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1. Introduction

This paper considers a sequential design problem for rank aggregation. In this problem, a decision maker is re-
sponsible for ranking K items by adaptively collecting the noisy outcome of pairwise comparison from judges.
Sequential rank aggregation has a wide range of applications, including social choice (Saaty and Vargas [48]),
sports (Elo [23]), search rankings (Page et al. [47]), etc. Pairwise comparison is the most popular approach for
rank aggregation as sufficient evidence from cognitive psychology suggests that people make more accurate
judgment when making pairwise comparisons (i.e., given a pair of items and asked to indicate which item is pre-
ferred to the other) as compared with multiwise comparison (Blumenthal [10]) and some applications, such as
chess gaming, have a natural form of pairwise comparison.

In a rank aggregation problem, more comparisons usually lead to a more accurate global ranking. However,
each comparison comes with some cost, for example, in crowdsourcing applications, a requester has to pay
crowd workers a fixed amount of monetary reward for each labeled pair. Therefore, to design a cost-efficient
ranking procedure, a decision maker faces the following three key challenges:

1. How to adaptively decide the next pair of objects for comparison based on the collected information. The adap-
tive selection of pairs is important for saving the cost. For example, if we are confident that object 1 is ranked higher
than 2 and object 2 is preferred over 3, there is no need to compare objects 1 and 3.

2. When to stop asking for more comparisons.

3. When stopping the comparison process, how to aggregate the pairwise comparisons to infer the
global ranking.

Because of the wide applications of rank aggregation, there are several recent machine learning works devoted
to the development of ranking algorithms with rigorous theoretical guarantees. For example, Negahban et al.
[45], Hajek et al. [25], and Shah et al. [50] propose algorithms and establish the estimation error rates under the
Bradley—Terry—Luce (BTL) model (Bradley and Terry [11], Luce [40]), the Thurstone [54] model, and a more
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general strong stochastic transitivity model (Ballinger and Wilcox [4], Morrison [43]). However, these works
mainly focus on a static setting with either given or randomly drawn pairs. In contrast, under a sequential set-
ting, we are interested in designing an adaptive pair-selection rule. Moreover, for recent active ranking works
(e.g., Heckel et al. [26]), optimal stopping is usually not considered. For example, the commonly studied proba-
bly approximately correct sample complexity bound from the machine learning literature usually involves some
large universal constants and cannot be directly used for an accurate stopping rule. Determining a right stopping
time is critical for balancing accuracy and cost in many applications (e.g., ranking via crowdsourcing). Therefore,
to address the challenge of optimal stopping, we adopt the sequential analysis framework from statistics that di-
rectly optimizes over the random stopping time. On the other hand, because of the complex structure of ranking
aggregation, this problem cannot be formulated and solved by existing sequential adaptive design methods
(Chernoff [20], Naghshvar and Javidi [44]).

Under a wide class of parametric comparison models (e.g., the BTL model; Bradley and Terry [11], Luce [40]),
we develop new sequential analysis methods to conduct sequential experiments for pairwise comparisons and to
balance the ranking accuracy and cost. We first formulate the problem under a general Bayesian decision frame-
work. In particular, each item k is represented by a parameter 0, which determines its underlying true rank
among K items. For example, the parameter 0 can be viewed as the quality score for item k, and item i has a
higher rank than item j if and only if 0; > 6;. The pairwise comparison of items i and j follows a probabilistic com-
parison model (e.g., Bradley and Terry [11], Luce [40], Thurstone [54]) parameterized by 6, and 6;. Under the
Bayesian framework, the parameter vector for all product 0 is drawn from some prior distribution. A sequential
procedure chooses a pair (i, j) for the next comparison in each stage and decides the stopping time T. Upon stop-
ping, the final decision is to choose the global rank R:=(Rj,...,Rk) from the set of all permutations of
{1,2,...,K}. To measure the accuracy of a rank R, we adopt the widely used Kendall tau distance (Kendall and
Gibbons [32]), which measures the number of inconsistent pairs between the decision R and the underlying true
rank induced by the scores (61, ...,0k). Then, the loss function of this sequential design problem is defined by
combining the cost of data collection and the Kendall tau distance:

Z{I(Gl > GJ)I(RI > R]) + 1(91 < HJ)I(RZ < R])} +cT, (1)

l<]
where the constant ¢ > 0 indicates the relative cost of each comparison and I(-) denotes an indicator function. The
goal is to optimize the expected loss in (1) over the pair-selection rule, stopping rule T, and final decision R (see
Section 2 for more details). To justify the performance of the proposed policies, we adopt the notion of
“asymptotic optimality” from Chernoff [20] (see Equation (7)) that is widely used in sequential analysis (Lai [35],
Schwarz [49], Siegmund [51], Tartakovsky et al. [53]). Although finding an exact optimal policy is computational-
ly intractable, we prove that the proposed policies are asymptotically optimal.

It is also worthwhile to note that, although, according to the final decision, our problem seems to be a multihy-
pothesis sequential testing problem with adaptive experiment selection as considered in Naghshvar and Javidi
[44], there exist fundamental differences. First, Naghshvar and Javidi [44] only consider simple hypotheses, and
the ranking problem, when viewed as a multihypothesis testing problem, consists of composite hypotheses. Sec-
ond, typically 0 -1 loss is considered for measuring the decision accuracy in multihypothesis testing, and our
problem has a more complex loss function based on the Kendall tau distance that is tailored to rank aggregation.
Our problem is also a substantial generalization of a classic sequential test of two composite hypotheses (Kiefer
and Sacks [33], Lai [34], Schwarz [49]). In particular, when the number of items is two (K = 2), our problem de-
generates to testing two composite hypotheses without adaptive experiment selection.

1.1. Main Contribution
We summarize the main methodological and theoretical contributions of the paper as follows:

e Under a Bayesian decision framework and a large class of parametric pairwise comparison models, we derive
an asymptotic lower bound (Theorem 1) for the Bayes risk of all possible sequential ranking policies. Note that the
Bayes risk of the sequential rank aggregation problem, which combines the expected Kendall tau distance and the
expected sample size, is more complex than that of the traditional sequential hypothesis testing problems (e.g.,
Chernoff [20], Kiefer and Sacks [33], Naghshvar and Javidi [44]).

e We propose two sequential ranking policies. In particular, we provide two choices of stopping rule and a class
of randomized pair-selection rules. We quantify the expected Kendall tau and the sample size of the proposed
methods (Theorems 2 and 3) and show that the Bayes risks match the asymptotic lower bound, which further im-
plies that the proposed methods are asymptotically optimal (Corollary 1). Our randomized pair selection rule uti-
lizes an epsilon-greedy strategy to balance the exploration (i.e., randomly selecting pairs to gain information about
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the underlying parameters { 6i}r,) and exploitation (i.e., choosing the best pair for comparison based on the cur-
rent information). The exploration is critical for learning the rank, and the exploitation is critical for saving the sam-
ple size for comparison.

— For the exploration, we quantify the impact of the exploration rate on the estimation of model parameters
and provide an exponential probability bound as an auxiliary result (Lemma 1).

— For the exploitation, we consider a randomized adaptive selection rule (see Section 3). Specifically, in each
step, the probability of selecting each pair is obtained by solving a saddle point optimization problem. We fur-
ther develop a mirror descent algorithm for solving the optimization (see Section 3.4).

e Technically, we develop new analytical tools for quantifying the level-crossing probability of a random func-
tion (e.g., likelihood function, martingale, or submartingale) double-indexed by model parameters and the sample
size. As such a probability tends to zero, the problem falls into the rare-event analysis domain, in which an exact ex-
ponential decay rate is challenging to obtain. Traditional methods, such as the ones adopted in Naghshvar and Jav-
idi [44] and Chernoff [20], are based on exponential change of measure of the log-likelihood ratio statistics and are
not directly applicable to the ranking problem considered here. The method we use in the proof combines a mix-
ture type of change of measure method recently proposed in Adler et al. [1], Li and Liu [37], and Li et al. [38] and
large deviation results for martingales.

1.2. Related Works

Sequential hypothesis testing, initiated by the seminal works of Wald [57] and Wald and Wolfowitz [58], is an
important area of statistics for processing data taken in a sequential experiment, in which the total number of ob-
servations is not fixed in advance. A sequential test is characterized by two components: (1) a stopping rule that
decides when to stop the data-collection process and (2) a decision rule on choosing the hypothesis upon stop-
ping. A large body of literature on sequential tests with two hypotheses has been developed, a partial list of
which includes Schwarz [49], Hoeffding [27], and Lai [34]. Sequential testing with more than two hypotheses
and sequential multiple testing have been extensively studied in recent decades (see, e.g., Dragalin et al. [21],
Draglia et al. [22], Mei [42], Song and Fellouris [52], Xie and Siegmund [61]). For a comprehensive review on se-
quential analysis, we refer the readers to the surveys and books Siegmund [51], Lai [35], Hsiung et al. [29], Tarta-
kovsky et al. [53], and references therein. In addition to optimizing over the stopping rule and final decision,
Chernoff [20] first introduces the adaptive design into the sequential testing framework, followed by a large
body of literature; see, for example, Albert [2], Kiefer and Sacks [33], Tsitovich [56], Naghshvar and Javidi [44],
and Nitinawarat and Veeravalli [46]. Sequential analysis finds many applications in different disciplines, includ-
ing clinical trials, educational testing, and industrial quality control (see, e.g., Bartroff and Lai [5], Bartroff et al.
[6, 7], Lai and Shih [36], Wang et al. [59], Ye et al. [62]).

