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1. INTRODUCTION

Classical extreme value theory was introduced almost a century ago (Fisher & Tippett, 1928)
and is in wide practical use, yet a basic theoretical elucidation of likelihood-based inference un-
der its central distributional construct remains incomplete. Here, we fill in some important gaps.
The generalized extreme value (GEV) distribution arises as the only limit of suitably renormal-
ized maxima over independent and identically distributed random variables, and has therefore
routinely been used in modelling the tail behaviour of observed phenomena. However, as the
support of the density depends on its parameters, standard regularity conditions of classic asymp-
totic theory are not satisfied. It is only recently that consistency and asymptotic normality of the
maximum likelihood estimator (MLE), found locally on a restricted compact set, have been es-
tablished. In this paper, we show that the local MLE uniquely and globally maximizes the GEV
log-likelihood function, provided that the shape parameter is between —1 and the number of
samples. In addition, we establish a number of convergence properties related to the GEV, in-
cluding uniform consistency of a class of limit relations, revealing a much richer understanding
of the likelihood than has previously appeared.

The family of GEV distributions forms a continuous parametric family with respect to 6 =
(7, p, &) on some measurable space (X, .A):

e[S {14e(52)) 7L 40,
Tl = {exp{—exp (C=m),  e=o

K

=

where 14+ &(y — p)/7 > 0 for £ # 0, and the scale parameter 7 > 0, location parameter y €
R, and shape parameter & € R. The GEV distribution unites the Gumbel, Fréchet and Weibull
distributions into a single family to allow various shapes.
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2 ZHANG AND SHABY

The estimation of GEV parameters, especially the shape parameter &, is pivotal in studying tail
behaviour. The Pickands (Pickands, 1975), probability weighted moments (Hosking et al., 1985)
and method of moments quantile estimators (Madsen et al., 1997) are among many estimators
available (Beirlant et al., 2004). In this paper, we focus on the asymptotic properties of maximum
likelihood estimators. Let pg denote the density function of Py with respect to some dominating
measure P. Since the support of the GEV density function depends on 6, the regularity conditions
for standard likelihood inference do not hold, which gives rise to fundamental difficulties when
studying the existence, consistency and asymptotic normality of the MLE.

Suppose 6y = (70, 1o, &o) is the true parameter, and Y7, . . ., Y,, are independent observations
from Fy,. Cohen (1986, 1988) assumed £y = 0 and considered samples drawn from the Gumbel
distribution. He proved the consistency and asymptotic normality of the MLE based either on a
fitted Gumbel distribution or on a fitted GEV distribution. The support of a Gumbel distribution
is independent of its parameters, which makes it easier to examine the asymptotic behaviour of
the MLE. Smith (1985) was the first to consider the MLE of a large class of irregular parametric
families, and his formulation includes the GEV distribution when —1 < &y < 0. Treating the
samples as coming from a distribution in the domain of attraction of a GEV, Dombry (2015)
derived the existence of a local MLE, implicitly defined as a solution of the score function, under
the setting of triangular arrays of block maxima when £y > —1. He proved that for any fixed
compact set K C {6 : 7 > 0, € R,{ > —1} that contains 6, the maximum of the likelihood
function in K is confined in an arbitrarily smaller neighbourhood K of 6 for all n large enough.
The corresponding local MLE

0,, = arg max Ly, (0)
feK
solves the score functions and converges almost surely to 6. We denote the entries of 0,, as
(T, fin, &n) throughout the remainder of the paper.

Biicher & Segers (2017) extended the result of Dombry (2015) in the simpler setting where
Y1,...,Y, are independent observations from a GEV distribution, establishing a Op(n_l/ 2) rate
of convergence for the local MLE, and refining the incomplete proof of Smith (1985) to establish
the asymptotic normality of 6., for & > —1/2 and a pre-specified set K. Subsequently, Dombry
& Ferreira (2019) proved the asymptotic normality of the MLE using a different approach. Their
results are again based upon local MLE for a likelihood function of block maxima that are ap-
proximately GEV distributed. Thus the limiting distribution has a non-trivial bias whose exact
expression depends on the asymptotic growth of block size compared to the number of blocks.

