ(x)))dx . (3.11)

We claim that the last integral in (3.11) cannot change sign. Otherwise, there are
K φ1

ε and K φ2
ε , exchanging squares Q


1, Q


2 with 
 = 1, 2, such that

E(K φ1
ε ω∗) > E(ω∗), E(K φ2

ε ω∗) < E(ω∗). (3.12)

If the inequalities above hold, there exists 0 < λ < 1 such that energy is preserved:

K̃εω := (λK φ1
ε ω + (1− λ)K φ2

ε ω) = (1− ε)ω + ε(λω ◦ φ1 + (1− λ)ω ◦ φ2),

(3.13)

E(K̃εω
∗) = E(ω∗) = E0. (3.14)
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This means that K̃εω
∗ ∈ Oω0

∗∩{E = E0}. Notice that the condition (3.12) implies
that ω ◦ φi is not equal to ω almost everywhere (namely, we are not exchanging
squares where the vorticity is a constant). Then, since f is strictly convex andω◦φi

is not equal to ω almost everywhere, notice that

I f (K̃εω
∗)− I f (ω∗)

=
∫
M

(
f
(
(1− ε)ω∗ + ε(λω∗ ◦ φ1 + (1− λ)ω∗ ◦ φ2)

)− f (ω∗)
)
dx

< ε

∫
M

(
λ f (ω∗ ◦ φ1)+ (1− λ) f (ω∗ ◦ φ2)− f (ω∗)

)
dx = 0, (3.15)

where the last identity follows sinceφi are area preservingmaps.Therefore I f (K̃εω
∗) <

I f (ω∗). Since K̃εω
∗ ∈ Oω0

∗ ∩ {E = E0}, this contradicts ω∗ being minimal ac-
cording to Definition 1.2. Hence, this implies

d

dε
E(K φ

ε ω∗)|ε=0 =
∫
Q1

(ω∗(x)− ω∗(φ(x)))(ψ∗(x)− ψ∗(φ(x)))dx � 0 (or � 0).

(3.16)

Since the choice of Q1 is arbitrary, almost everywhere in M we get

(ω∗(x)− ω∗(y))(ψ∗(x)− ψ∗(y))
� 0, or (ω∗(x)− ω∗(y))(ψ∗(x)− ψ∗(y)) � 0. (3.17)

One can now directly apply [41, Lemma 1], whose proof is recalled here for con-
venience of the reader. Since �ψ∗ = ω∗ and ω∗ ∈ L∞, one has ψ∗ ∈ C1,β(M)

for any 0 < β < 1. Thus, ψ∗(M) is the segment [minψ∗,maxψ∗]. For each
x ∈ M , consider (ψ∗(x), ω∗(x)) on the ψ∗-ω∗ plane. We know

⋃
x∈M ψ∗(x) =

[minψ,maxψ]while⋃
x∈M ω∗(x) ⊆ [minω∗,maxω∗].We can thereforewrite the

relation ω = F(ψ) with F bounded, but in general can be multivalued. Thanks to
(3.17), F must be a monotone function, non-decreasing when � 0, non-increasing
for the case � 0 in (3.17). To check that F is also single-valued, one needs to study
what happens when ψ is constant. Let Mj = {x ∈ M : ψ(x) ≡ ψ j }. If |Mj | > 0
then there exists a ball Bj ⊂ Mj , so that 0 ≡ �ψ |Bj = F(ψ j ). Since F(ψ) is
monotone, there is at most one value such that F(ψ−
 ) � 0 � F(ψ+
 ), but here
we can define F(ψ
) ≡ 0, so that ω = F(ψ) is a relation satisfying the properties
required in (i). ��

Since ω∗, the minimizer of I f , is minimal, applying Lemma 3.2 concludes the
proof of (i) in Thm 1.

3.4. Unconstrained characterization

We exploit the abstract optimality theorem given by Rakotoson and Serre in
[35, Theorem 2], which reads as follows:
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Theorem 3. Let X,Y be two normed real vector spaces whose dual spaces are
respectively X∗,Y∗. Let C ⊂ Y be a convex cone3 with non-empty interior. Let g0
be an optimal solution of the problem

J (g0) = inf{J (g) : g ∈ X, Sg ∈ −C}, (3.18)

where J : X→ R and S : X→ Y. Suppose that

(H1) For all h ∈ X, the first variations of J, S along h are well defined at g0, that
is

lim
ε→0+

J (g0 + εh)− J (g0)

ε
= J ′(g0; h),

lim
ε→0+

S(g0 + εh)− S(g0)

ε
= S′(g0; h). (3.19)

(H2) The map h �→ J ′(g0; h) ∈ R is convex. The map h �→ S′(g0; h) ∈ Y is
convex in the following sense: for all λ ∈ [0, 1] and h1, h2 ∈ X one has

S′(g0; λh1 + (1− λ)h2)− λS′(g0; h)− (1− λ)S′(g0; h) ∈ −C. (3.20)

Then, there exists c0 � 0 and λ∗ ∈ C∗ = {L ∈ Y ∗ : for all f ∈ C, 〈L , f 〉 � 0},
such that the following holds true: for all h ∈ X

c0 J
′(g0; h)+ 〈λ∗, S′(g0; h)〉 � 0, (3.21)

〈λ∗, Sg0〉 = 0. (3.22)

with (c0, λ∗) �= (0, 0).

