
Biometrika (2022), xx, x, pp. 1–12

Printed in Great Britain

Uniqueness and global optimality of the maximum likelihood

estimator for the generalized extreme value distribution

BY LIKUN ZHANG

Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,

Berkeley, California 94720, U.S.A. 5

likunz@lbl.gov

BENJAMIN A. SHABY

Department of Statistics, Colorado State University,

Fort Collins, Colorado 80523, U.S.A.

bshaby@colostate.edu 10

SUMMARY

Some key words: Block maximum; Convergence rate; Global maximum; Law of large numbers; Profile likelihood;
Support.

1. INTRODUCTION

Classical extreme value theory was introduced almost a century ago (Fisher & Tippett, 1928) 15

and is in wide practical use, yet a basic theoretical elucidation of likelihood-based inference un-

der its central distributional construct remains incomplete. Here, we fill in some important gaps.

The generalized extreme value (GEV) distribution arises as the only limit of suitably renormal-

ized maxima over independent and identically distributed random variables, and has therefore

routinely been used in modelling the tail behaviour of observed phenomena. However, as the 20

support of the density depends on its parameters, standard regularity conditions of classic asymp-

totic theory are not satisfied. It is only recently that consistency and asymptotic normality of the

maximum likelihood estimator (MLE), found locally on a restricted compact set, have been es-

tablished. In this paper, we show that the local MLE uniquely and globally maximizes the GEV

log-likelihood function, provided that the shape parameter is between −1 and the number of 25

samples. In addition, we establish a number of convergence properties related to the GEV, in-

cluding uniform consistency of a class of limit relations, revealing a much richer understanding

of the likelihood than has previously appeared.

The family of GEV distributions forms a continuous parametric family with respect to θ =
(τ, µ, ξ) on some measurable space (X ,A): 30

Pθ(y) =

{

exp
[

−
{

1 + ξ
(y−µ

τ

)}−1/ξ
]

, ξ 6= 0,

exp
{

− exp
(

−y−µ
τ

)}

, ξ = 0,

where 1 + ξ(y − µ)/τ > 0 for ξ 6= 0, and the scale parameter τ > 0, location parameter µ ∈
R, and shape parameter ξ ∈ R. The GEV distribution unites the Gumbel, Fréchet and Weibull

distributions into a single family to allow various shapes.
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The estimation of GEV parameters, especially the shape parameter ξ, is pivotal in studying tail

behaviour. The Pickands (Pickands, 1975), probability weighted moments (Hosking et al., 1985)35

and method of moments quantile estimators (Madsen et al., 1997) are among many estimators

available (Beirlant et al., 2004). In this paper, we focus on the asymptotic properties of maximum

likelihood estimators. Let pθ denote the density function of Pθ with respect to some dominating

measure P . Since the support of the GEV density function depends on θ, the regularity conditions

for standard likelihood inference do not hold, which gives rise to fundamental difficulties when40

studying the existence, consistency and asymptotic normality of the MLE.

Suppose θ0 = (τ0, µ0, ξ0) is the true parameter, and Y1, . . . , Yn are independent observations

from Pθ0 . Cohen (1986, 1988) assumed ξ0 = 0 and considered samples drawn from the Gumbel

distribution. He proved the consistency and asymptotic normality of the MLE based either on a

fitted Gumbel distribution or on a fitted GEV distribution. The support of a Gumbel distribution45

is independent of its parameters, which makes it easier to examine the asymptotic behaviour of

the MLE. Smith (1985) was the first to consider the MLE of a large class of irregular parametric

families, and his formulation includes the GEV distribution when −1 < ξ0 < 0. Treating the

samples as coming from a distribution in the domain of attraction of a GEV, Dombry (2015)

derived the existence of a local MLE, implicitly defined as a solution of the score function, under50

the setting of triangular arrays of block maxima when ξ0 > −1. He proved that for any fixed

compact set K ⊂ {θ : τ > 0, µ ∈ R, ξ > −1} that contains θ0, the maximum of the likelihood

function in K is confined in an arbitrarily smaller neighbourhood K̃ of θ0 for all n large enough.

The corresponding local MLE

θ̂n = argmax
θ∈K

Ln(θ)

solves the score functions and converges almost surely to θ0. We denote the entries of θ̂n as55

(τ̂n, µ̂n, ξ̂n) throughout the remainder of the paper.