However, the local MLE 6,, studied by Dombry (2015), Biicher & Segers (2017) and Dombry
& Ferreira (2019) may not attain a unique, global maximum of the log-likelihood

=1

in which ly: 6+ logpg(y), and 0 € Q,, = {6 :pg(Y;) >0,i=1,...,n}. Amongst other
things, the uniform and global properties of L, in €2, are needed in Bayesian theory to de-
velop optimal decision rules and perform posterior-based inference (Hartigan, 1983), to estab-
lish asymptotic posterior normality (von Mises, 1931; Chen, 1985), and to construct rule-based
noninformative priors (Bernardo, 2005).

In this paper, we consider fy € © = (0,00) x R x (—1/2, 00). We will prove that the local
MLE gives a unique, global maximum point for the log-likelihood function by following a two-
step strategy:
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(I) We first construct a small compact set K containing 6 in its interior, and prove that for all
large n, L,, in K is strictly concave and attains a unique maximum,;

(IT) We then specify a larger compact set K, explicitly defined in terms of fp, such that
K C K. We prove for all large n, the global maximum must be attained in K; that is,
arg maxgcg L (6) = 6.

Specialising Proposition 2 in Dombry (2015) to the exact GEV setting, we have 0, € K for all
large n. One can therefore conclude that L,,(6,,) is indeed the unique and global maximum L,;
the global optimality is ensured by (II), while the uniqueness is ensured by (I). This main result
is stated in the following theorem.

THEOREM 1 (GLOBAL OPTIMALITY AND UNIQUENESS). Suppose Y1,Ys, ... are indepen-
dently sampled from Py, and 0,, is the sequence of local maxima of L,, that is found on a fixed
compact neighbourhood of 6y. Define ©,, = {0 € © : —1/2 < £ < n — 1}. Then there almost
surely exists N > 0 such that for all n > N, L,, is uniquely maximized in ©,, and

arg max Ly, (0) = 0,,.
0€O,

Remark 1. One may object that the optimality result is not truly global because of the re-
striction £ < n — 1. As the shape parameters are less than 1 for most observed data-generating

processes, the ever-expanding ©,, is hardly a restriction and does not interfere with the derivation
of asymptotic posterior properties.

2. PRELIMINARIES
2.1.  The joint likelihood function and its support
First we define the finite endpoint of the support when £ # 0 as
T

B=B0)=n-7¢. )

This one-to-one mapping from (7, i, ) to (7, 8, &) will be used to simplify notation. In addition,
define

Y. _
Wi(0) = 1+5< Z ”) _Swiop,
T T
which helps simplify the log-likelihood function:

Lul0) = —nlog — 5= 3 log Wi(0) = W, 40 (€ £0). @

i=1 i=1

When £ — 0, I/VZ-_I/)S(G) — exp{—(Y; — pn)/7}, so L, (6) with & = 0 is included in this formu-
lation.
It can be easily verified that the domain of the log-likelihood function,

Qn:{QE@Zf(Y;—B)>0,’i:1,...,n}, (3)

is not a convex set, so Taylor expansion will not be helpful for studying L., (). This precludes
the use of routine tools such as the mean-value theorem and makes it difficult to approximate the
difference of the function on a certain intervals. Nonetheless, if we slice €),, at different levels
of &, every cross-section is convex; see Fig. 1 for illustration. On a cross-section at a fixed &, the
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4 ZHANG AND SHABY

£<0 £=0 £>0

T T T

Fig. 1. Slicing the support €2,, at different levels of £ €

(—1/2,00). A cross-section at any &, shown in the shaded

area, is convex with respect to (7, ). When & # 0, the lin-
ear boundary of the cross-section has a slope of 1/¢.

value of 3 = p — 7/ can be construed as the intercept of the line which has a slope of 1/£ and
passes through (7, ;). When & > 0, the condition in (3) imposes 8 < Y{y), and when § < 0, the
intercept 3 > Y{;,), where Y1) and Y{;, are the sample minimum and maximum. Therefore, for
any 0 € ©, we can immediately tell whether 6 € €2, using only Y{1) and Y/,,).