Remark 3.3. Theorem 3 is a natural generalization of the Karush-Kuhn-Tucker
theory [46] to the case with an infinite number of inequality constraints, see also
Appendix A.

We aim at applying Theorem (3) in the following setting: let C be the convex cone

C = { f ∈ L∞(R) : f (x) � 0, for almost everywhere x ∈ R} × [0,∞)× {0}
=: C1 × [0,∞)× {0}. (3.23)

Observe that

C∗ = C∗1 × [0,+∞)× R, (3.24)

whereC∗1 consists of non-negative, bounded and finitely additive measures that are
absolutely continuous with respect to the Lebesgue measure. For any ω ∈ X , with
X given in (1.9), we define the functional S : X → L∞(R)× R

2 as

Sω := (S1ω, S2ω, S3ω), (3.25)

3 C is a convex cone if for each k ∈ C and α ∈ R+ then αk ∈ C and C+ C ⊆ C.
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(S1ω)(c) =
∫
M

((ω − c)+ − (ω0 − c)+) dx, for c ∈ R, (3.26)

S2ω =
∫
M

(ω0 − ω) dx, (3.27)

S3ω = E(ω0)− E(ω). (3.28)

In account of the characterization (2.9), imposing Sω ∈ −C is equivalent to ask
thatω ∈ Oω0

∗∩{E = E0}. In fact, we just need to check that themean is conserved.
Take c∗ = min{min{ω0 − 1},min{ω − 1}}. Then

0 � S1(ω)(c∗) =
∫
M

(ω − c∗ − (ω0 − c∗)) dx =
∫
M

ω dx −
∫
M

ω0 dx . (3.29)

Combining the inequality above with S2ω � 0 we recover the conservation of the
mean. The first variation of S1 is

lim
ε→0

1

ε

(∫
M

((ω∗ + εh − c)+ − (ω∗ − c)+)

)

=
∫
M

(χ{ω∗>c}h + χ{ω∗=c}h+), (3.30)

so we get that

S′(ω, h)(c) = (S′1(ω, h)(c), S′2h, S′3(ω, h))

=
(∫

M
(χ{ω>c}h + χ{ω=c}h+), −

∫
M
h, −

∫
M

ψh

)
, (3.31)

where �ψ = ω. From the identity above, we deduce that (3.20) holds true. Notice
that the linearity with respect to h of S′3 is crucial.

Thanks to this construction, we can rewrite the variational problem (1.16) as

min
ω∈Oω0

∗∩{E=E0}
I f (ω) = min{I f (ω) : ω ∈ X, Sω ∈ −C}, (3.32)

where S,C are respectively defined in (3.25), (3.23) and X in (1.9).
Since I f , S satisfy the hypotheses (H1)-(H2) in Theorem 3, we obtain the fol-

lowing as a consequence of Theorem 3:

Proposition 3.4. Let f ∈ C1(R)bea convex function. Letω∗ beanoptimal solution
to (3.32). There exists a non-negative measure measure λ∗ ∈ C∗1, λ f , λE ∈ R,
λ2f + λ2E �= 0, λm � 0 such that for all h ∈ X

∫
M

(λ f f
′(ω∗)− λEψ∗ − λm)h dx +

∫
R

(∫
M

(χ{ω∗>c}h + χ{ω∗=c}h+) dx

)
dλ∗(c) � 0

(3.33)∫
R

(∫
M

(
(ω∗ − c)+ − (ω0 − c)+

)
dx

)
dλ∗(c) = 0, (3.34)

Moreover, defining the Plateau set

P(ω∗) = {c ∈ [essinf ω∗, esssupω∗] : |ω∗ = c| > 0}, (3.35)
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in the sense of distribution we have

λ f f
′(ω∗)− λEψ∗ ∈ [−	2,−	1], (3.36)

	1 =
∫
R

χ{ω∗(x)>c}dλ∗(c)− λm, 	2 = 	1 + χP(ω∗)(x)
∫
P(ω∗)

dλ∗(c).