Rank aggregation has been an active research problem in recent years (see, e.g., Chen et al. [16, 18], Chen and
Suh [19], Garg and Johari [24], Hajek et al. [25], Kallus and Udell [31], Negahban et al. [45], Shah et al. [50], and
references therein), and it finds many applications to social choice, tournament play, search rankings, advertise-
ment placement, etc. With the advent of crowdsourcing services, one can easily ask crowd workers to conduct
comparisons among a few objects in an online fashion at a low cost (Chen et al. [15, 17]). Therefore, active noisy
sorting and ranking problems have received a lot of attention in recent years. For example, Braverman and Mos-
sel [12], Braverman et al. [13], and Mao et al. [41] study the active sorting problem in which each query of (i, j) re-
veals the true ranking between i and j with a fixed probability 1/2 +y for some y > 0 regardless of the distance
between i and j. In contrast, our model associates each item i with a preference score (aka utility) 0;. The compari-
son result between i and j would be based on the values of 6; and 0; according to some probabilistic model (e.g.,
see Equation (2)). Jamieson and Nowak [30] study the ranking problem with feature information for each item.
Heckel et al. [26] investigates the active top-K ranking under a general class of nonparametric models and also es-
tablish a lower bound on the number of comparisons for parametric models. However, as we mention, although
rank aggregation is extensively studied in the machine learning community, it has not been investigated under
the sequential analysis framework, which incorporates the random stopping rule as a decision variable. The tech-
niques developed in this work enable a sequential rank procedure with optimal stopping and adaptive design.

1.3. Paper Organization

The rest of the paper is organized as follows. In Section 2, we introduce the setup of the problem. Section 3
presents the proposed policies and the theoretical results and provides further discussions on the proof sketch
and model misspecification. The concluding remarks are provided in Section 5. Technical proofs for the theorems
are provided in Section 6. Proofs for all the lemmas are provided in the online supplement.
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2. Problem Setup

We first introduce the comparison model and formulate the sequential ranking problem. Consider the task of in-
ferring a global ranking over K items. Let A={(i,j):i,j€{1,...,K},i <j} be the set of pairs for comparison.
At each time n (n=1,2,...), a pair a, := (a,1,a,2) € A is selected for comparison. For example, a, = (1,2) means
that items 1 and 2 are compared at time 2. The comparison outcome is denoted by a random variable X, € {0,1},
where X, = 1 means item a,,; is preferred to item a,,, and X,, = 0 otherwise. The comparison outcome X, is as-
sumed to follow a ranking model, such as the widely used BTL (Bradley and Terry [11], Luce [40]) and Thurstone
[54] models. Such a ranking model assumes that each item is associated with an unknown latent score 0; € R
fori=1,...,K, where the global rank of the K items is given by the rank of 0, ..., Ox. The distribution of X, is de-
termined by 0; and 6; when comparing pair (i, j). For example, given pair a,, := (a,,1,a,,2), the BTL model assumes
that

o exp (6s,,) .
P(X, =1)= exp(6,,,) +exp(6,,,)
0.
P(X, = 0) = —2P 0ona) )

eXp (Gan,l) + eXp (6011,2) '

Under this model, 6,,, > 0,,, means that item a,,; is preferred to item a,5, reflected by P(X;,, =1) > 0.5. A com-
mon feature for many comparison models is that the distribution of the comparison between items i and j only
depends on the pairwise differences 0; — 6;. Consequently, such models are not identifiable up to a location shift.
To overcome this issue, we fix 81 =0 and treat 0 = (05, ..., 0x) as the unknown model parameters. The result of
this paper applies to a wide class of comparison models, and thus, we denote the probability mass function of
the comparison outcome x given pair a as fg(x). We point out that, although we focus on the case in which the
distribution of the pairwsise comparison only depends on 6,1 — 0,, 2, our methods and results can be extended
to more general cases without this requirement.

We now describe components in a sequential design for rank aggregation: an adaptive selection rule A, a stop-
ping time T, and a decision rule R on the global rank. For the adaptive selection rule A, we consider the class of
randomized adaptive selection rules, which contains deterministic selection rules as special cases. In particular,
let A={A,:n=1,2,...}, where A, = (A" )ijjea €A denotes the probability of selecting the pair (i, j). Here,
A={(A"): e A7 =1, 1" > 0} is a probability simplex over K(K — 1)/2 pairs. At each time 7, a pair a,, is select-
ed according to the categorical distribution with the parameter A,,, where A,, adapts to the filtration sigma algebra
generated by the selected pairs and the observed outcomes, that is, 7, = 0(Xj, ..., Xy-1,41,...,4,-1). The adaptive
comparison process stops at time T, a stopping time with respect to the filtration {F,},o. It is worthwhile to
note that the random stopping time T is also the number of samples being collected. Upon stopping, one needs
to make a decision R :=(Ry,...,Rk), the global ranking of the K items. For example, when K = 3, R=(3,1,2)
means that one decides 6, > 03 > 61. We further denote Pk as the set of permutations over {1,...K}, and thus,
R € Px. The adaptive selection rule A = {A,,: n=1,2,...}, the stopping time T, and the decision R together form a
sequential ranking policy, denoted by 7t = (A, T, R).

The performance of a sequential ranking policy is measured via its ranking accuracy and the expected stop-
ping time. Specifically, we measure the ranking accuracy by the Kendall tau distance (Kendall and Gibbons [32]),
which is one of the most widely used measures for ranking consistency. More precisely, for each
R=(Ry,...,Rk) € Px, we convert it to the binary decisions over pairs {R;; €{0,1}:4,j€{1,...,K},i <j}, where
R;j =I(R; <Rj), and R;; = 1 means that item i is preferred to item j. For example, if R = (3,1,2), we have Ry =0
and R, 3 = 1. The Kendall tau distance between R and the true ranking induced by (04, ..., Ox) is defined by

Lk({R;;}) = D {1(6: > 0;)(1 = R;j) + 1(6; < 6))Ry}. 3)

i<j
On the other hand, the loss function associated with the random sample size T is defined as
L(T)=cXxT, 4)

where the constant ¢ > 0 indicates the relative cost of conducting one more pairwise comparison. The choice of ¢
depends on the nature of the ranking problem. Generally, if obtaining each sample is expensive compared with
the cost because of the inaccuracy of the ranking, then a large c is chosen and vice versa. Note that c is not a tun-
ing parameter over which to optimize.
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We define the risk associated with a sequential ranking policy under the Bayesian decision framework, in
which the model parameter 0 is assumed to be random and follows a prior distribution. To avoid confusion, we
write ® when 0 is viewed as random and denote by p(0) the prior density function of ® = (®,,...,0Ox). Recall
that we have fixed ©; = 0 to ensure identifiability. The Bayes risk combines the risks associated with the Kendall
tau distance of the decision and the sampling cost

Velp, ) = E*(Lk({Ryj}) + Le(T)

= ]E”{Z 10> ©))(1 - Rij) +1(©; < @»Rf,f} + BT, ©

i<j

where the expectation E” is taken under the policy m with respect to the randomness of the selected pairs, the ob-
served comparison results, and the stopping time as well as the prior distribution p. Of particular interest is the
minimum risk under the optimal sequential ranking policy given the prior distribution of ® and sampling cost c:

Vi(p) = inf V(p, ). (6)

For any given cost ¢, obtaining an analytical form of an optimal policy that achieves V*(p, c) is typically infeasible.
Following the literature of sequential analysis, a policy is usually evaluated by the notion of asymptotic optimality
(Chernoff [20]). In particular, a policy m is said to be asymptotically optimal if

Velp,m)
=0 Ve(p)

1, (7)

that is, the Bayes risk of the policy matches the minimal Bayes risk asymptotically when the relative sampling cost
converges to zero. It is worthwhile to note that, in the construction of our policy, we certainly allow the cost ¢ to be
nonzero. The notion of asymptotic optimality in (7) has been widely adopted in the sequential analysis literature as
an optimality criterion (see, e.g., Chernoff [20], Kiefer and Sacks [33], Naghshvar and Javidi [44], Schwarz [49]). The
limiting process ¢ — 0 should be interpreted as the sample size n goes to infinity, which is a very common limiting
process in statistical asymptotic theory. In asymptotic theory, letting n grow to infinity is only for the theoretical study
of the properties of an estimator although, in practice, no data set has an infinite number of observations.