Bücher & Segers (2017) extended the result of Dombry (2015) in the simpler setting where

Y1, . . . , Yn are independent observations from a GEV distribution, establishing a Op(n
−1/2) rate

of convergence for the local MLE, and refining the incomplete proof of Smith (1985) to establish

the asymptotic normality of θ̂n for ξ0 > −1/2 and a pre-specified set K. Subsequently, Dombry60

& Ferreira (2019) proved the asymptotic normality of the MLE using a different approach. Their

results are again based upon local MLE for a likelihood function of block maxima that are ap-

proximately GEV distributed. Thus the limiting distribution has a non-trivial bias whose exact

expression depends on the asymptotic growth of block size compared to the number of blocks.

However, the local MLE θ̂n studied by Dombry (2015), Bücher & Segers (2017) and Dombry65

& Ferreira (2019) may not attain a unique, global maximum of the log-likelihood

Ln(θ) =
n
∑

i=1

lθ(Yi),

in which lθ : θ 7→ log pθ(y), and θ ∈ Ωn = {θ : pθ(Yi) > 0, i = 1, . . . , n}. Amongst other

things, the uniform and global properties of Ln in Ωn are needed in Bayesian theory to de-

velop optimal decision rules and perform posterior-based inference (Hartigan, 1983), to estab-

lish asymptotic posterior normality (von Mises, 1931; Chen, 1985), and to construct rule-based70

noninformative priors (Bernardo, 2005).

In this paper, we consider θ0 ∈ Θ = (0,∞)× R× (−1/2,∞). We will prove that the local

MLE gives a unique, global maximum point for the log-likelihood function by following a two-

step strategy:
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(I) We first construct a small compact set K̃ containing θ0 in its interior, and prove that for all 75

large n, Ln in K̃ is strictly concave and attains a unique maximum;

(II) We then specify a larger compact set K, explicitly defined in terms of θ0, such that

K̃ ⊂ K. We prove for all large n, the global maximum must be attained in K; that is,

argmaxθ∈Θ Ln(θ) = θ̂n.

Specialising Proposition 2 in Dombry (2015) to the exact GEV setting, we have θ̂n ∈ K̃ for all 80

large n. One can therefore conclude that Ln(θ̂n) is indeed the unique and global maximum Ln;

the global optimality is ensured by (II), while the uniqueness is ensured by (I). This main result

is stated in the following theorem.

THEOREM 1 (GLOBAL OPTIMALITY AND UNIQUENESS). Suppose Y1, Y2, . . . are indepen-

dently sampled from Pθ0 and θ̂n is the sequence of local maxima of Ln that is found on a fixed

compact neighbourhood of θ0. Define Θn = {θ ∈ Θ : −1/2 < ξ < n− 1}. Then there almost

surely exists N > 0 such that for all n > N , Ln is uniquely maximized in Θn and

argmax
θ∈Θn

Ln(θ) = θ̂n.

Remark 1. One may object that the optimality result is not truly global because of the re-

striction ξ < n− 1. As the shape parameters are less than 1 for most observed data-generating 85

processes, the ever-expanding Θn is hardly a restriction and does not interfere with the derivation

of asymptotic posterior properties.

2. PRELIMINARIES

2.1. The joint likelihood function and its support

First we define the finite endpoint of the support when ξ 6= 0 as 90

β = β(θ) = µ−
τ

ξ
. (1)

This one-to-one mapping from (τ, µ, ξ) to (τ, β, ξ) will be used to simplify notation. In addition,

define

Wi(θ) = 1 + ξ

(

Yi − µ

τ

)

=
ξ

τ
(Yi − β),

which helps simplify the log-likelihood function:

Ln(θ) = −n log τ −
ξ + 1

ξ

n
∑

i=1

logWi(θ)−

n
∑

i=1

W
−1/ξ
i (θ) (ξ 6= 0). (2)

When ξ → 0, W
−1/ξ
i (θ) → exp{−(Yi − µ)/τ}, so Ln(θ) with ξ = 0 is included in this formu-

lation. 95

It can be easily verified that the domain of the log-likelihood function,

Ωn = {θ ∈ Θ : ξ(Yi − β) > 0, i = 1, . . . , n}, (3)

is not a convex set, so Taylor expansion will not be helpful for studying Ln(θ). This precludes

the use of routine tools such as the mean-value theorem and makes it difficult to approximate the

difference of the function on a certain intervals. Nonetheless, if we slice Ωn at different levels

of ξ, every cross-section is convex; see Fig. 1 for illustration. On a cross-section at a fixed ξ, the 100
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Remark 3. By definition, PLn(ξ) = Ln{τn(ξ), µn(ξ), ξ}. Inserting (4) into (2),

