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Abstract Across diverse microbiotas, species abundances vary in time with distinctive statistical
behaviors that appear to generalize across hosts, but the origins and implications of these patterns
remain unclear. Here, we show that many of these macroecological patterns can be quantitatively
recapitulated by a simple class of consumer-resource models, in which the metabolic capabili-

ties of different species are randomly drawn from a common statistical distribution. Our model
parametrizes the consumer-resource properties of a community using only a small number of global
parameters, including the total number of resources, typical resource fluctuations over time, and
the average overlap in resource-consumption profiles across species. We show that variation in
these macroscopic parameters strongly affects the time series statistics generated by the model,
and we identify specific sets of global parameters that can recapitulate macroecological patterns
across wide-ranging microbiotas, including the human gut, saliva, and vagina, as well as mouse gut
and rice, without needing to specify microscopic details of resource consumption. These findings
suggest that resource competition may be a dominant driver of community dynamics. Our work
unifies numerous time series patterns under a simple model, and provides an accessible framework
to infer macroscopic parameters of effective resource competition from longitudinal studies of
microbial communities.

Editor's evaluation

This paper introduces an elegant mathematical and ecological framework to model the fluctua-
tions of microbial abundances in microbiomes along time series. The modeling approach considers
consumer-resource properties and is regulated by few parameters. Applied to time-series micro-
biome data the model suggests the existence of recurrent patterns of microbial dynamics that are
quite dependent on resource competition.

Introduction

Microbial communities are ubiquitous across our planet, and strongly affect host and environmental
health (Sekirov et al., 2010; Tkacz and Poole, 2015). Predictive models of microbial community
dynamics would accelerate efforts to engineer microbial communities for societal benefits. A prom-
ising class of models is consumer-resource (CR) models, wherein species growth is determined by
the consumption of environmental resources (Chesson, 1990). CR models capture a core set of
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interactions among members of a community based on their competition for nutrients, and have
demonstrated the capacity to recapitulate important properties of microbial communities such as
diversity and stability (Niehaus et al., 2019; Posfai et al., 2017; Tikhonov and Monasson, 2017).
However, while model parameters such as resource consumption rates are beginning to be uncovered
in the context of in vitro experiments (Goldford et al., 2018; Hart et al., 2019, Liao et al., 2020),
it remains challenging to determine all parameters for a community of native complexity from the
bottom-up. A more accessible approach to parametrize CR models and to understand the features
that drive community-level properties is needed.

To interrogate the dynamics of in vivo microbiotas, a common, top-down strategy is longitu-
dinal sampling followed by 16S amplicon or metagenomic sequencing, thereby generating a relative
abundance time series. Analyses of longitudinal data have shown that species abundances fluctuate
around stable, host-specific values in healthy humans (Caporaso et al., 2011; David et al., 2014,
Faith et al., 2013). Recently, it was discovered that such time series exhibit distinctive statistical
signatures, sometimes referred to as macroecological dynamics, that can reflect the properties of
the community and its environment (Descheemaeker and de Buyl, 2020, Grilli, 2020; Ji et al.,
2020; Shoemaker et al., 2017). For example, in human and mouse gut microbiotas, the temporal
variance of different species scales as a power of their mean abundance (‘Taylor's law’, Taylor, 1961)
and deviations from this trend can highlight species that are transient invaders (Ji et al., 2020). Time
series modeling can also provide insights into the underlying ecological processes. For example, the
relative contributions of intrinsic versus environmental processes can be distinguished using autore-
gressive models whose output values depend linearly on values at previous times and external noise
(Gibbons et al., 2017). Time series can also be correlated to environmental metadata such as diet to
generate hypotheses about how environmental perturbations affect community composition (David
et al., 2014), and to identify environmental drivers of transitions between distinct ecological states
(Levy et al., 2020).

A growing body of work has shown that time series generated by simple mathematical models can
exhibit statistics similar to experimental data sets, reinforcing the utility of such models for providing
information about community dynamics even when many microscopic details are unknown. Some
statistics can be recapitulated by phenomenological models, such as a non-interacting, constrained
random walk in abundances (Grilli, 2020), while others can be described by a generalized Lotka-
Volterra (gLV) model with colored noise (Descheemaeker and de Buyl, 2020) or by ecological models
describing the birth, immigration, and death of species (Azaele et al., 2006). However, the origins of
and relationships among time series statistics have yet to be explained. Here, we sought to address
this question using CR models, and simultaneously to use time series statistics as an accessible
approach for parametrizing CR models.

Since the network of resource consumption in a community will typically depend on thousands of
underlying parameters, directly measuring all parameters is intrinsically challenging. We sought to
overcome this combinatorial complexity by adopting an indirect, coarse-grained approach, in which
resources describe effective groupings of metabolites or niches, and model parameters are randomly
drawn from a common statistical ensemble. We show that this simple formulation generates statistics
that quantitatively match those observed in experimental time series across wide-ranging microbiotas
without needing to specify the exact parameters of resource competition, allowing us to infer the
global properties of resource competition that can recapitulate experimentally observed time series
statistics. We further show that our effective CR model captures the behavior of a broader class of
ecological interactions, and can guide the development and analysis of other models and their time
series statistics. Our work thus provides an accessible connection between complex microbiotas and
the effective resource competition that could underlie their dynamics, with broad applications for
engineering communities relevant to human health and to agriculture.