3. Sequential Policies and Asymptotic Optimality

In Section 3.1, we propose two sequential ranking policies: 7t; and ;. The asymptotic optimality of the two poli-
cies is presented in Section 3.2. Then, we provide the proof sketch in Section 3.3, the optimization algorithm for
efficient computation in Section 3.4, and the discussions on model misspecification in Section 3.5.

3.1. Two Sequential Policies
We first introduce some notations. Let W be the support of the prior probability density function p, that is,

W ={0:p(0) > 0}, where E denotes the closure of a set E. We further define the set W;; = {0: 0; > 0;} N W for all
i,j €{1,...,K}. It is worthwhile to note that W;; and W;; are different sets, and their union is the set W. Given a se-
quence of selected pairs a4, ...,a, and observed comparisons Xj, ..., X,, the log-likelihood function is defined as

L(0)= 3 log fI(X)),
i=1

and the corresponding maximum likelihood estimator é(n) = (E;n), e 5;:1)) is

5(") =arg sup 1,(0). 8)
Oew

In what follows, we present our proposed sequential policies in terms of the proposed stopping time T, selection
rule A, and ranking decision R.

3.1.1. Stopping Times. We then introduce two stopping times based on the generalized likelihood ratio statistic:

Ty = inf {n >1: Z exp {— } < e_h(c)}, )

(i, j)eA

sup 1,(0) — sup 1,(0)

OeW, 0w, i
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and

sup 1,(0) — sup 1,(0)

T, =inf{n >1: min
OeW;; 0eW;,;

(i,)eA

> h(c)}, (10)

where h(c) = [logc|(1 + [logc|™) for some constant a € (0,1) and c is the relative cost introduced in (4). We note
that T, is obtained by replacing the summation in T; by maximization and taking log and minus on both sides.
Intuitively, the stopping rule T, stops when the likelihood can tell whether 0; > 0; or vice versa for each pair (i, f).

3.1.2. Ranking Decision. Upon stopping, the decision about the global rank is made according to the rank of
maximum likelihood estimation (MLE) at the stopping time T (T = T or T»). That is,

R=r0"), (11)

where the function 7(0) : RK™! — Py gives the rank of (0,0,,...,0k). More precisely, #(0) = (r1, .. .,7x) € Pk, satis-
tying 6,, 2 6,, > ... > 0,,, where 01 =0.

3.1.3. Randomized Selection Rule. We proceed to the randomized selection rule A, which is obtained by solving
an optimization program. For a given 6, we define function D(0),

D(0)=max min ADi(9)10), 12
(0) = may %W:r@ﬂ(e)% (o1) (12)

where D"(6|0) is the Kullback-Leibler (KL) divergence from fo;] () to fé’j (-), that is,

- fo @)
D'I(6]|8) := (x) log 20
2 Jo Vo8

and fé’j (x) denotes the probability mass function when the pair (i, j) is selected. We further define

A*(0) = arg max_ min Z Ai'jDi’j(9||5), (13)
AeA  BeW:r(0)#r(6) (i j)
and

A, = (;\’) - (0" ™). (14)

That is, A*(0) is the solution to the optimization problem (12), and A, is the solution to the optimization problem
given the MLE based on the previous n — 1 observations. The objective function in (12) is a weighted KL diver-

gence for all pairs with the weights A"/. The inner minimization problem is taken over all the parameter vector
0 € W, for which the induced rank 7(0) is different from that of 8. At each time 7, given the MLE 0 -1 we com-
pute A, which is the maximizer of A € A in D(0"~V). We elaborate on the intuition behind the optimization in
(12). First, for each 6, Z(i,].)/\"’j D"/(6]|0) gives the drift of the log-likelihood ratio statistics between fg and f; under
the model fg and a randomized sampling scheme specified by A, which is also the mutual information between
fo and f3 when the pair is selected according to A. Minimizing the inner part with respect to 0 over the set {0 €
W:r(0) + 1(0)} provides a measure on the distinguishability of the rank of 8 under the sampling scheme A. Sec-
ond, if the true model parameter is 8, we choose a sampling scheme A such that it provides the highest distin-
guishability obtained by the first step. Thus, we perform maximization in the outer part of (12). Finally, as the
true model parameter 0 is unknown, we replace 6 by the MLE based on the current information. In Section 3.4,
we provide a mirror descent algorithm for solving (12).

Unfortunately, directly using A, in the selection rule A as the choice probability does not guarantee asymptotic
optimality. This is because A, does not guarantee sufficient exploration of all item pairs, which may lead to the
imbalance between the exploration and exploitation for the sequential procedure. To fix this issue, we combine
A, with an e-greedy approach, which is widely used in balancing exploration and exploitation in multiarmed
bandit and decision-making problems (see, e.g., Watkins [60]). Specifically, an exploration probability p € (0,1) is
chosen, which is typically small and may be chosen depending on the value of the relative sampling cost c. At
each time 7, with probability p, we select the next pair uniformly from A. With probability 1 - p, the next pair is

selected according to the categorical distribution specified by A,.. In other words, for each pair (i, j), the choice
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probability of the selection rule at time 7 is given by

» 2 .
N = b+ (L=
Remark 1. We clarify that the proposed “e-greedy” algorithm is one of the asymptotically optimal exploration
methods, and there may be other exploration methods with similar theoretical properties. For example, the
e-greedy algorithm with the exploration probability decaying at a rate n# when the sample size is n may be as-
ymptotically optimal for a range of § > 0. The theoretical properties of these additional exploration methods is an
interesting problem and worth further investigation.

We call the preceding selection rule A,, where the subscript emphasizes its dependence on the exploration rate
p. The two proposed sequential ranking policies are defined by m; := (A, T1,R) and 73 := (Ap, T2, R). The pro-
posed sequential ranking policies are summarized in Algorithm 1, where the prior information of ® is only
utilized through its support W in steps 1 and 2. Algorithm 1 is an iterative algorithm, which runs in Ty (or T>)
iterations, where T, (or T3) is a data-dependent stopping time. The major computational complexity for each iter-
ation arises from solving two optimization problems in steps 1 and 2. Step 1 is a standard maximum likelihood
estimation, which depends on the structure of the loss function [ and the constraint W. The computation for solv-
ing (13) is discussed in Section 3.4. The proofs of the theoretical results are provided in Section 6.

Algorithm 1 (Sequential Ranking Policy)

Input: The probability mass (density) function f5(x) for any pair a € A, the probability p € (0,1) in e-greedy,
and the support W of p(0).

Initialization: Uniformly sample a pair 4, at random and observe the comparison outcome X;.

Iterate: For n =2,3,... until the stopping time T in (9) (or (10)) is reached.

1. Compute the MLE based on the previous # — 1 comparisons:

(-1

0 = arg sup [,_1(0).

OeW

2. Compute

A, = arg max min > ADH (0" )9). (15)
Aer  Tew@)#r0" ") (i )eA

3. Flip a coin with heads probability p.
o If the outcome is heads, select the pair a,, uniformly at random over all pairs from A.
o Otherwise, select the pair a,, according to the categorical distribution specified by A,,.
4. Observe the comparison result X,, and update the likelihood function ,,(0).

Output: The rank R = r(am ), that is, the global rank induced by 0"

3.2. Asymptotic Optimality

This section contains the main results of the paper, including (1) a lower bound on the risk of a general sequential
ranking procedure and (2) theoretical analysis of the proposed procedures, which leads to their asymptotic opti-
mality. The asymptotic optimality of the proposed method is established through the following theorems, which
are introduced later in this section. Theorem 1 provides an asymptotic lower bound for the Bayes risk of an arbi-
trary sequential ranking policy. Theorems 2 and 3 provide asymptotic upper bounds for the proposed proce-
dures in terms of their expected Kendall tau and expected stopping time, respectively. These upper bounds
together lead to an asymptotic upper bound for the Bayes risk of the proposed procedures that matches the low-
er bound in Theorem 1. As the asymptotic lower and upper bounds match, we conclude that the proposed meth-
od is asymptotically optimal in Corollary 1. As a by-product, an exponential deviation bound for the MLE over a
time window is also obtained in Lemma 1. The assumptions for our results are described and discussed.

3.2.1. Notations. Throughout the rest of the paper, we write a. = O(b.) for two sequences a. and b, if |a|/|b| is
bounded uniformly in 6 as ¢ — 0. Similarly, we write a. = Q(b.) if a. > 0, b. > 0, and b, = O(a.). We also write 4, =
o(b,) if a;/b. — 0 uniformly in 0. The norm ||- || indicates the ¢, vector norm. Throughout the paper, we use the
uppercase Greek letter ® to indicate the random score parameter and the lowercase Greek letter 6 to denote a de-
terministic vector.
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3.2.2. Main Results. We first describe the assumptions. For technical needs, we make some regularity conditions
on the prior distribution p(@). Recall that we have fixed 61 =0 and let 8 =(6,...,0k) € RX! be the unknown
model parameter.