PLn(ξ) = −n log

(

1

n

n
∑

i=1

[ξ{yi − βn(ξ)}]
−1/ξ

)

−
ξ + 1

ξ

n
∑

i=1

log[ξ{yi − βn(ξ)}]− n (5)

when ξ ∈ [−1, n− 1] \ {0}. By the continuity of Ln at ξ = 0, we know that 120

lim
ξ→0

µn(ξ) = µn(0), lim
ξ→0

τn(ξ) = τn(0), lim
ξ→0

PLn(ξ) = PLn(0).

To find the global maximum, we now need only compare the maxima from each cross-section.

If the profile likelihood PLn as a function of ξ were strictly concave in [−1, n− 1], it would

have a unique maximum at ξ such that PL′

n(ξ) = 0, and then (τn(ξ), µn(ξ), ξ) would be the

unique global maximizer for Ln. Unfortunately, PLn is not a strictly concave function of ξ. The

following proposition, whose proof can be found in the Supplementary Material, demonstrates 125

that the first derivative PL′

n is not monotonically decreasing, and it behaves irregularly when ξ
approaches the bounds of the interval (−1, n− 1).

PROPOSITION 2. Under the assumptions of Proposition 1, the first derivative PL′

n is well-

defined and continuous in ξ ∈ (−1, n− 1). When ξ 6= 0, PL′

n is taken using (5):

PL′

n(ξ) =−
n

ξ
−

n
∑n

i=1[ξ{yi − βn(ξ)}]
−1/ξ log[ξ{yi − βn(ξ)}]

ξ2
∑n

i=1[ξ{yi − βn(ξ)}]−1/ξ

+
1

ξ2

n
∑

i=1

log[ξ{yi − βn(ξ)}].

(6)

For ξ = 0, the first derivative coincides with the limit: 130

lim
ξ→0

PL′

n(ξ) =
nµ′

n(0)−
∑n

i=1{yi − µn(0) + τ ′n(0)}

τn(0)
+

∑n
i=1{yi − µn(0) + τ ′n(0)}

2 − nτ ′n(0)
2

2τn(0)2
.

Additionally, PL′

n(ξ) → ∞ when ξ ր n− 1 and PL′

n(ξ) → −∞ when ξ ց −1. By the inter-

mediate zero theorem, there must exist a ξ ∈ (−1, n− 1) such that PL′

n(ξ) = 0.

If a value of ξ satisfies PL′

n(ξ) = 0, (4) and (6) together ensure that (τn(ξ), µn(ξ), ξ) solves

the score equations. Hence this result provides an alternative approach to proving the existence

of the local MLE for Ln. However, proving the strong consistency of the local MLE requires n 135

independently Pθ0-distributed random variables.

Figure 2 illustrates some key features of the profile likelihood function. We simulate

Y1, . . . , Yn from Pθ0 and calculate the log-likelihood PLn at a grid of ξ values ranging from −1
to n− 1. For all cases, including ξ0 = −0.2, ξ0 = 0 and ξ0 = 0.2, PLn appears to be uniquely

maximized by the local MLE, which is close to ξ0. Although it is not a concave function globally, 140

we observe local concavity around ξ0, which suggests adoption of the two-step strategy intro-

duced in § 1. Roughly speaking, these two steps are established in § 4 via proving (I) PLn is

strictly concave in a small neighbourhood of ξ̂n and (II) PLn(ξ) < PLn(ξ̂n) for ξ far from ξ̂n.

3. CONVERGENCE RATE OF THE SUPPORT BOUNDARY

To prove (I) and (II), we will need to study the distance between the true parameter θ0 and the 145

boundary of the support Ωn. It is true from the definition of Ωn that if Y1, . . . , Yn are drawn from

Pθ0 , then θ0 ∈ Ωn for any n ≥ 1. It is clear that Ωn is an open set for any n, so the true parameter

θ0 is always interior to Ωn. This raises the question: can we always find a neighbourhood of θ0
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Fig. 2. PLn(ξ) under Y1, . . . , Yn sampled from true ξ0 =
−0.2 (left), ξ0 = 0 (middle) and ξ0 = 0.2 (right), with

dashed lines marking the local MLE ξ̂n. For all scenar-
ios, (τ0, µ0) = (1, 0) and sample size n = 50. We see that

PLn(ξ) is not concave.

which is contained by Ωn that is large enough to allow us to examine the log-likelihood in the

vicinity of θ0? Unfortunately, this is not possible because θ0 becomes arbitrarily close to the150

boundary as n approaches infinity when ξ0 6= 0.