(3.37)

This imply that there exists a convex function � such that an optimal solution to
(3.32) is a minimizer in X of the unconstrained functional

J�(ω) = λ f I f (ω)+ I�(ω)+ λE(E(ω)− E0). (3.38)

Remark 3.5. At this level of generality, we are not able to exclude the case λ f = 0.
This degenerate scenariomight include stationary states with constant vorticity. See
Appendix B for an example of a minimal flow having this property in a region. We
also stress that the conservation of the energy and the mean for ω∗ follows by the
fact that Sω∗ ∈ −C.
Remark 3.6. The fact that one can rewrite a constrained minimization problem as
an unconstrained one as (3.38), it is standard with a finite number of inequality
constraints (the Lagrange multiplier rule or the more general Karush-Kuhn-Tucker
theory). That the same happens also with infinite number of constraints was ob-
served, for instance, by Rakotoson and Serre in [35, Remark after Theorem 1]. Our
Proposition 3.4 is different to the result obtained in [35] because we use the char-
acterization (2.9) instead of the one with the symmetric decreasing rearrangement;
see Step 2 in §2.

Proof. We can apply Theorem 3 to the problem (3.32) to obtain that
∫
M

(λ f f
′(ω∗)− λEψ∗ − λm)h dx

+
∫
R

(∫
M

(χ{ω∗>c}h + χ{ω∗=c}h+) dx

)
dλ∗(c) � 0, (3.39)

with

(λ f , λE, λm, λ∗) �= (0, 0, 0, 0). (3.40)

The equality (3.34) is the orthogonality condition (3.22) for S1.
We then have to prove that λ2f + λ2E �= 0. Assume by contradiction that λ f =

λE = 0. We can assume λm, λ∗ �= 0, since if one of the two is zero, also the other
must be zero by the arbitrariness of h, whence contradicting (3.40). By a slight
abuse of notation we can set λm = 1. From (3.39), we have

∫
M
h dx �

∫
R

(∫
M

(χ{ω∗>c}h + χ{ω∗=c}h+) dx

)
dλ∗(c). (3.41)

If |ω∗ = ess supω∗| > 0, take h = χ{ω∗=ess supω∗}. On the left hand side of the
inequality above, we have something strictly positive. Therefore, λ∗ must be a
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Dirac mass at c = ess supω∗, but this contradicts λ∗ ∈ C∗1 (the Dirac mass is not
absolutely continuous with respect to the Lebesgue measure for instance).

Otherwise, recall the definition of the Plateau set given in (3.35). Taking h =
gχM\P(ω∗) or h = −gχM\P(ω∗), we see that the inequality (3.42) become the
identity ∫

{M\P(ω∗)}
g dx =

∫
R

(∫
{M\P(ω∗)}

χ{ω∗>c}g dx
)
dλ∗(c). (3.42)

By Fubini’s theorem, we rewrite the above as∫
{M\P(ω∗)}

(
1−

∫
R

χ{ω∗>c}dλ∗(c)
)
g dx = 0. (3.43)

Taking g to be the term inside brackets, we get

1 =
∫ ess supω∗

−∞
χ{ω∗(x)>c}dλ∗(c), for a.a. x ∈ {M\P(ω∗)}. (3.44)

Since we are considering the case |ω∗ = ess supω∗| = 0 and we are taking the
essential supremum, we can find at least one point x̃ ∈ {M\P(ω∗)} such that
ω∗(x̃) = ess supω∗ can be taken in (3.44). But (3.44) would imply that λ∗ is a
Dirac mass concentrated in ess supω∗, whence contradicting the continuity w.r.t.
the Lebesgue measure of λ∗. Therefore, λ2f + λ2E = 0 is not possible.

To prove (3.36), considering h � 0 in (3.33) and using Fubini’s theorem as in
(3.43), by the definition of 	1 in (3.37) we get∫

M
(λ f f

′(ω∗)− λEψ∗ + 	1)(−h) dx � 0. (3.45)

This means λ f f ′(ω∗)− λEψ∗ + 	1 � 0 in the sense of distribution since we are
testing against the non-negative function −h. The lower bound with −	2 follows
analogously by testing against h � 0 in (3.33).

Finally, to prove (3.38), it is enough to observe that 	1 and 	2 are of the form
g1 ◦ ω∗ and g2 ◦ ω∗ with

g1(s) =
∫
R

χ{s>c}dλ∗(c)− λm, g2(s) = g1(s)+ χP(s)

∫
P(s)

dλ∗(c).

