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Forecasting conflict in Africa with automated machine
learning systems

Vito D’Orazioa and Yu Linb

aAssociate Professor of Political Science, University of Texas at Dallas; bPhD Candidate in
Computer Science, University of Texas at Dallas

ABSTRACT
The ViEWS problem is to forecast changes in the level of
state-based violence for each of the next six months at the
PRIO-GRID and country level. For this competition and toward
the goal of improving sub-national and country level forecasts,
we experiment with combinations of automated machine
learning (autoML) systems and limited datasets that empha-
size the endogenous nature of conflict. Two core findings
emerge: autoML improves predictive performance and the
Dynamics model performs best. The data used for the
Dynamics model is limited to measures of state-based vio-
lence built from the event-level violence data plus those
describing the spatial and temporal structure of the data. The
intent is to capture spatial and temporal conflict dynamics
while not overfitting to exogenous factors, which is especially
problematic with flexible autoML algorithms and the types of
highly disaggregate data used here. At the PGM level, this
model won the ViEWS competition for “predictive accuracy”
and split the win for “originality.” Beyond the ViEWS competi-
tion, we expect conflict forecasting models that couple
advanced autoML systems with variables that reflect a diverse
set of conflict dynamics to have high predictive performance,
especially at sub-national and sub-annual aggregations.

El problema del ViEWS es que predice los cambios en el nivel
de violencia estatal de cada uno de los pr�oximos seis meses a
nivel de PRIO-GRID y de pa�ıs. En el marco de esta competen-
cia y con el objetivo de mejorar las predicciones a nivel
regional y nacional, probamos combinaciones de sistemas de
aprendizaje autom�atico (autoML) y conjuntos de datos limita-
dos que ponen de relieve la naturaleza end�ogena de los con-
flictos. Hay dos resultados principales: el autoML mejora el
rendimiento predictivo y el modelo Dynamics es el que mejor
funciona. Los datos utilizados para el modelo Dynamics se lim-
itan a las medidas de la violencia a nivel estatal establecidas a
partir de los datos de la violencia sobre eventos m�as los que
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describen la estructura espacial y temporal de los datos. La
intenci�on es captar la din�amica espacial y temporal de los
conflictos sin caer en el exceso de ajuste de los factores
ex�ogenos, lo que supone un problema, sobre todo con los
algoritmos autoML flexibles y los tipos de datos altamente
desagregados que se utilizan aqu�ı. A nivel de PGM, este mod-
elo gan�o la competencia del ViEWS tanto por su “precisi�on
predictiva” como por su “originalidad”. M�as all�a de la compe-
tencia del ViEWS, esperamos que los modelos de previsi�on de
conflictos que combinan sistemas avanzados de autoML con
variables que reflejan un conjunto diverso de din�amicas de
conflicto tengan un alto resultado predictivo, sobre todo en
agregados regionales y semestrales.

La probl�ematique du ViEWS (Violence early-warning system,
syst�eme d’alerte pr�ecoce sur la violence) est de pr�evoir les
�evolutions du niveau de violence �etatique pour chacun des
six prochains mois au niveau de la grille PRIO et au niveau
national. Pour ce concours et dans l’objectif d’am�eliorer les
pr�evisions au niveau infranational et au niveau national, nous
avons exp�eriment�e des combinaisons de syst�emes de machine
learning automatis�es (autoML) et de jeux de donn�ees limit�es
mettant l’accent sur la nature endog�ene des conflits. Deux
r�esultats fondamentaux sont apparus : l’autoML am�eliore les
performances pr�edictives et le mod�ele Dynamiques est le plus
efficace. Les donn�ees utilis�ees pour le mod�ele Dynamiques
sont limit�ees aux mesures de la violence �etatique �etablies �a
partir des donn�ees sur la violence au niveau des �ev�enements
ainsi que de celles qui d�ecrivent la structure spatiale et tem-
porelle des donn�ees. L’objectif est de capturer les dynamiques
spatiales et temporelles des conflits tout en �evitant un ajuste-
ment excessif aux facteurs exog�enes, ce qui est particuli�ere-
ment probl�ematique avec les algorithmes d’autoML flexibles
et les types de donn�ees tr�es d�esagr�eg�ees qui sont utilis�es ici.
Au niveau PGM, ce mod�ele a remport�e le concours ViEWS �a la
fois dans les cat�egories « Pr�ecision pr�edictive » et « Originalit�e
». Au-del�a du concours ViEWS, nous nous attendons �a ce que
les mod�eles de pr�evision des conflits qui allient des syst�emes
avanc�es d’autoML �a des variables refl�etant un ensemble
diversifi�e de dynamiques de conflits aient de hautes perform-
ances pr�edictives, en particulier aux niveaux d’agr�egation
infranationaux et infra-annuels.