Results

A coarse-grained CR model under fluctuating environments
To determine the nature of time series statistics generated by resource competition, we considered a
minimal CR model in which N consumers compete for M resources via growth dynamics described by
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Here, X; denotes the abundance of consumer i, ¥; the amount of resource j, and R;; the consump-
tion rate of resource j by consumer i. The resources in this model are defined at a coarse-grained
level, such that individual resources represent effective groups of metabolites or niches. We assumed
that the resource consumption rates R;; were independent of the external environment and constant
over time, thereby specifying the intrinsic ecological properties of the community with a collection of
N x M microscopic parameters. To simplify this vast parameter space, we conjectured that the macro-
ecological features of our experimental time series might be captured by typical profiles of resource
consumption drawn from a statistical ensemble. This is a crucial simplification: while these randomly
drawn values will never match the specific resource consumption rates of a given microbiota, previous
work suggests that they can often recapitulate the large-scale behavior of sufficiently diverse commu-
nities (Cui et al., 2021). This simplification allows us to test whether particular ensembles of resource
consumption rates can reproduce the time series statistics we observe. Specifically, we considered an
ensemble in which each R;; was randomly selected from a uniform distribution between 0 and Rmax.
To model the sparsity of resource competition within the community, each R;; was set to zero with
probability S (Figure 1A). This ensemble approach allows us to represent arbitrarily large communities
with just two global parameters, S and Rmax.

We simulated the dynamics in Equation 1 using a serial dilution scheme (Erez et al., 2020) to
mimic the punctuated turnover of gut microbiotas due to multiple feedings and defecations between
sampling times. During a sampling interval T, each dilution cycle was seeded with an initial amount
of each resource, Y (T), and Equation 1 was simulated until all resources were depleted (dYj/dt = 0
for all j). The community was then diluted by a factor D and resources were replenished to their
initial amounts Y; (T) (Figure 1B). To mimic the effects of a reservoir of species that could potentially
compete for the resources (Ng et al., 2019), we initialized the first dilution cycle of each sampling
interval by assuming that N consumers were present at equal abundance. Additional dilution cycles
were then performed until an approximate ecological steady state was reached (Figure 1B, Mate-
rials and methods). Consumer abundances at sampling time T were defined by this approximate
ecological steady state. For the relevant parameter regimes we considered, this approximate steady
state was reached within a reasonable number of generations (5-6 dilutions or ~40 generations for
D =200). Although the precise details of microbiota turnover are largely unknown in humans, our
modeling results were robust to the precise value of D and threshold for ecological steady state
(Figure 1—figure supplement 1). Similarly, our results did not depend on the precise composition of
the reservoir (Figure 1—figure supplement 2), although they did depend on its existence and relative
size (Figure 1—figure supplement 2).

Under the assumptions of this model, any temporal variation in consumer abundances must arise
through external fluctuations in the initial resource levels Y; ¢ (T), which might come, for example, from
dietary fluctuations. To model these fluctuations, we assumed that the initial resource levels undergo
a biased random walk around their average values ¥;:

Yio () = : 2)

Vo (7=1) =k (%0 (T=1) = 1)) #0756, (1)

where §; (T) is a normally distributed random variable with zero mean and unit variance, o deter-
mines the magnitude of resource fluctuations, and k is the strength of a restoring force that ensures
the same resource environment on average over time (Figure 1A). The absolute value enforces ¥; to
be positive. If k = 0, there is no restoring force and hence ¥; (T) performs an unbiased random walk;
if k=1, Y; (T) fluctuates about its set point ¥; independent of its value at the previous sampling time.
For all k> 0, the model exhibits long-term stability without drift. As above, we used an ensemble
approach to model the set points ¥;, assuming that each ¥; was independently drawn from a uniform
distribution between 0 and Ymax. These assumptions yield a Markov chain of fluctuating resource
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Figure 1. A coarse-grained consumer-resource model with fluctuating resource amounts. (A) In the consumer-resource model, X; denotes the
abundance (abu) of consumer i and Y; denotes the amount of coarse-grained resource j. The dynamics of the model are specified by consumption
rates R;j for N consumers and M resources. R;j is drawn from a uniform distribution, and each R;; is set to zero with probability S, the sparsity of
resource competition. The initial resource amount ¥; o (T) at each sampling time T fluctuates with noise strength ¢ and restoring force k. N is
estimated from each data set, and the four free ensemble level parameters are highlighted in red. (B) Shown are the dynamics of the model within one
sampling time (T = 100, dashed gray box) for a subset of consumers and resources in a typical simulation. At each sampling time T, the model was
simulated under a serial dilution scheme in which consumers (solid blue lines) grew until all resources (dotted green lines) were depleted, after which
all consumer abundances were diluted by a fixed factor D = 200 and resource amounts were replenished to Y (T) Each sampling time was initiated
from an external reservoir of consumers, with all consumers present at equal abundance. Dilutions were repeated until an approximate ecological
steady state was reached in which the ratios of final to initial abundances of all consumers changed by less than 5% of D between subsequent dilutions
(Materials and methods). The relative abundances at sampling time T were obtained from the final species abundances at steady state. (C) The model
maps a set of fluctuating resource amounts ¥; o (T) to a time series of consumer relative abundances x; (T) that can be compared to experimental
measurements. (D) The simulated time series in (C) exhibits statistical behaviors that reproduce those found in experiments, including a power law
scaling between the abundance variance and mean over time of each species (left) and an approximately exponential distribution of abundance
changes (right). Black lines denote the best linear fit (left) and the best fit exponential distribution (right). The simulation shown in (A-D) was generated
with (N, M, S, o, k) = (50, 30, 0.1, 0.2, 0.8).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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Figure 1 continued
Figure supplement 1. The dilution factor and steady-state threshold do not substantially affect time series statistics.

Figure supplement 2. Reservoir composition does not substantially affect time series statistics.

amounts Y;o (T) and their corresponding consumer relative abundances x; (T) = X; (T) /Y, Xu (T)
(Figure 1C).

The statistical properties of these time series are primarily determined by five global parameters:
the total number of consumers in the reservoir N, the number of resources in the environment M, the
sparsity S of the resource consumption matrix, and the resource fluctuation parameters o and k. The
absolute magnitudes of Rmax and Ymax are not important for our purposes since they do not affect
the predictions of consumer relative abundances at ecological steady state. We extracted N from
experimental data as the number of consumers that were present for at least one sampling time point,
leaving only four free global parameters.