(3.46)

The second term in g2 is interpreted as P(s) = 1 if s = c for some c ∈ [ess inf ω∗,
ess supω∗]. We can now argue as in [35]. Namely, since g1 � g2 and are both
decreasing, it means that there exists a convex function � whose sub-differential,
denoted by ∂�,4 at s is the interval [g1(s), g2(s)]. Thus

λ f f
′(ω∗)− λEψ∗ ∈ ∂�(ω∗), (3.47)

which, by the definition of the subdifferential, is equivalent to be a minimizer of
(3.38) [46]. Note that since � is convex, it has at most finitely many discontinuities
in its derivative and hence it can be chosen Lipschitz. ��

4 For instance, (∂|x |)(0) = [−1, 1].
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4. Excluding shear flows at infinite times

We now turn our attention to the proof of Theorem 2. In the sequel, we denote
x = (x1, x2)with x1 ∈ T and x2 ∈ [0, 1]. We exploit the periodicity in x1 by taking
the Fourier transform on the horizontal variable. For any f ∈ L2(M), let

f (x1, x2) =
∑
k∈Z

f̂k(x2)e
ikx1 , f̂k(x2) = 1

2π

∫ 2π

0
e−ikx1 f (x1, x2)dx1. (4.1)

Given a vorticity ω, the associated streamfunction ψ satisfy
{

(∂2x2 − k2)ψ̂k = ω̂k,

kψ̂k(0) = kψ̂k(1) = 0.
(4.2)

When k = 0, we set ψ̂0(0) = 0 and, in principle, we could choose ψ̂0(1) as we
wish. We fix the value of this constant exploiting the conservation of the linear
momentum M. Namely, we set

ψ̂0(1) = M
2π

. (4.3)

With this choice, the Green’s function in the periodic channel with Dirichlet bound-
ary conditions is

Gk(x2, z) = −

⎧⎪⎪⎨
⎪⎪⎩

x2(1− z)1k=0
+ 1

k sinh(k) sinh(kx2) sinh(k(1− z)), for 0 � x2 � z � 1,
(1− x2)z1k=0
+ 1

k sinh(k) sinh(k(1− x2)) sinh(kz), for 0 � z � x2 � 1,

(4.4)

and ψ̂k is given by

ψ̂k(x2) =
∫ 1

0
Gk(x2, z)ω̂k(z)dz. (4.5)

Notice that ω̂0(x2) = −∂x2 û1;0(x2), from which we deduce

ψ̂0(x2) = −
∫ x2

0
û1;0(z)dz + 2x2

∫ 1

0
û1;0(z)dz, (4.6)

and that (4.3) is satisfied.
Recall that ωb is the background vorticity with energy Eb, momentumMb and

let δ > 0 be a given constant. Let 0 < ε < δ be a small parameter. We define ξ as
a small spatial scales perturbation of ωb:

ξ = ωb + δε−21Bε
(x1)1Aε

(x2),

Aε = [1/2− ε, 1/2+ ε], Bε = [π − ε, π + ε]. (4.7)

ω = ξ − ωb. (4.8)
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Notice thatω is an L∞ approximation of a point vortex (Dirac point mass vorticity).
The construction can easily be smoothed to make the approximations C∞, since
we measure closeness to the background only in an integral sense. By the definition
of ω, one has

‖ξ − ωb‖L1 = ‖ω‖L1 = δε−2
∫
Aε×Bε

dx2dx1 = 4δ. (4.9)

Since the linear momentum is a linear functional, we have M(ξ) = Mb + M(ω).
Thus as y ∈ [0, 1], a bound analogous to (4.9) readily give us that |M(ξ)−Mb| � δ.

We now turn our attention to the energy. It is natural to expect that E(ω) is of
order | log(ε)| and, for our perturbation, we can compute this explicitly. The Fourier
transform of ω is

ω̂k(x2) = δ
ε−1

π
1Aε

(x2)1k=0 + δε−21Aε
(x2)

e−ikπ

π

sin(kε)

k
. (4.10)

By Plancherel’s theorem, the energy is given by

E(ω) = −1

2

∫
M

ωψdx = −δ
ε−1

2π

∫ 1/2+ε

1/2−ε

ψ̂0(x2)dx2

−
∑
k �=0

δ
ε−2

2πk
eikπ sin(kε)

∫ 1/2+ε

1/2−ε

ψ̂k(x2)dx2

:= δ

2π

(E0 +∑
k �=0

Ek
)
. (4.11)

For the k = 0 part, since ∂x2x2ψ̂0 = ω̂0, by Taylor’s theorem we get

ψ̂0(x2) = ψ̂0(1/2)+ ∂x2ψ̂0(1/2)

2
(x2 − 1/2)+ ω̂0(x̃2)

6
(x2 − 1/2)2 (4.12)

with x̃2 between x2 and 1/2. Therefore

E0 = −2ψ̂0(1/2)− δ
ε−2

6π

∫ 1/2+ε

1/2−ε

(x2 − 1/2)2dx2 = −2ψ̂0(1/2)− δ
ε

18π
.