To quantify the distance between θ0 and the boundary of Ωn, we first assume ξ0 > 0 and

examine the cross-section Ωn(ξ0). This is illustrated in Fig. 3, where θ0 = (τ0, µ0, ξ0) is shown

as a red point, and β0 = µ0 − τ0/ξ0 is the intercept of the line that passes through (τ0, µ0) with

a slope of 1/ξ0. Figure 3 illustrates that the difference of intercepts, Y(1) − β0, is a good measure155

of the distance. By analogy, if true shape parameter ξ0 < 0, the distance can be well-measured

by β0 − Y(n).
Since the support of the distribution of Pθ0 is bounded below by β0 when ξ0 > 0,

limn→∞ Y(1) = β0 almost surely. When ξ0 < 0, the support of the distribution of Pθ0 is bounded

above by β0, so limn→∞ Y(n) = β0 almost surely. Thus in both cases, the distance between θ0160

and the boundary of Ωn converges almost surely to zero. Also, Bücher & Segers (2017) showed

that θ̂n − θ0 = Op(n
−1/2), so θ̂n is also arbitrarily close to θ0 as n grows, and thus close to the

boundary of Ωn. This is concerning for the purpose of proving global optimality of θ̂n because

it would be rather challenging to handle the log-likelihood near the boundary of the support.

Therefore, it is imperative that we compare the convergence rate of the distance between θ0165

and the boundary with n−1/2 to get a clearer picture of Ln(θ) near the boundary.

PROPOSITION 3. Suppose Y1, . . . , Yn are independently sampled from Pθ0 and ǫ > 0 is an

arbitrary constant.

(A) If ξ0 > 0, Y(1) → β0 and Y(n) → ∞ almost surely. It also holds almost surely that

lim
n→∞

(log n)(1+ǫ)ξ0(Y(1) − β0) = ∞, lim
n→∞

(log n)(1−ǫ)ξ0(Y(1) − β0) = 0,

lim
n→∞

n−(1+ǫ)ξ0Y(n) = 0, lim
n→∞

n−(1−ǫ)ξ0Y(n) = ∞.

(B) If ξ0 < 0, Y(1) → −∞ and Y(n) → β0 almost surely. It also holds almost surely that170

lim
n→∞

(log n)(1+ǫ)ξ0Y(1) = 0, lim
n→∞

(log n)(1−ǫ)ξ0Y(1) = −∞,

lim
n→∞

n−(1+ǫ)ξ0(β0 − Y(n)) = ∞, lim
n→∞

n−(1−ǫ)ξ0(β0 − Y(n)) = 0.



Unique and global optimality of the GEV MLE 7

Fig. 3. The cross-section Ωn(ξ0) if true ξ0 > 0. The two
parallel dashed lines have a slope of 1/ξ0. The bullet
point is θ0 = (τ0, µ0, ξ0). Here we also compare the con-

vergence rates of θ̂n and Y(1), which are n−1/2 and

1/ logξ0 n. The red circle marks the neighbourhood of θ0
with radius n−1/2.

(C) If ξ0 = 0, Y(1) → −∞ and Y(n) → ∞ almost surely. It also holds almost surely that

lim
n→∞

(log log n)−1−ǫY(1) = 0, lim
n→∞

(log log n)−1+ǫY(1) = −∞,

lim
n→∞

(log n)−1−ǫY(n) = 0, lim
n→∞

(log n)−1+ǫY(n) = ∞.

Remark 4. When ξ0 > 0, it demonstrates that the convergence rate of Y(1) to β0 is roughly

1/ logξ0 n. The convergence rate of θ̂n to θ0, n−1/2, is much faster than the rate of Y(1) to β0.

These two rates are compared schematically in Fig. 3. If ξ0 < 0, the convergence rate of Y(n) to

β0 is nξ0 , which is still slower than n−1/2 because of the restriction ξ0 > −1/2. Thus for a ball 175

neighbourhood of θ̂n to be contained in Ωn, its radius can be up to 1/nǫ for some ǫ ∈ (0, 1/2).
This is of vital importance in the proof of (I) and (II).