Assumption 1. The support W := {6 € R*"1: p(0) > 0} is a compact set in RX"!, where E denotes the closure of a set E.
In addition, for any permutation o € P, ({0 € R*™! : #(0) = 6} N W)° # 0, where E° denotes the interior of a set E.

Assumption 2. There exists a constant &, > 0 such that, for all s > 0 and @ € W, m(B(6,s) N W) > min {6,s%71, 1}, where
B(0,s) denotes the open ball centered at 0 with radius s and m(-) denotes the Lebesgue measure.

Assumption 3. The function logf§(x) is continuously differentiable in @ for all x uniformly. That is,

sup ||Vglog fg(x)|| < c0.
0cW,ac A, x

In addition, infgew e x fa(x) > 0.

Assumption 4. The Kullback-Leibler divergence satisfies infy 51y, @) #(e)max(,-rj)D"'f (6]|6) > 0.

Assumption 5. The prior density satisfies infgew-p(6) > 0 and supy_,,p(0) < co.

We provide some remarks on the regularity assumptions. Assumption 1 requires the prior distribution for ®
to have a bounded support, which has a nonempty interior for each rank. Assumption 2 avoids the support W
being singular. Assumption 3 requires the smoothness of the likelihood function. It also requires that the compar-
ison probability is bounded away from zero and one. Assumption 4 requires that there is no tie in the support of
the prior distribution. This is a standard assumption in sequential analysis, which corresponds to the classic
“indifference zone” assumption in sequential hypothesis testing (Kiefer and Sacks [33], Lorden [39], Schwarz
[49]). In particular, the indifference zone condition assumes that the null and alternative hypotheses are separat-
ed in the sense that the Kullback-Leibler divergence between the two hypotheses is positive, and if the true mod-
el parameter is in between the two hypotheses, then it is considered to be indifferent for selecting the null and al-
ternative hypothesis. For example, for any 6 > 0, « > 0, the set

W={0:]10|| <x and Vi # j such that [0, — 0;| > 6} (16)

satisfies Assumptions 1, 2, and 4. Assumption 5 requires the prior distribution to have a positive density function
(bounded from zero) over the support. For instance, for the set W described in (16), the uniform prior over W satis-
fies Assumption 5. In addition, with such a uniform prior over W, the BTL model defined in (2) satisfies Assump-
tions 3 and 4. It is worthwhile to note that these technical assumptions are mainly for the theoretical development,
and the proposed adaptive ranking policies are applicable in practice regardless of the conditions on W.

Recall the definition of D(0) in (12). We further define

[logc|

(0) =5y

(17)

Note that, under Assumption 4, f(6) is always finite. Intuitively, for small ¢, [logc|/{ming . 7)o
Z(i/j)/\i’f Dii(0]|0)} is approximately the smallest expected sample for the simple-against-simple hypothesis testing
problem Hy: X, ~fy" against Hj:X, ~ Bi" for some 7(5) #1(0), where a, is sampled from A. Note that
t(0) = [logcl/D(0) = infaen[[log cl/{ming .7, 7tr(‘,)Z(i,].)/\'4']'D’7f(6||5)}]. Thus, t.(6) is approximately the smallest
expected sample size for distinguishing the global rank of 0 from other ranks with an adaptive selection step.

We formalize these heuristic arguments in the following Theorems 1-3.
We first present a lower bound on the minimal Bayes risk V}(p) defined in (6).

Theorem 1. Under Assumptions 1-5, we have

. Vip)
liminf 2@ = v

where Et.(©) = /wtc(e)p(ﬂ)de.

Recall the definition in (7) that a policy m is said to be asymptotically optimal if V.(mt,p) = (1 +0(1))Vi(p) as
c— 0. Thus, to show a policy 7 is indeed asymptotically optimal, we only need to show that V.(m,p)
=(1+0(1))cEt(®) as ¢ — 0, according to Theorem 1. We proceed to show that the proposed sequential ranking
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method is asymptotically optimal. In Section 3.1, we propose two policies 111 = (A,, T1,R), 2 = (Ap, T2, R). Their
risks consist of two parts, the expected Kendall tau and the expected sample size.

Assumption 6. For each 0,0’ €W and 6+ 0’, there exists a€ A that can distinguish 6@ and 0'. That is,
>eaD(01|0") > 0 for 6,0" € W. In addition, there is a constant 6 > 0 such that 3", ,D*(0]|0") > 6]|0 — oI

Assumption 6 requires the identifiability of the model, which is critical for the consistency of the MLE. For the
BTL model described in (2), Assumption 6 is satisfied after fixing 61 = 0. In what follows, Theorems 2 and 3 pro-
vide asymptotic upper bounds for the expected Kendall tau and expected stopping time of the proposed method,
respectively.

Theorem 2. Under Assumptions 1-6, we consider a policy 1, = (A, T}, R) (I = 1, 2), where we choose pocuogcl_%ﬂs‘J for
some &g satisfying 0 < &g < 3 in Algorithm 1 and R = {R;;}.Then,

ELk({R;;}) = O(c) for [ =1,2.

Theorem 3. Under Assumptions 1-6, we consider a policy 1, = (A, T;,R) (I = 1, 2), where we choose ]ooc|logc|_%“SO for
some Og satisfying 0 < &g < 3 in Algorithm 1 and R = {R;;}. Then,

ET
lin;_s);lp Etc(l@) <lforl=1,2.

Combining this with the asymptotic lower bound on the minimal Bayes risk in Theorem 1 and noticing that
lim,,0Et.(®) = oo, we arrive at the asymptotic optimality of the proposed policies.

Corollary 1. Under Assumptions 1-6, if we choose p o< |log o[+ for some &g satisfying 0 < 69 <3, then 7; = (A, T}, R),
I =1, 2, are asymptotically optimal policies.

3.2.3. Consistency of MLE. An auxiliary result obtained in deriving the upper bound for the expected sample
size is the following exponential bound for the MLE over a time window.

Lemma 1. Let m > n and let €, ,, , be a sequence of real numbers such that minngsm,(,v,j))tlt’] > e mpu- In addition, let 6, , be
a sequence of positive numbers such that ne ,, ,0%  — 0o as n — oo. Then,

mmn

Po| sup [0 = 0] > 5, | < & X hmadnn) O(mx)l

n<t<m

where we denote Py(-) the conditional probability P(-|© = 0) and 0" is the MLE defined in (8). Moreover, this upper bound
is uniform for @ € W.

The proof is provided in the online supplement. From this lemma, we can derive exponential upper bounds
concerning the uniform consistency of 6" In particular, if we let §,,, be a fixed positive constant and 7, , >

m~ogm as m — oo, then we can show supt2n||5(t) — 0|| — 0 in probability as n — co with additional steps.

3.3. Proof Strategy

We briefly explain the proof strategy for each of the main theorems. Theorem 1 provides a lower bound
on V(p,m) for an arbitrary policy m=(A,T,R) by discussing two cases: ELg(R)> c|logc|2 and
ELk(R) < c|logc|2. For the first case, Theorem 1 is easily justified. The main technicalities are in the second
case, in which the main step is to develop an upper bound for the probability P(T < (1 - 6)Et.(®)) for any
constant 6 > 0. Heuristically, we argue that, whenever ELg(R) is small, it implies that the likelihood ratios
between the conditional probability measures of data given that ©® has different ranking patterns are
relatively large, which cannot be achieved with a relatively small sample size T. The rigorous proof for
this heuristic statement is done through a change-of-measure argument and a large deviation bound for
the likelihood ratio.
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The proof of Theorem 2 is based on the analysis of the expected Kendall tau under the stopping times T; and
T,. The analysis under T5 is based on the equation

ELk(R) = Z Po[ sup Ir,(8) — sup Ir,(8") > h(c)\p(0)de,
0, 0ew;, 0'eW,

followed by developing an upper bound for the probability Pg(supb-gwﬂln(é) = Supyy, [1,(6') > h(c)), where
h(c) = [logc|(1 +[logc|™) is slightly larger than [logc|. Intuitively, thanks to the e-greedy algorithm and the stop-
ping time, a sufficient amount of information has been collected upon stopping so that the error probability is
well controlled. The analysis under T} is similar, and we omit the details here.

