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We demonstrate using micromagnetic simulations that a nanomagnet array excited by Surface
Acoustic Waves (SAWs) can work as a reservoir. An input nanomagnet is excited with focused
SAW and coupled to several nanomagnets, seven of which serve as output nanomagnets. To
evaluate memory effect and computing capability, we study the Short-Term Memory (STM) and
Parity Check (PC) capacities respectively. The SAW (4 GHz carrier frequency) amplitude is
modulated to provide sequence of sine and square waves of 100 MHz frequency. The responses of
the selected output nanomagnets are processed by reading the envelope of their magnetization
state, which is used to train the output weights using regression method. For classification, a
random sequence of 100 square and sine wave samples are used, of which 80% are used for
training, and the rest are used for testing. We achieve 100% training and 100% testing accuracy.
The average STM and PC are calculated to be ~4.69 bits and ~5.39 bits respectively, which is
indicative of the proposed acoustically driven nanomagnet oscillator array being well suited for
physical reservoir computing applications. The energy dissipation is ~2.5 times lower than a
CMOS-based echo-state network. Furthermore, the reservoir is able to accurately predict Mackey-
Glass time series up to several time steps ahead. Finally, the ability to use high frequency SAW
makes the nanomagnet reservoir scalable to small dimensions and the ability to modulate the
envelope at a lower frequency (100 MHz) adds flexibility to encode different signals beyond the
sine/square waves demonstrated here.

Keywords: Reservoir computing (RC), recurrent neural network (RNN), neuromorphic
computing, surface acoustic wave (SAW), spintronics.

A Recurrent Neural Network (RNN) is a machine learning algorithm, which uses its internal
memory to remember previous inputs and hence process time-series data e.g., speech, audio, text,
weather, etc. Reservoir Computing (RC) is derived from the RNN theory and is a computational
framework where a fixed, non-linear reservoir maps the inputs into higher-dimensional space and
the readout is trained with linear regression and classification'. A RC network consists of inputs,
reservoirs, and outputs as shown in Fig. 1(a). In a RC network, only the output weights are trained
with a fast and simple linear regression method, which enables the implementation of efficient
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training. Such physical reservoir implementations are suitable for edge devices that need to learn
in real-time with limited hardware, computational resources, and energy. An ideal physical
reservoir should have short-term memory effect and non-linear dynamics as well as be amenable
to manufacturing with minimal circuitry. Various Physical RC (PRC) systems are proposed by
researchers such as spintronic PRC?'2, electronic PRC?, photonic PRC'3"4, etc. Each of these
physical reservoirs has respective advantages and disadvantages.

Spintronic nanomagnetic devices are particularly well suited for physical reservoir computing due
to their inherent interactive non-linear dynamics, recurrence characteristics, enduring lifetime,
CMOS-compatibility, and low energy consumption®>. Spintronic PRC has been simulated or
experimentally implemented using dipole-coupled nanomagnets !>, spin-torque-nano-oscillators
(STNOs)!%17-18  spin-wave systems'®?!, and different skyrmion fabrics*®?2. Simple pattern
recognition task can be performed with a skyrmion fabric reservoir, which utilizes the recursive
response of magnetization dynamics’. Complex tasks such as image classification can also be
performed by a single magnetic skyrmion memristor (MSM) with current pulse stimulation*®.
Several studies have proposed domain wall (DW) based neurons and synapses for integrated
hybrid CMOS and spintronic computing’™®. Apart from skyrmion textures and DWs, vortex-type
spin-torque-oscillator'®, magnetic-dipole interactions'> can be used as a resource for nonlinear
dynamics of a spintronic reservoir. Higher computational capabilities can be achieved using forced
synchronization'?, by increasing the number of STNOs, or at the boundary between synchronized
and disordered states®.

