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We demonstrate using micromagnetic simulations that a nanomagnet array excited by Surface 

Acoustic Waves (SAWs) can work as a reservoir. An input nanomagnet is excited with focused 

SAW and coupled to several nanomagnets, seven of which serve as output nanomagnets. To 

evaluate memory effect and computing capability, we study the Short-Term Memory (STM) and 

Parity Check (PC) capacities respectively. The SAW (4 GHz carrier frequency) amplitude is 

modulated to provide sequence of sine and square waves of 100 MHz frequency. The responses of 

the selected output nanomagnets are processed by reading the envelope of their magnetization 

state, which is used to train the output weights using regression method. For classification, a 

random sequence of 100 square and sine wave samples are used, of which 80% are used for 

training, and the rest are used for testing. We achieve 100% training and 100% testing accuracy. 

The average STM and PC are calculated to be ~4.69 bits and ~5.39 bits respectively, which is 

indicative of the proposed acoustically driven nanomagnet oscillator array being well suited for 

physical reservoir computing applications. The energy dissipation is ~2.5 times lower than a 

CMOS-based echo-state network. Furthermore, the reservoir is able to accurately predict Mackey-

Glass time series up to several time steps ahead. Finally, the ability to use high frequency SAW 

makes the nanomagnet reservoir scalable to small dimensions and the ability to modulate the 

envelope at a lower frequency (100 MHz) adds flexibility to encode different signals beyond the 

sine/square waves demonstrated here.   

Keywords: Reservoir computing (RC), recurrent neural network (RNN), neuromorphic 

computing, surface acoustic wave (SAW), spintronics.  

A Recurrent Neural Network (RNN) is a machine learning algorithm, which uses its internal 

memory to remember previous inputs and hence process time-series data e.g., speech, audio, text, 

weather, etc. Reservoir Computing (RC) is derived from the RNN theory and is a computational 

framework where a fixed, non-linear reservoir maps the inputs into higher-dimensional space and 

the readout is trained with linear regression and classification1. A RC network consists of inputs, 

reservoirs, and outputs as shown in Fig. 1(a). In a RC network, only the output weights are trained 

with a fast and simple linear regression method, which enables the implementation of efficient 
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training. Such physical reservoir implementations are suitable for edge devices that need to learn 

in real-time with limited hardware, computational resources, and energy. An ideal physical 

reservoir should have short-term memory effect and non-linear dynamics as well as be amenable 

to manufacturing with minimal circuitry. Various Physical RC (PRC) systems are proposed by 

researchers such as spintronic PRC2-12, electronic PRC2, photonic PRC13-14, etc. Each of these 

physical reservoirs has respective advantages and disadvantages.  

Spintronic nanomagnetic devices are particularly well suited for physical reservoir computing due 

to their inherent interactive non-linear dynamics, recurrence characteristics, enduring lifetime, 

CMOS-compatibility, and low energy consumption2-3. Spintronic PRC has been simulated or 

experimentally implemented using dipole-coupled nanomagnets15-16, spin-torque-nano-oscillators 

(STNOs)10,17-18, spin-wave systems19-21, and different skyrmion fabrics4-6,22. Simple pattern 

recognition task can be performed with a skyrmion fabric reservoir, which utilizes the recursive 

response of magnetization dynamics5. Complex tasks such as image classification can also be 

performed by a single magnetic skyrmion memristor (MSM) with current pulse stimulation4,6. 

Several studies have proposed domain wall (DW) based neurons and synapses for integrated 

hybrid CMOS and spintronic computing7-9. Apart from skyrmion textures and DWs, vortex-type 

spin-torque-oscillator10, magnetic-dipole interactions15 can be used as a resource for nonlinear 

dynamics of a spintronic reservoir. Higher computational capabilities can be achieved using forced 

synchronization10, by increasing the number of STNOs, or at the boundary between synchronized 

and disordered states23.  