(4.13)

Using (4.5) and (4.10), by the continuity of the Green’s function, we infer that

ψ̂0(1/2) = δ
2

π
G0(1/2, 1/2)+ δO(ε) = −δ

1

2π
+ δO(ε), (4.14)

so that

E0 = δ

π
+ δO(ε). (4.15)

To compute Ek , we need to know the stream function for x2 ∈ [1/2− ε, 1/2+ ε].
By (4.5), when x2 ∈ [1/2− ε, 1/2+ ε] and k �= 0 we have
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eikπ ψ̂k(x2) = −δε−2 sin(kε)
πk

1

k sinh(k)

(
sinh(k(1− x2))

∫ x2

1/2−ε

sinh(kz)dz

+ sinh(kx2)
∫ 1/2+ε

x2
sinh(k(1− z))dz

)

= −δε−2 sin(kε)
πk

sinh(k(1− x2))

k2 sinh(k)
(cosh(kx2)− cosh(k(1/2− ε)))

− δε−2 sin(kε)
πk

sinh(kx2)

k2 sinh(k)
(cosh(k(1− x2))− cosh(k(1/2− ε))).

(4.16)

Since sinh(a + b) = sinh(a) cosh(b) + sinh(b) cosh(a) we rewrite the identity
above as

eikπ ψ̂k(x2) = δε−2 sin(kε)
πk3

(
cosh(k(1/2− ε))

sinh(k)
(sinh(k(1− x2))+ sinh(kx2))− 1

)
.

(4.17)

Computing the integral and using cosh(a + b)− cosh(a − b) = 2 sinh(a) sinh(b),
we get

eikπ
∫ 1/2+ε

1/2−ε

ψ̂k(x2)dx2

= 2δε−1 sin(kε)
πk3

(
cosh(k/2− kε)

(kε) sinh(k)
(cosh(k/2+ kε)− cosh(k/2− kε))− 1

)

= 2δε−1 sin(kε)
πk3

(
2
cosh(k/2− kε)

sinh(k)
sinh(k/2)

sinh(kε)

kε
− 1

)
. (4.18)

From standard properties of the hyperbolic functions, notice that

2
cosh(k(1/2− ε))

sinh(k)
sinh(k/2) = cosh(k(1/2− ε))

cosh(k/2)

= e−|k|ε + e−|k|(1+ε)

(
e2|k|ε − 1

1+ e−|k|

)
. (4.19)

If |kε| < 1/10, combining (4.18) with (4.19), using Taylor’s formula we infer that

Ek = 2δ/ε3

π

(sin(kε))2

k4

(
(e−|k|ε − 1)+ e−|k|(1+ε) sinh(kε)

kε

(
e2|k|ε − 1

1+ e−|k|

)

+e−|k|ε
(
sinh(kε)

kε
− 1

))

≈ − δ

|k| + O(δ)e−|kε|/4. (4.20)

From the identity above for Ek we deduce the following (rough) bound at large
frequencies

|Ek | � ε

(εk)4
for |kε| � 1

10 . (4.21)
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Putting together (4.15), (4.20) and (4.21) we obtain

E(ω) ≈ δ2
(
1+ O(ε)+

∑
|k|<(10ε)−1

(
1

|k| + O(1)e−|kε|/4
)
+

∑
|k|�(10ε)−1

O(ε)

(εk)4

)

≈ δ2
(| log(ε)| + 1+ O(ε)

)
. (4.22)

Taking ε sufficiently small, we finally get E(ω) ≈ δ2| log(ε)|. Moreover, the main
contribution to the energy of ξ is given by ω. Indeed,

E(ξ) = E(ω)+ Eb + 2
∫
M

ψbωdx (4.23)

Since ‖ψb‖L∞ � ‖ωb‖L∞ , we have
∣∣∫

M ψbωdx
∣∣ � ‖ωb‖L∞ ‖ω‖L1 � δ ‖ωb‖L∞ .

Taking ε sufficiently small so that E(ω) ≈ δ2| log(ε)| � Eb + δ ‖ωb‖L∞ we have

E(ξ) ≈ δ2| log(ε)|. (4.24)

We are now ready to prove that ξ cannot be rearranged into a shear flow in
the set Oξ

∗ ∩ {E = E(ξ)} ∩ {M = M(ξ)}. Assume by contradiction that ω̃s ∈
Oξ

∗ ∩ {E = E(ξ)} ∩ {M = M(ξ)} is a shear flow, namely ω̃s ≡ ω̃s(x2). By the
characterization given in (2.8), we know that

‖ω̃s‖L∞ � ε−2 (4.25)

Moreover, to obtain a shear flow from ξ there are two possibilities:

(1) rearrange the value ε−2 in horizontal strips whose total size is ε2,
(2) do a proper mixing of ω and ωb and rearrange everything to get a function

depending only on x2.