Previous studies have suggested that the family level is an appropriate coarse graining of metabolic
capabilities (Goldford et al., 2018; Louca et al., 2016; Tian et al., 2020), thus we assumed, unless
otherwise specified, that each consumer grouping i within our model represents a taxonomic family,
and combined abundances of empirical operational taxonomic units (OTUs) or amplicon sequencing
variants (ASVs; Callahan et al., 2016) at the family level for analyses (Materials and methods). Given
the typical limits of detection of 16S amplicon sequencing data sets, we only examined time series
statistics for taxa with relative abundance >10 at any given time point. Experimental and simulated
data were processed equivalently to enable consistent comparisons of their time series statistics.

As expected, we found that random realizations of our model (i.e., different resource consump-
tion matrices drawn from the same ensemble) generated similar time series statistics, whose typical
behavior strongly varied with the global parameters of the model. In particular, only small subsets
of the parameters led to time series statistics that agreed with experiments, as we show below. An
example simulation using the macroscopic parameters (N, M, S, o, k) = (50, 30, 0.1, 0.2, 0.8) is shown
in Figure 1. This set of parameters produced relative abundance time series with highly similar statis-
tical behaviors as in experiments involving daily sampling of human stool (Figure 1D). Given this
agreement, we next systematically analyzed the time series statistics generated by our model across
the macroscopic parameter space and compared against experimental behaviors to estimate model
parameters for wide-ranging microbiotas.

Model reproduces the statistics of human gut microbiota time series

To test whether our model can recapitulate major features of experimental time series, we first focused
on a data set of daily sampling of the gut microbiota from a human subject (Caporaso et al., 2011,
Figure 2). These data were previously shown (Ji et al., 2020) to exhibit several distinctive statistical
behaviors: (1) the variance o2 of family i over the sampling period scaled as a power law with its mean
(xi) (Figure 2B and F); (2) the logis(abundance change) Al; (T) = log,q (x; (T+ 1) /x; (T)) , pooled over
all families and across all sampling times, was well fit by an exponential distribution with standard devi-
ation oa; (Figure 2B and G); and (3) the distributions of residence times fres and return times fret (the
durations of sustained presence and absence, respectively) pooled over all families were well fit by
power laws with an exponential cutoff (Figure 2D and K). Through an exhaustive search of parameter
space, we identified a specific combination of parameters that could reproduce all of these behaviors
within our simple CR model (Figure 2F, G and K).

In addition, several other important statistics were reproduced without any additional fitting: (1)
the distribution of richness « (T) , the number of consumers present at sampling time T (Figure 2A
and E); (2) the distribution of the restoring slopes s; of the linear regression of A (T) against
l; (T) = logyy (x; (T)) across all T (Figure 2C and H); (3) the distribution of prevalences p; , the fraction
of sampling times for which family i is present (Figure 2A1); (4) the relationship between p; and (x;)
(Figure 2J); and (5) the rank distribution of mean abundances (x;) (Figure 2L).

Therefore, our model was able to simultaneously capture at least eight statistical behaviors in a
microbiota time series with only four parameters, each of which may represent biologically relevant
features of the community.
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Figure 2. A coarse-grained consumer-resource model with fluctuating resource amounts reproduces experimentally observed statistics in an abundance
time series from daily sampling of a human gut microbiota. In all panels, blue points and bars denote experimental data analyzed and aggregated at the
family level (Caporaso et al., 2011). Red lines and shading denote best fit model predictions as the mean and standard deviation, respectively, across
20 random instances of the best fit ensemble level parameters, (N, M, S, o, k) = (50, 30, 0.1, 0.2, 0.8). (A-D) lllustrations of various time series
statistics in (E-L). (A) The distribution of richness «, the number of consumers present at a sampling time, and its mean () are well fit by the model.

(B) The variance afl. and mean (x;) over time of each family's abundance (abu) scale as a power law with exponent 8. Here, 8 = 1.48 in experimental
data and in simulations. (C) The distribution of log;o(abundance change) Al across all families is well fit by an exponential with standard deviation o a; .
The gray line denotes the best fit exponential distribution, and is largely overlapping with the model prediction in red. (D) The distribution of restoring
slopes s; , defined based on the linear regression between the abundance change and the relative abundance for a species across time, is tightly
distributed around a mean (s) that reflects the environmental restoring force. Best fit values of model parameters were determined by minimizing errors
in{(a), B, oar, and {s) (E-H, respectively). Using these values, our model also reproduced the distribution of prevalences (fraction of sampling times in
which a consumer is present, |), the relationship between prevalence and mean abundance (J), the distributions of residence and return times (durations
of sustained presence or absence, respectively, as illustrated in D) (K), and the rank distribution of abundances (L).

The online version of this article includes the following figure supplement(s) for figure 2:
Figure supplement 1. Grouping at a coarser taxonomic level results in similar time series statistics.

Figure supplement 2. The consumer-resource (CR) model can reproduce time series statistics at the genus level of a human gut microbiota.

To determine whether our model can be used to analyze time series statistics at other taxonomic
levels, we analyzed the same data set (Caporaso et al., 2011) at finer (genus) and coarser (class)
taxonomic levels, both of which exhibited qualitatively similar statistical behaviors as the family level.
Our modeling framework was able to quantitatively recapitulate almost all statistics at both levels

Ho et al. eLife 2022;11:e75168. DOI: https://doi.org/10.7554/eLife.75168 6 of 19


https://doi.org/10.7554/eLife.75168

eLife

Ecology | Microbiology and Infectious Disease

(Figure 2—figure supplements 1 and 2). A notable exception is that the Bacteroides genus domi-
nated the observed rank abundance distribution at the genus level, while our CR model predicted
a more even distribution (Figure 2—figure supplement 2). Nevertheless, the relative abundances
among the remaining genera were still well captured by the model predictions (Figure 2—figure
supplement 2). These results demonstrate that our model and its applications can be generalized
across taxonomic levels.