To prove Theorem 3, we first note that p o« [logc|~ 7% for some positive Og in the e-greedy algorithm. Thus, we
can apply Lemma 1 and show that the MLE 6" is consistent with an exponential error bound. Roughly, this jus-
tifies that A, defined in (14) is close to A*(6) given © = 0. Thus, the expected sample size E(T;|® = 0) approxi-
mates the one given by the selection rule A*(0) that can be further approximated by h(c)/D(0) = (1 +0(1))t.(0),
where we recall that t.(0) = [logc|/D(0) is defined in (17). We can then justify Theorem 3 by taking the expecta-
tion with respect to the prior distribution of ® on both sides.

3.4. Optimization in Algorithm 1

In this section, we show that the key optimization problem in (13) can be solved efficiently using the mirror de-
scent algorithm (see, e.g., Beck and Teboulle [8]).

Algorithm 2 (Mirror Descent Algorithm for Solving Equation (13))
Input: The MLE estimator 6 and total number of iterations .
Initialization: A starting point A% € A and a constant co > 0.
Iterate: Fort=1,2,...,m
1. Compute the maximizer:
6’ e arg max —Z AM1D(6]10)
0 eW:r(@)#r(0) (ir))
2. Compute the subgradient g(A"™!), where g(A'~ 1) —D"(0]]0° (A1)
3. Update for A":

A" = arg min {nt<g(/\t_l) A)+ D(/\H/\H)} (18)
AeA
where 7, = % and D(AJ|A"") is the KL divergence between A and A", that is, D(A|A"™") = 33, A, log =

Output: The solution A = 157 Af,

Let us first consider the inner optimization problem

EO(A) € arg max —Z AYDY(0)16), (19)
0 eW:(0)£r(0)  (,j)

in step 1 of Algorithm 2. We clarify that, in this optimization, 0 is fixed, 0 is the decision variable with which we

~0
want to optimize, and the resulting 0 (A) depends on 0 and A. For almost all the popular comparison models,
the objective function —Z(i,j)Ai'j D'(6]|6) is smooth in 8. Moreover, the objective function is also concave in 0 for
comparison models in an exponential family form (e.g., the BTL model in (2)). When the support (0ewW:r(0)+
7(0)} can be written as the union of a finite number of convex sets (see Equation (20)), (19) can be obtained by
solving finite maximization problems, each with a smooth concave objective function constrained in a convex
set. Therefore, from now on, we assume that the inner optimization problem can be solved.
We then discuss the outer optimization problem

min h(A), h(A)= _ max  $(4,0), (A, 0)=->,A"D"(0]|0).

AeA 0 cW:r(0)£r(0) )
When ¢(A, 5) is a continuous and bounded function and the set W is compact, further noting that ¢(A, 5) is con-
vex in A for every 0, h(A) is a convex function in A, by Danskin’s Theorem (see Bertsekas [9, proposition B.25]).
Moreover, for a given A, let 0’ e arg maxXg ..g)r(e)P(A, 0) be one of the maximizers. Then, by Danskin’s the-

orem, g(A) with g(A),; = —D"(0]|6"(A)) is a subgradient of i(A) as used in step 2 of Algorithm 2.
g 8, g P &
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Finally, (18) in step 3 of the algorithm has a closed-form solution obtained by writing down the
Karush-Kuhn-Tucker condition. That is,
it _ L iie -
where A" is the (i, j)th component of A and the normalization constant C = Zi,j/\"f't_lexp (—ntg()\t_l),«,j).

From Beck and Teboulle [8] or Bubeck [14, theorem 4.2], we have the following convergence rate for
Algorithm 2.

Proposition 1 (Beck and Teboulle [8]). Assuming the inner optimization in (19) can be solved exactly, the mirror descent
algorithm in Algorithm 2 is guaranteed to converge to the optimal solution at the rate of O(y/1/t). That is, when
t = O(1/€2), we have h(A) — mineah(A) <.

We clarify that, for W defined in the example (16), it is a union over exponentially many convex sets. Thus, the

proposed method requires exponential computational time for such a W. On the other hand, it is possible to have
a fully polynomial computational-time algorithm if a misspecified W is adopted (see (20) in the next section).

3.5. Model Misspecification
In practice, the support W of the prior distribution p(-) may be unknown. In this case, we may choose

W=U;)W;; and W;;={0:0,>0}n{0:]0] <M,2<i<K} (20)

in the sequential ranking policy for some reasonable positive constant M. With this misspecified support of p(-),
the resulting policy may not achieve the asymptotic lower bound of the Bayes risk presented in Theorem 1 be-
cause of the incomplete information. On the other hand, the Bayes risk of the resulting ranking procedure can
still achieve the same order of the minimal Bayes risk as ¢ — 0. That is, limsup__,,V.(p, )/ V:(p) is finite but
greater than one. The following assumption is made to guarantee that the function f§(x) has similar regularity on
W as on W. This assumption is mild. For example, it is satisfied for W, W, and fo(x) described in (16), (20), and
(2), respectively.

Assumption 7. sup i 1.IVelogfa(x)l| < 00, info 4 fa(x) > 0, and infoyy 7. @)2r0MaX,) D (0]10) > 0. In
addition, there is a constant 6 > 0 such that 3", ,D"(0]|0") > 0|6 — 9’||2for all@ e Wand 0 € W.

Theorem 4. If we replace W by W and replace W;; by Wl-,j (defined in (20)) in (9), (10), and (13) as well as in Algorithm 1
and adopt the resulting policy 7, = (A, T}, R) (1 = 1, 2) with p «|log P for some b satisfying 0 < &g <3, then under As-

sumptions 1,2,5,and 7,

. Ve(p,m) _E{1/D(©)}
msup . () = E{1/D©)}’

where D(0) is defined in (12) and 5(6) is defined as

D(0) = max inf AMD(0)|0).
( ) AeA ﬁeW:r(?}V)ir(e)% ( “ )

To obtain Theorem 4, we perform a similar analysis as those for Theorems 2 and 3. Although W violates the sep-
aration property required by Assumption 4, a similar proof strategy still applies under Assumption 7. Roughly,

this is because the expected sample size E(T}|® = 0) is now approximated by [logc|/ f)(@) and 5(9) >0 for0eW.

Note that, to have D(8) > 0, we only need the support W to have the separation property and W can contain ties
among the parameters.

4. Numerical Examples

4.1. Behavior of D(®)

Our main results suggest that the oracle risk V:(p) = c|logc|E{1/D(®)} when cost ¢ is close to zero under the as-
sumptions required by Theorems 2 and 3. The quantity 1/D(0) can be naturally viewed as a measure of difficulty
for the rank aggregation task when the true parameter vector is 0. In what follows, we numerically investigate
the behavior of 1/D(0).
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Figure 1. A level plot for the value of log (1/D(6)) as a function of 6, (x-axis) and 63 (y-axis), where K =3 and W= {0:|0|| <3,
01 =0,and Vi # j such that [0; — 6;] > 0.1}.

log(1/D(6))

SRR N

We first show the value of 1/D(0) as a function of 8, when the number of items K = 3. The support W of the
prior distribution is chosen according to (16) that satisfies W ={0:|0|| <3,0; = 0,and Vi # j such that |0; — 0;| >
0.1}. Figure 1 provides a level plot for the value of log(1/D(0)) as a function of 0, and 03. As we can see, the val-
ue of 1/D(0) becomes larger when the values of 6;, 6,, and 65 are closer to each other and becomes smaller
when they are more distinct.

We further show how the value of E(1/D(0)) depends on the number of items K. For each choice of K, the sup-
port W is chosen as (16) with 61 =0, ¥ = 3, and 0 = 0.1. Figure 2 shows that the value of E(1/D(®)) is an increas-
ing function of K, where E(1/D(®)) is approximated by 2,000 Monte Carlo simulations. As we can see from
Figure 2, E(1/D(®)) increases with K, suggesting that the rank aggregation task becomes more difficult, on aver-
age, when the number of items becomes larger.

Figure 2. The value of E(1/D(®)) as a function of K, where K = 3,4, ..., 10. For each choice of K, the support W ={0:]|0|| < 3,
01 =0,and Vi # jsuch that |0; — 0;| > 0.1}, and © follows a uniform distribution on W. Each E(1/D(®)) is computed by 2,000
Monte Carlo simulations.

o -
(=]
(o]
<o -
(=]
O

~

~

@

N

A (=g

- <

— <t

N

m
(=
s 4
N




Downloaded from informs.org by [128.122.186.54] on 20 October 2022, at 08:24 . For personal use only, all rights reserved.

Chen, Chen, and Li: Sequential Design for Rank Aggregation
2322 Mathematics of Operations Research, 2022, vol. 47, no. 3, pp. 2310-2332, © 2022 INFORMS

Table 1. Comparison between adaptive selection and random selection rules under a fixed-length stopping criterion. Each
cell gives the averaged Kendall tau distance/0-1 loss for global ranking based on 1,000 independent simulations.