Recently, strain-mediated nanomagnet devices®®?* were demonstrated for memory applications

through resonant surface acoustic wave (r-SAW) assisted spin-transfer-torque?*2*. Unlike memory
application, reservoir computing does not require the nanomagnets to switch to an orthogonal state
or undergo a complete reversal. Hence, the energy barrier (E;, = K,V ~1eV) constraint, associated
with volume (V), and perpendicular anisotropy constant (K,,) is not critical to its working. The
SAW induced stress at a suitable frequency can induce ferromagnetic resonance, which leads to
large amplitude precession while being energy efficient. These advantages motivated us to propose
SAW induced magnetization dynamics as an input to nanomagnetic reservoirs. SAWs are
generated by an inter-digitated-transducer (IDT) patterned on a piezoelectric substrate, which
produces Raleigh (transverse) waves. Piezoelectric materials such as Lithium Niobate (LiNbO53),
can be used to generate such SAW waves that induce magnetization dynamics in magnetostrictive
nanomagnets.

In this work, we demonstrate via micromagnetic simulation that a nanomagnet array, shown in
Fig. 1, excited by SAW can be used as a reservoir to classify sine and square waves with high
accuracy. We also evaluate two figures of merit tasks of RC named short-term memory (STM)
capacity and parity check (PC) capacity. The STM and PC capacity tasks characterize the memory
effect (influence of past states) and computing capability (non-linearity) of the system,
respectively?. The amplitude of the SAW applied to the input nanomagnet is modulated in such a
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way that its envelope forms random sequence of sine and square waves of 100 MHz frequency.
The non-linear responses of the output nanomagnets due to such an input are processed by reading

the reservoir state in certain intervals and then trained to classify sine and square waves and
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calculate STM and PC capacity.
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Fig. 1: (a) Conceptual schematic showing application of SAW with Focused Inter-Digitated Transducer
(FIDT) on the input nanomagnet as well as reservoir and output nanomagnets. (b) A micro-magnetic
snapshot of the input, the reservoir, and the output nanomagnets. The SAW is applied to the input
nanomagnet (ip1) and the magnetizations of the output nanomagnets (op1 to op7) are read. (c) Normalized
stress anisotropy and labeling of sine and square waves as 1 and 0. (d) Magnetization of output nanomagnets
1 (opl) and 4 (op4) in response to SAW and their corresponding envelopes (up1 and up4). (e) The envelopes
of the responses vs. time (ns) of several output nanomagnets. (f) Electrical readout of the magnetization of
the output nanomagnet softlayer with an MTJ.

We obtain the free layer magnetization dynamics of the reservoir through micromagnetic
simulation with MuMax3?’. The magnetization direction of the reference ferromagnetic layer of
an MT]J is fixed and the free layer magnetization is governed by the Landau-Lifshitz-Gilbert (LLG)
(see supplementary) equation as follows:
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Here, m is the normalized magnetization defined as o M is the magnetization, M is the saturation
s

magnetization, o is the Gilbert damping coefficient, y is the gyromagnetic ratio.

We assume a uniform stress induced by the SAW within the magnetic domain in the U direction
and the stress creates a purely uniaxial anisotropy. We note that the estimated stress amplitude is
conservative due to this assumption, but the qualitative magnetization dynamics remain the same.
Since the focused SAW is locally applied to the region of the input magnet only, the induced stress
in the piezoelectric substrate in the reservoir or output region is comparatively negligible. So, the
stress anisotropy field, ﬁstress anis = 0 and the effective field on the nanomagnets of the reservoir
or output nanomagnets is comprised of ﬁdema g and ﬁexchange. Fldemag is calculated by MuMax?>’

at every point in each nanomagnet due to shape anisotropy of the nanomagnet itself and due to
dipole coupling from other nanomagnets.

The application of focused SAW on the piezoelectric substrate induces stress anisotropy and
causes magnetization precession in the input nanomagnet, ip1. Closely placed nanomagnets are
dipole-coupled and start precession due to the coupling with the input nanomagnet. These
nanomagnets further couple with other nanomagnets forming a reservoir of dipole-coupled
nanomagnets. The magnetic-dipole interactions in the nanomagnets create recurrent loops which
can induce memory functionality to the array. The coupled nanomagnets act like synapse weights
in a neural network and the weights of the reservoir synapses are fixed which depends on the inter-
magnetic relative geometrical coordinates in the array. The array of nanomagnets which forms the
reservoir are patterned in an irregular layout to add asymmetry, to further enrich the reservoir.