Recently, strain-mediated nanomagnet devices28-29 were demonstrated for memory applications 

through resonant surface acoustic wave (r-SAW) assisted spin-transfer-torque24-25. Unlike memory 

application, reservoir computing does not require the nanomagnets to switch to an orthogonal state 

or undergo a complete reversal. Hence, the energy barrier (𝐸𝑏 = 𝐾𝑢𝑉~1𝑒𝑉) constraint, associated 

with volume (V), and perpendicular anisotropy constant (𝐾𝑢) is not critical to its working. The 

SAW induced stress at a suitable frequency can induce ferromagnetic resonance, which leads to 

large amplitude precession while being energy efficient. These advantages motivated us to propose 

SAW induced magnetization dynamics as an input to nanomagnetic reservoirs. SAWs are 

generated by an inter-digitated-transducer (IDT) patterned on a piezoelectric substrate, which 

produces Raleigh (transverse) waves. Piezoelectric materials such as Lithium Niobate (𝐿𝑖𝑁𝑏𝑂3), 

can be used to generate such SAW waves that induce magnetization dynamics in magnetostrictive 

nanomagnets.  

In this work, we demonstrate via micromagnetic simulation that a nanomagnet array, shown in 

Fig. 1, excited by SAW can be used as a reservoir to classify sine and square waves with high 

accuracy. We also evaluate two figures of merit tasks of RC named short-term memory (STM) 

capacity and parity check (PC) capacity. The STM and PC capacity tasks characterize the memory 

effect (influence of past states) and computing capability (non-linearity) of the system, 

respectively26. The amplitude of the SAW applied to the input nanomagnet is modulated in such a 
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way that its envelope forms random sequence of sine and square waves of 100 MHz frequency. 

The non-linear responses of the output nanomagnets due to such an input are processed by reading 

the reservoir state in certain intervals and then trained to classify sine and square waves and 

calculate STM and PC capacity.  

 

Fig. 1: (a) Conceptual schematic showing application of SAW with Focused Inter-Digitated Transducer 

(FIDT) on the input nanomagnet as well as reservoir and output nanomagnets. (b) A micro-magnetic 

snapshot of the input, the reservoir, and the output nanomagnets. The SAW is applied to the input 

nanomagnet (ip1) and the magnetizations of the output nanomagnets (op1 to op7) are read. (c) Normalized 

stress anisotropy and labeling of sine and square waves as 1 and 0. (d) Magnetization of output nanomagnets 

1 (op1) and 4 (op4) in response to SAW and their corresponding envelopes (up1 and up4). (e) The envelopes 

of the responses vs. time (ns) of several output nanomagnets. (f) Electrical  readout of the magnetization of 

the output nanomagnet softlayer with an MTJ. 

We obtain the free layer magnetization dynamics of the reservoir through micromagnetic 

simulation with MuMax327. The magnetization direction of the reference ferromagnetic layer of 

an MTJ is fixed and the free layer magnetization is governed by the Landau-Lifshitz-Gilbert (LLG) 

(see supplementary) equation as follows:  

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
1
0
7
6
9



4 

 

𝑑𝑚⃗⃗⃗ 𝑑𝑡 = − 1(1+𝛼2) 𝛾[𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒] − 𝛼(1+𝛼2) 𝛾[𝑚⃗⃗ × (𝑚⃗⃗ × 𝐻⃗⃗ 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)]              (1) 

Here, 𝑚⃗⃗  is the normalized magnetization defined as 
𝑀⃗⃗ 𝑀𝑠, 𝑀⃗⃗  is the magnetization, 𝑀𝑠 is the saturation 

magnetization, α is the Gilbert damping coefficient, γ is the gyromagnetic ratio.  

We assume a uniform stress induced by the SAW within the magnetic domain in the 𝑢⃗  direction 

and the stress creates a purely uniaxial anisotropy. We note that the estimated stress amplitude is 

conservative due to this assumption, but the qualitative magnetization dynamics remain the same. 