4. PROOF OF THEOREM 1

4.1. Smoothness of Hessian matrix

When ξ0 6= 0, construct the compact set 180

K̃ = {θ ∈ Θ : |τ − τ0| ≤ r, |β − β0| ≤ r, |ξ − ξ0| ≤ r},

where r is a small constant to be determined by θ0 such that the log-likelihood function is locally

concave in K̃. Slicing K̃ at different levels of ξ produces parallelograms; see Fig. 4. When

ξ0 = 0, K̃ is defined using |µ− µ0| ≤ r instead of |β − β0| ≤ r. In this section, we will prove

that for all large n, the Hessian matrix of Ln is negative definite in K̃ ∩ Ωn, and hence Ln is

strictly concave. 185

Although the fixed larger compact set K is yet to be specified, we know from the strong

consistency of the local MLE that θ̂n ∈ K̃ for large sample size n. It is of interest to study

L′′

n(θ̂n), the Hessian at θ̂n. The log-likelihood Ln(θ) in (2) and elements of its Hessian matrix
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Fig. 4. Illustrating K̃ for ξ0 < 0 (left), ξ0 = 0 (middle) and

ξ0 > 0 (right). In all cases, the set K̃ sliced at ξ = ξ0 is
shown in yellow, with Ωn(ξ0) shown in blue. For ξ0 6= 0,
the slice is a parallelogram when sliced at any ξ in (ξ0 −

r, ξ0 + r).

L′′

n(θ) can all be written as linear combinations of sums of the form

n
∑

i=1

W
−k−a/ξ
i (θ) logbWi(θ),

where k, b = 0, 1, 2, a = 0, 1; see the Supplementary Material for the expressions for the Hes-190

sian.

For constants k and a such that kξ0 + a+ 1 > 0, it is straightforward to obtain

Eθ0

{

W−k−a/ξ0(θ0) log
bW (θ0)

}

= (−ξ0)
bΓ(b)(kξ0 + a+ 1),

where W (θ0) = ξ0(Y − β0)/τ0 with Y ∼ Pθ0 , and Γ(b) is the bth-order derivative of the Gamma

function. Since {W
−k−a/ξ
i (θ0) log

bWi(θ0) : i = 1, 2, . . .} is an independent and identically dis-

tributed sequence, the strong law of large numbers gives195

lim
n→∞

1

n

n
∑

i=1

W
−k−a/ξ0
i (θ0) log

bWi(θ0) = (−ξ0)
bΓ(b)(kξ0 + a+ 1)

almost surely.

To examine L′′

n(θ̂n), we replace θ0 with θ̂n in the preceding averages. Since limn→∞ θ̂n = θ0
almost surely, the continuity of the sums with respect to θ permits a pseudo large law of numbers

for the elements in L′′

n(θ̂n).

PROPOSITION 4. Suppose Y1, Y2, . . . are independently sampled from Pθ0 and θ̂n is the local200

MLE of Ln(θ) that is strongly consistent. Then for constants k and a such that kξ0 + a+ 1 > 0,

lim
n→∞

1

n

n
∑

i=1

W
−k−a/ξ̂n
i (θ̂n) log

bWi(θ̂n) = (−ξ0)
bΓ(b)(kξ0 + a+ 1) (7)

almost surely, where b is a non-negative integer.

The proof of this result depends on Proposition 3. For details see the Supplementary Material.

Proposition 4 ensures that L′′

n(θ̂n) behaves like L′′

n(θ0) for large n. For the next result, we show
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that if we carefully select r for K̃ based on the value of θ0, L′′

n(θ) can be approximated by 205

L′′

n(θ̂n) in K̃ ∩ Ωn, yielding the negative-definiteness of L′′

n(θ) in this neighbourhood.

PROPOSITION 5. Let Y1, Y2, . . . be independently sampled from Pθ0 and let θ̂n be the local

MLE of Ln(θ) that is strongly consistent. For a small r > 0 chosen by the rule specified in the

Supplementary Material, there almost surely exists N such that, for any n > N and θ ∈ K̃ ∩ Ωn,

I3 −A0(r) ≤ L′′

n(θ){L
′′

n(θ̂n)}
−1 ≤ I3 +A0(r), (8)

where I3 is the 3× 3 identity matrix and A0(r) is a 3× 3 symmetric positive-semidefinite matrix 210

whose elements only depend on θ0 and the radius r, and whose largest eigenvalue tends to zero

as r → 0.