Introduction

Researchers have used many different algorithms to predict and forecast
conflict, including common methods such as logistic regression (Goldstone
et al. 2010; Ward, Greenhill, and Bakke 2010). To improve predictive per-
formance, some have used machine learning algorithms such as neural net-
works (Beck, King, and Zeng 2000; King and Zeng 2001; Lagazio and
Marwala 2006) and random forests (Colaresi and Mahmood 2017; Hegre
et al. 2019; Hill and Jones 2014). Others have used network-based
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techniques, which are generally less flexible but designed to account for
known or expected dependencies in conflict data (Cranmer and Desmarais
2017; Dorff, Gallop, and Minhas 2020; Minhas, Hoff, and Ward 2016).
Recently, automated machine learning (autoML) algorithms have been

developed and used to solve problems where the researcher values predict-
ive performance but is less concerned with the choice of learning algo-
rithm, hyperparameter tuning, and other modeling decisions that are
considered secondary or even arbitrary (Hutter, Kotthoff, and Vanschoren
2019). The basic idea of autoML is to search over a large space of potential
solutions, including different learning algorithms and hyperparameters, to
find those with the best predictive performance. AutoML algorithms are
highly flexible, which is promising for conflict forecasting because of the
many nonlinear relationships in conflict data. However, this flexibility also
means that autoML algorithms are prone to return solutions that are over-
fit and will not generalize well to new, out-of-sample data.
Researchers have also used many different predictors in their forecasting

models. Generally, these variables are theoretically meaningful and have
been selected from a larger set of potential inputs that could be expected to
improve performance. However, increasing the number of predictors means
the model is more likely to be overfit, especially when coupled with a flex-
ible autoML algorithm. Data-driven methods for variable selection, such as
forward and backward stepwise, exist but also run the risk of producing
models that are not well-grounded in theories of conflict and are especially
difficult to interpret. So, features are commonly grouped and selected by
theory. For example, in models that forecast civil conflict there may be a
set of predictors to represent grievances. By grouping variables by theory,
interpretation is easier since the model as a whole is assumed to represent
a familiar theory or class of theories.
One approach to variable selection that is grounded in theory, is easy to

implement because it is not dependent on external data, and makes for an
excellent benchmark model is to begin with very few or no exogenous vari-
ables and focus on modeling the endogenous nature of the conflict itself
(Cranmer and Desmarais 2017). Spatial and temporal dependencies are a
well known feature of conflict (Carter and Signorino 2010; Schutte and
Weidmann 2011; Ward, Siverson, and Cao 2007). Models with variables
that capture these conflict dynamics, and with a highly flexible machine
learning algorithm, are expected to produce forecasts that are accurate, less
overfit, and understandable simply as forecasts of future violence based on
present and past violence.
In this paper, we experiment with autoML algorithms and limited data-

sets for the ViEWS conflict forecasting problem. In short, the ViEWS prob-
lem is to forecast changes in state-based violence for each of the next six
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months (Hegre et al. 2019). These monthly forecasts are made at the
PRIO-GRID level (PGM) and the country level (CM) (Tollefsen, Strand,
and Buhaug 2012). The primary scoring criteria for the ViEWS problem is
the mean squared error (MSE), although others may be used. As part of
the ViEWS competition, forecasts were submitted in September, 2020 for
each month, October through March, 2021. For more information on the
competition, see Hegre, Vesco, and Colaresi (2022) and Vesco et al. (2022).
Our core experiments test three autoML systems: CMU, AlphaD3M

(Drori et al. 2018), and H2O (H2O.ai 2017). CMU and AlphaD3M have
been developed as part of the Data-Driven Discovery of Models (D3M)
program funded by the Defense Advanced Research Projects Agency, while
H2O is an off-the-shelf, publicly available autoML suite.1 All three are
open-source projects. Using each autoML system, we compare the full
ViEWS model specification to three reduced datasets: ViEWS-30,
Dynamics, and Dynamics-Hurdle. The ViEWS-30 model uses the 30 most
important features as determined by the ViEWS team. The Dynamics
model includes variables that are intended to capture spatial and temporal
conflict dynamics. The Dynamics-Hurdle model is only for the PGM set-
ting, and it uses the same variables as the Dynamics model but forecasts no
conflict in all grids that experienced no conflict in the training data. For
this study, the dependent variable is the natural log of state-based fatalities
from the Georeferenced Event Data (Sundberg and Melander 2013). For
the ViEWS problem, we forecast the level of violence and subtract the cur-
rent level of violence to arrive at our predicted change.
Our results show two primary findings. One, autoML consistently

improves predictive performance. This finding holds across all autoML
algorithms tested. The stacked ensemble method from the H2O solver per-
forms best. Within the stacked ensemble, the most informative base model
is the gradient boosting machine. Across all autoML systems, boosting
methods (e.g., gradient boosting machine) tend to perform better than bag-
ging methods (e.g., random forest). If researchers have no particular reason
to choose one learning algorithm over another, the results suggest using an
autoML system that has boosting and stacked ensemble methods.
The second primary finding is that the Dynamics model performs best. This

is the case for both the PGM and CM problems, but the finding is more pro-
nounced and consistent for PGM. Looking at the importance of individual var-
iables, the count of fatal events (ged count sb) is consistently among the top
contributors. Other measures of violence within the grid or country at time t,
such as the log fatalities (ln ged best sb), are also important contributors. This

1CMU has been developed at Carnegie Melon and AlphaD3M has been developed at NYU. For updates on these
systems or the D3M program, visit https://datadrivendiscovery.org/.
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supports the notion that conflict at time t is the best predictor of future con-
flict, but also that multiple measures of conflict at time t are valuable.
At the PGM level, our model won the competition for “predictive accu-

racy” and, along with Lindholm et al. (2022), split the win for “originality”
(Vesco et al. 2022). Beyond this competition, we expect conflict forecasting
models that couple advanced autoML systems with variables that reflect a
diverse set of conflict dynamics to have high predictive performance, espe-
cially at sub-national and sub-annual levels of aggregation. These models
are relatively easy to build since external data is not needed. They also
make excellent benchmarks for theory building and comparison because
they start by modeling the endogenous nature of conflict, without assuming
we know much about what that endogenous process is (Cranmer and
Desmarais 2017). Given the exclusion of exogenous, theory-driven varia-
bles, Dynamics models are consistent with the suggestion that “less is
more” (Ward 2016, 84). Fortunately, the ViEWS team has provided a large
number of variable transformations to capture a diverse set of conflict
dynamics. This blueprint will be helpful to use and expland upon when
moving beyond GED and into other type of political violence.