Fig. 1(a,b) shows the schematic of the proposed reservoir with the application of focused SAW.
The input nanomagnet is indicated by ip1 and output nanomagnets are denoted by op1 to op7. We
assume a 4 GHz SAW is applied to the input nanomagnet using a focused interdigitated transducer
(FIDT), which is patterned on top of a piezoelectric. The SAW input and its propagation in the
piezoelectric substrate are not modeled in MuMax3 simulation, and the SAW input is given only
through the uniaxial stress anisotropy constant, ku term in equation 3. The simulation dimension
is 256 x 256 x 16 cells which covers all input, reservoir, and output nanomagnets, and each cell
size is 2nm X 2nm X 2.1875nm, which is much lower than the ferromagnetic exchange length,

24,0,/ UoM2 = 6.32nm. The material and simulation parameters>*** are summarized in Table L.
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Table I. Simulation and material parameters for the physical reservoir for the soft ferromagnetic CoFe**

layer.
Parameter Value
Gilbert damping constant, 0.05

Saturation magnetization, M 0.72 x 10° A/m
Exchange stiffness, A, 13 x 10" J/m

Free layer thickness, t 35 nm

Nanomagnet diameter, D 30 nm

Magnetostriction, Ag 250 ppm

Two fundamental properties required for reservoir computing are nonlinearity and memory>$. Due
to the nonlinearity and complex dynamics of the reservoir, the network response should be
consistent/similar for similar inputs and distinguishable for different inputs®. For RC, we utilize
the magnetization dynamics of the input and output nano-oscillators, which are governed by the
LLG equation described earlier. Further, the input information is encoded in the envelope of a
focused SAW of 4 GHz consisting of a random sequence of sine and square waves. The details of
the RC method are presented in the supplementary.

We evaluate the quantitative performance of the reservoir with STM task and PC task®®. STM task
characterizes the memory effect of the system by generating delayed inputs and testing if the
internal dynamics of the reservoir is trained to adjust to this delay. Input data, i;(n) is delayed by
arbitrary unit, d and STM task is to identify the delayed input, y;‘T"L:

Vor = is(n—d) )

here, is(n) represents the nt"* sine/square signal and d is the introduced delay. The duration of
each of the sine/square signal is 10 ns, thus delay, d = 1 corresponds to 10 ns and so on.

Since the STM task is not sufficient to prove reservoir property, the PC task is also evaluated as a
benchmark task. The PC task characterizes the non-linearity of the system, which is indicative of
the computing capability of the system and simplifies the training of the reservoir. A modulo (2)
operation, which introduces non-linearity, is performed on the summation of input signal iz(n) up

to delay, d to obtain PC task output, y,?&d:
v = lisn—d) + is(n—d + 1) + - + ig(W)] mod(2); d # 0 3)

InEq2-3, y;lT’ﬁ,, /pc tepresents the training and testing data for STM and PC tasks for various delays.

Once the learned weights are obtained, the correlation coefficient between testing data, and output
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data y,,,. are calculated. The total capacities for STM (Csry) and PC (Cp() tasks are calculated by
integrating (summing in the discrete case) the correlation coefficients for delay up to d,,qy-

. n,d
covariance[ygpy pcYout

(C))

TYstm/PC d= - nd -
variance [ySTM/PC]varlance [Yout]

2
CSTM/PC = ZZZ;X[TSTM/PC (d)] )

The nanomagnets are realized by magnetic tunnel junctions (MTJs), made of two CoFe layers (free
and reference) separated by a tunnel barrier (MgO). The free layer magnetization responses of the
outputs are read and preprocessed to obtain envelopes by spline interpolation®' over local maxima
separated by at least 3 samples. The envelopes of the output nanomagnets are shown in Fig. 1(e).
Each sine or square signal is sampled into N nodes separated by a sampling time 7. The node
density can be increased by introducing virtual nodes>2-**, The weights are obtained by the linear
regression method.