As a side result, we extend the limit relations in (7) to obtain uniform consistency as the

powers of the Wi terms change in a closed interval. In Proposition 4, changing the power con-

tinuously produces a continuous path of the limit. If we fix the non-negative integer b and regard 215

Φn(α) = n−1
∑n

i=1W
−α
i (θ̂n) log

bWi(θ̂n) as a stochastic process, Φn(α) converges pointwise

almost surely to Φ(α) = (−ξ0)
bΓ(b)(αξ0 + 1). The following result, which we prove in the Sup-

plementary Material, says that the rate of convergence of sequences of Φn(α) is essentially the

same within a closed interval of α. That is, there is uniform consistency, which is a stronger

property than stochastic equicontinuity. The uniformity will be crucial to proving step (II). 220

PROPOSITION 6 (UNIFORM CONSISTENCY). Suppose Y1, Y2, . . . are independently sampled

from Pθ0 and θ̂n is the local MLE of Ln(θ) that is strongly consistent. Let b be a non-negative

integer and I be a closed interval on the real line such that αξ0 + 1 > 0 for α ∈ I . Write

Φn(α) = n−1
∑n

i=1W
−α
i (θ̂n) log

bWi(θ̂n) and Φ(α) = (−ξ0)
bΓ(b)(αξ0 + 1). Then

lim
n→∞

sup
α∈I

|Φn(α)− Φ(α)| → 0

almost surely. 225

4.2. Step (I) and its proof

PROPOSITION 7 (STEP (I)). Let Y1, Y2, . . . be independently sampled from Pθ0 and let θ̂n be

the local MLE of Ln(θ) that is strongly consistent. Then we can find some r > 0 small enough

such that Ln(θ) is a strictly concave function in K̃ ∩ Ωn. Namely, there almost surely exists

N > 0 such that for all n > N , 230

L′′

n(θ) < 0 (θ ∈ K̃ ∩ Ωn).

Therefore, θ̂n is an unique maximum point in K̃.

Proof. Proposition 4 ensures that

lim
n→∞

1

n
L′′

n(θ̂n) = −I(θ0)

almost surely, where I(θ0) is the Fisher information of Pθ0 , and we know |I(θ0)| > 0 for all

ξ0 > −1/2. Therefore, I(θ0) is positive definite, and there almost surely exists N > 0 such that

for all n > N , L′′

n(θ̂n) < 0. 235

By Proposition 5, A0(r) only depends on θ0 and r. We now fix r small enough such that the

smallest eigenvalue of I3 −A0(r) is positive. By (8),

L′′

n(θ) ≤ L′′

n(θ̂n){I3 −A0(r)} < 0.
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The choice of r only depends on θ0. �

4.3. Step (II) and its proof

Step (II) confines the global MLE to a fixed compact set K which is constructed using the240

values of θ0 such that K̃ ⊂ K. Since θ̂n = argmaxθ∈K Ln(θ) by definition, we can deduce the

global optimality of θ̂n.

PROPOSITION 8 (STEP (II)). Let Y1, Y2, . . . be independently sampled from Pθ0 and

(µn(ξ), τn(ξ)) be the maximizer of Ln on the cross-section Ωn(ξ). Then for large n, the global

maximum must be in a cube K whose vertices are only dependent on the value of θ0; that is,245

there almost surely exists N > 0 such that for all n > N ,

argmax
θ∈Θn

Ln(θ) ∈ K.

Proof. We detail the construction of the cube K in the Supplementary Material. Denote the

range of ξ in K by J . Then

J =











[0, C0ξ0], ξ0 > 0,

[C1ξ0, 0], ξ0 < 0,

[−C2/ log n,C2/ log log n], ξ0 = 0,

(9)

in which C2 = exp(γ), where γ is the Euler-Mascheroni constant, and C0, C1 > 1 are fixed con-

stants such that (1/x− 1) log τ0 + ξ0 log Γ(1/x) > 0 when x > C0, and − log x+ γ + 0.1 < 0250

when x > C1.