This last procedure creates a shear flowwhose L∞ norm is smaller with respect to a
rearrangement but the resulting shear flow could be big in a larger set. In particular,
the worst case scenario is to create a shear flow of the form

ω̃s(x2) =
{
O(μ−p) on Ãμ2 , | Ãμ2 | � μ2,

O(1) on [0, 1]\Aμ2 ,
(4.26)

where 0 < μ � 1 and p > 0 are numbers that need to be controlled with the
constraints imposed on ωs to belong to Oξ

∗
. For instance, having μ = 1/| log(ε)|

and p too large will give rise to an energy even larger than the one of ξ . However,
thanks to the characterization (2.9), if ω̃s(x2) ∈ Oξ

∗
one has

∫
M
|ω̃s(x2)|dx �

∫
M
|ξ |dx � ‖ωb‖L1 + 4δ, (4.27)

which imply

μ−p � μ−2(‖ωb‖L1 + 4δ + 1) = O(μ−2) (4.28)
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Therefore, the worst case scenario in Oξ
∗
is (4.26) with p = 2. Split now the

vorticity into the large and O(1) part as

ω̃s(x2) = ω̃s(x2)(1A
μ2
+ 1[0,1]\A

μ2
)(x2) := ω̃L

s (x2)+ ω̃1
s(x2). (4.29)

We rewrite the energy as

E(ω̃s) = −1

2

∫ 1

0
ω̃s(x2)

(∫ 1

0
G0(y, z)ω̃s(z)dz

)
dx2

= −1

2

∫ 1

0
(ω̃L

s (x2)+ ω̃1
s(x2))

(∫ 1

0
G0(y, z)(ω̃

L
s (z)+ ω̃1

s(z))dz

)
dx2

:= IL ,L + IL ,1 + I1,L + I1,1, (4.30)

where IL ,L is the integral containing two large vorticities and so on. Using the
boundedness of G0, we control each term as follows:

|IL ,L | � μ−4
∫
A

μ2×A
μ2

dx2dz = O(1), (4.31)

|IL ,1| + |I1,L | � μ−2
∫
A

μ2×([0,1]\A
μ2 )

dx2dz = O(1), (4.32)

|I1,1| �
∫

([0,1]\A
μ2 )×([0,1]\A

μ2 )

dx2dz = O(1). (4.33)

Therefore, the energy of shear flow ω̃s obtained through a rearrangement of ξ would
satisfy

E(ω̃s) � 1. (4.34)

In view of (4.24), there is a large energy gap E(ξ) � E(ω̃s). Thus for any ω̃s ∈
Oξ

∗ ∩ {M = M(ξ)}, we have ω̃s /∈ Oξ
∗ ∩ {E = E(ξ)} ∩ {M = M(ξ)}. This

completes the proof. ��
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Appendix A: Maximal mixing theory prediction for vortex patches

Let us now give some examples of the predictions of Shnirelman’s maximal mixing
theory (Theorem 1 herein). Consider the vorticity to be a finite number of vortex
patches, namely ω0 ∈ X given by

ω0 =
N∑
i=1

aiχAi , (A.1)

with ai ∈ R, ai �= a j and ∪i Ai = M . Without loss of generality, assume that
a1 � a2 � · · · � aN . In this case, the characterization (2.9) of the weak-∗ closure
of the orbit of ω0 can be refined as follows:

Proposition A.1. Given any ω0 ∈ X of the form (A.1), we have

Oω0
∗ =

{
ω ∈ X :

∫
M

ω =
∫
M

ω0,

∫
M

(ω − ai )+ �
∫
M

(ω0 − ai )+ for all i = 1, . . . , N

}
.

(A.2)

Remark A.2. If ω0 = a1χA1 + a2χA2 is comprised of two patches of equal mag-
nitude but opposite strength (for example a1 = −a2 = 1) occupying equal areas
(|A1| = |A2| = 1

2 |M |), Prop. A.1 gives

Oω0

∗ =
{
ω ∈ X :

∫
M

ω =
∫
M

ω0

}
. (A.3)

Indeed, considering a1 < a2, from
∫
M (ω − a2)+ �

∫
M (ω0 − a2)+ = 0 we find

ω � a2. To get the lower bound, let ε > 0. Then
∫
M

(ω − (a1 + ε))+ �
∫
M

(ω0 − (a1 + ε))+ =
∫
M

(ω0 − (a1 + ε))

=
∫
M

(ω − (a1 + ε)), (A.4)

where in the last identity we used the conservation of the mean. Recalling the
definition of the positive and negative part, that is ( f )+ = ( f +| f |)/2 and ( f )− =
(| f | − f )/2, from (A.4) we get

∫
M (ω − (a1 + ε))− � 0. This imply ω � a1 + ε.

Sending ε → 0,we obtaina1 � ω � a2. Sincewedo not have any other constraints,
we deduce that any ω ∈ X (assuming a1 = −a2) can be taken.