The Problem and Motivation

The conflict forecasting problem can be described by the following
formula:

ŷt ¼ faðxt�k, yt�k; hkÞ (1)

where ŷt is the predicted target value at time t: xi and yi denote corre-
sponding exogenous and endogenous features at time t, respectively. a is
the learning algorithm, such as random forest or gradient boosting. fað�; hkÞ
is the model parameterized by hk and k represents the time lag considered
by this model. Both exogenous and endogenous variables are optional to
the forecasting model.
Conflict researchers typically specify a, x, and y using a mix of insights

from both substantive and statistical theory (Blair and Sambanis 2020). The
algorithm’s tuning parameters, h, are generally fit to maximize predictive
performance. While there may be some search over all these parameters,
the search tends to be limited due to computational resources and time.
AutoML algorithms search over an expansive space (S) to identify the

solution with the best predictive performance. That is, the autoML algo-
rithm explores different combinations of learning algorithms, tuning
parameters, and possibly feature sets including both exogenous and
endogenous variables. Depending on the algorithm, a solution s might
incorporate further modeling and data decisions, such as what do to with

INTERNATIONAL INTERACTIONS 5



missing values and outliers, whether to reduce data dimensionality, how to
adjust for class imbalance, and alternative variable specifications. At a min-
imum, autoML algorithms search over a and the tuning parameters.
Performance measures such as the mean squared error and the continu-

ous rank probability score are used to compare these solutions, with the
expected test error rate as the arbiter (Brandt, Freeman, and Schrodt 2014;
James et al. 2013). Using the expected test error rate, which is often esti-
mated with methods such as k-fold cross-validation, along with standard
data partitioning techniques, helps to mitigate overfitting (Hastie,
Tibshirani, and Friedman 2011; Hyndman and Athanasopoulos 2018).
In contrast to inferential models, predictive models emphasize predictive

performance, either in model selection, model assessment, or both. While
“machine learning” is essentially just a set of algorithms, predictive model-
ing is more of a research design than a choice of algorithm. As described
in D’Orazio (2020), conflict researchers have used this design to offer guid-
ance for policy-makers (Goldsmith and Butcher 2018 Hegre et al. 2013;
Rost, Schneider, and Kleibl 2009), to assess variable importance (Gelpi and
Avdan 2018; Ward et al. 2010), and for testing and comparing theory
(Chenoweth and Ulfelder 2017; Gleditsch and Ward 2013; Jones and Lupu
2018). Bowlsby et al. (2020) offer some caveats in using predictive models
for theory testing. Each of these applications for predictive modeling in
conflict research would benefit from expanding the search space S:
Figure 1 represents the motivation for autoML conceptually. The solution

space S is represented by the 9� 9 grid. Each cell in the grid is a potential
solution, i.e., a fit model that will provide a prediction given a set of inputs.
The white cells are potential solutions that have not been fit or tested,
while the shaded cells are those that have been fit. For example, the
researcher may select a learning algorithm and experiment with different
feature sets. Here, the white cells may represent solutions using other learn-
ing algorithms, while the shaded cells are the models in the researcher’s
experiment. The outlined box consisting of six cells in the lower left of

Figure 1. Example predictive modeling search types. Conflict researchers tend toward limited
search, but would benefit by moving toward exhaustive search.
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each grid represents solutions to avoid because they are not meaningful or
helpful. For example, for some binary classification problems a model that
always predicts 1 or 0 might have good predictive performance, but is
not meaningful.
The Limited Search, on the left, represents a case where autoML is not

used and all decisions have been specified by the researcher. On the right,
the Exhaustive Search represents a full autoML search. Moving from a lim-
ited search to an exhaustive search, we expect to see improvements in pre-
dictive performance because more of S is covered. With predictive models,
knowing that more of the search space has been assessed is a way to build
confidence in any inferences drawn.
An AutoML search does not mean the research automatically accepts the

model with highest predictive performance. Rather, it means a larger solu-
tion space has been explored in terms of models that have been fit. As
algorithms search in increasingly exhaustive ways, there will be solutions
found that are not helpful and are not meaningful. This can happen even
when the researcher takes care in establishing the configurations of the
data and the problem, such as omitting nonsense variables and making
informed decisions about how to handle missingness. In a limited search,
researchers avoid these models. With autoML, solutions require vetting and
may be filtered after the search. Other solutions will be found that are
acceptable, but may be overfit or less desirable because of a lack of inter-
pretability. These solutions often require subject-matter expertise
to identify.