To quantify the performance of the proposed reservoir, the sine and square wave classification is
performed by the reservoir as a first task. Although simple, this classification task requires non-
linearity and memory effects of the system to predict or classify these waves with high accuracy.
The input is a random sequence of 100 sine and square waves with equal period of 10 ns. The first
80 signals are used to train, and the next 20 signals are used to test the reservoir for signal
classification, STM task, and PC tasks. The reservoir is able to achieve 100 % training and 100 %
testing accuracy with any of the output nanomagnets. The training and testing are performed for
the different numbers of virtual nodes 5, 10, 20, 25, and 50, where 100 % recognition rate in both
training and testing was achieved for all cases.

To further evaluate the performance of the reservoir, we studied two fundamental characteristics:
fading memory and non-linearity®. To evaluate the memory of the reservoir we have calculated
STM capacity and to evaluate the nonlinearity, we have performed the PC task and results are
discussed next.
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Fig. 2: (a) Square of correlation coefficient, rSZTM (d) for STM task in terms of delay(d) and number of
virtual nodes (N), (b) square of correlation coefficient, r;(d) for PC task in terms of delay(d) and number
of virtual nodes.

Fig. 2(a) shows the square of the correlation coefficient, 74, (d) between the training data of STM
task, y;lT"L and output data, y,,; as a function of delay from d = 0 to d = 10. Each of the time
steps correspond to a 10 ns delay. The STM correlation coefficient?, 7, = 1 for all the number
of virtual nodes, N in consideration at delay, d = 1 and starts to decrease with the increase of the
delay. The r&,(d) tends to be higher in general with the increase in the number of the virtual
nodes. Similarly, Fig. 2(b) presents the square of the correlation coefficient, 3. (d) between the
training data of PC task, y,f&d and output data, y,,; as a function of delay from d = 0 to d = 10.
Similar trends as STM have been observed for the PC task, for the correlation coefficient, as a
function of the number of virtual nodes, and delay.
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Fig. 3: (a) STM capacity (Csyp) and (b) PC capacity (Cp¢) of the reservoir as a function of the number of
virtual nodes (c) Average STM and PC capacity of the reservoir as a function of the number of virtual
nodes.

The dependency of STM capacity (Csrp) on the number of virtual nodes, N in each signal is shown
in Fig. 3(a). There is a general tendency of increasing STM capacity with an increasing number of
virtual nodes for all the output nanomagnets. Fig. 3(b) shows the PC capacity (Cpc) vs. virtual
node numbers (N) follows similar characteristics as STM task. The maximum capacity achieved
by the reservoir for both STM and PC tasks is 5.43 bits for the case with output nanomagnet op7
and 25 virtual nodes. The obtained STM and PC capacities are comparable or higher than the
other spintronic reservoirs'®?>2%3*  The average STM and PC capacity of seven output
nanomagnets are shown in Fig. 3(c) in terms of the virtual node numbers. The reservoir has an
average STM capacity of ~4.69 and PC capacity of ~5.39 bits. The reservoir can be tuned for
optimal performance of the STM and PC capacities through parameter study of the materials (e.g.,
damping constant (&), saturation magnetization (M;), exchange stiffness (4.,) etc.), through
dipole coupling strength variation (e.g., optimizing the distances between the nanomagnets), and
optimizing the size (diameter/thickness) of the nanomagnets.