The main point of (A.2) is that we have a finite number of inequality constraints.
This is extremely useful since we can characterize the minimizer of (1.16) through
the Karush-Kuhn-Tucker (KKT) theory [46].5 We thus obtain

5 The extension of the Lagrange multiplier rule when we have inequality constraints.
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Proposition A.3. Let f ∈ C1 be a convex function. Consider ω0 as in (A.1) with
energy E0. Then, there exists μ0, μ1, {λi }Ni=1 ∈ R such that ω∗ ∈ X solving

∫
M

(
f ′(ω∗)+ μ0ψ

∗ + μ1 +
N∑
i=i

λi (χω∗>ai + χω∗=ai χw>0)

)
w � 0,

for all w ∈ X (A.5)

is a minimizer of (1.16). Moreover, for i = 1, . . . , N

λi � 0, λi

∫
M

(
(ω∗ − ai )+ − (ω0 − ai )+

) = 0,
∫
M

(ω∗ − ai )+ �
∫
M

(ω0 − ai )+. (A.6)

Remark A.4. In the case of equal patches with opposite strength, that is ω0 =
a1χA1 + a2χA2 with a1 = −a2 = 1 and |A1| = |A2| = |M |/2, we can even obtain
a stronger characterization. Indeed, from (A.3) we know that it is enough to just
impose the conservation of the mean and thatω ∈ X . In this special case, a standard
trick [43,46] in variational problems is to first modify the convex function f as

F(ω) =
{
f (ω), if |ω| � 1,

+∞, otherwise.
(A.7)

This modified convex function will automatically impose that the minimizer ω∗
belongs to X . Hence, thanks to (A.3) and the standard Lagrange multiplier rule, any
minimizer for the problem (1.16) satisfies F ′(ω∗)+μ0ψ

∗+μ1 = 0,whereμ0, μ1
are chosen to guarantee the conservation of the energy and the mean respectively.
We note that different convex functions f correspond to different minimal flows,
thereby showing they need not be unique in the set Oω0

∗ ∩ {E = E0} for certain
ω0.

Proof of Proposition. A.1. We just have to show that

Oω0

∗ ⊇ Sω0 :=
{
ω ∈ X

∫
M

ω =
∫
M

ω0,

∫
M

(ω − ai )+ �
∫
M

(ω0 − ai )+ for all i = 1, . . . , N

}
,

since the reverse inclusion directly follows from (2.9). We are going to exploit the
characterization (2.9) of Oω0

∗
. We first observe that for ω ∈ Oω0

∗
it is enough to

consider c ∈ [a1, aN ] (one can argue as in Remark A.2). Hence, it is enough to
prove that for any ω ∈ Sω0 one has∫

M
(ω − c)+ �

∫
M

(ω0 − c)+ for all c ∈ [a1, aN ]. (A.8)

When c = ai , i = 1, . . . , N there is nothing to prove. Assume that a
 < c < a
+1
for some 
 ∈ {1, . . . , N }. Let λ > 0 be such that c = λa
 + (1 − λ)a
+1. By the
convexity of the positive part function, we deduce that∫

M
(ω − c)+ =

∫
M

(λ(ω − a
)+ (1− λ)(ω − a
+1))+
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� λ

∫
M

(ω0 − a
)+ + (1− λ)

∫
M

(ω0 − a
+1)+, (A.9)

where in the last inequality we used ω ∈ Sω0 . Since ω0 is of the form (A.1) and
a
 < c < a
+1, we have

∫
M

(ω0 − c)+ =
∑

i�
+1
(ai − c)|Ai |,

∫
M

(ω0 − a
)+ =
∑

i�
+1
(ai − a
)|Ai |,

(A.10)∫
M

(ω0 − a
+1)+ =
∑

i�
+1
(ai − a
+1)|Ai |. (A.11)

Therefore

λ

∫
M

(ω0 − a
)+ + (1− λ)

∫
M

(ω0 − a
+1)+ =
∑

i�
+1
(ai − c)|Ai | =

∫
M

(ω0 − c)+.

Combining the identities above with (A.9) we prove (A.8), so that Sω0 = Oω0

∗
. ��

We now turn our attention to the proof of Proposition A.3.