2.2.  Profile likelihood

Denote the cross-section of €2, at a certain £ by €2,,(£). The convexity of ,(£) suggests
examining the log-likelihood via profiling out (7, u):

PL,(§) = sup Ly(0).
(T,M)EQH (5)

The following proposition, whose proof can be found in the Supplementary Material, ensures
that L,,(0) is uniquely maximized on each cross-section €2,,(&).

PROPOSITION 1. Suppose Ly, (0) is applied to real numbers yu, . .., y, that are not all equal.
For £ € [—1,n — 1]\ {0}, there exists a unique and global maximizer (7,(&), pn(€)) of Ly on
the cross-section S, (), which can be found by solving

{ r= [T S (e - B} @
E+D) X {&wi =B =n X {&yi — B} Y/ S e (i — B} VS
For £ = 0, the unique and global maximizer (7,,(0), u,(0)) on 2,,(0) can be found by solving
nt =35 {1 —exp (—225) }ui,
n= S exp (~2t).

For & ¢ [~1,n — 1], PL,,(§) = oo. Meanwhile, (,(§), p1n(§)) = (0,y(1)) when § > n — 1 and
(Tn(8), 1 (§)) = (0,y(n)) when & < —1, in which y1y and y,,) denote the minimum and maxi-
mum values.

Remark 2. The system in Proposition 1 is defined in terms of (7, 3) for convenience, but its
solution can be easily transformed into (7,,(&), n(&)) using (1).
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Remark 3. By definition, PL,,(§) = L,{7m,(£), un(§),&}. Inserting (4) into (2),

PL, () = —nlog (jb S [Ew - Bl m—l/ﬁ) S S logle (- BN - )
=1

=1

when ¢ € [-1,n — 1]\ {0}. By the continuity of L,, at { = 0, we know that 120
lim Nn(f) - Mn(o)a lim Tn(é) = Tn(O)v lim PLn(g) = PLn(O)'
£—0 £—0 £—0

To find the global maximum, we now need only compare the maxima from each cross-section.
If the profile likelihood PL,, as a function of £ were strictly concave in [—1,n — 1], it would
have a unique maximum at £ such that PL/, (§) = 0, and then (7,,(£), pn(£), &) would be the
unique global maximizer for L,,. Unfortunately, PL,, is not a strictly concave function of £. The
following proposition, whose proof can be found in the Supplementary Material, demonstrates 1zs
that the first derivative PL/, is not monotonically decreasing, and it behaves irregularly when &
approaches the bounds of the interval (—1,n — 1).

PROPOSITION 2. Under the assumptions of Proposition 1, the first derivative PL!, is well-
defined and continuous in § € (—1,n — 1). When & # 0, PL!, is taken using (5):

n nyr 1[5{% Bn(€) 3¢ log[¢{yi — Bn(€)}]

PL/ =——
B SO NGIRE "
1 n
ta z_; log[{yi — Bu(€)}].
For € = 0, the first derivative coincides with the limit: 130
sy P (0) = S5 {yi — pa(0) + 72 (0)} | Y i{yi — #a(0) + 7 (0)} — 07 (0)°
Jim PL, (€) = = (0) + 27m(0)2 :

Additionally, PL! (§) — oo when & /" n — 1 and PL],(§) — —oo when £ \, —1. By the inter-
mediate zero theorem, there must exist a § € (—1,n — 1) such that PL! (£) = 0.

If a value of & satisfies PL] (£) = 0, (4) and (6) together ensure that (7,,(£), pn (), &) solves
the score equations. Hence this result provides an alternative approach to proving the existence
of the local MLE for L,,. However, proving the strong consistency of the local MLE requires n 13
independently Py, -distributed random variables.