Kendall tau 0-1 loss
Sample size 20 40 60 20 40 60
Adaptive selection 0.217 0.115 0.075 0.195 0.113 0.074
Random selection 0.226 0.137 0.114 0.210 0.137 0.111

4.2. Effectiveness of Adaptive Selection

We now show the power of the proposed adaptive selection rule by comparing it with a random selection rule
that randomly picks a pair of items in each iteration. For each selection rule, we stop data collection once a
fixed number of observations are collected, and sample sizes 20, 40, and 60 are considered. In the adaptive se-
lection method, we set p = 0.2 for the e-greedy strategy. The adaptive selection is implemented using Algo-
rithm 2 with the number of iterations m = 200, A =2/(K(K — 1)), and ¢ = 1. Note that the random selection
method is essentially an off-line approach. The comparison is conducted under a model with K =3, W={0:
16]l <3, 61 =0,and Vi +# jsuch that |0, - 0;| > 0.1}, and the prior distribution p is a uniform distribution on W.
For each selection rule and each sample size, 1,000 independent simulations are conducted. Two performance
metrics are considered, including the Kendall tau distance (3) and the 0-1 loss for the recovery of global rank-
ing that indicates whether the global ranking of 0 is completely recovered.

The results are given in Table 1 on the averaged Kendall tau distance and the averaged 0-1 loss for global
ranking. As we can see, for each sample size, both the average Kendall tau distance and the average 0-1 loss for
global ranking are smaller when applying the adaptive selection rule. The advantage of adaptive over random
selection becomes more substantial as the observation size increases.

Under the current simulation setting, collecting one additional sample takes about six seconds,' which is main-
ly because of solving optimization Problem (15) in Algorithm 1. Note that the complexity of solving (15) depends
on the number of disconnected regions that the support W has, which grows exponentially with K. Therefore, for

large values of K, it is suggested to simplify the computation by using the misspecified support W in (20), which
can be written as the union of O(K?) half-planes.

4.3. Effectiveness of Adaptive Stopping

We further assess the effectiveness of the two stopping rules. The same model as before is used, that is, K = 3,
W={0:]/0]|<3,0, =0, and Vi #jsuch that |0; - 0;| > 0.1}, and the prior distribution p is a uniform distribution
on W. For the proposed adaptive stopping rules, we set h(c) = [logc|(1+ [logc|*®), where logc=-0.25,
-0.5,-0.75, =1, —1.25, and -1.5 are considered. The proposed adaptive selection rule is used with p=0.2 X

[log c|_%. For each stopping rule and each value of ¢, 1,000 independent simulations are conducted for which the
averaged sample size, the Kendall tau distance, and the Bayes risk (5) are recorded as shown in Tables 2 and 3.

We then compare these adaptive stopping rules with the fixed-length stopping rule. More precisely, for each
value of ¢ and each adaptive stopping rule, we consider a policy with the same adaptive selection rule and the
sample size fixed to be the corresponding averaged sample size. The averaged Kendall tau distance is also ob-
tained based on 1,000 independent simulations and is reported in Tables 2 and 3.

Comparing each adaptive stopping rule with the corresponding fixed-length stopping rule, we see that the
adaptive stopping rule gives substantially smaller averaged Kendall tau distances for all choices of c. It suggests

Table 2. Comparison between the proposed stopping rule T; and a fixed-length stopping rule with the same adaptive selec-
tion rule. For both methods, the averaged Kendall tau distances are given, each of which is computed based on 1,000 inde-
pendent simulations. For stopping rule T, the Bayes risks are also given as a linear combination of the Kendall tau distance
and sampling cost.

Kendall tau Bayes risk
Sample size 31 46 60 76 91 110 log (c) -0.25 -0.5 -0.75 -1 -1.25 -1.5
T, 0.107 0.057 0.039 0.019 0.017 0.014 T 23.9 27.8 28.5 28.3 26.2 24.5

Fixed length 0.207 0.133 0.100 0.069 0.059 0.052
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Table 3. Comparison between the proposed stopping rule T, and a fixed-length stopping rule with the same adaptive selec-
tion rule. For both methods, the averaged Kendall tau distances are given, each of which is computed based on 1,000 inde-
pendent simulations. For stopping rule T, the Bayes risks are also given as a linear combination of the Kendall tau distance
and sampling cost.

Kendall tau Bayes risk
Sample size 19 35 50 64 88 105 log (c) -0.25 -0.5 -0.75 -1 -1.25 -15
T> 0.190 0.112 0.057 0.029 0.020 0.014 T> 15.3 21.3 23.8 23.7 25.3 23.5

Fixed length 0.207 0.133 0.100 0.069 0.059 0.052

that the adaptive stopping rules lead to more accurate ranking aggregation results than the nonadaptive stop-
ping rule.

Comparing the results in Tables 2 and 3, it seems that stopping rule T; has slightly better performance than
T, in terms of Kendall’s tau distance when the value of c is large. For example, the averaged Kendall tau dis-
tance for T, is 0.107 when the averaged sample size is 31, and that for T, is 0.112 when the averaged sample
size is 35. Similarly, T; achieves an averaged Kendall tau distance 0.057 when the averaged sample size is 46,
and T, achieves the same value with an averaged sample size of 50. However, as ¢ decays (e.g., when log (c) =
—-1.25, —-1.5), the two procedures have similar performance in terms of the averaged sample size and Kendall
tau distance. Regarding Bayes risks, we see that, for each value of c, the Bayes risks of T, tend to be smaller
than those of T;. This is because sampling cost is the dominant term in the Bayes risk. As T, tends to stop
slightly earlier than T;, its Bayes risks tend to be smaller. The difference in the corresponding Bayes risks be-
comes smaller when ¢ decays. When log (c) = —1.25, — 1.5, the Bayes risks of the two methods are quite close to
each other. It is worth pointing out that the difference in the finite sample performance when c is relatively
large may depend on the choice of h(c), and the two stopping times are asymptotically equivalent when ¢ goes
to zero.

5. Concluding Remarks

In this paper, we consider the sequential design of rank aggregation with adaptive pairwise comparison. This
problem is not only of practical importance because of its wide applications in fields such as psychology, politics,
marketing, and sports, but it is also of theoretical significance in sequential analysis. Because of the more complex
structure of the ranking problem than the hypothesis testing problems, no existing sequential analysis frame-
work is suitable. We formulate the problem under a Bayesian decision framework and develop asymptotically
optimal policies. Compared with the existing Bayesian sequential hypothesis testing problems, the problem
solved in this paper is technically more challenging because of the more structured risk function. Novel technical
tools are developed to solve this problem, and they are of separate theoretical interest in solving complex sequen-
tial design problems.

The current work may be extended in several directions. First, an even larger class of comparison models may
be considered. The models considered in the current paper all assume the judges to be homogeneous; that is, the
comparison outcome does not depend on who the judge is. It is of interest to consider the heterogeneity of the
judges by incorporating judge-specific random effects into the comparison models and develop corresponding
sequential designs. Second, different risk structures are incorporated into the sequential ranking designs to ac-
count for practical needs in different applications. For example, we consider other metrics for assessing the rank-
ing accuracy (e.g., based on the accuracy of identifying the set of top K items) and nonuniform costs for different
judges.

The results for the pairwise comparison problem can be extended to the case for multiple choices by extending
the BTL model in (2) to the multinomial logit model (Train [55]). More specifically, given an L-tuple at time 7,
exp(0a, ,)
5L expan)
However, additional challenges arise from solving the corresponding optimization problem in (13) that incurs
higher complexity as a result of exploring more combinations of choices. For example, if there are K items and L

ay = (an1,...,0,1), the annotator chooses X, €{1,...,L} following the distribution P(X, =k) =

choices presented to the annotator each time, we need to solve an optimization problem involving (IL< ) combina-

tions. It is worth further investigation on how to reduce the computational burden while keeping a certain
optimality.
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6. Proof of Theorems
In this section, we present the proofs of Theorems 1-3. The proofs for the lemmas are delayed to the online sup-
plement. Throughout the proofs, we use the constants 6, =infgewp(6) >0 and supg.yy , ,e4lVfp(X) < 0.

According to Assumptions 5 and 3, these two constants are finite.

6.1. Proof for Theorem 1

Let ¢ = cllogc|*. For an arbitrary policy 7 = (A, T,R) and a prior probability density function p, there are two pos-
sibilities: either ELg(R) > ¢ or ELk(R) < ¢. For the first case, we can see V(p, ) = ¢ > (1 + 0(1))cEt.(®). For the sec-
ond case, we have

V(m, p) = ELk(R) + cET > cET.
Therefore, to prove the theorem, it is sufficient to show that

lim inf _CET >
c—0 CEtC(G)) -

or equivalently, for each 6 > 0, there exists a positive constant ¢y > 0 such that, for c < ¢y,
ET > (1-9)Et.(©).
Let t.5(0) = (1 —206/3)t.(0) for each 6 > 0. Then, we arrive at a lower bound
ET > E[TI(T > t.5(®))]

> / p(0)tes(8)Po(T > t(0))d0

= Et,(©) - / p(0)tes(0)Po(T < t.,,(0))d0

> Ete5(0) — tmax s P(T < t.5(@)),

where we define fmax,s = maxgewtcs(0) and recall that Py represents for the conditional probability P(:|® = 0).
According to Assumption 4, we have tmax,s = O(|logc|) = O(Et.(®)). Therefore, it is sufficient to show

P(T < t.5(0)) = o(1).