General AutoML

AutoML systems solve a hyperparameter optimization (HPO) problem. A
trained model, f ð�; hÞ, can be recognized as the “realization” of a learning
algorithm with corresponding hyperparameters. Assume this model has M
hyperparameters, which are denoted as K ¼ fk1, k2, . . . , kmg: The hyper-
parameter configuration space is represented as Shp ¼ k1 � k2 � . . .km: Let
v be an instantiated vector of hyperparameters in the hyperparameter con-
figuration space. Given a dataset D, the goal of the autoML system is to
find

v�hp ¼ argmin
v2Shp

Lðv, f ,Dtrain,DvalidÞ

where Lðv, f ,Dtrain,DvalidÞ measures the loss of a model f , trained with
hyper-parameter vector v:
Solutions for this HPO problem can be divided into three main catego-

ries: 1) Model-Free Blackbox Optimization (e.g. Grid Search, Random
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Search); 2) Bayesian Optimization (e.g. meta-learning, Gaussian process); 3)
Neural Architecture Search. The latter two optimization families have lim-
ited applicability or require extensive computational resources, so the
Model-Free Blackbox optimization method is more common and is used by
the autoML engines tested here. Grid Search and Random Search are fur-
ther described in Bergstra and Bengio (2012).
The hypterparameter configuration space becomes very large, with cardinality

jShpj ¼ jk1j � jk2j � � � jkmj where each v 2 Shp indicates one hyperparameter
configuration. The grid search algorithm iterates through all possible configu-
rations and returns the best model. Obviously, a complete grid search becomes
prohibitively costly very quickly. For practical use, this family of autoML sys-
tems have a time constraint, which means the system returns solutions and
stops the process after the allotted time. Random search may help to find better
solutions when the space becomes large. Here, each vhp is sampled from the
space. The stop criterion can either be a time allotment or a performance-met-
ric-based criterion. If the latter, the search stops when the improvement
between two hyperparameter vectors is less than a predefined threshold.

H2O and Stacking

To preview results, H2O outperforms AlphaD3M and CMU in most of our
settings. We expect this is because H2O, unlike the others, uses an ensem-
ble of base models as a potential solution. Specifically, H2O uses an ensem-
ble algorithm called Stacking (Van der Laan, Polley, and Hubbard 2007).
The method is conceptually simple: it trains a second-level meta-learner to
find the optimal combination of the base learners (e.g., Lasso Regression,
Logistic Regression, Random Forest, etc.). Mathematically, assume we have
n data instances and K base learners. Each base learner is indexed by k 2
f1, . . . ,Kg, and represents a function Pn ! ŴkðPnÞ from empirical prob-
ability distribution Pn to functions of the covariates. Follow the same con-
vention, the meta learner can be defined as

ŴmetaðPnÞ � ŴK̂ðPnÞðPnÞ

where K̂ðPnÞ is an indicator function that select the best learner under cross-
validation. The stacking algorithm first trains the base learners with cross-
validation and build corresponding selectors. Next, it will bind the prediction
vectors from each base learner together to form a new design matrix Z, and
the meta learner is trained on this matrix.
Specifically, the meta learner is trained with V-fold cross-validation,

where the n data points are splited into V disjoint blocks. For each v 2
f1, . . . ,Vg, the validation set ValðvÞ is just the v-th block and the training
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set TraðvÞ is the union of rest blocks. Let wnkv � ŴkðPn,TraðvÞÞ be the real-
ization of the k-th estimator applied to the training set Pn,TraðvÞ: It’s note-
worthy that the meta learner transforms any original data point ðXi, yiÞ to
ðZi, yiÞ before the training, where Zi � ðwnkvðXiÞ : k ¼ 1, . . . ,KÞ is the vec-
tor consisting of the K predicted values according to the K trained estima-
tors. Finally, H2O trains the meta learner on this constructed matrix Z
using a Generalized Linear Model by default.

Data and Research Design

The ViEWS problem is to forecast changes in the log of state-based fatal-
ities (ln ged best sb) for each the next six months. These monthly forecasts
are made at the PRIO-GRID level (PGM) and the country level (CM). The
dependent variable is from the Georeferenced Event Dataset (Sundberg and
Melander 2013). Forecasts are made for 1, 2, 3, 4, 5, and 6 months in
advance. While the ViEWS problem is to forecast changes in log fatalities,
our models forecast the level of log fatalities. The change is calculated by
subtracting the current level from the forecasted level. The results reported
in this paper are for the level of violence, not the change.
The data partitions for the reported results and for model selection are

shown in Table 1. While ViEWS made global data available, the ViEWS
problem is to forecast violence in Africa. So, we restrict our data to grids
and countries in Africa, which is consistent with the ViEWS benchmark.
Mean squared error (MSE) is one of the primary scoring criteria for the

ViEWS competition (Vesco et al. 2022). We use MSE for all model selec-
tion and evaluation results.

AutoML Systems

We use three different open-source and publicly available autoML systems.
The CMU and AlphaD3M systems have been developed as part of
DARPA’s Data-Driven Discovery of Models (D3M) program (D3M 2021),
while H2O is an off-the-shelf solver (H2O.ai 2017). Conceptually, autoML
algorithms compile primitives to form a solution, given some input data
and problem configurations. The primitives may include data manipula-
tions, missing value imputations, learning algorithms, etc. The D3M solvers
use primitives developed by the D3M program, and are different from

Table 1. Data partitions with corresponding month IDs
Starts Ends Range of month id

TRAIN Jan, 1990 Dec, 2012 121!396
VAL Jan, 2013 Dec, 2015 397!432
TEST Jan, 2016 Dec, 2018 433!468
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those used by H2O. However, both AlphaD3M and CMU have access to
the same library of primitives.
The ViEWS problem can be structured as a regression task or a time ser-

ies forecasting task. To solve the problem as a regression task, we shift the
target column by k time units, where k ranges from 1 to 6. This requires a
distinct autoML run for each k: We solve the problem as a regression task
using all three autoML systems. In addition, we solve the problem as a
time series forecasting task using CMU and AlphaD3M. For this setting,
we specify the spatial and temporal features (grids or countries, and month
ids) and provide only the state-based violence variable as the target. In
terms of parsimony, the time-series forecasting setup is the simplest. H2O
did not have a time series forecasting option.