Figure 2 illustrates some key features of the profile likelihood function. We simulate
Yi,...,Y, from Py, and calculate the log-likelihood PL,, at a grid of £ values ranging from —1
to n — 1. For all cases, including £y = —0.2, §; = 0 and & = 0.2, PL,, appears to be uniquely
maximized by the local MLE, which is close to &. Although it is not a concave function globally, 140
we observe local concavity around &y, which suggests adoption of the two-step strategy intro-
duced in § 1. Roughly speaking, these two steps are established in § 4 via proving (I) PL,, is
strictly concave in a small neighbourhood of &, and (II) PL,,(¢) < PL,,(&,) for & far from &,.

3. CONVERGENCE RATE OF THE SUPPORT BOUNDARY

To prove (I) and (IT), we will need to study the distance between the true parameter 6y and the s
boundary of the support €2,,. It is true from the definition of {2, thatif Y7, ..., Y], are drawn from
Py, , then 0y € ), for any n > 1. Itis clear that €2, is an open set for any n, so the true parameter
6o is always interior to €2,,. This raises the question: can we always find a neighbourhood of 6
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-100 — -100 — -100 —

-150 | -150 | -150 |

PLA(8)
PLA(8)
PLA(8)

—-200 —-200 -200 —

-250 — -250 — -250 —

Fig. 2. PL,,(§) under Y3, ...,Y, sampled from true {, =

—0.2 (left), &0 = 0 (middle) and & = 0.2 (right), with

dashed lines marking the local MLE én. For all scenar-

ios, (70, pto) = (1, 0) and sample size n = 50. We see that
PL, (&) is not concave.

which is contained by 2, that is large enough to allow us to examine the log-likelihood in the
vicinity of 63? Unfortunately, this is not possible because 6y becomes arbitrarily close to the
boundary as n approaches infinity when &y # 0.

To quantify the distance between 6y and the boundary of €2,, we first assume &y > 0 and
examine the cross-section €2, (o). This is illustrated in Fig. 3, where 0y = (70, o, &) is shown
as a red point, and By = pg — 70/&p is the intercept of the line that passes through (79, ug) with
a slope of 1/&,. Figure 3 illustrates that the difference of intercepts, Y(1) — Bo, is a good measure
of the distance. By analogy, if true shape parameter £y < 0, the distance can be well-measured
by So — YV(n)

Since the support of the distribution of Fp, is bounded below by [y when &, > 0,
lim,,— o0 Y(l) = [y almost surely. When &, < 0, the support of the distribution of F, is bounded
above by [, so lim,_, Yin) = Bo almost surely. Thus in both cases, the distance between 6
and the boundary of §2,, converges almost surely to zero. Also, Biicher & Segers (2017) showed
that én — 0y = Op(n_l/ 2), SO én is also arbitrarily close to 6 as n grows, and thus close to the
boundary of €2,,. This is concerning for the purpose of proving global optimality of 0,, because
it would be rather challenging to handle the log-likelihood near the boundary of the support.

Therefore, it is imperative that we compare the convergence rate of the distance between 6
and the boundary with n~Y2 1o get a clearer picture of L, (6) near the boundary.

PROPOSITION 3. Suppose Y1, ...,Y, are independently sampled from Py, and € > 0 is an
arbitrary constant.

(A) If§o > 0, Y1) = Bo and Y,y — oo almost surely. It also holds almost surely that
Tim (logn)1=9% (V) — flo) = 0,

nh_{go n—(l-&—e)&oy(n) =0, nh_g.lo n—(l—e)ﬁoy(n) - 0.

(log n)(1+e)§0 (Y(l) — Boy) = o0,

lim
n—0o0

(B) If &0 < 0, Y1) = —o0 and Y{,,) — o almost surely. It also holds almost surely that

,}i_?;o(log n)(l+e)50y(1) —0, Jlnéo(log n)(ke)goy(l) = —oo,

lim n~ (998 — V(,)) =00, lim n=(079%(8; — V{,,)) = 0.

n—oo n—oo
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E >0

Fig. 3. The cross-section 2, (&) if true & > 0. The two
parallel dashed lines have a slope of 1/&. The bullet
point is 8o = (70, 1o, &o). Here we also compare the con-

vergence rates of 0, and Y(;), which are n~'/2 and

1/ log® n. The red circle marks the neighbourhood of o

with radius n~ /2.