Since the focused SAW is locally applied to the region of the input magnet only, the induced stress 

in the piezoelectric substrate in the reservoir or output region is comparatively negligible. So, the 

stress anisotropy field, 𝐻⃗⃗ 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑛𝑖𝑠 = 0 and the effective field on the nanomagnets of the reservoir 

or output nanomagnets is comprised of 𝐻⃗⃗ 𝑑𝑒𝑚𝑎𝑔 and 𝐻⃗⃗ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒. 𝐻⃗⃗ 𝑑𝑒𝑚𝑎𝑔  is calculated by MuMax27 

at every point in each nanomagnet due to shape anisotropy of the nanomagnet itself and due to 

dipole coupling from other nanomagnets.  

The application of focused SAW on the piezoelectric substrate induces stress anisotropy and 

causes magnetization precession in the input nanomagnet, 𝑖𝑝1. Closely placed nanomagnets are 

dipole-coupled and start precession due to the coupling with the input nanomagnet. These 

nanomagnets further couple with other nanomagnets forming a reservoir of dipole-coupled 

nanomagnets. The magnetic-dipole interactions in the nanomagnets create recurrent loops which 

can induce memory functionality to the array. The coupled nanomagnets act like synapse weights 

in a neural network and the weights of the reservoir synapses are fixed which depends on the inter-

magnetic relative geometrical coordinates in the array. The array of nanomagnets which forms the 

reservoir are patterned in an irregular layout to add asymmetry, to further enrich the reservoir. 

Fig. 1(a,b) shows the schematic of the proposed reservoir with the application of focused SAW. 

The input nanomagnet is indicated by ip1 and output nanomagnets are denoted by op1 to op7. We 

assume a 4 GHz SAW is applied to the input nanomagnet using a focused interdigitated transducer 

(FIDT), which is patterned on top of a piezoelectric. The SAW input and its propagation in the 

piezoelectric substrate are not modeled in MuMax3 simulation, and the SAW input is given only 

through the uniaxial stress anisotropy constant, kut term in equation 3. The simulation dimension 

is 256 × 256 × 16 cells which covers all input, reservoir, and output nanomagnets, and each cell 

size is 2𝑛𝑚 × 2𝑛𝑚 × 2.1875𝑛𝑚, which is much lower than the ferromagnetic exchange length, √2𝐴𝑒𝑥 𝜇0𝑀𝑠2⁄ = 6.32𝑛𝑚. The material and simulation parameters39-43 are summarized in Table I.  
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Table I. Simulation and material parameters for the physical reservoir for the soft ferromagnetic CoFe39-43 

layer.   

Parameter Value 

Gilbert damping constant, 𝛼 0.05 

Saturation magnetization, 𝑀𝑠  0.72 x 106 A/m 

Exchange stiffness, 𝐴𝑒𝑥  13 x 10-12 J/m 

Free layer thickness, 𝑡 35 nm 

Nanomagnet diameter, 𝐷 30 nm 

Magnetostriction, 𝜆𝑠 250 ppm 

 

Two fundamental properties required for reservoir computing are nonlinearity and memory38. Due 

to the nonlinearity and complex dynamics of the reservoir, the network response should be 

consistent/similar for similar inputs and distinguishable for different inputs30. For RC, we utilize 

the magnetization dynamics of the input and output nano-oscillators, which are governed by the 

LLG equation described earlier. Further, the input information is encoded in the envelope of a 

focused SAW of 4 GHz consisting of a random sequence of sine and square waves. The details of 

the RC method are presented in the supplementary.  