Features and Data

We test these three autoML engines across four different feature and data
settings: ViEWS, ViEWS-30, Dynamics, and Dynamics-Hurdle. We begin
with the data compiled by the ViEWS team, which is publicly accessible at
https://github.com/UppsalaConflictDataProgram/OpenViEWS2. The num-
ber of features used in each setting is shown in Table 2. The ViEWS model
includes all the variables that the ViEWS teams uses in their benchmark
model. This includes data from the GED plus other data resources such as
REIGN (Bell, Besaw, and Frank 2021) and V-Dem (Coppedge et al. 2021).
The ViEWS-30 model includes the features that ViEWS has identified as
the most important (Jansen2020).
The Dynamics model includes variables intended to capture spatial and

temporal conflict dynamics, plus country and month indicators. The data
used for this model is limited to measures of state-based violence built
from the GED, and variables describing the spatial and temporal structure
of the data. No additional data resources are used. In the ViEWS data,
these are the features that end with _sb, to indicate they were built from
the state-based violence data. For example, tlag_1_ged_best_sb is the 1
period time lag of the number of state-based fatalities. Table 3 shows the
different classes of variable transformations. In addition to spatial and tem-
poral lags, the transformations include dummy variables to capture thresh-
olds, “time since” variables to measure peace spells, counts to capture the

Table 2. Number of features
CM PGM

ViEWS 797 41
ViEWS-30 32 32
Dynamics 96 42
Dynamics-Hurdle – 42
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number of fatal events as opposed to the number of fatalities, and space-
time measures that reflect distance from a conflict event using both time
and space. More details about the transformations may be found in the
ViEWS documentation, Section 3.1.10 Transforms (https://views.pcr.uu.se/
download/docs/views.pdf).
There are two main ideas underlying the Dynamics model. One, there has

been extensive research suggesting the importance of spatial and temporal
dependencies for understanding and forecasting all types of conflict (Boehmke,
Chyzh, and Thies 2016; Dorff, Gallop, and Minhas 2020; Harff 2003; Sandler
et al. 2007; Weidmann and Ward 2010). So, one underlying idea is to model
conflict as an endogenous process, but without assuming we know what that
endogenous process really looks like. The goal is for these features to capture
the intricate and diverse ways that conflict is driven by conflict. The second
consideration is to prevent overfitting to exogenous factors. Overfitting is
always a concern in machine learning, and more of a concern with autoML.
Since conflict is a rare event, and relatively rarer at disaggregate spatial and
temporal levels, overfitting becomes even more of an issue.
The Dynamics-Hurdle model is only for the PGM forecasts. It contains

the same predictors as the Dynamics model, but drops all grids that experi-
enced no state-based violence in the training and validation data. Of the
10,677 total grids, 9,406 never experience any conflict and so we train these
models without these grids, and set the predicted value to 0 in the test set.
See the Appendix for more details.

Empirical Results

The primary empirical results are presented in Table 4. Each cell is an indi-
vidual autoML run, and reports the MSE on the test set using the best per-
forming model on the validation set. From these results we draw several
conclusions.
One, every autoML run performs better than the the benchmark in the

PGM setting, and nearly every run performs better than the benchmark for

Table 3. Variable classes
Class Description

Violence Thresholds, counts, measures of violence at time t:
Time since Number of periods since violence has been observed.
Time since spatial Number of periods since violence has been observed in a neighbor.
Time since decay Function to weight temporal distance since violence.
Time lag Violence at period t � i where i > 0:
Spatial lag Violence in neighbors, neighbors of neighbors, etc.
Space-time distance Spatial and temporal distance to violence as a single number.
Time lag spatial lag Violence in neighbors at period t � i where i > 0:
Rolling max Rolling maximum of violence in a time window.
Onset Onset of violence in a time window.
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CM. Furthermore, many of the improvements are substantial. For example,
the H2O Dynamics model for k ¼ 1 represents a 42% reduction in MSE
from the benchmark.
Two, for each autoML solver, the Dynamics models are generally an

improvement over the others. This is consistently the case for H2O in the
PGM setting. We speculate that this is true because the Dynamics approach
models the conflict process itself and does not overfit to exogenous features
that are in the ViEWS and ViEWS-30 feature sets. While the Dynamics-
Hurdle contains the same set of features, dropping the zero conflict cases
decreases performance for H2O, improves performance for AlphaD3M, and
is mixed for CMU.
Three, H2O out-performs CMU and AlphaD3M in both PGM and CM

settings. We expect that this is because H2O includes a Stacked Ensemble
as a solution, while CMU and AlphaD3M do not. In each run, the Stacked
Ensemble is the best performing model for H2O. It also presents more
intuitive results in that the MSE tends to increase consistently as the fore-
cast period increases. Assuming that we should be better at forecasting the
level of violence next month than the month after, this makes sense. CMU
and AlphaD3M do not show the same consistency. For example, we can
score each autoML solver 1 point if the MSE increases as the time-step
increases, for a possible total of 7 points. H2O scores a 5 while CMU
scores a 2 and AlphaD3M scores a 1.
There are other notable differences in our experience with the H2O and

the D3M systems.2 H2O is easier to install and is more user-friendly. It has
simple options to reduce S by allowing the researcher to specify a, the
learning algorithm. D3M systems have this feature, but it requires extensive
expertise to use. This feature may be used for direct comparisons to