We proceed to an upper bound for P(T < t.5(®)). We abuse the notation a little and write U, = {0 : 7(0) = r}, the
set of parameters that gives the rank r. Then, we have

P(T <t5(0)) = > P(T < t,5(0),0 € U,)

rePg

=0(1) xmax P(T < t.5(®),0 € U,). (21)
rePg

We proceed to an upper bound for P(T < t.5(®),® € U,) for each r € Px. Define an event

. { P(© € U,|F7) cfo}

>— (22)
max ;,jw,nu,=0 P(© € Wiy|Fr) &

where F, =0(Xy,...,X,,m,...,a,) denotes the g-algebra generated by Xi, ..., X, and a3, ..,a,,. We split the proba-
bility
P(T <t.5(0),0el,)
=P(T<t4(0),0cU,B,)+P(T<t,;s(®),0el,B),
which can be bounded from above by
P(T<t,5(0),0cl,) <P(T<t,;®),0¢clU,B,)+P© e l,B;). (23)

We establish upper bounds for the two terms on the right-hand side of the preceding inequality separately. The
next lemma, whose proof is presented in the online supplement, provides an upper bound for the second term.
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Lemma 2. For all r € Pk, if ELx(R) < ¢, then

o
P(© € U, B) < (1 +%)€.

We proceed to the first term P(T < . 5(®),® € U,, B,) on the right-hand side of (23). Then,

P(T <1.5(©),0€ U, B,) = / Po(T < .5(6), B,)p(6)de. (24)
u,

Recall the definition of the event B, in (22), and we have

P(© € U,|F}) co
B, N {T < t.5(0 ef
T < 1e5(0)} {151;22;((6)1’11@( w,nu-o PO € WilF) e

Consequently,

)

P(© € U,|F}) cio
Po(T < t.5(0),B,) <P )
ol »(0), By) 9(1322;((6) max w, nu,=o P(® € Wi|Fy) ¢

(25)

We proceed to an upper bound for the preceding display. For each 0, we define a random sequence {0} : 1 <t <
t.5(0)} as follows:

t
0; = arg min Z Z /\Z]'Di'j(6||5).
0 eW:r(0)#r(0) n=1 i,j
Intuitively, 0 is the score parameter that is most difficult to distinguish from 0 at time ¢ among those that have
different rank with 0 given that item selection rules Ay, ..., 4, have been adopted. We further choose the index
process (i}, j;) to be such that 6; € W;: - but 0 ¢ W;: ;.. If there are multiple (i, j)’s satisfying this, then we choose
(#;,7;) arbitrarily from them. From the definition, we know 60; and (i}, ;) are adapted to d(A4,...,A;) and, thus, are
adapted to F;_1. We use the next lemma to transform the probability in (25) to a probability based on a martin-
gale parameterized by 0.

Lemma 3. For each 0’ € U,, define a martingale with respect to the filtration {F, : n > 1} and probability measure Pg as
follows:

Mi(0") = 17(0") - 17 (6)) = >, >3 A,/D(0116) + >, > A,/D"(0]6),

n=1 (i, ) n=1 (i, )

where l?(@) =log l_[zt'=1 o (Xi). Then, there exists a positive constant co > 0 such that, for 0 < ¢ < ¢,

0
b ( . P(® € U,|F)) co)

X JR—
1<t<t.(0) MAX W, "1, =0 PO@eW;|F) ¢

0
<P M;(0') > -]l . 26
e(1<t<tg}3)),(e'eu, (6 2| OgC|) (26)

According to this lemma, to find an upper bound for (25), it is sufficient to find an upper bound for the right-
hand side of (26), which is the probability that a stochastic process indexed by 0" and t goes above a certain level.
In this paper, we use the following two lemmas repeatedly to handle this type of level-crossing probability. The
first one is the Azuma-Hoeffding inequality proved by Azuma [3] and Hoeffding [28].

Lemma 4 (Azuma-Hoeffding Inequality). Let M, be a martingale with respect to the filtration {F,:n=1,2,..}. Let
Xy =My — M,_1. Assume that X,, is bounded and X, € [ay, b,], where a,, and b,, are deterministic constants. Then, for each
t > 0, we have

2 2
]P’(max M, > t) <exp —7tz :
l<msn iy (bi —a)

The next lemma is the key lemma that allows us to derive the level-crossing probability by aggregating marginal
tail bounds of a random field. Its proof is given in the online supplement.
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Lemma 5. Let {{(0) : 0 € W} be a random field over a compact set U C R¥ that satisfies Assumption 2. Let (0,b) be de-
fined as follows:

p(6,b) =P(C(0) 2 D),

where P is a probability measure and we assume that C(-) has a continuous sample path almost surely under P. Assume that
C(+) has a Lipschitz-continuous sample path in the sense that there exists a constant k. such that, for all 6,0" € W,

|C(0) — C(0)| < xL||0 — 0| almost surely under P.
Then, we have that, for all positive y,

K-1
KL
>b) < — L
B(max C(6) 2 ) < /W/s(e,b PO X s
where 6, is the constant defined in Assumption 2.
Setn:=1t.5(0), t:= §|log -1, M, :=M,(0),and a, = —b, := 2maxx,aeA,9€W|logf§,x(x)l in Lemma 4, and we have,
for each 0/,

X 2
o 2(%|logc|—1)
Po| max )M,,(G)Z—llogd—l <exp|l-————5"—

1<n<t, (0 tc,é(e)a%
According to Assumptions 1 and 3, we have 4; < 00, and consequently,
o
P ") 2 S llogc| - 1) < exp (—Q(5°[L : 27
o max , M0 2 Slogel ~1) < exp (-0 oge) @

Note that, for 6,0 € U,,
max M,(60)— max M,(8)

1<n<t,5(0) 1<n<t.;(0)
< max |[M,(0")—M,(0)|
1SHStC/§(9)

<tes(0)xoll6” = 0,
where o =4sup,. 4 gey ,[V10gfg(x)| <o denotes the Lipschitz constant of M;(6’). Therefore, M,(0) is a
Lipschitz-continuous random field in 6’. The preceding display and (27), together with Lemma 5, give

Py max M, (0") > é|log ql
1<n<t. 5(0), 0'elU,
tc,é(e)K_lKg)(_l
Ob
= exp (—Q(&*[logcl)) x O(logc[*™),
where we recall that m(-) denotes the Lebesgue measure. The preceding inequality and (24)—(26) give

P(T < t.5(©),0 € U,, B,) < exp (-Q(6*[log|)) x O(Jlogc[<™").

< exp (~Q(log c)m(U)

Combine this with Lemma 2 and (23), and we have

P(T < t5(©),0 € U,) <

5
1+ g)s + exp (—Q((Sz|log c))) x O(llog o< .
Combine the preceding display with (21), and we have
5
P(T < t,(©)) < O(1) x {(1 + %)é + exp (—Q(6%[log c)) X O(|10gc|K‘1)}.

Therefore, P(T < t.5(®)) = o(1) as ¢ — 0. This completes the proof.
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6.2. Proof of Theorem 2
We start with the stopping time T5,. With the decision rule D defined in (11), the expected Kendall tau at the stop-
ping time T is
ELK(R) = EZ I(@l < ®])R1,]
@irj)

= /W D Pg(sup sz(é) > sup ITZ(B’)]p(B)dB

(i,7):0¢W, ;i ’(Ter,,- 0'eW;;
= >, Po| sup I1,(0) — sup Ir,(8") > h(c) |p(0)d6, (28)
Weoew,,  \oew,, 0'eW,;;

where we write [;(0) = 3/ _log o' (X,;) as the log-likelihood function. Equation (28) is bounded from above by

ELk(R) < sup p(0) x m(W) x K(Kz_ D)
OeW

Xsup max Pyl sup lT2(5)—lT2(6) > h(c) |. (29)
oew D0Wi G

To obtain the preceding inequality, we use the fact that supe,ewilez(e’) > Ir,(0) for (i, j) such that 8 ¢ W;; and
supgepP(6) < oo according to Assumption 5. We split the probability

Po| sup I1,(0) — I1,(0) > h(c)
0 eW;
< Pg[sup sz(é) —I7,(0) > h(c) and T, < T] +Po(T, > 7). (30)
0 eWj

We clarify that ', 6, and 0 are deterministic vectors here. The second term on the right-hand side of the preced-
ing display is controlled by the next lemma.