Utilising Proposition 1 and 2 from § 2, we show in the Supplementary Material that

PLn(ξ) < PLn(ξ̂n) (ξ 6∈ J) (10)

and

(µn(ξ), τn(ξ), ξ) ∈ K (ξ ∈ J). (11)

By (9), ξ0 is in the interior of J . Since ξ̂n converges almost surely to ξ0, we

have ξ̂n ∈ J for sufficiently large n. Denote K1 = {θ ∈ Θ : ξ ∈ J}. Clearly, K ⊂ K1 and255

(10) implies argmaxθ∈Θn
Ln(θ) ∈ K1. When ξ ∈ J , (11) encloses the unique maximizer

(µn(ξ), τn(ξ)) on Ωn(ξ) in K. Equivalently, argmaxθ∈K1
Ln(θ) ∈ K. Combining (10) and

(11), argmaxθ∈Θn
Ln(θ) ∈ K. �

4.4. Completing the Proof of Theorem 1

Proposition 2 in Dombry (2015) ascertained that for all large n, the argmax point on the set K260

defined in Proposition 8 is confined in any smaller neighbourhood K̃. Although his result was

developed within the framework of triangular arrays of block maxima, the proof can be adapted

to work on independent and identically distributed GEV samples.

LEMMA 1 (CONSISTENCY). Let K ⊂ Θ be a compact set that contains θ0 as an interior

point and Y1, Y2, . . . be a sequence of independent and identically distributed random variables265

with common distribution Pθ0 . Then a sequence of estimators θ̂n can be found to maximize the

log-likelihood Ln over K. For any smaller neighbourhood K̃ of θ0 such that K̃ ⊂ K, we have

θ̂n ∈ K̃ almost surely. Hence θ̂n → θ0 almost surely as n → ∞.

Proof. Bücher & Segers (2017) noted that Proposition 2 in Dombry (2015) is applicable for

the GEV distributions. Noticing that a GEV distribution is in its own domain of attraction, the270

block size sequence m(n) is set to be 1 with am = τ0 and bm = µ0.
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Following the proof in Dombry (2015), K̃ is limited to be a ball neighbourhood of θ0 with an

arbitrarily small radius. It is straightforward to generalize the proof to any small neighbourhood

of θ0 such that K̃ ⊂ K. Because the closure of the set ∆ = K \ K̃ is compact, any open cover

of ∆ has a finite subcover, and the remaining proof applies without modification. � 275

Combining Proposition 8 and Lemma 1, we obtain

argmax
θ∈Θn

Ln(θ) ∈ K̃ ∩ Ωn,

and by the local strict concavity in K̃ ∩ Ωn ensured by Proposition 7,

θ̂n = argmax
K̃∩Ωn

Ln(θ),

whence we conclude that θ̂n attains the unique and global maximum of Ln.

5. DISCUSSION

Intermediate results necessary for the proofs of local strict concavity and boundedness of the 280

global MLE unveiled additional characteristics of the GEV likelihood function that may be of

independent interest. For example, the profile likelihood attains a unique maximum at each slice

of the support, the convergence rate of the support boundary to the local MLE is slower than

n−1/2, and a class of averages that are the building blocks of the Hessian matrix converge to

their limits uniformly. These results enhance our understanding of the GEV likelihood. 285

In applications, observations are never generated exactly from a GEV distribution; rather, they

come from a distribution which we typically assume to be in the domain of attraction of a GEV.

Dividing the observations into non-overlapping blocks, we make the approximating assumption

that the maxima extracted from each block are GEV distributed. Thus, the asymptotic setup of

Dombry (2015) and Dombry & Ferreira (2019) should be viewed as the more realistic, and our 290

work offers theoretical foundations for maximum likelihood estimation using the GEV when the

block size is large.

Finally, the number of block maxima in any observational record is limited. For future re-

search, it is important to examine the minimum sample size required for the observations to

manifest large-sample behaviour, as had been done for previous asymptotic results in extreme 295

value statistics. Small-sample estimators for the GEV tend to be unstable, so taking advantage

of the profile likelihood might provide an effective, and to our knowledge unexplored, approach

to estimating the shape parameter. That is, one could first calculate the maximum likelihood on

the cross-sections of the support at different levels of ξ, and then find the ξ that maximizes the

profile likelihood; see Fig. 2. Doing so is asymptotically guaranteed to find the global MLE, and 300

might improve numerical stability in small samples.
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The detailed proofs for the aforementioned propositions are shown in the Supplementary

Material. There are additional technical results and figures included in this document.
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