(C) If o =0, Y(1) = —oc and Y,y — 00 almost surely. It also holds almost surely that

lim (loglog n)*lfﬁY(l) =0, le (loglog n)*HEY(I) = —00,

n—oo

. —1- _ . —1+ _
Jim (logn) ™Yy =0, lim (logn)™ Y, =

Remark 4. When §y > 0, it demonstrates that the convergence rate of Y(q) to Sy is roughly
1/ log50 n. The convergence rate of Gn to 0p, n ~1/2 is much faster than the rate of Y to .
These two rates are compared schematically in Fig. 3. If £ < 0, the convergence rate of Y to
Bo is n€0, which is still slower than n~'/2 because of the restriction & > —1/2. Thus for a ball
neighbourhood of 6, to be contained in €2,,, its radius can be up to 1/n¢ for some € € (0,1/2).
This is of vital importance in the proof of (I) and (II).

4. PROOF OF THEOREM 1
4.1.  Smoothness of Hessian matrix
When & # 0, construct the compact set

K={0€O:|r—n|<n|8—PB| <r|¢—&| <7},

where r is a small constant to be determined by 8 such that the log-likelihood function is locally
concave in K. Slicing K at different levels of & produces parallelograms; see Fig. 4. When
€0 = 0, K is defined using | — po| < 7 instead of |3 — Bo| < 7. In this section, we will prove
that for all large n, the Hessian matrix of L,, is negative definite in K N {2, and hence L,, is
strictly concave.

Although the fixed larger compact set K is yet to be specified, we know from the strong
consistency of the local MLE that 6, € K for large sample size n. It is of interest to study
L!(6,), the Hessian at 6,,. The log-likelihood L, () in (2) and elements of its Hessian matrix
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& <0 & =0 & >0
Bo Y, 7
= v = o (0, Ho) = Eo) o (T0, Ho)
—r,
T T T
0 oo 0 oo 0 oo
T T T

Fig. 4. Illustrating K for &o < 0 (left), &o = 0 (middle) and

€0 > 0 (right). In all cases, the set K sliced at £ = & is

shown in yellow, with 2, (&o) shown in blue. For & # 0,

the slice is a parallelogram when sliced at any ¢ in (o —
r&o + 7).

L () can all be written as linear combinations of sums of the form
. k
> W (0) log" Wih).
i=1

where k£,0=0,1,2, a = 0, 1; see the Supplementary Material for the expressions for the Hes-
sian.
For constants & and a such that k&g + a + 1 > 0, it is straightforward to obtain

By, {W*k*a/éo(eo) log® W(eo)} = (—&)'T® (kgo + a+ 1),

where W (6g) = & (Y — fo) /7o with Y ~ Py, and T(®) is the bth-order derivative of the Gamma
function. Since {Wi_k_a/ 5(00) log® Wi(6p) : i = 1,2,...} is an independent and identically dis-
tributed sequence, the strong law of large numbers gives

e~ —ka
lim = > W, % (6g) log? Wi(6o) = (—60)"T®) (kéo +a + 1)
=1

n—00 1 4

almost surely.
To examine L (6,,), we replace 6y with 6,, in the preceding averages. Since lim,,_, 6,, = 09
almost surely, the continuity of the sums with respect to § permits a pseudo large law of numbers

~

for the elements in L/ (6,,).

PROPOSITION 4. Suppose Y1,Y5, ... are independently sampled from Py, and 0, is the local
MLE of L,,(0) that is strongly consistent. Then for constants k and a such that k€y + a + 1 > 0,

n—00 N 4

tim S W (0, log! Wid,) = (&) T (k6o +a+ 1) Q
=1

almost surely, where b is a non-negative integer.

The proof of this result depends on Proposition 3. For details see the Supplementary Material.

Proposition 4 ensures that L (6,,) behaves like L!' () for large n. For the next result, we show
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that if we carefully select r for K based on the value of 6, L (6) can be approximated by
L’ (6,) in K N, yielding the negative-definiteness of L!(6) in this neighbourhood.