Table 4. MSE for regression experiments
PGM (MSE�100) CM (MSE�10)

Time lag 1 2 3 4 5 6 1 2 3 4 5 6

Benchmarks 2.96 3.05 3.11 3.19 3.25 3.29 8.57 7.93 7.49 7.74 7.21 7.92
AlphaD3M Dynamics 2.27 1.84 1.82 1.85 2.19 2.18 5.07 5.19 6.13 6.37 6.26 6.64

Dynamics-Hurdle 1.80 1.84 1.88 1.93 1.96 1.99 NA NA NA NA NA NA
ViEWS-30 2.71 2.26 2.24 2.39 2.35 2.38 4.92 5.47 6.47 6.02 8.53 6.29
ViEWS 2.31 2.31 2.42 2.39 2.37 2.41 7.02 7.19 7.00 7.17 7.39 7.28

CMU Dynamics 1.82 1.97 1.94 1.92 1.84 1.89 4.99 5.83 6.03 6.17 6.77 6.90
Dynamics-Hurdle 1.81 1.86 1.89 1.93 1.95 1.98 NA NA NA NA NA NA
ViEWS-30 1.93 1.92 1.90 1.94 1.99 1.92 4.81 5.61 6.87 7.91 7.25 7.33
ViEWS 2.20 2.28 2.31 2.30 2.26 2.31 8.11 8.35 8.26 8.17 8.46 8.26

H2O Dynamics 1.73 1.78 1.79 1.79 1.83 1.86 4.82 5.37 5.96 6.63 7.25 7.35
Dynamics-Hurdle 1.79 1.84 1.89 1.94 1.99 2.02 NA NA NA NA NA NA
ViEWS-30 1.79 1.86 1.91 1.97 1.99 1.94 5.11 5.15 6.30 7.14 7.63 7.98
ViEWS 1.78 1.85 1.86 1.88 1.90 1.92 6.80 6.61 6.72 6.92 6.77 7.00

2Experiences are at or before the time of writing.
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existing findings, or because a researcher may see a benefit in some of the
algorithm’s statistical properties. On the other hand, the D3M systems are
more capable than H2O in terms of the diversity of tasks they can solve.
Both CMU and AlphaD3M have time-series forecasting options, while
H2O does not.
We solved the ViEWS problem using the time-series forecasting

setting, which means inputting to the autoML system a dataset that con-
tains only three variables: the outcome, the time period, and the cross-
section (i.e., country for CM and grid id for PGM). The results from
these runs are shown in Table 5. Using MSE, the best performing solu-
tion is actually AlphaD3M’s Markov blanket multilayer perceptron model
in the time-series forecasting setting. However, when inspecting the pre-
dictions, they are constant within grid and only vary across grids. The
predicted value does not change after observations of new or intensified
conflict, which is not the case with the other PGM solutions. So, we do
not expect these solutions to generalize well. This highlights a primary
concern with using autoML, which is that the algorithms will find solu-
tions that are overfit regardless of how careful one is to structure inputs.
Thus, while it is good practice to always look beyond the performance
measure and inspect the predictions, it is essential practice when
using autoML.
Each of the autoML systems have features to explore the results, and we

found D3M’s Pipeline Profiler very effective (Ono et al. 2020). The tool vis-
ualizes the search space of the D3M systems, showing different primitives
in different solutions. Figure 2 shows the search at the CM level for the
CMU solver, with solutions 1 through 12 ordered from best to worst. One
interesting finding from Figure 2 is that the random forest algorithm, a
bagging method, is third best for CM. It is the eighth best for PGM (see
Appendix). Boosting methods, including gradient boosting, xgboost, and
adaboost, are the best performing. For the H2O solver, the best performing
model is the stacked ensemble, but the best base learner is the gradient
boosting machine. This suggests that, if researchers are going to use a sin-
gle machine learning algorithm instead of an ensemble, better results may
be obtained with boosting methods than bagging methods (Hastie,
Tibshirani, and Friedman 2011).

Table 5. MSE across time series specifications
PGM

AlphaD3M Markov Blanket MLP 0.014
Gradient Boosting 0.015

CMU Random Forest 0.029
Vector Autoregression 0.190

H2O NA NA
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Forecast Exploration

Based on the empirical results, we selected the H2O and Dynamics model
to produce the forecasts for the ViEWS competition. In this section we
explore this model for both PGM and CM settings. Sections 5.1 and 5.2
describe the true, a priori forecasts that were submitted in September 2020
for October through March, 2021. To assess variable importance, Section
5.3 uses the partitions described in Table 1 and the leading contributor to
the stacked ensemble, the gradient boosting machine.

PGM Forecasts

Figure 3 shows the level of forecasted violence across Africa in October
2020 and March 2021. While there are many grids with potential for vio-
lence, there are roughly seven clusters: (1) central Mali and Burkina Faso;
(2) northwestern Nigeria; (3) Lake Chad region including Borno in north-
eastern Nigeria, Chad, and Cameroon; (4) western Cameroon; (5) the bor-
ders of the DRC and Uganda, Rwanda, and Burundi; (6) southern Somalia;
and (7) the Cabo Delgado province in northwestern Mozambique.