AlP

Publishing

To separate the role played by the nonlinear nanomagnet reservoir in achieving the high STM and
PC over that due to pre-processing (carrier amplitude modulation) and post-processing (filtering
the carrier) we perform the following study. The pre-processed input is fed into a single-layer
perceptron (SLP) network and its output post-processed before classifying and this is compared to
the case of the reservoir with pre and post-processing. The result shows a correlation (%) of 1 for
both STM and PC tasks, at delay 1 but very low or almost no correlation (r2) for delay 2 and
higher compared to the case with filters and reservoir as shown in Fig. 4. The calculated STM and
PC capacities of the SLP are ~1.44 bits and ~1.43 bits, respectively while STM and PC capacities
of the reservoir are ~3.52 bits and ~3.46 bits, which indicates the effectiveness of the reservoir
over merely pre and post- processing.
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Fig. 4: (a) Architecture of single layer perceptron (SLP) which is used to measure the influence of pre and

post-processing on the performance of reservoir (b) Calculated coefficient, &y /pc(d) for STM and PC

tasks with various delay, d for two different cases: with reservoir (solid lines) and without reservoir (only

SLP and dashed lines). The number of virtual nodes for both cases are, N=20. The lines are drawn to guide

the eye.

To further demonstrate the viability of the reservoir we perform long-term prediction task with
Mackey-Glass time series data. This chaotic system has been widely used as a benchmark for
forecasting task test due to the difficulty of prediction regardless of the deterministic form of the
system**¢_In Fig. 5 we demonstrate the ability of the reservoir to predict the Mackey-Glass time
series for various delays. For each case, 500 data points are used for training and 500 are used for
testing and we calculate the mean square error (MSE) to quantify the prediction. The reservoir
reproduces the Mackey-Glass input points with MSE of 4.5032 X 10~ at delay 0, 6.0383 x 10~*
at delay 5, 7.3 X 1073 at delay 15, and 1.05 x 1072 delay 30.
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(a) Training and prediction of Mackey-Glass time-series
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Fig. 5: Forecasting of Mackey-Glass time-series. (a) Training and prediction results obtained from the
nanomagnet-based reservoir. Prediction results at (b) Predicted time step=0, (c) Predicted time step=2, (d)
Predicted time step=3, (e) Predicted time step=5.

The total energy dissipation in the proposed reservoir system solely depends on the SAW
excitation®*>7 as there is no other input mechanism needed. To estimate the energy consumption
of the nanomagnets we also assume total generation of SAW induced strain from the piezoelectric

substrate to the nanomagnets. The energy dissipated by the focused SAW IDT per input time
period is (%) Wtsaw = 0.87 p], and reservoir output including the trained output layer will

consume 84.3 pJ. A CMOS-based echo-state-network (ESN) is simulated to obtain the similar
performance of nanomagnet RC and to achieve similar parity check capacity the CMOS ESN
needs 11 neurons, which corresponds to 195.7 pJ of energy. So, the total energy dissipation per
input is ~85 pJ which is nearly two and a half times lower and energy efficient compared to an
equivalent CMOS ESN (see supplementary). Although CMOS ESN is able to achieve comparable
accuracies for PC task, the STM task accuracies are still significantly low compared to our
spintronic reservoir, which exhibits high capacities for both STM and PC tasks. The energy
dissipation can be further decreased by applying higher frequency (> 4GHz) focused SAW,
reducing the period of sine/square wave, and carefully selecting or optimizing material parameters.
Furthermore, this NMRC scheme requires readout of only a single MTJ and enables the
implementation of less external circuitry with more energy saving.
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In summary, we have introduced a spintronic physical reservoir where a focused SAW is applied
to the input. The reservoir is able to identify sine and square waves with 100 % accuracy. In
addition, we have demonstrated the expressivity of the reservoir by evaluating two figures of merit
for RC and perform the prediction task of a time series data with delay. We have achieved average
capacities of ~4.69 and ~5.39 for STM and PC, respectively and reproduce the Mackey-Glass time
series data with high accuracy which are indicative of a viable physical reservoir. The reservoir is
extremely energy efficient and potentially needs ~2.5 times less energy than a CMOS-based ESN.
Finally, the ability to use high-frequency SAW makes the device scalable to small dimensions,
while the ability to modulate the envelope at a lower frequency (100 MHz) adds flexibility to
encode different signals beyond the work in this paper. This could be key to applications such as
speech recognition, anomaly detection, etc. using in-situ learning in edge devices.
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