We evaluate the quantitative performance of the reservoir with STM task and PC task30. STM task 

characterizes the memory effect of the system by generating delayed inputs and testing if the 

internal dynamics of the reservoir is trained to adjust to this delay. Input data, 𝑖𝑠(𝑛) is delayed by 

arbitrary unit, 𝑑 and STM task is to identify the delayed input, 𝑦𝑆𝑇𝑀𝑛,𝑑 :   𝑦𝑆𝑇𝑀𝑛,𝑑 = 𝑖𝑠(𝑛 − 𝑑)                                                      (2) 

here, 𝑖𝑠(𝑛) represents the 𝑛𝑡ℎ sine/square signal and 𝑑 is the introduced delay.  The duration of 

each of the sine/square signal is 10 ns, thus delay, 𝑑 = 1 corresponds to 10 ns and so on.  

Since the STM task is not sufficient to prove reservoir property, the PC task is also evaluated as a 

benchmark task. The PC task characterizes the non-linearity of the system, which is indicative of 

the computing capability of the system and simplifies the training of the reservoir. A modulo (2) 

operation, which introduces non-linearity, is performed on the summation of input signal 𝑖𝑠(𝑛) up 

to delay, 𝑑 to obtain PC task output, 𝑦𝑃𝐶𝑛,𝑑:   𝑦𝑃𝐶𝑛,𝑑 = [𝑖𝑠(𝑛 − 𝑑) + 𝑖𝑠(𝑛 − 𝑑 + 1) + ⋯+ 𝑖𝑠(𝑛)] 𝑚𝑜𝑑(2);  𝑑 ≠ 0               (3) 

In Eq 2-3, 𝑦𝑆𝑇𝑀/𝑃𝐶𝑛,𝑑  represents the training and testing data for STM and PC tasks for various delays. 

Once the learned weights are obtained, the correlation coefficient between testing data, and output 
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data 𝑦𝑜𝑢𝑡 are calculated. The total capacities for STM (𝐶𝑆𝑇𝑀) and PC (𝐶𝑃𝐶) tasks are calculated by 

integrating (summing in the discrete case) the correlation coefficients for delay up to 𝑑𝑚𝑎𝑥.  𝑟𝑆𝑇𝑀/𝑃𝐶(𝑑) = √ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑦𝑆𝑇𝑀/𝑃𝐶𝑛,𝑑 ,𝑦𝑜𝑢𝑡]𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑦𝑆𝑇𝑀/𝑃𝐶𝑛,𝑑 ]𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑦𝑜𝑢𝑡]                                      (4) 𝐶𝑆𝑇𝑀/𝑃𝐶 = ∑ [𝑟𝑆𝑇𝑀/𝑃𝐶(𝑑)]2𝑑𝑚𝑎𝑥𝑑=1                                                (5) 

The nanomagnets are realized by magnetic tunnel junctions (MTJs), made of two CoFe layers (free 

and reference) separated by a tunnel barrier (MgO). The free layer magnetization responses of the 

outputs are read and preprocessed to obtain envelopes by spline interpolation31 over local maxima 

separated by at least 3 samples. The envelopes of the output nanomagnets are shown in Fig. 1(e). 

Each sine or square signal is sampled into N nodes separated by a sampling time 𝜏. The node 

density can be increased by introducing virtual nodes32-33. The weights are obtained by the linear 

regression method. 

To quantify the performance of the proposed reservoir, the sine and square wave classification is 

performed by the reservoir as a first task. Although simple, this classification task requires non-

linearity and memory effects of the system to predict or classify these waves with high accuracy. 

The input is a random sequence of 100 sine and square waves with equal period of 10 ns. The first 

80 signals are used to train, and the next 20 signals are used to test the reservoir for signal 

classification, STM task, and PC tasks. The reservoir is able to achieve 100 % training and 100 % 

testing accuracy with any of the output nanomagnets. The training and testing are performed for 

the different numbers of virtual nodes 5, 10, 20, 25, and 50, where 100 % recognition rate in both 

training and testing was achieved for all cases.  