PROPOSITION 5. Let Y1,Ys, ... be independently sampled from Py, and let 6,, be the local
MLE of Ly(0) that is strongly consistent. For a small v > 0 chosen by the rule specified in the
Supplementary Material, there almost surely exists N such that, foranyn > N and 6 € K Ny,

I3 — Ao(r) < Ly(0){ Ly (6a)} " < Is + Ao(r), (®)

where I3 is the 3 x 3 identity matrix and Ao(r) is a 3 X 3 symmetric positive-semidefinite matrix
whose elements only depend on 0y and the radius r, and whose largest eigenvalue tends to zero
asrT — 0.

As a side result, we extend the limit relations in (7) to obtain uniform consistency as the
powers of the W; terms change in a closed interval. In Proposition 4, changing the power con-
tinuously produces a continuous path of the limit. If we fix the non-negative integer b and regard
P, () =n~ L3 W, %(0,) log® Wi(6,,) as a stochastic process, ®,(cr) converges pointwise
almost surely to ®(a) = (—&)'T®) (& + 1). The following result, which we prove in the Sup-
plementary Material, says that the rate of convergence of sequences of ®,(«) is essentially the
same within a closed interval of «. That is, there is uniform consistency, which is a stronger
property than stochastic equicontinuity. The uniformity will be crucial to proving step (I).

PROPOSITION 6 (UNIFORM CONSISTENCY). Suppose Y1, Ya, ... are independently sampled
from Py, and 0,, is the local MLE of Ly,(0) that is strongly consistent. Let b be a non-negative

integer and I be a closed interval on the real line such that aéy + 1> 0 for a € 1. Write
P, () =n L3 W %(0,) log? Wi(6y,) and ®(a) = (—&0)'T®) (o + 1). Then

lim sup |®,(a) — ®(a)| — 0

n—oo acl

almost surely.

4.2.  Step (1) and its proof

PROPOSITION 7 (STEP (1)). Let Y1,Y5,. .. be independently sampled from Py, and let én be
the local MLE of Ly,(0) that is strongly consistent. Then we can find some r > 0 small enough

such that Ly (0) is a strictly concave function in K N Q,. Namely, there almost surely exists
N > 0 such that for alln > N,

LI#) <0 (B KNQ,).
Therefore, 0,, is an unique maximum point in K.

Proof. Proposition 4 ensures that

. 1 "(h
Jim — Ly (0n) = —1(60)
almost surely, where I(6p) is the Fisher information of Py, and we know |I(6y)| > O for all
& > —1/2. Therefore, I(6p) is positive definite, and there almost surely exists N > 0 such that
foralln > N, L"(0,) < 0.
By Proposition 5, Ay(r) only depends on 6y and 7. We now fix  small enough such that the

smallest eigenvalue of I3 — Ay(r) is positive. By (8),

L2(6) < L (0n){I3 — Ao(r)} < 0.
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10 ZHANG AND SHABY

The choice of r only depends on 6. O

4.3. Step (1l) and its proof
Step (II) confines the global MLE to a fixed compact set K which is constructed using the
values of 0 such that K C K. Since f,, = arg maxge i Ly (0) by definition, we can deduce the
global optimality of O,

PROPOSITION 8 (STEP (II)). Let Y1,Ys,... be independently sampled from Py, and
(n (&), Tn(§)) be the maximizer of Ly, on the cross-section 0y, (§). Then for large n, the global
maximum must be in a cube K whose vertices are only dependent on the value of 0y, that is,
there almost surely exists N > 0 such that for alln > N,

argmax L, (0) € K.
0O,

Proof. We detail the construction of the cube K in the Supplementary Material. Denote the
range of £ in K by J. Then

[0, Co&o) §o >0,
J = ¢ [C16,0], & <0, )
[~C3/logn, C2/loglogn], & =0,

in which Cy = exp(7), where - is the Euler-Mascheroni constant, and Cyp, C; > 1 are fixed con-
stants such that (1/z — 1) log 79 + & log I'(1/z) > 0 when z > Cp, and —logz +~v+ 0.1 <0
when x > (.