Systematic characterization of the effects of CR dynamics on time
series statistics

Since our model can reproduce the observed statistics in gut microbiota time series, we sought to
determine how these statistics would respond to changes in model parameters, and thus how exper-
imental measurements constrain the ensemble parameters across various data sets. To do so, we
simulated our model across all relevant regions of parameter space. S and k were varied across their
entire ranges, and M and o were varied across relevant regions outside of which the model clearly
disagreed with the observed data. For each set of parameters, each time series statistic was averaged
across random instances of R;; and ¥;¢ (T) drawn from the same statistical ensemble. For each statistic
z, its global susceptibility C (z, w) to parameter w was calculated as the change in z when w is varied,
averaged over all other parameters and normalized by the standard deviation of z across the entire
parameter space. Due to the normalization, C (z,w) varies approximately between -3 and 3, where a
magnitude close to 3 indicates that almost all the variance of z is due to changing w.

By clustering and ranking susceptibilities, we identified four statistics with |C (z,w)| > 2 that were
largely determined by one of each of the four model parameters (Figure 3, Figure 3—figure supple-
ment 1): mean richness (a), the power law exponent 3 of o2 versus (x;), the standard deviation in
logio(abundance change) oa;, and the mean restoring slope (s) were almost exclusively susceptible
to variations in M, S, o, and k, respectively. Similar results were also obtained for local versions of the
susceptibility, in which individual parameters were varied around the best fit values for the human gut
microbiota in Figure 2 (Figure 3-figure supplement 2). These susceptibilities broadly illustrate how
various time series statistics are affected by coarse-grained parameters of resource competition; we
further investigate some specific examples in the next section.

The exclusive susceptibilities of these four statistics suggest that they can serve as informative
metrics for estimating model parameters. Therefore, we estimated model parameters by minimizing
the sum of errors between model predictions and experimental measurements of these four statistics,
and obtained estimation bounds by determining parameter variations that would increase model
error by 5% of the mean error across all parameter space. As we will show, the resulting bounds are
small relative to the differences among distinct microbiotas, indicating that meaningful conclusions
can be drawn from the best fit values of the ensemble level parameters of resource competition. In
summary, the four model parameters were fit to four summary statistics: mean richness («), variance-
mean scaling exponent 3, standard deviation of abundance change o;, and mean restoring slope (s)
(Figure 2E-H, respectively). The shapes of their corresponding distributions and scalings, as well as at
least four other statistics (Figure 2I-L), are all parameter-free predictions.

Origins of distinctive statistical behaviors in species abundance time
series

To understand the mechanisms that underlie the susceptibilities of various time series statistics to
model parameters, we investigated their origins within our model, focusing on how they constrain the
parameters.

The average richness () is a fundamental descriptor of community diversity. Within our model,
() is largely determined by and increases with increasing resource number M (C (o, N[M) = —2.6), as
expected for CR dynamics. The sparsity of resource use S impacts the power law exponent 3 between
0% and (x;) (C (B.5) = —2.0). Together, a and 3 constrain the parameters of resource competition M
and S.

The effect of S on 8 can be partially understood by considering limiting behaviors as follows. When
sparsity is high (S & 1), there is little competition and each consumer consumes almost distinct sets of
resources from other consumers. In the limit in which each consumer utilizes a single unique resource,
o2 is determined by the noise in resource level, which has a 8 = 2 scaling according to Equation 2.

Ho et al. eLife 2022;11:e75168. DOI: https://doi.org/10.7554/eLife.75168 7 of 19


https://doi.org/10.7554/eLife.75168

ELlfe Research article Ecology | Microbiology and Infectious Disease

o
u-|

Richness («)

; o
w
T

Restoring slope (s)
S
(@)}

C=0.04 i C=-13] | C=-3.0]
-2 -1 0 1 2 01 03 05 07 09 O 0.15 03 045 0.2 04 06 08 1
log, N/M Sparsity S Noise strength ¢ Noise correlation £

C=-03

Figure 3. Macroscopic parameters of resource competition affect time series statistics in distinct manners. Shown are the changes in time series
statistics (y-axis) in response to changes in model parameters (x-axis) for a comprehensive search across relevant regions of parameter space. Lines and
shading show the mean and standard deviation of a statistic at the given parameter value across variations in all other parameters. Data are plotted

in red when the corresponding susceptibility |C (z,w)| > 2, indicating that statistic z is strongly affected by parameter w regardless of the values of
other parameters. Dashed lines highlight best fit parameter values to the experimental data in Figure 2. Simulations were carried out for N = 50
across M € [10, 20, 30, 40, 50, 100, 150, 200, 250} .S e [0.1, 0.9] in 0.1 increments, o € [0.05, 0.5] in 0.05 increments, and k € [0.1, 1] in 0.1

increments.

The online version of this article includes the following figure supplement(s) for figure 3:
Figure supplement 1. Time series statistics are differentially susceptible to model parameters.
Figure supplement 2. Local susceptibilities behave similarly to their global counterparts.

Figure 3 continued on next page
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Figure supplement 3. A no-competition model provides a partial explanation for the scaling exponent 3 between O'%i and (x;) .

Figure supplement 4. Sparsity and the number of metabolites determine the shape of the distribution of abundance changes P (Al) .

Figure supplement 5. Our consumer-resource (CR) model is consistent with results obtained by shuffling time labels.

In the limit of large M and high sparsity, the variation in the number of resources consumed by each
consumer can be large relative to the mean, and both o2 and () scale with the number of resources
consumed, hence 8 = 1. Simulations of a no-competition model in which consumers consume distinct
sets of resources confirmed the scalings in these limits (Figure 3—figure supplement 3). By contrast,
when sparsity is low (S & 0), each consumer utilizes almost all resources and hence variation in the
number of resources consumed is small relative to the mean. Despite the obvious presence of compe-
tition in our CR model, we nevertheless attempted to understand the low sparsity limit by extrapo-
lating the no-competition model above to a case in which all consumers consume distinct sets of the
same number of resources. For large number of resources, these simulations predicted that 8 =~ 1.5
(Figure 3—figure supplement 3), as did our CR model for S = 0.1 (Figure 3—figure supplement
3). These findings suggest that the effect of S on S can be partially attributed to differences in the
number of resources consumed.