Figure 2. Pipeline profiler for solution comparison using CMU and the CM forecasting problem
for 1 month out forecasts.
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Comparing forecasted violence for October and March in Figure 3, violence
is expected to increase and spread slightly. Figure 4, which shows the fore-
casted change in violence, reveals the expected spread in violence more
clearly. Blue and red cells indicate expected decreases and increases,
respectively. While many grids are blue, there are more red cells in March
than in October.
Figure 5 focuses on the Lake Chad region and the Mozambique and

Tanzania border area. This figure shows observed and forecasted violence
from October 2019 to March 2021. With multiple grids in each region, the
values are the sum of violence across grids. Points to the right of the verti-
cal dashed line are forecasts, while points to the left are observed.
The blue line is Nigeria, Cameroon, and Chad in the areas near Lake

Chad. This region has been the site of violence associated mainly with

Figure 3. Oct and Mar PGM forecasts.

Figure 4. Oct and Mar PGM delta.
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Boko Haram. The range of observed values is from 3.04 to 5.24. The fore-
casted values are within this range, but at the lower end, ranging from 3.06
to 3.71. Thus, the model forecasts a continuation of violence in this region,
but toward the lower end of what has been seen over the last year.
The red line is along the eastern border of Mozambique and Tanzania

and includes Mozambique’s Cabo Delgado province. This region has seen a
surge in extremist violence from groups potentially linked to Islamic State
(Blake 2020; Campbell 2020). The observed amount of state-based violence
in this region is slightly lower than that of the Lake Chad region, and the
forecasted violence for October to March is lower as well. However, the
forecast is at or below observed violence. This suggests a larger expected
decrease over the next six months than in the Lake Chad region.
Both of these regions are conflict prone, as shown by the consistent pres-

ence of state-based violence in the first twelve months of Figure 5. Given
the Dynamics model is focused on modeling the process itself, the forecast
of continued violence is intuitive and suggests the model is behaving the
way it is intended.

CM Forecasts

Figure 6 shows the forecasted level of conflict for each state in October and
March for the CM models. Similar to the PGM model, the forecasted
increase in violence is greater for March than October. For some states,
however, this still represents a decrease from the observed level in
September. As seen in Figure 7, which shows the change in violence, sev-
eral states are blue. This includes places that have seen higher levels of
state-based violence, including Nigeria, Somalia, and Mozambique. In gen-
eral, North Africa is expected to see increased violence, as shown by red
states of Libya, Chad, Niger, and Algeria. Egypt is white for October, which
means no change, but red for March.

Figure 5. Figure PGM Border.
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Figure 8 shows observed and forecasted violence using the country-
month model for five states: Nigeria, Cameroon, Chad, Mozambique, and
Egypt. The observed violence and forecasted violence differs in some inter-
esting ways, and these results are somewhat less intuitive than those pre-
sented for the PGM model. The observed violence varies within state, for
example Chad has both no violence and, in April 2020, the highest level of
violence at 6.96. These high levels of violence in Chad correspond to an
offensive against Boko Haram and extremists by the Chadian government
in the Lake Chad region (Harwood 2020). The forecasted violence has
lower variance and shows slight trends by state. Nigeria is trending down
while Chad and Egypt are trending up. Furthermore, forecasted violence
across states is not drastically different. If Chad is excluded, the forecasts

Figure 6. Oct and Mar CM forecasts.

Figure 7. Oct and Mar CM delta.
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for the other four states are extremely similar, especially for October
through December.
Figure 9 shows the distributions of forecasted levels and change in vio-

lence for the CM models. Looking at the right panel, forecasted increases
are smaller and fewer in number than forecasted decreases. However, no
violence and no change in violence is the most common forecast. Looking
at the left panel, conflict is generally expected to increase over these six
months, as mass at zero decreases and shifts upward. While this is not true
for every state and region, both CM and PGM models forecast more con-
flict on the continent in March than October. The PGM version of Figure
9 is in the Appendix, and results are similar to those discussed here.

Variable Importance

Variable importance is measured by calculating the relative influence of each
variable. Assume each data point contains M features, Xi ¼ fxðiÞ1 , xðiÞ2 , . . . , xðiÞm g

Figure 8. Figure CM.

Figure 9. Oct and Mar CM delta.
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and we want to assess the importance of a specific feature xs: Its variable
importance score is computed by the following formula.

VIðxsÞ ¼
XN
i¼0

ðyi � �yÞ2
" #

� N �
X
v2xs

Nv �
XNv

j¼0

ðyj � �yvÞ2
2
4

3
5

where N denotes the number of data points, v is a unique value in xs, and
Nv denotes the number of instances where xs ¼ v: Figures 10 and 11 show
variable importance scores for the leading base model in the stacked
ensemble, the gradient boosting machine, because H2O did not support
variable importance for the stacked ensemble. See H2O.ai (2017) for more
details on how variable importance is assessed with H2O.
Figure 10 shows the importance for the top ten variables for the s ¼ 1

and s ¼ 6 PGM models.3 While each bar represents the importance score
for an individual variable in the model, the figures are labeled with the
class of variable transformation as described in Table 3. Looking at the left
panel, the top two features have very high importance scores relative to the

Figure 10. PGM Variable Importance for s ¼ 1 (Left) and s ¼ 6 (Right).

Figure 11. CM variable importance for s ¼ 1 (Left) and s ¼ 6 (Right).