To further evaluate the performance of the reservoir, we studied two fundamental characteristics: 

fading memory and non-linearity38. To evaluate the memory of the reservoir we have calculated 

STM capacity and to evaluate the nonlinearity, we have performed the PC task and results are 

discussed next. 
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Fig. 2: (a) Square of correlation coefficient, 𝑟𝑆𝑇𝑀2 (𝑑) for STM task in terms of delay(𝑑) and number of 
virtual nodes (N), (b) square of correlation coefficient, 𝑟𝑃𝐶2 (𝑑) for PC task in terms of delay(𝑑) and number 
of virtual nodes.  
 

Fig. 2(a) shows the square of the correlation coefficient, 𝑟𝑆𝑇𝑀2 (𝑑) between the training data of STM 

task, 𝑦𝑆𝑇𝑀𝑛,𝑑  and output data, 𝑦𝑜𝑢𝑡 as a function of delay from 𝑑 = 0 to 𝑑 = 10. Each of the time 

steps correspond to a 10 ns delay. The STM correlation coefficient2, 𝑟𝑆𝑇𝑀2 = 1 for all the number 

of virtual nodes, 𝑁 in consideration at delay, 𝑑 = 1 and starts to decrease with the increase of the 

delay. The 𝑟𝑆𝑇𝑀2 (𝑑) tends to be higher in general with the increase in the number of the virtual 

nodes. Similarly, Fig. 2(b) presents the square of the correlation coefficient, 𝑟𝑃𝐶2 (𝑑) between the 

training data of PC task, 𝑦𝑃𝐶𝑛,𝑑 and output data, 𝑦𝑜𝑢𝑡 as a function of delay from 𝑑 = 0 to 𝑑 = 10. 

Similar trends as STM have been observed for the PC task, for the correlation coefficient, as a 

function of the number of virtual nodes, and delay.  

 

Fig. 3: (a) STM capacity (𝐶𝑆𝑇𝑀)  and (b) PC capacity (𝐶𝑃𝐶) of the reservoir as a function of the number of 

virtual nodes (c) Average STM and PC capacity of the reservoir as a function of the number of virtual 

nodes.  

The dependency of STM capacity (𝐶𝑆𝑇𝑀) on the number of virtual nodes, 𝑁 in each signal is shown 

in Fig. 3(a). There is a general tendency of increasing STM capacity with an increasing number of 

virtual nodes for all the output nanomagnets. Fig. 3(b) shows the PC capacity (𝐶𝑃𝐶) vs. virtual 

node numbers (N) follows similar characteristics as STM task. The maximum capacity achieved 

by the reservoir for both STM and PC tasks is 5.43 bits for the case with output nanomagnet op7 

and 25 virtual  nodes. The obtained STM and PC capacities are comparable or higher than the 

other spintronic reservoirs10,23,26,34. The average STM and PC capacity of seven output 

nanomagnets are shown in Fig. 3(c) in terms of the virtual node numbers. The reservoir has an 

average STM capacity of ~4.69 and PC capacity of ~5.39 bits. The reservoir can be tuned for 

optimal performance of the STM and PC capacities through parameter study of the materials (e.g., 

damping constant (𝛼), saturation magnetization (𝑀𝑠), exchange stiffness (𝐴𝑒𝑥) etc.), through 

dipole coupling strength variation (e.g., optimizing the distances between the nanomagnets), and 

optimizing the size (diameter/thickness) of the nanomagnets. 
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To separate the role played by the nonlinear nanomagnet reservoir in achieving the high STM and 

PC over that due to pre-processing (carrier amplitude modulation) and post-processing (filtering 

the carrier) we perform the following study. The pre-processed input is fed into a single-layer 

perceptron (SLP) network and its output post-processed before classifying and this is compared to 

the case of the reservoir with pre and post-processing. The result shows a correlation (𝑟2)  of 1 for 

both STM and PC tasks, at delay 1 but very low or almost no correlation (𝑟2) for delay 2 and 

higher compared to the case with filters and reservoir as shown in Fig. 4. The calculated STM and 

PC capacities of the SLP are ~1.44 bits and ~1.43 bits, respectively while STM and PC capacities 

of the reservoir are ~3.52 bits and ~3.46 bits, which indicates the effectiveness of the reservoir 

over merely pre and post- processing.  