The distribution of Al describes the nature of abundance changes. As expected, the width of the
distribution is largely determined by and increases with increasing o (C (o0as,0) = 2.6). For the gut
microbiota data set in Figure 2, the shape of the distribution was well fit by an exponential. Within
our model, the shape of the distribution aggregated across all consumers is determined by N/M and
the sparsity S, emerging from the mixture of each consumer’s individual distribution (Figure 3—figure
supplement 4). When N/M < 1 and the sparsity S is low, individual distributions of Al are well fit
by normal distributions, and pool together to generate another normal distribution. When N/M < 1
and sparsity S is high, individual distributions remain normal, but can pool together to generate a
non-normal distribution that is well fit by an exponential (see also Allen et al., 2001). By contrast,
when N/M > 1, individual distributions can be well fit by an exponential and can pool together to
approximate another exponential. Simulations of the no-competition model considered above led
to individual and aggregate distributions that were normal in all cases, indicating that in our model
resource competition is responsible for generating the non-normal distributions of Al (Figure 3—
figure supplement 3). Although it is challenging to discern the shape of individual distributions in
most experimental data sets given the limited numbers of samples, the shape of the aggregate distri-
bution of Al informs the parameters of resource competition M and S. In particular, an exponential
distribution of Al suggests either strong resource competition in the form of N> M or substantial
niche differentiation in the form of high S. Other statistics such as 3 can help to distinguish between
these two regimes.

The distribution of restoring slopes s; describes the tendency with which consumers revert to their
mean abundances following fluctuations. As expected, the mean (s) is almost completely determined
by k, which describes the autocorrelation in resource levels (— (s) ~ k and C ({s) ,k) = —3.0). Together,
the distributions of Al and s; constrain the parameters of external fluctuations o and k.

Within our model, resource fluctuations can lead to the temporary ‘extinction’ of certain species
when they drop below the detectability threshold of 10. The distributions of residence and return
times, fres and fret, reflect the probabilities of extinction as well as correlations between sampling times.
For all parameter sets explored, these distributions can be well fit by power laws, with an exponential
cutoff to account for finite sampling (Ji et al., 2020). As expected, the power law slopes vres and vret
decrease (become more negative) with increasing o or k (Figure 3—figure supplement 1), since
increasing external noise or decreasing correlations in time increases the probability of fluctuating
between existence and extinction for each consumer. By contrast, vres and et change in opposite
directions in response to variation in M (Figure 3—figure supplement 1). Increasing M leads to a
larger number of highly prevalent consumers, thereby increasing the mean and broadening the distri-
bution of #es and decreasing the mean and narrowing the distribution of f. Since the four ensemble
level parameters are already fixed by other statistics, the distributions of tres, fret, and p; are parameter-
free predictions of our model. In other words, a macroscopic characterization of the effective resource
competition and resource fluctuations is sufficient to predict the statistics of ‘extinction’ dynamics, as
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well as the abundance rank distribution and the
relationship between consumer abundance and
prevalence.

Since the distributions of Al, fres, and twet are
dependent on correlations between sampling
times, it was initially puzzling that their distribu-
tions in some data sets remained similar after shuf-
fling sampling times, raising questions as to what
extent these statistics hold information about the
underlying intrinsic dynamics (Tchourine et al.,
2021; Wang and Liu, 2021a). Our results assist in
reconciling the apparent conundrum, since within
our model richness {«) and Taylor's law expo-
nent B do not depend on correlations between
sampling times and are also the statistics that
are most informative about the intrinsic parame-
ters M and S (Figure 3). As a result, the shuffled
time series were also well fit by our model and
yielded best fit values that were identical to those
produced by the actual time series except with
k =1, as expected due to the absence of correla-
tion across sampling times (Figure 3—figure
supplement 5). Thus, our results suggest that
while external fluctuations in resource levels may
be responsible for generating species abundance
variations, the intrinsic properties of resource
competition can determine the resulting scaling
exponents of many statistical behaviors.

Taken together, our analyses demonstrate the
complex relationships among time series statistics
and highlight their unification within our model
using only a small number of global parameters,
whose values are strongly constrained by macro-
ecological patterns.

CR model guides the identification
of other models that can
reproduce time series statistics
We have shown that many time series statistics
can be recapitulated by a simple model that does
not require knowing many detailed features of
real microbiota (Figure 2). The success of this
approach implies that these macroecological fluc-
tuations must be independent of at least some
model details, which suggests that there may be
other ecological models that could also recapit-
ulate the same data (Figure 4, Figure 4—figure
supplements 1-5). The relationships between
ecological models are generally poorly charac-
terized. To explore these possibilities, we sought
to compare our calibrated CR models against
several common alternatives.

First, we aimed to determine the extent to
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Figure 4. Correlations between abundances of
consumer pairs were captured by the consumer-
resource model, but not by a null model without
interspecies interactions. Shown in blue is the
probability density function (PDF) of correlations
between the abundances across sampling times

of all consumer pairs for the experimental data in
Figure 2. Red line represents parameter-free model
predictions as in Figure 2, using the same best fit
parameters; shading represents 1 standard deviation.
Black dashed line shows predictions of a null model
without interspecies interactions in which consumer
abundances were drawn from independent normal
distributions whose mean and variance were extracted
from data.

The online version of this article includes the following
figure supplement(s) for figure 4:

Figure supplement 1. The consumer-resource (CR)
model with metabolic trade-offs produces similar
statistics as the original model and can also recapitulate
experimental data.

Figure supplement 2. Consumer-resource (CR) model
with saturation kinetics exhibits dampened fluctuations
but can still reproduce experimentally observed
statistics.

Figure supplement 3. A non-interacting null model
reproduced some, but not all, time series statistics.

Figure supplement 4. Generalized Lotka-Volterra
(9LV) model with consumer-resource (CR)-converted
interaction coefficients generates time series statistics
similar to the original CR model and also recapitulates
experimental data.