3The top ten in the left panel are: ged_count_sb, ln_ged_best_sb, time_since_greq_25_ged_best_sb,
stdist_k1_t10_ged_dummy_sb, country_name, stdist k1 t1 ged dummy sb, decay 12 time since
ged dummy sb, tlag 2 ged dummy sb, stdist k1 t001 ged dummy sb, greq 5 ged best sb: The top ten in
the right panel are: country name, ged count sb, greq 1 ged best sb, time since greq 25
ged best sb, decay 12 time since ged dummy sb, time since greq 500 ged best sb, tlag 5 ged dummy sb,
stdist k1 t001 ged dummy sb, time since ged dummy sb,month:
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others. These are ged count sb are ln ged best sb, which are the count of
fatal events and the log fatalities. They are both measures of violence within
the grid at time t: Hirose, Imai, and Lyall (2017, 54) state, “the conflict
modeling literature has demonstrated that a leading predictor of future vio-
lence is simply the prior distribution of violence,” and the results here sup-
port this.
The plot in the right panel shows variable importance for the s ¼ 6

PGM model. The top two features, country and ged count sb, have con-
siderably higher importance scores than the rest. The importance of
country could explain why we see more increases in violence for the
March forecasts in Figure 4. Essentially, at six months out, the model
forecasts conflict to occur within a state, but has greater uncertainty as
to the location of the violence and so we see more light red cells. At
one month out, however, the forecasted violence is more concentrated.
For s ¼ 6 forecasts, features 3 through 10 have greater importance than
in the s ¼ 1 model. This may also be related to the uncertainty of
6 month forecasts.
Variable importance for the top ten predictors in the CM models are

shown in Figure 11.4 As with PGM, for s ¼ 1 the two most valuable con-
tributors are ged count sb and ln ged best sb: The top two for s ¼ 6, how-
ever, are flipped: ged count sb is first and country name is second. As with
PGM, features 3 through 10 in the s ¼ 6 model have more importance
than in the s ¼ 1 model.
One takeaway from these figures is the consistent importance of

ged count sb, the count of fatal events. It is the most valuable predictor in
three of the models and the second most important in the other. While we
often see the total number of fatalities or the log fatalities, it is much less
common to see the count of fatal events in forecasting models. On the
whole, the violence class of features contributes most. This speaks to the
value of measuring conflict in different ways and including those measures
in the forecasting model.
Another takeaway is the lack of overall importance for spatial variables.

There is not a single spatial lag in Figure 10, and only one in Figure 11,
where it is the tenth most important for s ¼ 6: In the PGM models, there
are four space-time variables that may be capturing a spatial dynamic, but
we do not know to what degree since the distance combines elements of

4The top ten in the left panel are: ged count sb, ln ged best sb, ged best sb, greq 5 ged best sb,
country name, time since greq 25 ged best sb, time since greq 5 ged best sb, ged summy sb,
tlag 4 greq 25 ged best sb, time since greq 100 ged best sb: The top ten in the right panel are:
ged count sb, country name, time since greq 5 ged best sb, ln ged best sb, tlag 1 greq 5 ged best sb,
greq 5 ged best sb, month, time since greq 100 ged best sb, time since ged dummy sb,
time since greq 500 splag 1 1 ged best sb:
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both space and time. For the CM models, however, the spatial dynamic
appears largely absent.

Conclusion

The ViEWS problem is to forecast changes in the level of state-based vio-
lence for each of the next six months at the PRIO-GRID and country level.
For this competition and toward the goal of improving sub-national and
country level forecasts, we experiment with combinations of automated
machine learning (autoML) systems and limited datasets that emphasize
the endogenous nature of conflict. Two core findings emerge from our ana-
lysis. One, autoML improves predictive performance, and the stacked
ensemble method in H2O performs best. Two, the Dynamics model pro-
vides the most accurate forecasts. These findings hold at both the PGM
and CM levels, although they are stronger at the PGM level. As a result of
our experiments, we selected the Dynamics model with the H2O solver to
enter into the ViEWS forecasting competition. At the PGM level, this
model won for “predictive accuracy” and split the win with Lindholm et al.
(2022) for “originality” (Vesco et al. 2022).
If researchers are interested in predictive performance and do not have a

particular reason for choosing one learning algorithm over another, our
results indicate that they should default to the autoML design and use a
system with the stacked ensemble method. H2O is one such system, and is
publicly available and open-source. As feature sets change from one fore-
casting problem to another, there is no guarantee that the stacked ensemble
will perform best. However, the autoML design will provide the researcher
with a greater opportunity to select a high performing model.
In addition to improved predictive performance, the Dynamics model

has other advantages. The data used for this model is limited to measures
of state-based violence built from the GED, and variables describing the
spatial and temporal structure of the data. Therefore, the approach is
applicable to any type of conflict and any level of aggregation. It is inter-
pretable as a model that forecasts conflict as a function of present and past
conflict. This is a simpler interpretation compared to models with different
sets of exogenous variables, even when those variables are themed (Hegre
et al. 2021). It makes for a good benchmark since it models the endogen-
ous nature of conflict itself, without assuming we know what that endogen-
ous process is (Cranmer and Desmarais 2017). It is also relatively easy to
build, since no additional data resources with exogenous variables
are required.
We expect conflict forecasting models that couple advanced autoML sys-

tems with variables that reflect a diverse set of conflict dynamics to have
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high predictive performance, especially at sub-national and sub-annual lev-
els of aggregation. Future research could explore this in applications to dif-
ferent types of political violence. The ViEWS data provide a number of
conflict variables that we used in the Dynamics model, but they are not the
only transformations possible. Future research could also explore other
transformations.
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