Lemma 6. If 7 = Q(|logc|3), then
Po(Ti>1)<c® (i=1,2).

We proceed to an upper bound of the first term on the right-hand side of (30). Define a stopping time
Tr AT =min(T,,T), and then we have

IP’g[sup lTZ(E) —I1,(0) > h(c) and T, < T]

0 eW;

< Pg[sup I7,02(0) = I7, 12 (0) > h(c)].

vaW/',‘
Now, we consider the random field n(a) = szAT(E) — I, ,(0) for 0¢c Wii. We proceed to an upper bound for
P@(sup(;ewﬂn(e) > h(c)) through Lemma 5. We first note that 17(0) is a Lipschitz-continuous function:

1n(0) = (0] < llrc(8) = I1<(8)] < 7110 = 0. (31)
We further obtain the marginal tail probability of () through the next lemma.

Lemma 7. For all © # 0 and all constant A > 0, we have

PG(ZT/\T(E) —Ir.:(0) = A) <e™.

We take A =h(c) — 1 in the preceding lemma and obtain

Pg(n(a) >h(c) - 1) <M
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Combining the preceding display with (31) and Lemma 5, we arrive at

Pg(iup 17(5) > h(c) | < O(zK e )y, (32)

0 EW]‘,'

We combine (32), (29) and Lemma 6 and arrive at

Po| sup I1,(0) — I1,(0) > h(c)
o~ewﬁ

< O(CZ) + O(e—llogcl—ﬂogc|17”‘+(K—1)logT)

— O(CZ) + O(Ce—\logc|l_“+3(K—1)log |logc\)

= 0(c).

This completes our analysis for T,. We proceed to the analysis of the policy 7t; and the stopping time T;. Accord-
ing to the definition of T, in (10), we can see that, upon stopping,

max exp
(i, j)1<i<j<K

min{sup lTl(é) —sup I1,(0), sup lTl(a) —sup lTl(B)}
7 OeW Tew,, OeW

0 EW,‘/]‘

< > exp|min{sup Ip, (6) — sup I1,(0), sup I1,(8) —sup I1,(0) }| < e
(i, j)1<i<j<K 0w, 0w 0w, Oew
Taking the logarithm and rearranging terms in the preceding display, we have
min |sup [,(8) — minq sup 1,(0), sup 1,(0) t| > h(c). (33)
1si9=K] oew Tew, Tew,,
With (33), we can follow similar derivations as those for (29) and arrive at
ELk(Dr,)
< sup p(6)m(W)
0'ew

X Msu max Pg| sup ZT1(5) —11,(0) > h(c) |.
2 OeW (i,j):(-)eW/,f FEW/,‘

The rest of the proof is similar to that for the stopping time T,. We omit the details.

6.3. Proof of Theorem 3
Let 6 be an arbitrary positive number; then, we can find an upper bound for the expectation of a stopping time T
as follows:

ET = S\ E[TI0n(1 +6)t(©) < T < (m + 1)(1 + 0)t(®))]

m=0

<(1+0)Et.(®)+ i E[TI(m(1 + 6)t:(®) < T < (m + 1)(1 + 6)t(®))]
m=1

< (1+ 6)EL(©)

+ (1+9) max tc(e)g(m + DPm(1 +0)t(®) < T < (m+1)(1 + 0)t.(0))

<1+ 0)Et(®)+ (1+0) max tc(e)g(m + 1)r‘191€z;1&/< Po(m(1+0)t(0) < T < (m+1)(1+06)t(0)). (34)
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We proceed to an upper bound for the probability in the preceding sum for T = T; (i = 1, 2). We start with T = T».
We split the probability for m > 1:

Po(m(1 + 0)t.(0) < Tr < (m + 1)(1 + 6)t:(0))

< Pg(m(l +O)t(0) < Ty < (m + 1)(1 + 8)t(6), max 18" - ]| < logc|™
m(1+06)02t.(0)<t<m(1+6)t.(0)
+ Pg( max 16" = 6] > Jlog c|‘51), (35)
m(1+8)82t(0)<t<m(1+8)t(6)

o

where we choose 61 =% and 0, = |10gc|_b°/ :

, and 60 is defined in the selection rule where we recall that
p «<|log c|_%+‘3“. The second term on the preceding display is bounded from above according to Lemma 1, in which
we set 1:= m(1 + 0)02t.(0), m :=m(1 +0)t(0), €, = Q(|logc|_%+b°) and Oy, = |logc|_bl and arrive at

9( max 10" - o) > |logc|_6‘)
m(1406)02t.(0)<t<m(1+0)t.(0)

< e—Q(m(l-%—b)b;Q(G)\logc|_4b1 llogc|1*20) % O(mK—1|10gC|K—l)
— g™ 50 K g o)
— e—Q(nillochAU)O(mK—l|logC|K71). (36)

We proceed to the first term on the right-hand side of (35). For m > 1, we can see that T, > m(1 + 6)f.(0) implies
that there exists (i, j) such that |suPb'ewi,,ln(5) - supe,ewj’iln(e’)l <h(c) for n = (1 + 6)mt.(0). Without loss of general-
ity, we assume that 6 € W;;; then, T> > m(1 +0)t(0) further implies [,(0) — supalewj/iln(e') < h(c). Therefore, an
upper bound for the first term on the right-hand side of (35) is

IP’g(m(l +0)t(0) < Ty < (m+1)(1 +6)t(0), 6™ - 0| < |10gc|_6‘)

max
m(14+0)02t.(0)<t<m(1+0)t:(0)

< ]P’g(l,,(ﬂ) — sup 1,(0") <h(c),

max 16" - 0]| < [log o' |, (37)
oW, m(1+6)0tc(0)<t<m(1+6)t(6)

We present an upper bound for the preceding display in the next lemma.

Lemma 8. If the strategy )\*(5(”) is adopted with probability 1 — o(1) uniformly for mt.(0)(1+6)0, < t <m(1 + 6)t.(0).
Then,

P@(ln(e) — sup 1,(0") <h(c), max ||§(”) -0| < |logc|_61)

0'eW, m(1+0)0at.(0)<t<m(1+6)t.(6)
< e~ Qlmllogel) 5 O(|log o tmK,
where n = (1 + 6)mt.(0).
We combine the preceding lemma with (36) and (35), we arrive at
Po(m(1 + 6)t(6) < Tz < (1 + 1)(1 + 8)£()) < (e"Alose)  o=Qlmllogel™)) 5 O (K1 [log c[<1).
This together with (34) gives
ET, < (1 +06)Et(O)

+ Olog ) x > (m -+ (208D o ¢ 0mos™)) x O jlog o)}
m=1

< (1+0)Et(0) + o(|log c|).
This completes our analysis for T,. We proceed to the analysis of T;. We can see that the event T; > n implies that

> exp

()]

> e—h(c) ,

min [Eup 1,(8) - sup 1,(0), sup 1,(0) - sup ln(e)}

OeW;; W 0ew,; 0w
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which further implies that

K(K - 1)max exp |min { sup l (9)—supl (8), sup l (6)—supl (0) 4] > e,
0cW

2 few,, 6w Gew,,

Simplifying the preceding display, we can see it is equivalent to there existing (i, j) such that

sup |/ 2(0) — sup 1,(0)| < h(c) +1log K(K - 1).
BEW,, OeW,i

The analysis is similar for the stopping time T; to that of T, by replacing h(c) by h(c) + log K(K — 1) in the deriva-
tion following (37). We omit the details.

6.4. Proof of Theorem 4
First, to distinguish between the sequential method with and without model misspecification, we use the nota-

tion “~” over a method (e.g., the sequential ranking rule 77; = (A, T;,R) and the MLE §(t)) to indicate that it is

based on the algorithm with the misspecified support W of the prior distribution p(:). The proof of Theorem 4
follows similar arguments as those of Corollary 1. That is, we show the following modified version of Theorems
2 and 3, whose proofs are provided in the online supplement.

Proposition 2. Following the sequential ranking rules 7t = (A, T}, R) (for | = 1, 2), we have
ELx({R;;}) = O(0).

Proposition 3.

ET,
lim sup
=0 (6)

where we define t.(6) = ”"g(c)l and D(0) = maxeaming. Fr(@)2r(0) 2N IDIi(0)|6).

0
Combining Theorems 2 and 3 with Propositions 2 and 3, we arrive at

imsup V@™ _ i O©) + EE(©) _ . O(c) + cllogclE{1/D(©)} _ E{1/D(©)}
0T Ve(p) T em0 O(c) + cEE(6) ~ cm0 O(c) + dllog c[E{1/D(©)} _ E{1/D(©)}”
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Endnote

" The computation time is evaluated based on our implementation of the proposed method in R version 3.6.1 on a standard desktop PC with
Intel(R) Core(TM) i5-5300 @2.3 GHZ.
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