Figure supplement 5. Generalized Lotka-Volterra (gLV)
model with normally distributed interaction coefficients
cannot reproduce experimental data.

which the simulated statistics depend on the assumptions of our CR model. Our parametrization of
the consumption rates introduces a correlation between the maximum growth rate of a consumer and
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the number of resources it consumes. To remove this correlation, we normalized the sum of consump-
tion rates }; R;; for consumer i to a fixed capacity 1~?i that was randomly drawn from the original
growth rates Zj R;jYj0 (Good et al., 2018; Posfai et al., 2017, Tikhonov and Monasson, 2017). This
modification preserves the variation in consumer fitness while implementing a metabolic trade-off.
The resulting time series statistics were essentially unaffected, also recapitulating experimental data
(Figure 4—figure supplement 1).

Moreover, the CR dynamics in Equation 1 do not consider other biologically plausible scenarios
such as saturation kinetics (Momeni et al., 2017; Niehaus et al., 2019). To probe the robustness of
the results of our model to the dynamical assumptions, we implemented saturation kinetics with all
other details kept the same (Materials and methods). When this model was simulated with the best
fit parameters of the original model, the resulting dynamics were less variable across sampling times
than without saturation kinetics, since the saturated regime is unaffected by small changes in resource
levels (Figure 4—figure supplement 2). Nonetheless, experimental statistics were again reproduced
once the strength of environmental fluctuations o was increased appropriately (Figure 4—figure
supplement 2). This suggests that our results are robust to assumptions regarding metabolic trade-
offs and saturation kinetics.

We next considered a non-interacting null model in which consumer abundances were drawn from
independent normal distributions whose means and variances were fitted directly from the data. Even
with a large number of free parameters, this null model was unable to capture some of the time series
statistics reproduced by our CR model, including Taylor's law as well as the distributions of richness
and restoring slopes (Figure 4—figure supplement 3). We reasoned that the discrepancies between
experimental data and the null model could be due to the lack of interspecies interactions. To test
this hypothesis, we examined the pairwise correlations between the consumer abundances across
sampling times. The measured distribution of pairwise correlations is much broader than the predic-
tion of the non-interacting model, which is sharply peaked about zero as expected (Figure 4). By
contrast, the distribution of correlations predicted by our CR model without any additional fitting was
in much closer agreement with the experimental data (Figure 4). These findings imply that interspe-
cies interactions are required to capture important details of community dynamics.

While our CR model assumes pairwise interactions between consumers and resources, the effective
interactions between consumers are not necessarily pairwise. To explore whether these higher-order
contributions are necessary for recapitulating the data, we considered models explicitly based on pair-
wise interspecies interactions, which despite differences compared with CR models (Momeni et al.,
2017) can also reproduce some properties of experimental time series (Descheemaeker and de Buyl,
2020; Wang and Liu, 2021b). To further explore the properties of models focused on pairwise inter-
actions, we investigated gLV models in which N taxa grow and interact via

aX; _ N
GEEXi [+ A -1 (1) ), 3)
J=1

where X; denotes the relative abundance of taxon i, r; its growth rate, and Aj; its interaction coef-
ficient with taxon j. T (t) =>rXi+ ZiJA,-jX,-Xj is a normalizing term that ensures that the relative
abundances always sum to one (Joseph et al., 2020). Since this classical model is generally unstable
for randomly drawn interaction coefficients (May, 1972), we sought to focus on particular instances
of the gLV model that were closest to our original CR model. This conversion between models
was achieved by converting the consumption rates R;; and resource levels ¥y at each sampling
time T to the growth rates r; and interaction coefficients A;; that characterize the dynamics when
consumption rates are similar to the mean value (Materials and methods). This conversion results
in negative, symmetric A; whose magnitudes depend on the niche overlap between the inter-
acting taxa (Good et al., 2018). Moreover, fluctuations in Y;g result in corresponding fluctuations
in both r; and Aj; across T. These CR-converted gLV models generated time series statistics that
reproduced the experimental data to a similar extent as the original CR model (Figure 4—figure
supplement 4). In light of this correspondence, we asked whether more general ensembles of
pairwise interaction could also reproduce the experimental data. We randomly selected r; and A;
values from normal distributions with means and variances equal to those in the CR-converted gLV
models while enforcing symmetric and negative interactions. The resulting gLV models yielded a
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poor fit to the data (Figure 4—figure supplement 5). Together, these results suggest that while
pairwise interactions between taxa are likely sufficient to recapitulate the experimental data, their
parameters must be drawn from particular ensembles that can be more simply described in the CR
framework.

These examples reinforce that only a particular subset of models can recapitulate the data, and
therefore, that the underlying community properties are highly constrained by macroecological
dynamics. Moreover, our calibrated CR model can guide the parametrization of other models that can
satisfy those constraints, while also identifying model features that are necessary for recapitulating
data.

Time series statistics distinguish wide-ranging microbiotas

Having developed a simple method to estimate parameters of our CR model that recapitulate time
series statistics, we applied this method to data sets involving wide-ranging microbial communities.
Although the various communities considered are drastically different in many aspects, we hypothe-
sized that our CR model framework could still be applied to identify the statistical ensembles that can
describe their macroecological dynamics. In addition to microbiotas from the human and mouse gut
(Caporaso et al., 2011; Carmody et al., 2015; David et al., 2014), we examined communities from
the human vagina (Song et al., 2020), human saliva (David et al., 2014), and in and around rice roots
(Edwards et al., 2018). The time series statistics of these microbiotas varied broadly (Figure 5A).
Nevertheless, our model successfully reproduced the experimental statistics across all communities
(Figure 5—figure supplements 1-6), suggesting that simple CR models can capture many of the
macroscopic features of these microbiotas.

The best fit parameters suggest that the effective resource competition dynamics occur in distinct
regimes across microbiotas (Figure 5B). Human gut microbiotas were best described by N> M,
suggesting that there are more species in the reservoir than resources in the environment, by contrast
to mouse gut microbiotas that were best described by N < M. In terms of resource niche overlaps,
human gut microbiotas were best fit with sparsity S < 0.3, while mouse gut microbiotas were best fit
with § > 0.3, suggesting that on average, pairs of bacterial families are more metabolically distinct in
the mouse versus the human gut.