 
Fig. 4: (a) Architecture of single layer perceptron (SLP) which is used to measure the influence of pre and 

post-processing on the performance of reservoir (b) Calculated coefficient, 𝑟𝑆𝑇𝑀/𝑃𝐶2 (𝑑) for STM and PC 

tasks with various delay, d for two different cases: with reservoir (solid lines) and without reservoir (only 

SLP and dashed lines). The number of virtual nodes for both cases are, 𝑁=20. The lines are drawn to guide 

the eye. 

To further demonstrate the viability of the reservoir we perform long-term prediction task with 

Mackey-Glass time series data. This chaotic system has been widely used as a benchmark for 

forecasting task test due to the difficulty of prediction regardless of the deterministic form of the 

system44-46. In Fig. 5 we demonstrate the ability of the reservoir to predict the Mackey-Glass time 

series for various delays. For each case, 500 data points are used for training and 500 are used for 

testing and we calculate the mean square error (MSE) to quantify the prediction. The reservoir 

reproduces the Mackey-Glass input points with MSE of 4.5032 × 10−7 at delay 0, 6.0383 × 10−4 

at delay 5, 7.3 × 10−3 at delay 15, and 1.05 × 10−2 delay 30.   
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Fig. 5: Forecasting of Mackey-Glass time-series. (a) Training and prediction results obtained from the 

nanomagnet-based reservoir. Prediction results at (b) Predicted time step=0, (c) Predicted time step=2, (d) 

Predicted time step=3, (e) Predicted time step=5. 

The total energy dissipation in the proposed reservoir system solely depends on the SAW 

excitation35-37 as there is no other input mechanism needed. To estimate the energy consumption 

of the nanomagnets we also assume total generation of SAW induced strain from the piezoelectric 

substrate to the nanomagnets. The energy dissipated by the focused SAW IDT per input time 

period is (𝑃𝑊)𝑊𝑡𝑠𝑎𝑤 = 0.87 pJ, and reservoir output including the trained output layer will 

consume 84.3 pJ. A CMOS-based echo-state-network (ESN) is simulated to obtain the similar 

performance of nanomagnet RC and to achieve similar parity check capacity the CMOS ESN 

needs 11 neurons, which corresponds to 195.7 pJ of energy.  So, the total energy dissipation per 

input is ~85 pJ which is nearly two and a half times lower and energy efficient compared to an 

equivalent CMOS ESN (see supplementary). Although CMOS ESN is able to achieve comparable 

accuracies for PC task, the STM task accuracies are still significantly low compared to our 

spintronic reservoir, which exhibits high capacities for both STM and PC tasks. The energy 

dissipation can be further decreased by applying higher frequency (> 4GHz) focused SAW, 

reducing the period of sine/square wave, and carefully selecting or optimizing material parameters. 

Furthermore, this NMRC scheme requires readout of only a single MTJ and enables the 

implementation of less external circuitry with more energy saving. 
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10 

 

In summary, we have introduced a spintronic physical reservoir where a focused SAW is applied 

to the input. The reservoir is able to identify sine and square waves with 100 % accuracy. In 

addition, we have demonstrated the expressivity of the reservoir by evaluating two figures of merit 

for RC and perform the prediction task of a time series data with delay. We have achieved average 

capacities of ~4.69 and ~5.39 for STM and PC, respectively and reproduce the Mackey-Glass time 

series data with high accuracy which are indicative of a viable physical reservoir. The reservoir is 

extremely energy efficient and potentially needs ~2.5 times less energy than a CMOS-based ESN. 

Finally, the ability to use high-frequency SAW makes the device scalable to small dimensions, 

while the ability to modulate the envelope at a lower frequency (100 MHz) adds flexibility to 

encode different signals beyond the work in this paper. This could be key to applications such as 

speech recognition, anomaly detection, etc. using in-situ learning in edge devices.   
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