Utilising Proposition 1 and 2 from § 2, we show in the Supplementary Material that

PL,(&) <PL,(&) (E¢J) (10)

and

(1n (), (), §) € K (£ € J). (11)

By (9), & is in the interior of J. Since fn converges almost surely to &y, we
have &, € J for sufficiently large n. Denote K1 ={0 € © : £ € J}. Clearly, K C K; and
(10) implies argmaxycq L, (0) € Ki. When £ € J, (11) encloses the unique maximizer
(1n(§),m(§)) on Q,(§) in K. Equivalently, arg maxyc e, L,,(¢) € K. Combining (10) and
(11), arg maxyc g, Ln(f) € K. O

4.4. Completing the Proof of Theorem 1

Proposition 2 in Dombry (2015) ascertained that for all large n, the argmax point on the set K
defined in Proposition 8 is confined in any smaller neighbourhood K. Although his result was
developed within the framework of triangular arrays of block maxima, the proof can be adapted
to work on independent and identically distributed GEV samples.

LEMMA 1 (CONSISTENCY). Let K C © be a compact set that contains 0y as an interior
point and Y1,Y3, ... be a sequence of independent and identically distributed random variables
with common distribution Py,. Then a sequence of estimators 6,, can be Jound to maximize the
log-likelihood Ly, over K. For any smaller neighbourhood K of 0g such that K C K, we have
0, € K almost surely. Hence 6,, — 0y almost surely as n — oo.

Proof. Biicher & Segers (2017) noted that Proposition 2 in Dombry (2015) is applicable for
the GEV distributions. Noticing that a GEV distribution is in its own domain of attraction, the
block size sequence m(n) is set to be 1 with a,, = 79 and by, = po.
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Following the proof in Dombry (2015), K is limited to be a ball neighbourhood of 6 with an
arbitrarily small radius. It is straightforward to generalize the proof to any small neighbourhood
of 6y such that K C K. Because the closure of the set A = K \ K is compact, any open cover
of A has a finite subcover, and the remaining proof applies without modification. O

Combining Proposition 8 and Lemma 1, we obtain

argmax L, (0) € K NQ,,
0cOn,

and by the local strict concavity in K N €, ensured by Proposition 7,

0,, = arg max Ly (0),
KN&y,

whence we conclude that én attains the unique and global maximum of L,,.

5. DISCUSSION

Intermediate results necessary for the proofs of local strict concavity and boundedness of the
global MLE unveiled additional characteristics of the GEV likelihood function that may be of
independent interest. For example, the profile likelihood attains a unique maximum at each slice
of the support, the convergence rate of the support boundary to the local MLE is slower than
n~1/2, and a class of averages that are the building blocks of the Hessian matrix converge to
their limits uniformly. These results enhance our understanding of the GEV likelihood.

In applications, observations are never generated exactly from a GEV distribution; rather, they
come from a distribution which we typically assume to be in the domain of attraction of a GEV.
Dividing the observations into non-overlapping blocks, we make the approximating assumption
that the maxima extracted from each block are GEV distributed. Thus, the asymptotic setup of
Dombry (2015) and Dombry & Ferreira (2019) should be viewed as the more realistic, and our
work offers theoretical foundations for maximum likelihood estimation using the GEV when the
block size is large.

Finally, the number of block maxima in any observational record is limited. For future re-
search, it is important to examine the minimum sample size required for the observations to
manifest large-sample behaviour, as had been done for previous asymptotic results in extreme
value statistics. Small-sample estimators for the GEV tend to be unstable, so taking advantage
of the profile likelihood might provide an effective, and to our knowledge unexplored, approach
to estimating the shape parameter. That is, one could first calculate the maximum likelihood on
the cross-sections of the support at different levels of &, and then find the £ that maximizes the
profile likelihood; see Fig. 2. Doing so is asymptotically guaranteed to find the global MLE, and
might improve numerical stability in small samples.
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SUPPLEMENTARY MATERIAL

The detailed proofs for the aforementioned propositions are shown in the Supplementary
Material. There are additional technical results and figures included in this document.
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