Unlike gut microbiotas, a human saliva microbiota yielded best fit parameters N ~ M and S =~ 0.8,
suggesting that this community has access to abundant resources and that each effective resource is
competed for by a small fraction of the extant bacterial families. All vaginal microbiotas were best fit
with S < 0.1, suggesting intense resource competition.

Like vaginal microbiotas, microbial communities residing in the bulk soil around rice roots and in
the associated rhizoplane and rhizosphere were well described by § < 0.1. By contrast, the community
in the associated endosphere was best described by § & 0.6, suggesting that resource competition is
less fierce within plant roots than around them.

In addition, inferences about the nature of environmental fluctuations can be made from the best
fit values of o and k (Figure 5B). Apart from the two vaginal microbiota data sets, the best fit values
of o ranged from 0.1 to 0.3, indicating that changes in resource levels smaller than this magnitude will
generate abundance changes that look like typical fluctuations. The best fit values of k varied between
0.5 and 1 across data sets, suggesting that the dynamics of microbial communities occur faster than
or comparable to the typical sampling frequency of longitudinal studies. While it is unclear whether
the internal time scales are faster than the sampling frequency for all of these communities, simula-
tion results were robust to the dilution factor and threshold change defining ecological steady state
(Figure 1—figure supplement 1), two main factors that affect the relationship between the internal
and sampling time scales.

Inferences about intrinsic parameters of resource competition and external parameters of environ-
mental fluctuations were also consistent with expectations for in vitro passaging of complex communi-
ties derived from humanized mice (Aranda-Diaz et al., 2022). The resulting time series statistics were
best fit by the smallest value of & among the data sets studied, indicating that the in vitro environment
has relatively low noise across sampling times (as expected); the nonzero o presumably arises from
technical variations that result in effective noise in resource levels. The best fit value of M was larger
than the reservoir size N, suggesting that there are many distinct resources in the complex medium
used for passaging and consistent with the ability of more diverse inocula to support more diverse in
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Figure 5. The statistics of wide-ranging microbiotas were captured by the coarse-grained consumer-resource model in different regimes of resource
competition and environmental fluctuations. Shown are time series statistics (A) and corresponding best fit model parameters (B) for human microbiotas
from stool (Caporaso et al., 2011; David et al., 2014) (blue circles), saliva (David et al., 2014) (red square), and the vagina (Song et al., 2020) (pink
stars), gut microbiotas of mice under low fat (green downward triangles) and high fat (green upward triangles) diets (Carmody et al., 2015), and

plant microbiotas from the rice endosphere, rhizosphere, rhizoplane, and bulk soil (Edwards et al., 2018) (diamonds). (A) Microbiota origin generally
dictates the scaling exponent 8 and the ratio between the reservoir size N (number of observed families throughout the time series) and the richness
() (left), as well as the mean restoring slope (s) and standard deviation of log;g(abundance change) (right). Error bars denote 95% confidence intervals.
(B) Microbiota origin generally dictates the best fit parameters of resource competition, N/M and S (left), and of environmental fluctuations, o and k
(right). Error bars denote variation in the parameter that would increase model error (as interpolated between parameter values scanned) by 5% of the

mean error across all parameter values scanned.

The online version of this article includes the following figure supplement(s) for figure 5:
Figure supplement 1. Model reproduces experimentally observed time series statistics in human gut microbiotas.
Figure supplement 2. Model reproduces experimentally observed time series statistics in a human saliva microbiota.
Figure supplement 3. Model reproduces experimentally observed time series statistics in human vagina microbiotas.
Figure supplement 4. Model reproduces experimentally observed time series statistics in mice gut microbiotas.
Figure supplement 5. Model reproduces experimentally observed time series statistics in rice microbiotas.

Figure supplement 6. odel reproduces experimentally observed time series statistics in an in vitro-passaged complex community.
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vitro communities (Aranda-Diaz et al., 2022). The consistency of these results further supports the
utility of our model.

Taken together, our model infers ensemble-level parameters of resource competition and external
parameters of environmental fluctuations for several widely studied microbial communities that can
inform future mechanistic studies.

Discussion

Here, we presented a coarse-grained CR model that generates species abundance time series from
fluctuating environmental resources. We demonstrated that this model reproduces several statistical
behaviors (Figure 2) and elucidated how these observations constrain the parameters of resource
competition within the model (Figure 3). Moreover, we successfully fitted the model to wide-ranging
microbiotas, which allowed us to draw inferences about the parameters of their effective resource
competition. In sum, our work provides an existence proof that a CR model can recapitulate experi-
mentally observed time series statistics in microbiotas from diverse environments.

An important feature of our model is that it does not need to specify the individual resource
uptake rates of different taxa, which could be too numerous and complex to be tractable. Instead, our
model reproduces many statistical behaviors with a small number of global parameters that describe
the distributions of resource uptake rates. To what extent these macroscopic parameters can be
interpreted mechanistically is an interesting open question that could be explored in future work.
Although by no means exhaustive, our framework nevertheless addresses several pertinent questions
regarding construction of useful models of microbiota dynamics. The success of our CR model in
reproducing experimental time series statistics is consistent with bioinformatics-guided analyses of
complex communities demonstrating that metabolic capability is a major determinant of community
composition (Louca et al., 2016; Tian et al., 2020). Our results also suggest that the contributions of
a reservoir of species or other forms of species re-introduction are important for the dynamics of wide-
ranging microbiotas. Within our model, the lack of species re-introduction renders poor consumers
unable to recover to meaningful abundance within a sampling time even when resource fluctuations
are in their favor, thereby distorting time series statistics. The existence of a reservoir is consistent
with previous experimental work in mice (Ng et al., 2019), but further work is required to investigate
how species re-introduction occurs in other systems. Similarly, further experimental work is required
to ascertain the amount of growth and change that occurs during sampling time scales, and further
theoretical work is required to infer such internal time scales from microbiota time series.