Proof of Proposition A.3. Thanks to the characterization (A.2), solving (1.16)
corresponds to solve a minimum problem with a finite number of inequality con-
straints. Thus we construct the Lagrange function

L(ω,λ) = λ∗ I f (ω)+ μ0(E(ω)− E(ω0))+ μ1

(∫
M

(ω − ω0)

)

+
N∑
i=1

λi

∫
M

((ω − ai )+ − (ω0 − ai )+) , (A.12)

with λ = (λ∗, μ0, μ1, λ1, . . . , λN ) ∈ R
N+3. Appealing to the KKT theory [46,

Theorem 47.E], we know that solving (1.16) is equivalent to solveminω∈X L(ω,λ),

for a fixed λ such that for all i = 1, . . . , N the conditions (A.6) hold with (in our
present notation) ω∗ replaced by ω. In addition, the so-called Slater condition, that
is there exists ω̃ ∈ X such that

∫
M (ω̃ − ai )+ <

∫
M (ω0 − ai )+, guarantees that

λ∗ �= 0. This is clearly satisfied in our case, and therefore we consider λ∗ = 1. The
coefficients μ0, μ1 are chosen to guarantee the conservation of the energy and the
mean, respectively.
Then, let ω∗ be a minimizer of (1.16). Defining ωε = ω∗ + εw, with w ∈ X ,
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d

dε
L(ωε,λ)|ε=0

=
∫
M

( f ′(ω∗)+ μ0ψ
∗ + μ1)w +

N∑
i=1

λi lim
ε→0

1

ε

×
(∫

M
((ω∗ + εw − ai )+ − (ω∗ − ai )+)

)

=
∫
M

(
f ′(ω∗)+ μ0ψ

∗ + μ1 +
N∑
i=i

λi (χω∗>ai + χω∗=ai χw>0)

)
w. (A.13)

If the term on the right hand side of (A.13) is negative, we would have found
L(ωε,λ) < L(ω∗,λ), whence contradicting the optimality of ω∗. Therefore, (A.5)
is proved. ��

Appendix B: An example of minimal flow with piecewise constant vorticity

Consider a shear flow u(x1, x2) = (U (x2), 0) in a periodic channel M = T ×
[−1, 1]with a convex profileU (x2). It is minimal, even if the functionU (x2) is not
strictly convex, and has a flat piece (for example U (x2) = const. for a � x2 � b).
Let the streamfunction ψ and vorticity ω = −U ′(x2) defined by

ψ(x2) =

⎧⎪⎨
⎪⎩

1
2 x2 + 1

8 x2 ∈ [−1,− 1
2 ],

− 1
2 x

2
2 x2 ∈ [− 1

2 ,
1
2 ],

− 1
2 x2 + 1

8 x2 ∈ [ 12 , 1].
U (x2) =

⎧⎪⎨
⎪⎩
− 1

2 x2 ∈ [−1,− 1
2 ],

x2 x2 ∈ [− 1
2 ,

1
2 ],

1
2 x2 ∈ [ 12 , 1].

ω(x2) =
{
−1 x2 ∈ (− 1

2 ,
1
2 ),

0 otherwise.

We now define squares where the vorticity is 0 and −1. For instance

Q0 =
{
[− δ

2 ,
δ
2 ] × [x2,0, x2,0 + δ] 1

2 < x2,0 < 1− δ,

[− δ
2 ,

δ
2 ] × [x2,0 − δ, x2,0] −1+ δ < x2,0 < − 1

2 .
(B.1)

Q−1 =
{
[− δ

2 ,
δ
2 ] × [x2,0, x2,0 + δ] 0 < x2,0 < 1

2 − δ,

[− δ
2 ,

δ
2 ] × [x2,0 − δ, x2,0] − 1

2 + δ < x2,0 � 0.
(B.2)

Notice that Q0 ⊂ T × ([1/2, 1] ∪ [−1,−1/2]) and Q−1 ⊂ T × [−1/2, 1/2].
Let � be the area preserving map that exchange Q0 with Q−1 and define Kεω =
((1− ε)id + ε�)(ω). Then, by definition we know that

ω|Q0 = 0, ω ◦�|Q0 = ω|Q−1 = −1

ψ |Q0 =
{

1
2 y + 1

8 x2,0 < − 1
2 ,

− 1
2 y + 1

8 x2,0 > 1
2 ,

ψ ◦�|Q0 = ψ |Q−1 = − 1
2 x

2
2 .
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The first variation of the energy is d
dε E(Kεω) = ∫

Q0
(ω − ω ◦ φ)(ψ − ψ ◦ φ).

Consequently, we obtain

d

dε
E(Kεω) = πδ

∫ x2,0+δ

x2,0
(x22 − x2 + 1

4 )dx2 = πδ

∫ x2,0+δ

x2,0
(x2 − 1

2 )
2dx2 > 0,

for x2,0 > 1
2 ,

d

dε
E(Kεω) = πδ

∫ x2,0

x2,0−δ

(x22 + x2 + 1
4 )dx2 = πδ

∫ x2,0

x2,0−δ

(x2 + 1
2 )

2dx2 > 0,

for x2,0 < − 1
2 .

Therefore, for any propermixingwe increase the energy—it is an “energy deficient"
minimal flow [41]. Another example is the circular flow inside a disk D given by
u(r, θ) = V (r)eθ where V (r) = 0 for 0 � r � a and convex V (r) which grows
a � r � 1.
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