In terms of intrinsic metabolic properties, our results provide a baseline expectation for the effec-
tive number of resources or available niches in the wide-ranging systems examined here, and to what
extent they are competed for by extant consumers. In terms of environmental properties, our results
provide a baseline expectation to help distinguish between typical fluctuations and large perturba-
tions in resources. These expectations may aid in the engineering of complex microbiotas.

In general, our work demonstrates that it is feasible to reproduce time series statistics using CR
models of microbiota dynamics, thereby generating mechanistic hypotheses for further investigation.
Our CR model and fitting procedure can also be used to aid the parametrization of other models such
as Lotka-Volterra models (Figure 4—figure supplements 1-5), comparisons among which can reveal
the model details that are required to recapitulate experimental data. In the future, more detailed
hypotheses can be generated by investigating how time series statistics are affected by modifica-
tions to baseline CR dynamics, such as the incorporation of metabolic cross-feeding (Goldford et al.,
2018; Li et al., 2020) or physical interactions such as type VI killing (Verster et al., 2017), functional
differentiation from genomic analysis (Arkin et al., 2018; Machado et al., 2021; Pollak et al., 2021),
and physical variables such as pH (Aranda-Diaz et al., 2020; Ratzke and Gore, 2018), temperature
(Lax et al., 2020), and osmolality (Cesar et al., 2020). In addition, recent studies have shown that
evolution can substantially affect the dynamics of human gut microbiotas (Garud et al., 2019; Yaffe
and Relman, 2020; Zhao et al., 2019). It will therefore be illuminating to incorporate evolutionary
dynamics into CR models under fluctuating environments (Good et al., 2018). Such extended models
can then be applied to probe the underlying mechanisms in microbiotas for which frequent sampling
and deeper understanding could be translated to urgent applications, including those in marine envi-
ronments, wastewater treatment plants, and the guts of insect pests and livestock.
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Materials and methods

Simulations of a CR model with fluctuating resource amounts

Under a serial dilution scheme, an ecological steady state is reached when the dynamics in subse-
quent passages are identical, which is the case when all consumers are either extinct or have a growth
ratio (the ratio of a consumer’s final and initial abundances within one passage) equal to the dilution
factor D. Due to the slow path to extinction of some consumers, reaching an exact ecological steady
state can require hundreds of passages, presumably more than realistically occurs between sampling
times in the data sets examined here. Thus, we assumed instead that between sampling times the
system only approximately reaches an ecological steady state, defined as the growth ratios of all
species changing by less than a threshold between subsequent passages that was defined as a frac-
tion of D. Throughout this study, D was set to 200 and the steady state threshold was 5%, under
which a steady state was approximately reached in about 5 dilutions (Figure 1B). In this manner, our
model assigns a well-defined state of consumer abundances to each resource environment while
ensuring that only a reasonable amount of change occurs between sampling times. Note that in
human gut microbiotas, abundances can change by more than 1000-fold between daily samplings
(Figure 2B), indicating that at least 10 generations can occur between sampling times. The precise
value of D did not affect time series statistics, and steady-state thresholds between 1% and 10%
generated similar time series statistics (Figure 1—figure supplement 1). We therefore expect our
results to be robust to the values of these two parameters. Simulations were carried out in Matlab,
and all code is freely available online in Matlab and Python at https://bitbucket.org/kchuanglab/
consumer-resource-model-for-microbiota-fluctuations/.

CR model with saturation kinetics
Saturation kinetics were implemented into the CR dynamics of Equation 1 as

M
aX; _ y. LY
@ =X ( lR'JY,Y+Y,-> ;
=

N
ay; _ Y LY.
qG = YA (Z1 Rz/Xt) ;
i=

where Y, denotes the saturation constant. For simplicity, Yy was assumed to be equal for all resources,
and set to an intermediate value of Yy = (¥;()/3 such that both saturated and linear kinetics could
affect community dynamics. Other model details are the same as the original CR model.

Lotka-Volterra models

The gLV model in Equation 3 was parametrized in two ways. The first parametrization, which we refer
to as CR-converted gLV models, was motivated by the successful recapitulation of experimental time
series statistics with our CR model. The CR model can be rewritten as a gLV model when resource
consumption rates are similar to the mean value (Good et al., 2018). Under this assumption, the
mapping is r; =23 R;Y;o and A; = ﬁ >k RiRiYro - The converted interaction coefficients are
negative and symmetric, and their magnitudes depend on the niche overlap between the interacting
taxa. Since the resource levels Yj( are involved in this parametrization, fluctuations in Yo across
sampling times T translate into fluctuations in r; and Aj; .

In the second parametrization, r; and A;; were randomly drawn from normal distributions with
means and variances equal to those in the CR-converted gLV model. A;; were forced to be negative
and symmetric.

The gLV models were initialized with equal relative abundances for all taxa, and simulated for a
fixed amount of time such that a similar range of relative abundances was generated as in the CR
model at approximate ecological steady state.

Analysis of 16S amplicon sequencing data

Raw 16S sequencing data from David et al., 2014; Song et al., 2020, were downloaded from the
European Nucleotide Archive and the Sequence Read Archive, respectively, and ASVs were extracted
using DADAZ2 (Callahan et al., 2016) with default parameters. OTUs or ASVs from other studies were
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downloaded and analyzed in their available form. All code for data processing is available in the
repository listed above.
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier
David LA, Materna 2014 Host lifestyle affects https://www.ebi.ac.  EBI, ERPO04059

AC, Friedman J, human microbiota on daily uk/metagenomics/

Campos-Baptista timescales studies/ERP006059

MI, Blackburn MC,
Perrotta A, Erdman

SE, Alm EJ

Song SD, Acharya 2020 Daily Vaginal Microbiota https://www.ncbi.nlm. NCBI BioProject,
KD, Zhu JE, Deveney Fluctuations Associated nih.gov/bioproject/  PRINA637322
CM, Walther-Antonio with Natural Hormonal PRJNA637322

MRS, Tetel MJ, Chia Cycle, Contraceptives, Diet,

N and Exercise
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